初三数学期中试卷

合集下载

初三数学期中考试试卷及答案

初三数学期中考试试卷及答案

初三数学期中考试试卷及答案第一卷:选择题(共80分)一、选择题(每小题1分,共40分)1. 下列各组函数中,相等的是()a) y = x^2 - 2x + 1,y = (x - 1)^2b) y = |2x - 1|,y = -(2x - 1)c) y = |2x - 1|,y = 2|x| - 1d) y = 2|x + 1|,y = -2|x + 1|2. 单项式 2x^3 y z^2 的次数是()a) 2 b) 3 c) 4 d) 53. 若 a:b = 7:5,b:c = 4:3,求 a:b:c =a) 7:5:3 b) 7:4:5 c) 7:10:12 d) 28:20:154. 圆心坐标为 (-4, 2),半径为 5 的圆方程是()a) (x + 4)^2 + (y - 2)^2 = 5^2b) (x - 4)^2 + (y + 2)^2 = 5^2c) (x + 4)^2 + (y + 2)^2 = 5^2d) (x - 4)^2 + (y - 2)^2 = 5^2...第二卷:非选择题(共70分)五、计算题(共30分)1. 化简:(3a^2b)^3 / (6a^5b^2) =2. 解方程:4x - 5 = 3x + 73. 已知图中三角形 ABC,其中∠B = 90°,AC = 8cm,BC = 6cm。

求 sin A 和 cos C 的值。

...八、解答题(共20分)1. 某商店购进一批相同的商品,第一天卖出了商品总数的 1/4,第二天又卖出了剩余商品总数的1/3 ,已知最后剩下的商品总数是60 件,求原先购进的商品总数。

2. 一辆汽车从 A 地开往 B 地,全程 300 km,开了 4 个小时到达终点。

第二天,汽车原路返回,回到 A 地用了 6 个小时。

求汽车在去程和返程时的平均速度。

...第三卷:答题卡(共10分)请将你的答案填写在答题卡上。

注意事项:1. 请认真核对试卷上的题号和试卷形式,确保填涂无误。

初三期中数学试题及答案

初三期中数学试题及答案

初三期中数学试题及答案一、选择题(本题共10小题,每小题3分,共30分。

每小题只有一个选项是正确的,请将正确选项的字母填入题后的括号内。

)1. 下列哪个数是无理数?A. 0.33333...(循环)B. πC. √4D. 3.14答案:B2. 一个数的相反数是-5,这个数是:A. 5B. -5C. 0D. 1答案:A3. 如果a和b互为倒数,那么ab的值是:A. 0B. 1C. -1D. 无法确定答案:B4. 一个等腰三角形的底边长为6,腰长为5,那么它的周长是:A. 16B. 17C. 18D. 20答案:C5. 下列哪个方程是一元二次方程?A. 3x + 2 = 0B. x² - 4x + 4 = 0C. 2x - 3y = 5D. x³ - 2x² + 1 = 0答案:B6. 函数y = 2x + 3的图象是:A. 一条直线B. 一条双曲线C. 一个圆D. 一个抛物线答案:A7. 如果一个角的补角是120°,那么这个角的度数是:A. 60°B. 30°C. 45°D. 90°答案:B8. 一个数的立方根是2,那么这个数是:A. 2B. 4C. 8D. 6答案:C9. 下列哪个图形是中心对称图形?A. 等边三角形B. 等腰梯形C. 正方形D. 圆答案:D10. 如果一个数的绝对值是5,那么这个数可以是:A. 5B. -5C. 5或-5D. 0答案:C二、填空题(本题共5小题,每小题4分,共20分。

)11. 一个数的平方是36,这个数是______。

答案:±612. 一个数的绝对值是它本身,这个数是非负数,即这个数可以是______。

答案:0或正数13. 两个角的和是180°,这两个角互为______。

答案:补角14. 一个数的立方是-8,这个数是______。

答案:-215. 一个等腰三角形的底角相等,如果一个底角是40°,那么顶角是______。

人教版九年级上册数学期中考试试卷含答案

人教版九年级上册数学期中考试试卷含答案

人教版九年级上册数学期中考试试题一、单选题1.下列四个图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .2.将方程2410x x --=的左边变成平方的形式是()A .2(2)1x -=B .2(4)1x -=C .2(2)5x -=D .2(1)4x -=3.二次函数y=ax 2+bx+c 的图象如图所示,则该二次函数的顶点坐标为()A .(1,3)B .(0,1)C .(0,—3)D .(2,1)4.关于方程2450x x -+=的根的情况,下列说法正确的是()A .有两个不相等的实数根B .没有实数根C .有两个相等的实数根D .无法判断5.在平面直角坐标系中,将点M (0,3-)绕原点顺时针旋转90°后得到的点的坐标为()A .(0,3-)B .(3,0)C .(3-,0)D .(0,3)6.如图,ABCDE 是正五边形,该图形绕它的中心至少旋转()可以跟自身重合。

A .60︒B .120︒C .75︒D .72︒7.将抛物线y =x 2向右平移2个单位长度,再向上平移1个单位长度,所得抛物线的解析式是()A .y =(x +2)2+1B .y =(x -2)2+1C .y =(x +2)2-1D .y =(x -2)2-18.关于x 的一元二次方程x 2+px +q =0的两根同为负数,则()A .p >0且q >0B .p >0且q <0C .p <0且q >0D .p <0且q <09.在同一坐标系内,一次函数y ax b =+与二次函数28y ax x b =++的图象可能是A .B .C .D .10.如图,已知△ABC 的顶点坐标分别为A(0,2),B(1,0),C(2,1).若二次函数y=x 2+bx+1的图像与阴影部分(含边界)一定有公共点,则实数b 的取值范围是()A .b≤-2B .b<-2C .b≥-2D .b>-2二、填空题11.已知点(2,1)在抛物线y=ax 2上,则此函数的开口方向___________12.若关于x 的一元二次方程(m ﹣2)x 2+x+m 2﹣4=0的一个根为0,则m 值是_____.13.在平面直角坐标系中,点P (—10,a )与点Q (b ,b+1)关于原点对称,则a+b=____14.二次函数y=ax 2+bx+c (a≠0)图象上部分点的坐标(x ,y )对应值列表如下:x…-3-2-101…y…-4-3-4-7-12…则该图象的对称轴是___________15.如图,在等腰直角三角形△ABC中,∠C=90°,AC=,将△ABC绕点B顺时针旋转60°得到△DBE,连接DC,则线段DC=_____________cm.三、解答题16.抛物线y=-x2+bx+c的部分图象如图所示,若y≥0,则x的取值范围是___________17.解方程(1)x2+2x—8=0(2)2x2+3x+1=018.在正方形网格中建立平面直角坐标系xOy,△ABC的三个顶点均在格点上,(1)画出△ABC关于点O的中心对称图形△A1B1C1(2)线段AC与线段A1C1的位置关系是______________19.王师傅开了一家商店,七月份盈利2500元,九月份盈利3600元,且每个月盈利的平均增长率都相等,求每月盈利的平均增长率.20.已知关于x的方程x2+5x﹣p2=0.(1)求证:无论p取何值,方程总有两个不相等的实数根;(2)设方程的两个实数根为x1、x2,当x1+x2=x1x2时,求p的值.21.如图,已知抛物线的顶点为A(1,4),抛物线与y轴交于点B(0,3),与x轴交于C、D两点.(1)求此抛物线的解析式;(2)求△BCD的面积.22.如图,P是等边三角形ABC内的一点,且PA=6,PB=8,PC=10.若将△PAC绕点A 逆时针旋转后,得到△P AB(1)点P与点P’之间的距离;(2)∠APB的度数.23.已知某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售的单价每降低1元,每天就多卖5件,但要求销售单价不得低于成本.(1)设降价x元,求出每天的销售利润y(元)与x(元)之间的函数关系式;(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4000元,且每天的总成本不超过7000元时,那么销售单价应控制在什么范围内?(每天的总成本=每件的成本×每天的销售量)24.如图,△ABC是边长为4的等边三角形,点D是线段BC的中点,∠EDF=120°,把∠EDF绕点D旋转,使∠EDF的两边分别与线段AB、AC交于点E、F.(1)当DF⊥AC时,求证:BE=CF;(2)在旋转过程中,BE+CF是否为定值?若是,求出这个定值;若不是,请说明理由;(3)在旋转过程中,连接EF,设BE=x,△DEF的面积为S,求S与x之间的函数解析式,并求S的最小值.25.已知:抛物线l1:y=—x2+bx+3交x轴于点A、B,(点A在点B的左侧),交y轴于点C,其对称轴为直线x=1,抛物线l2经过点A,与x轴的另一个交点为E(5,0),交y轴于点D(0,5—2)(1)求抛物线2l 的函数表达式;(2)P 为直线1x =上一动点,连接PA ,PC ,当PA PC =时,求点P 的坐标;(3)M 为抛物线2l 上一动点,过点M 作直线//MN y 轴,交抛物线1l 于点N ,求点M 自点A 运动至点E 的过程中,线段MN 长度的最大值.参考答案1.C【详解】解:A 、是中心对称图形,不是轴对称图形,故选项错误;B 、是轴对称图形,不是中心对称图形,故选项错误;C 、既是轴对称图形,又是中心对称图形,故选项正确;D 、是中心对称图形,不是轴对称图形,故选项错误.故选C.2.C【详解】2410x x --=2445x x +=-()225x -=故答案为:C .【点睛】本题考查了一元二次方程的转换问题,掌握配方法是解题的关键.3.D【解析】【分析】根据抛物线与x 轴的两个交点坐标确定对称轴后即可确定顶点坐标.【详解】解:观察图象发现图象与x 轴交于点(1,0)和(3,0),∴对称轴为2x =,∴顶点坐标为(2,1),故选:D .【点睛】本题考查了二次函数的性质及二次函数的图象的知识,解题的关键是根据交点坐标确定对称轴,难度不大.4.B【解析】【分析】根据一元二次方程根的判别式直接判断即可.【详解】解:关于方程2450x x -+=,∵1,4,5a b c ==-=,∴224(4)41540b ac -=--⨯⨯=-<,∴方程2450x x -+=没有实数根,故选:B .【点睛】本题主要考查一元二次方程根的判别式,熟知240b ac ->,有两个不相等的实数根;240b ac -=,有两个相等的实数根;24<0b ac -,没有实数根;是解题的关键.5.C【解析】【分析】根据旋转的性质即可确定点坐标.【详解】解:点(0,3)M -绕原点O 顺时针旋转90︒,得到的点的坐标为(3,0)-,故选:C .【点睛】本题考查了坐标与图形变化-旋转,解题的关键是掌握图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45︒,60︒,90︒,180︒.6.D【解析】【分析】根据正五边形的每个中心角相等且其和为360°即可得到结论.【详解】根据正五边形的性质,每个中心角的相等,则每个中心角的度数为360°÷5=72°,故该图形绕它的中心至少旋转72度可以跟自身重合.故选:D .【点睛】本题考查了图形的旋转及正多边形的性质,关键是抓住正多边形的中心角相等这一性质,问题即解决.7.B【解析】【分析】根据抛物线的平移规律“上加下减,左加右减”解答即可.【详解】将抛物线y =x 2向右平移2个单位长度,再向上平移1个单位长度,所得抛物线的解析式是y =(x -2)2+1.故选B.本题考查了抛物线的平移规律,熟记抛物线的平移规律“上加下减,左加右减”是解决问题的关键.8.A【解析】【详解】试题解析:设x1,x2是该方程的两个负数根,则有x1+x2<0,x1x2>0,∵x1+x2=-p,x1x2=q∴-p<0,q>0∴p>0,q>0.故选A.9.C【解析】【分析】x=0,求出两个函数图象在y轴上相交于同一点,再根据抛物线开口方向向上确定出a>0,然后确定出一次函数图象经过第一、三象限,从而得解.【详解】x=0时,两个函数的函数值y=b,所以,两个函数图象与y轴相交于同一点,故B、D选项错误;由A、C选项可知,抛物线开口方向向上,所以,a>0,所以,一次函数y=ax+b经过第一三象限,所以,A选项错误,C选项正确.故选C.【点睛】=+在不同情况下所在本题考查了二次函数图象,一次函数的图象,应该熟记一次函数y kx b的象限,以及熟练掌握二次函数的有关性质:开口方向、对称轴、顶点坐标等.10.C【解析】根据y=x 2+bx+1与y 轴交于点(0,1),且与点C 关于x=1对称,则对称轴x≤1时,二次函数y=x 2+bx+1与阴影部分一定有交点,据此可求出b 的取值范围.【详解】当二次函数y=x 2+bx+1的图象经过点B (1,0)时,1+b+1=0.解得b=-2,故排除B 、D ;因为y=x 2+bx+1与y 轴交于点(0,1),所以(0,1)与点C 关于直线x=1对称,当对称轴x≤1时,二次函数y=x 2+bx+1与阴影部分一定有交点,所以-2b ≤1,解得b≥-2,故选C.【点睛】本题考查二次函数图象,解题的关键是利用特殊值法进行求解.11.向上【解析】【分析】根据二次函数图象上点的坐标特征,将点(2,1)代入抛物线方程,然后解关于a 的方程,求得a 的值,从而可以确定抛物线方程的二次项系数,即可以判断这条抛物线的开口方向.【详解】解:∵点(2,1)在抛物线y=ax 2上,∴点(2,1)满足抛物线方程y=ax 2,∴1=4a ,解得a =14;∴抛物线方程y =14x 2的二次项系数a =14>0,∴这条抛物线的开口方向向上.故答案是:向上.【点睛】本题考查了二次函数图象上点的坐标特征.经过图象上的某点时,该点一定满足该函数的关系式.12.-2【解析】【分析】根据一元二次方程的解的定义把x=0代入方法解得m=±2,然后根据一元二次方程的定义确定m 的值.【详解】把x=0代入方程(m-2)x 2+(2m-1)x+m 2-4=0得m 2-4=0,解得m=2或m=-2,而m-2≠0,所以m=-2.故答案为-2.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.13.1-【解析】【分析】根据两个点关于原点对称时,它们的坐标符号相反可得10b =,11a =-,进而可得a b +的值.【详解】解: 点(10,)P a -与点(,1)Q b b +关于原点对称,10b ∴=,111a b =--=-,11101a b ∴+=-+=-,故答案为:1-.【点睛】本题主要考查了两个点关于原点对称,解题的关键是掌握点的坐标的变化规律:点关于原点对称时,它们的坐标符号相反.14.2x =-【解析】【分析】根据二次函数的图象具有对称性和表格中的数据,可以计算出该函数图象的对称轴.【详解】解:由表格可得,当x 取-3和-1时,y 值相等,该函数图象的对称轴为直线3(1)22-+-==-x ,【点睛】本题考查二次函数的性质、二次函数图象上点的坐标特征,解题的关键是明确题意,利用二次函数的对称性解答.15.2##2-+【解析】【分析】连接CE,延长DC交AB于H,先证明CH⊥AB,由直角三角形的性质可求解.【详解】如图,连接CE,延长DC交AB于H,∵将△ABC绕点B顺时针旋转60°得到△DBE,∴∠ABD=∠CBE=60°,BC=BE=AC=DE,∠ACB=∠DEB=90°,∴△BCE是等边三角形,∠EDB=45°,∴CE=BC,∠CEB=60°,∴CE=DE,∠DEC=30°,∴∠EDC=∠ECD=75°,∴∠BDH=∠EDC−∠EDB=30°,∵∠BDH+∠DBA=90°,∴CH⊥AB,又∵∠ACB=90°,BC=AC=2cm,∴AB AC=4(cm),CH=AH=BH=2(cm),∵CH⊥AB,BH=2cm,∠BDH=30°,∴BD=2BH=4cm,=(cm),)(cm),∴DC=DH−CH=(【点睛】本题考查了旋转的性质,等边三角形的性质,等腰直角三角形的性质,直角三角形的性质,灵活运用这些性质解决问题是本题的关键.16.−3≤x≤1【解析】【分析】函数的对称轴为:x=−1,与x轴的一个交点坐标为(1,0),则另外一个交点坐标为:(−3,0),即可求解.【详解】解:函数的对称轴为:x=−1,与x轴的一个交点坐标为(1,0),则另外一个交点坐标为:(−3,0),故:y≥0时,−3≤x≤1,故答案为:−3≤x≤1.【点睛】本题考查的是抛物线与x轴的交点,主要考查函数图象上点的坐标特征,要求学生非常熟悉函数与坐标轴的交点、顶点等点,及这些点代表的意义及函数特征.17.(1)x1=2,x2=-4(2)x1=-1,x2=-1.2【解析】【分析】(1)利用因式分解法即可求解;(2)利用因式分解法即可求解.【详解】(1)x2+2x—8=0(x-2)(x+4)=0∴x-2=0或x+4=0∴x1=2,x2=-4(2)2x2+3x+1=0(2x+1)(x+1)=0∴2x+1=0或x+1=0∴x1=-12,x2=-1.【点睛】此题主要考查一元二次方程的求解,解题的关键是熟知因式分解法的运用.18.(1)见解析;(2)平行【解析】【分析】(1)分别作出三顶点关于原点的对称点,再顺次连接即可得;(2)根据中心对称的性质,即可得出平行且相等的关系.【详解】A B C即为所求.解:(1)如图所示,△111(2)由中心对称的性质可知:线段AC与线段A1C1平行且相等,线段AC与线段A1C1的位置关系是平行,故答案是:平行.【点睛】本题考查了利用旋转变换作图、中心对称图形,解题的关键是熟练掌握网格结构准确找出对应点的位置.19.20%【解析】【分析】设从七月到九月,每月盈利的平均增长率为x,根据该商店七月份及九月份的盈利额,即可得出关于x 的一元二次方程,解之取其正值即可得出结论.【详解】解:设从七月到九月,每月盈利的平均增长率为x ,依题意,得:22500(1)3600x +=,解得:10.220%x ==,2 2.2x =-(不合题意,舍去).答:从从七月到九月,每月盈利的平均增长率为20%.【点睛】本题考查了一元二次方程的应用,解题的关键是找准等量关系,正确列出一元二次方程.20.(1)证明见解析;(2)p =【解析】【分析】(1)求出根的判别式△=25+p 2,根据判别式的意义即可得出无论p 取何值,方程总有两个不相等的实数根;(2)根据根与系数的关系求出两根和与两根积,再代入x 1+x 2=x 1x 2,得到一个关于p 的一元二次方程,解方程即可.【详解】(1)证明:△=52﹣4(﹣p 2)=25+4p 2,∵无论p 取何值时,总有p 2≥0,∴25+4p 2>0,∴无论p 取何值时,方程总有两个不相等的实数根;(2)解:由题意可得,x 1+x 2=﹣5,x 1x 2=﹣p 2,∵x 1+x 2=x 1x 2,∴﹣5=﹣p 2,∴p =【点睛】本题考查了根的判别式和根与系数的关系,注意熟记以下知识点:(1)一元二次方程ax 2+bx+c =0(a≠0)的根与△=b 2﹣4ac 有如下关系:①当△>0时,方程有两个不相等的实数根;②当△=0时,方程有两个相等的实数根;③当△<0时,方程无实数根.上面的结论反过来也成立.(2)一元二次方程ax 2+bx+c =0(a≠0)的两实数根分别为x 1,x 2,则有x 1+x 2=﹣a b ,x 1•x 2=c a.21.(1)2(1)4y x =--+;(2)6【解析】【分析】(1)设抛物线顶点式解析式2(1)4y a x =-+,然后把点B 的坐标代入求出a 的值,即可得解;(2)令0y =,解方程得出点C ,D 坐标,再用三角形面积公式即可得出结论.【详解】解:(1) 抛物线的顶点为(1,4)A ,∴设抛物线的解析式2(1)4y a x =-+,把点(0,3)B 代入得,43a +=,解得1a =-,∴抛物线的解析式为2(1)4y x =--+;(2)由(1)知,抛物线的解析式为2(1)4y x =--+;令0y =,则20(1)4x =--+,1x ∴=-或3x =,(1,0)C ∴-,(3,0)D ;4CD ∴=,11||43622BCD B S CD y ∆∴=⨯=⨯⨯=.【点睛】本题二次函数综合题,主要考查了待定系数法,坐标轴上点的特点,三角形的面积公式,解本题的关键是求出抛物线解析式,是一道比较简单的中考常考题.22.(1)6;(2)150︒【解析】【分析】(1)由已知PAC ∆绕点A 逆时针旋转后,得到△P AB ',可得PAC ∆≅△P AB ',PA P A =',旋转角60P AP BAC ∠'=∠=︒,所以APP ∆'为等边三角形,即可求得PP ';(2)由APP ∆'为等边三角形,得60APP ∠'=︒,在△PP B '中,已知三边,用勾股定理逆定理证出直角三角形,得出90P PB ∠'=︒,可求APB ∠的度数.【详解】解:(1)连接PP ',由题意可知10BP PC '==,AP AP '=,PAC P AB ∠=∠',而60PAC BAP ∠+∠=︒,所以60PAP ∠'=度.故APP ∆'为等边三角形,所以6PP AP AP '=='=;(2)利用勾股定理的逆定理可知:222PP BP BP '+=',所以∆'BPP 为直角三角形,且90BPP ∠'=︒可求9060150APB ∠=︒+︒=︒.【点睛】本题考查旋转的性质,旋转变化前后,对应线段、对应角分别相等,解题的关键是你掌握旋转的图形的大小、形状都不改变.23.(1)252002500,(050)y x x x =-++≤≤;(2)销售单价为80元时,每天的销售利润最大,最大利润是4500元;(3)销售单价应该控制在82元至90元之间【解析】【分析】(1)根据“利润=(售价-成本)⨯销售量”列出方程;(2)把(1)中的二次函数解析式转化为顶点式方程,利用二次函数图象的性质进行解答;(3)每天的销售利润不低于4000元,根据二次函数与不等式的关系求出x 的取值范围,再根据每天的总成本不超过7000元,以及50100100x ≤-≤,列不等式组即可.【详解】解:(1)由题意得:(10050)(505)y x x =--+,(50)(505)x x =-+,252002500,(050)x x x =-++≤≤,所以252002500,(050)y x x x =-++≤≤;(2)22520025005(20)4500y x x x =-++=--+ ,50a =-< ,∴抛物线开口向下.050x ≤≤Q ,对称轴是直线20x =,∴当20x =时,即销售单价是80元,每天的销售利润最大,最大利润是4500y =最大值;即销售单价为80元时,每天的销售利润最大,最大利润是4500元;(3)当4000y =时,2400052002500x x =-++,解得:110x =,230x =,∴当1030x ≤≤时,即销售单价在7010090x ≤-≤,每天的销售利润不低于4000元,由每天的总成本不超过7000元,得50(550)7000x + ,解得:18x ≤,82100x ∴≤-,50100100x ≤-≤Q ,∴销售单价应该控制在82元至90元之间.【点睛】本题主要考查二次函数的实际应用,解题的关键是弄清题意,列出相应等式,借助二次函数解决实际问题.24.(1)见解析;(2)BE+CF =2,是为定值;(3)S x ﹣1)2,当x =1时,S最小值为4.【解析】【分析】(1)根据四边形内角和为360°,可求∠DEA =90°,根据“AAS”可判定△BDE ≌△CDF ,即可证BE =CF ;(2)过点D 作DM ⊥AB 于M ,作DN ⊥AC 于N ,如图2,易证△MBD ≌△NCD ,则有BM =CN ,DM =DN ,进而可证到△EMD ≌△FND ,则有EM =FN ,就可得到BE+CF =BM+EM+CF=BM+FN+CF=BM+CN=2BM=2BD×cos60°=BD=12BC=2;(3)过点F作FG⊥AB,由题意可得S△DEF=S△ABC﹣S△AEF﹣S△BDE﹣S△BCF,则可求S与x 之间的函数解析式,根据二次函数最值的求法,可求S的最小值.【详解】(1)∵△ABC是边长为4的等边三角形,点D是线段BC的中点,∴∠B=∠C=60°,BD=CD,∵DF⊥AC,∴∠DFA=90°,∵∠A+∠EDF+∠AFD+∠AED=180°,∴∠AED=90°,∴∠DEB=∠DFC,且∠B=∠C=60°,BD=DC,∴△BDE≌△CDF(AAS)(2)过点D作DM⊥AB于M,作DN⊥AC于N,则有∠AMD=∠BMD=∠AND=∠CND=90°.∵∠A=60°,∴∠MDN=360°﹣60°﹣90°﹣90°=120°.∵∠EDF=120°,∴∠MDE=∠NDF.在△MBD和△NCD中,BMD CNDB CBD DC∠=∠⎧⎪∠∠⎨⎪⎩==∴△MBD≌△NCD(AAS)BM=CN,DM=DN.在△EMD 和△FND 中,EMD FND DM DN MDE NDF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△EMD ≌△FND (ASA )∴EM =FN ,∴BE+CF =BM+EM+CF =BM+FN+CF =BM+CN=2BM =2BD×cos60°=BD =12BC =2(3)过点F 作FG ⊥AB ,垂足为G,∵BE =x∴AE =4﹣x ,CF =2﹣x ,∴AF =2+x ,∵S △DEF =S △ABC ﹣S △AEF ﹣S △BDE ﹣S △BCF ,∴S =12BC×AB×sin60°﹣12AE×AF×sin60°﹣12BE×BD×sin60°﹣12CF×CD×sin60°=12×(4﹣x )×(2+x )1212×(2﹣x )∴Sx ﹣1)2(∴当x =1时,S【点睛】本题主要考查了等边三角形的判定与性质、四边形的内角和定理、全等三角形的判定与性质、三角函数的定义、特殊角的三角函数值等知识,通过证明三角形全等得到BM =CN ,DM =DN ,EM =FN 是解决本题的关键.25.(1)215222y x x =--;(2)(1,1);(3)12【解析】【分析】(1)由对称轴可求得b ,可求得1l 的解析式,令0y =可求得A 点坐标,再利用待定系数法可求得2l 的表达式;(2)设P 点坐标为(1,)y ,由勾股定理可表示出2PC 和2PA ,由条件可得到关于y 的方程可求得y ,可求得P 点坐标;(3)可分别设出M 、N 的坐标,可表示出MN ,再根据函数的性质可求得MN 的最大值.【详解】解:(1) 抛物线21:3l y x bx =-++的对称轴为1x =,12b∴-=-,解得2b =,∴抛物线1l 的解析式为2y x 2x 3=-++,令0y =,可得2230x x -++=,解得1x =-或3x =,A ∴点坐标为(1,0)-,抛物线2l 经过点A 、E 两点,∴可设抛物线2l 解析式为(1)(5)y a x x =+-,又 抛物线2l 交y 轴于点(20,5)D -,552a ∴-=-,解得12a =,2115(1)(5)2222y x x x x ∴=+-=--,∴抛物线2l 的函数表达式为215222y x x =--;(2)设P 点坐标为(1,)y ,由(1)可得C 点坐标为(0,3),22221(3)610PC y y y ∴=+-=-+,2222[1(1)]4PA y y =--+=+,PC PA = ,226104y y y ∴-+=+,解得1y =,P ∴点坐标为(1,1);(3)由题意可设215(,2)22M x x x --,//MN y 轴,2(,23)N x x x ∴-++,令221523222x x x x -++=--,可解得1x =-或113x =,①当1113x -< 时,2222153113449(23)(2)4()2222236MN x x x x x x x =-++---=-++=--+,显然411133-< ,∴当43x =时,MN 有最大值496;②当1153x < 时,2222153113449(2)(23)4()2222236MN x x x x x x x =----++=--=--,显然当43x >时,MN 随x 的增大而增大,∴当5x =时,MN 有最大值,23449(512236⨯--=;综上可知在点M 自点A 运动至点E 的过程中,线段MN 长度的最大值为12.【点睛】本题主要考查二次函数的综合应用,涉及待定系数法、二次函数的性质、勾股定理等知识点,在(1)中求得A 点的坐标是解题的关键,在(2)中用P 点的坐标分别表示出PA 、PC 是解题的关键,在(3)中用M 、N 的坐标分别表示出MN 的长是解题的关键,注意分类讨论.。

兰山区初三期中试卷数学

兰山区初三期中试卷数学

一、选择题(每题4分,共20分)1. 下列各数中,有理数是()A. √-1B. √2C. πD. 0.1010010001……2. 已知实数a、b满足a+b=0,则a^2+b^2的值为()A. 0B. 1C. 2D. 无法确定3. 下列函数中,有最小值的是()A. y=x^2B. y=2x+1C. y=|x|D. y=x^34. 已知一次函数y=kx+b(k≠0)的图象经过点(1,2)和(-2,-4),则该函数的解析式为()A. y=2x+1B. y=-2x+1C. y=2x-1D. y=-2x-15. 已知等腰三角形的底边长为6cm,腰长为8cm,则该三角形的周长为()A. 20cmB. 22cmC. 24cmD. 26cm二、填空题(每题4分,共20分)6. 若x+1=0,则x的值为______。

7. 已知实数a、b满足a^2+b^2=1,则a+b的最大值为______。

8. 若等差数列{an}的公差为2,且a1+a5=18,则a3的值为______。

9. 已知一元二次方程x^2-3x+2=0的解为x1、x2,则x1+x2的值为______。

10. 若一个长方体的长、宽、高分别为a、b、c,则其体积V=______。

三、解答题(每题10分,共30分)11. (1)若a、b是方程x^2-2x-3=0的两实根,求a+b的值。

(2)若方程x^2-3x+k=0的两实根之积为-2,求k的值。

12. (1)已知一次函数y=kx+b(k≠0)的图象经过点(1,2)和(-2,-4),求该函数的解析式。

(2)若该函数的图象与x轴的交点坐标为(-1,0),求b的值。

13. (1)已知等腰三角形ABC的底边AB=6cm,腰AC=8cm,求该三角形的面积。

(2)若等腰三角形ABC的周长为18cm,求该三角形的腰长。

四、证明题(每题10分,共20分)14. 已知实数a、b满足a+b=1,证明:a^2+b^2≥1。

15. 已知等差数列{an}的首项为a1,公差为d,证明:对于任意的正整数n,都有a1+a2+...+an=na1+n(n-1)d/2。

山西省阳泉市部分学校2024-2025学年上学期期中考试九年级数学试卷

山西省阳泉市部分学校2024-2025学年上学期期中考试九年级数学试卷

山西省阳泉市部分学校2024-2025学年上学期期中考试九年级数学试卷一、单选题1.若23a b =.则a b 的值为()A .6B .16C .32D .232.下列运算正确的是()A .2=B =C =D 33.小明用放大镜观察一个正多边形,用放大镜看到的正多边形与原正多边形的边长比为3:2.则下列说法不正确的是()A .放大后的正多边形的面积与原正多边形的面积比为3:2B .放大后的正多边形的每个内角与原正多边形的每个内角都相等C .放大后的正多边形的周长与原正多边形的周长比为3:2D .若原正多边形的面积为4,则放大后的正多边形的面积为94.已知关于x 的一元二次方程240x x a --=的一个解是1x =-,则a 的值为()A .5-B .2C .3-D .55合并,则a 的值可以为()A .1B .2C .3D .116.从前有一天,一个笨汉拿着竹竿进屋,横拿竖拿都进不去,横着比门框宽4尺,竖着比门框高2尺.他的邻居教他沿着门的两个对角斜着拿竿,这个笨汉一试,不多不少刚好进去了.求竹竿有多长.设竹竿长x 尺,则根据题意,可列方程()A .()()22242x x x +++=B .()()22242x x x -+-=C .()()22242x x x -++=D .()()22242x x x ++-=7.若a ,b 是方程2350x x --=的两个实数根,则236a b +-的值为()A .5B .6C .8D .98.唢呐是山西八大套的乐器之一.如图.一个中号唢呐AB 的长约为40cm .若在唢呐上喇叭端的一个黄金分割点P 处进行装饰.则该装饰与吹口的距离AP 为()A .()20cmB .()20cmC .(60cm -D .(40cm -9.《墨经》中记载:“景到,在午有端,与景长,说在端”,这句话描述了小孔成像的现象及原理.老师在物理课上制作了一个小孔成像的装置,其中纸筒的长度为10cm ,点燃蜡烛测得蜡烛及火焰AB 的长为20cm ,要想得到高度为5cm 的像,请你计算一下,蜡烛到纸筒的水平距离应该为()A .65cmB .60cmC .40cmD .45cm10.如图,在边长为4的正方形ABCD 中,点E 在边BC 上,且:1:3=CE BE ,连接AE ,过点E 作EF AE ⊥,交CD 于点F .连接AF ,并延长交BC 的延长线于点G ,则CG 的长为()A .1B .1213C .34D .1112二、填空题11.在平面直角坐标系中,△ABC 顶点A 的坐标为(2,4),若以原点O 为位似中心,画△ABC 的位似图形△A 1B 1C 1,使△ABC 与△A 1B 1C 1的相似比等于2,则点A 1的坐标为.12.我国南宋数学家杨辉在1275年提出的一个问题:“直田积(矩形面积)八百六十四步(平方步),只云阔(宽)不及长一十二步(宽比长少一十二步),问阔及长各几步?若设阔(宽)为x 步,则可列方程.13.若关于x 的方程2320x x n -+=有两个不相等的实数根,则满足条件的实数n 的值可以是.14.如图,在ABC V 中,M 为边AB 的中点,有以下作图步骤:①以点B 为圆心,适当的长为半径画弧,交BA 于点D ,交BC 于点E ;②以点M 为圆心,BD 的长为半径画弧,交MA 于点D ¢;③以点D ¢为圆心,DE 的长为半径画弧,交前一条弧于点E ';④连接ME ',并延长交AC 于点N .若AMN 的面积为2,则ABC V 的面积为.15.如图,这是一个铁夹的剖面图,其为轴对称图形,对称轴为OC ,OA ,OB 表示铁夹的剖面的两条边,点C 是转动轴的位置,CD OA ⊥,铁夹相关数据(单位:mm )如图中所标示,铁夹尖端闭合时,把手部分A ,B 两点间的距离是mm .三、解答题16.(1)计算:)2-.(2)已知22a b =-=+,求22a b ab +的值.17.解方程:235x x +=.18.素材1:某商店销售一批衬衫,平均每天可售出20件,每件盈利40元.素材2:为了扩大销售,增加利润并尽快减少库存.经调查,发现若每件衬衫每降价1元,商店平均每天可多售出2件.(1)若商店平均每天要获得利润1200元,则每件衬衫应降价多少元?(2)判断商店平均每天能获得利润有可能达到1500元吗?19.如图,ABC V 绕点B 按顺时针方向旋转一定的角度得到DBE ,点D 在边AC 上,连接CE ,求证:BAD BCE ∽△△.20.如图,在平面直角坐标系中,ABC V 的顶点均在正方形网格的格点(网格线的交点)上,已知点C 的坐标为()4,1-.(1)以点O 为位似中心,在所给的网格内画出111A B C △,使111A B C △与ABC V 位似,且点1C 的坐标为()8,2-.(2)求111A B C △的面积.21.阅读与思考认真阅读并完成相应的任务.化归不仅是一种重要的解题思想,也是一种最基本的思维策略,更是一种有效的数学思维方式.所谓的化归思想方法,就是在研究和解决有关数学问题时,采用某种手段将问题通过变换使之转化,进而达到解决的一种方法.一般总是将复杂问题通过变换转化为简单问题;将难解的问题通过变换转化为容易求解的问题;将未解决的问题通过变换转化为已解决的问题.阅读)0,0a b ≥≥)0,0a b =≥≥)0,0a b=≥>)0,0a b =≥>;()20a a =≥逆写为()20a a =≥.()2111211===--.阅读22=,可以通过方程两边平方把它转化为14x +=,可得3x =.通过“方程两边平方”解方程,有可能产生增根,必须对解得的根进行检验.例如:x =两边平方,得223x x +=,解得123,1x x ==-,经检验,21x =-不是原方程的根,故原方程的解为3x =.任务:(1)=(2)(3)2x =.22.综合与实践学习过“利用相似三角形测物高”的内容后,小武利用平面镜的镜面反射特点来构造相似测一大楼的高度,如图1所示.【问题提出】(1)大楼为AB ,平面镜放在点C 处,DE 表示小武的位置,若,,BC a CE b DE c ===,求大楼AB 的高.(用含,,a b c 的式子表示)(2)实地观察大楼周围的环境之后、发现由于条件限制,大楼的底部不可到达,所以无法准确测量大楼底部到平面镜的距离.在老师帮助下,小武进一步完善了自己的想法,构造二次相似,将测量距离进行转化.如图2,小武测量得到13m, 1.7m,2m,EG DF MN GN DE ==== 1.35m =.请求出大楼AB 的高度.23.综合与探究【观察与猜想】(1)如图1,在矩形ABCD 中,7AD =,4CD =,E 是边AD 上的一点,连接CE ,BD ,若CE BD ⊥,则CE BD 的值为.【类比探究】(2)如图2,在四边形ABCD 中,90A B ∠=∠=︒,E 为边AB 上的一点,连接DE ,过点C 作DE 的垂线,交ED 的延长线于点G ,交AD 的延长线于点F ,求证:DE AB CF AD ⋅=⋅.【拓展延伸】(3)如图3,在Rt ABD △中,90BAD ∠=︒,将ABD △沿BD 翻折,点A 落在点C 处,得到CBD △,F 为边AD 上的一点,连接CF ,作DE CF ⊥交AB 于点E ,垂足为G .已知10AD =,1AF =,53DE CF =,求AE 的长.。

人教版九年级上册数学期中考试试卷附答案

人教版九年级上册数学期中考试试卷附答案

人教版九年级上册数学期中考试试题一、选择题。

(每小题只有一个正确答案)1.下列图形是中心对称图形的是()A.B.C.D.2.⊙O的半径为8,圆心O到直线l的距离为4,则直线l与⊙O的位置关系是A.相切B.相交C.相离D.不能确定3.下列一元二次方程中,有两个不相等实数根的是()A.x2+6x+9=0B.x2=x C.x2+3=2x D.(x﹣1)2+1=0 4.S型电视机经过连续两次降价,每台售价由原来的1500元降到了980元.设平均每次降价的百分率为x,则下列方程中正确的是A.1500(1+x)2=980B.980(1+x)2=1500C.1500(1-x)2=980D.980(1-x)2="1500"5.如图,AB是⊙O的弦,OC⊥AB,交⊙O于点C,连接OA,OB,BC,若∠ABC=20°,则∠AOB的度数是()A.40°B.50°C.70°D.80°6.如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB=20°,则∠ADC的度数是()A.55°B.60°C.65°D.70°7.如图,在△ABC中,AB=AC=2,以AB为直径的⊙O与BC交于点D,点E在 ⊙O上,且∠DEA=30°,则CD的长为()A 3B .3C .3D .28.二次函数=B 2+B 的图象如图,若一元二次方程B 2+B +=0有实数根,则m 的最大值为()A .-3B .3C .5D .99.如图,已知矩形ABCD 中,AB =4cm ,BC =8cm .动点P 在边BC 上从点B 向C 运动,速度为1cm /s ;同时动点Q 从点C 出发,沿折线C →D →A 运动,速度为2cm /s .当一个点到达终点时,另一个点随之停止运动。

设点P 运动的时间为t (s ),△BPQ 的面积为S (cm 2),则描述S (cm 2)与时间t (s )的函数关系的图象大致是()A .B .C .D .10.已知二次函数2y ax c =+,当1x =时,42y -≤≤-,当2x =时,12y -≤≤,则当3x=时,y的取值范围为()A.2123y≤≤B.2103y≤≤C.293y≤≤D.19y≤≤二、填空题11.如果点P(4,﹣5)和点Q关于原点对称,则点Q的坐标为_____.12.将抛物线y=﹣5x2+1向左平移1个单位长度,再向下平移2个单位长度,所得到的抛物线的函数关系式为_____________.13.已知关于x方程x2﹣3x+a=0有一个根为1,则方程的另一个根为_____.14.如图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m,水面下降2m,水面宽度增加______m.15.如图,在矩形ABCD中,AB=5,BC=4,以CD为直径作⊙O.将矩形ABCD绕点C 旋转,使所得矩形A′B′CD′的边A′B′与⊙O相切,切点为E,边CD′与⊙O相交于点F,则CF的长为_____.三、解答题16.解方程:(1)3x2+6x﹣5=0(2)x2+2x﹣24=017.如图,图中每个小方格都是边长为1个单位长度的正方形,△ABC在方格纸中的位置如图所示.(1)请在图中建立平面直角坐标系,使得A,B两点的坐标分别为A(2,﹣1),B(1,﹣4),并写出C点坐标;(2)在图中作出△ABC绕坐标原点旋转180°后的△A1B1C1,并写出A1,B1,C1的坐标;(3)在图中作出△ABC绕坐标原点顺时针旋转90°后的△A2B2C2,并写出A2,B2,C2的坐标.18.已知二次函数y=﹣12x2+3x﹣52(1)用配方法求出函数图象的顶点坐标和对称轴方程;(2)用描点法在如图所示的平面直角坐标系中画出该函数的图象;(3)根据图象,直接写出y的值小于0时,x的取值范围.19.如图,在△ABC中,AB=AC,以AB为直径的 ⊙O分别交AC于点D,交BC于点E,连接ED.(1)求证:ED=EC;(2)填空:①设CD的中点为P,连接EP,则EP与⊙O的位置关系是;②连接OD,当∠B的度数为时,四边OBED是菱形.20.如图,E点是正方形ABCD的边BC上一点,AB=12,BE=5,△ABE逆时针旋转后能够与△ADF重合.(1)旋转中心是,旋转角为度;(2)△AEF是三角形;(3)求EF的长.21.河北内丘柿饼加工精细,色泽洁白,肉质柔韧,品位甘甜,在国际市场上颇具竞争力.上市时,外商王经理按市场价格10元/千克在内丘收购了2000千克柿饼存放入冷库中.据预测,柿饼的市场价格每天每千克将上涨0.5元,但冷库存放这批柿饼时每天需要支出各种费用合计320元,而且柿饼在冷库中最多保存80天,同时,平均每天有8千克的柿饼损坏不能出售.(1)若存放x天后,将这批柿饼一次性出售,设这批柿饼的销售总金额为y元,试写出y与x之间的函数关系式;(2)王经理想获得利润20000元,需将这批柿饼存放多少天后出售?(利润=销售总金额﹣收购成本﹣各种费用)(3)王经理将这批柿饼存放多少天后出售可获得最大利润?最大利润是多少?22.在平面直角坐标系中,抛物线C1:y=ax2+bx﹣1经过点A(﹣2,1)和点B(﹣1,﹣1),抛物线C2:y=2x2+x+1,动直线x=t与抛物线C1交于点N,与抛物线C2交于点M.(1)求抛物线C1的表达式;(2)直接用含t的代数式表达线段MN的长;(3)当△AMN是以MN为直角边的等腰直角三角形时,求t的值.23.已知:如图,在⊙O中,弦AB与半径OE、OF交于点C、D,AC=BD,求证:(1)OC=OD:(2)A EB F.24.问题情境:如图①,P是⊙O外的一点,直线PO分别交⊙O于点A、B,可以发现P A 是点P到⊙O上的点的最短距离.(1)直接运用:如图②,在Rt△ABC中,∠ACB=90°,AC=BC=2,以BC为直径的半圆交AB于D,P是弧CD上的一个动点,连接AP,则AP的最小值是.(2)构造运用:如图③,在边长为8的菱形ABCD中,∠A=60°,M是AD边的中点,N 是AB边上一动点,将△AMN沿MN所在的直线翻折得到△A′MN,连接A′C,请求出A′C 长度的最小值.(3)综合运用:如图④,平面直角坐标系中,分别以点A(﹣2,3),B(3,4)为圆心,分别以1、2为半径作⊙A、⊙B,M、N分别是⊙A、⊙B上的动点,P为x轴上的动点,则PM+PN的最小值等于.参考答案1.B【分析】由中心对称图形的定义判断即可.【详解】A、C、D中图形都不是中心对称图形,是轴对称图形,B中图形是中心对称图形,故选:B.【点睛】本题考查了中心对称图形的概念,理解中心对称图形的概念,能找到对称中心是解答的关键.2.B【分析】根据圆O的半径和圆心O到直线L的距离的大小,相交:d<r;相切:d=r;相离:d>r;即可选出答案.【详解】∵⊙O的半径为8,圆心O到直线L的距离为4,∵8>4,即:d<r,∴直线L与⊙O的位置关系是相交.故选B.3.B【详解】分析:根据一元二次方程根的判别式判断即可.详解:A、x2+6x+9=0.△=62-4×9=36-36=0,方程有两个相等实数根;B、x2=x.x2-x=0.△=(-1)2-4×1×0=1>0.方程有两个不相等实数根;C、x2+3=2x.x2-2x+3=0.△=(-2)2-4×1×3=-8<0,方程无实根;D、(x-1)2+1=0.(x-1)2=-1,则方程无实根;故选B.点睛:本题考查的是一元二次方程根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:①当△>0时,方程有两个不相等的实数根;②当△=0时,方程有两个相等的实数根;③当△<0时,方程无实数根.4.C【解析】解:依题意得:第一次降价的售价为:1500(1-x),则第二次降价后的售价为:1500(1-x)(1-x)=1500(1-x)2,∴1500(1-x)2=980.故选C.5.D【解析】【分析】根据圆周角定理得出∠AOC=40°,进而利用垂径定理得出∠AOB=80°即可.【详解】∵∠ABC=20°,∴∠AOC=40°,∵AB是⊙O的弦,OC⊥AB,∴∠AOC=∠BOC=40°,∴∠AOB=80°,故选:D.【点睛】此题考查圆周角定理,关键是根据圆周角定理得出∠AOC=40°.6.C【分析】根据旋转的性质和三角形内角和解答即可.【详解】∵将△ABC绕点C顺时针旋转90°得到△EDC.∴∠DCE=∠ACB=20°,∠BCD=∠ACE=90°,AC=CE,∴∠ACD=90°-20°=70°,∵点A,D,E在同一条直线上,∴∠ADC+∠EDC=180°,∵∠EDC+∠E+∠DCE=180°,∴∠ADC=∠E+20°,∵∠ACE=90°,AC=CE∴∠DAC+∠E=90°,∠E=∠DAC=45°在△ADC中,∠ADC+∠DAC+∠DCA=180°,即45°+70°+∠ADC=180°,解得:∠ADC=65°,故选C.【点睛】此题考查旋转的性质,关键是根据旋转的性质和三角形内角和解答.7.A【分析】连接AD,根据圆周角定理和含30°的直角三角形的性质解答即可.【详解】连接AD,∵∠DEA=30°,∴∠B=30°,∵AB是直径,∴∠ADB=90°,∵AB=2,∴BD ,∵AC =BA ,∠ADB =90°,∴CD =DB 故选:A .【点睛】考核知识点:圆周角定理.作好辅助线,利用圆周角定理和直角三角形性质解决问题是关键.8.B【解析】∵抛物线的开口向上,顶点纵坐标为-3,∴a >0,−24=-3,即b 2=12a ,∵一元二次方程ax 2+bx+m=0有实数根,∴△=b 2-4am≥0,即12a-4am≥0,即12-4m≥0,解得m≤3,∴m 的最大值为3.故选B.9.A【分析】先求出点P 在BC 边运动的时间,再求出Q 点在CD 边和AD 边运动的时间,然后分Q 点在CD 边运动和在AD 边运动两种情况分别计算出△BPQ 的面积即可得出图象.【详解】点P 在BC 边运动的时间为818()s ÷=Q 点在CD 边运动的时间为422()s ÷=,在AD 边运动的时间824()s ÷=当Q 点在CD 边运动时,即02t <≤时,211222BPQ S BP CQ t t t === 当Q 点在AD 边运动时,即26t <≤时,114222BPQ S BP CD t t === 则根据S (cm 2)与时间t (s )的函数关系式可知图象为A故选A【点睛】本题主要考查矩形中的动点问题,能够找到面积与时间之间的函数关系式是解题的关键.10.A【分析】由当x =1时,-4≤y ≤-2,当x =2时,-1≤y ≤2,将y =ax 2+c 代入得到关于a 、c 的两个不等式组,再设x =3时y =9a +c =m (a +c )+n (4a +c ),求出m 、n 的值,代入计算即可.【详解】解:由x =1时,-4≤y ≤-2得,-4≤a +c ≤-2…①,由x =2时,-1≤y ≤2得,-1≤4a +c ≤2…②,当x =3时,y =9a +c =m (a +c )+n (4a +c ),得491m n m n +=⎧⎨+=⎩,解得5383m n ⎧=-⎪⎪⎨⎪=⎪⎩,故10520()333a c ≤-+≤,8816(4)333a c -≤+≤,∴2123y ≤≤,故选:A .【点睛】本题考查了二元一次方程组的应用,以及二次函数性质的运用,熟练解不等式组是解答本题的关键.11.(﹣4,5)【分析】根据关于原点对称的点的坐标的性质即可作答.即:坐标符号都变.【详解】∵点P (4,﹣5)和点Q 关于原点对称,∴点Q 的坐标为(﹣4,5).故答案为:(﹣4,5).【点睛】考核知识点:关于原点对称的点的坐标.理解关于原点对称的点的坐标的特点是关键.12.25(1)1y x =-+-【分析】先确定出原抛物线的顶点坐标为(0,0),然后根据向左平移横坐标加,向下平移纵坐标减,求出新抛物线的顶点坐标,然后写出即可.【详解】抛物线251y x =-+的顶点坐标为(0,0),∵向左平移1个单位长度后,向下平移2个单位长度,∴新抛物线的顶点坐标为(-1,-2),∴所得抛物线的解析式是()2511y x =-+-.故答案为()2511y x =-+-.【点睛】本题主要考查的是函数图象的平移,根据平移规律“左加右减,上加下减”利用顶点的变化确定图形的变化是解题的关键.13.2【解析】分析:设方程的另一个根为m ,根据两根之和等于-b a ,即可得出关于m 的一元一次方程,解之即可得出结论.详解:设方程的另一个根为m ,根据题意得:1+m=3,解得:m=2.故答案为2.点睛:本题考查了根与系数的关系,牢记两根之和等于-b a是解题的关键.14.-4【分析】根据已知建立平面直角坐标系,进而求出二次函数解析式,再通过把2y =-代入抛物线解析式得出水面宽度,即可得出答案.【详解】建立平面直角坐标系,设横轴x 通过AB ,纵轴y 通过AB 中点O 且通过C 点,则通过画图可得知O 为原点,抛物线以y 轴为对称轴,且经过A ,B 两点,OA 和OB 可求出为AB 的一半2米,抛物线顶点C 坐标为()0,2.通过以上条件可设顶点式22y ax =+,其中a 可通过代入A 点坐标()2,0.-代入到抛物线解析式得出:0.5a =-,所以抛物线解析式为20.52y x =-+,当水面下降2米,通过抛物线在图上的观察可转化为:当2y =-时,对应的抛物线上两点之间的距离,也就是直线2y =-与抛物线相交的两点之间的距离,可以通过把2y =-代入抛物线解析式得出:220.52x -=-+,解得:22x =±,所以水面宽度增加到42米,比原先的宽度当然是增加了42 4.故答案是:42 4.-【点睛】考查了二次函数的应用,根据已知建立坐标系从而得出二次函数解析式是解决问题的关键.15.4【分析】连接OE ,延长EO 交CD 于点G ,作OH ⊥B ′C ,由旋转性质知∠B ′=∠B ′CD ′=90°、AB =CD =5、BC =B ′C =4,从而得出四边形OEB ′H 和四边形EB ′CG 都是矩形且OE =OD =OC =2.5,继而求得CG =B ′E =OH 22222.5 1.5OC CH -=-=2,根据垂径定理可得CF的长.【详解】连接OE ,延长EO 交CD 于点G ,作OH ⊥B ′C 于点H ,A ′B ′与⊙O 相切,则∠OEB ′=∠OHB ′=90°,∵矩形ABCD 绕点C 旋转所得矩形为A ′B ′C ′D ′,∴∠B ′=∠B ′CD ′=90°,AB =CD =5、BC =B ′C =4,∴四边形OEB ′H 和四边形EB ′CG 都是矩形,OE =OD =OC =2.5,∴B ′H =OE =2.5,∴CH =B ′C ﹣B ′H =1.5,∴CG =B ′E =OH ===2,∵四边形EB ′CG 是矩形,∴∠OGC =90°,即OG ⊥CD ′,∴CF =2CG =4,故答案为:4.【点睛】考核知识点:旋转、切线性质、垂径定理.作好辅助线,利用垂径定理和勾股定理解决问题是关键.16.(1)x 1=﹣1+3,x 2=﹣1﹣3;(2)x 1=﹣6,x 2=4【分析】(1)用一元二次方程的求根公式求出方程的根.(2)用十字相乘法因式分解求出方程的根.【详解】(1)3x 2+6x ﹣5=0∵a =3,b =6,c =﹣5.△=36+60=96∴x =6966-∴x 1=﹣1+3,x 2=﹣1﹣3.(2)(x +6)(x ﹣4)=0∴x +6=0或x ﹣4=0∴x 1=﹣6,x 2=4.【点睛】考核知识点:解一元二次方程.掌握公式法和提公因式法是关键.17.(1)图形见解析,C (3,﹣3);(2)图形见解析,A 1(﹣2,1),B 1(﹣1,4),C 1(﹣3,3);(3)图形见解析,A 2(﹣1,﹣2),B 2(﹣4,﹣1),C 2(﹣3,﹣3)【分析】(1)根据已知点的坐标,画出坐标系,由坐标系确定C 点坐标;(2)由关于原点中心对称性画△A 1B 1C 1,可确定写出A 1,B 1,C 1的坐标;(3)根据网格结构找出点A 、B 、C 绕点O 顺时针旋转90°的对应点A 2,B 2,C 2的位置,画△A 2B 2C 2,可确定写出A 2,B 2,C 2的坐标.【详解】解:(1)坐标系如图所示,C (3,﹣3);(2)△A 1B 1C 1如图所示,A 1(﹣2,1),B 1(﹣1,4),C 1(﹣3,3);(3)△A 2B 2C 2如图所示,A 2(﹣1,﹣2),B 2(﹣4,﹣1),C 2(﹣3,﹣3).【点睛】考核知识点:画中心对称图形.理解中心对称图形的定义,利用中心对称性质进行画图是关键.18.(1)函数图象的顶点坐标是(3,2),对称轴是直线x=3;(2)见解析;(3)x<1或x >5【分析】(1)根据配方法可以将题目中的函数解析式化为顶点式,从而可以写出顶点坐标和对称轴方程;(2)根据题目中函数解析式可以画出相应的函数图象;(3)根据(2)中的函数图象可以写出y的值小于0时,x的取值范围.【详解】(1)∵二次函数y=﹣12x2+3x﹣52=21(3)22x--+,∴该函数图象的顶点坐标是(3,2),对称轴是直线x=3;(2)当y=0时,得x1=1,x2=5,当x=0和x=6时,y=5 2 -,函数图象如图所示;(3)由图象可知,y的值小于0时,x的取值范围是x<1或x>5.【点睛】考核知识点:求二次函数的顶点坐标.理解二次函数的性质,画出二次函数图象是关键. 19.(1)见解析;(2)①相切;②60°【分析】(1)根据等腰三角形的性质和圆内接四边形的性质解答即可;(2)①如图,连接AE,OE,根据圆周角定理得到AE⊥BC,根据三角形的中位线定理得到OE∥AC,根据平行线的性质得到OE⊥PE,于是得到结论;②根据已知条件得到△OBE是等边三角形,求得OB=BE,同理OD=DE,根据菱形的判定定理即可得到结论.【详解】解:(1)∵AB=AC,∴∠B=∠C,∵∠CDE=∠B,∴∠CDE=∠C,∴CE=DE;(2)①相切;理由:如图,连接AE,OE,∵AB是⊙O的直径,∴AE⊥BC,∵AB=AC,∴BE=CE,∵BO=OA,∴OE∥AC,∵DE=CE,PD=CP,∴PE⊥AC,∴OE⊥PE,∴EP与⊙O的位置关系是相切;②当∠B的度数为60°时,四边OBED是菱形,∵OB=OE,∠B=60°,∴△OBE是等边三角形,∴OB=BE,同理OD=DE,∴OD=DE=BE=OB,∴四边OBED是菱形.故答案为:相切;60°.【点睛】考核知识点:切线的判定和性质.作好辅助线,充分利用圆的性质和菱形性质解决问题是关键.20.(1)点A ,90°;(2)等腰直角;(3)132【分析】(1)根据图形和已知即可得出答案.(2)根据旋转得出全等,根据全等三角形的性质得出∠BAE=∠DAF ,AE=AF ,求出∠EAF=∠BAD ,即可得出答案.(3)求出AE ,求出AF ,根据勾股定理求出EF 即可.【详解】解:(1)从图形和已知可知:旋转中心是点A ,旋转角的度数等于∠BAD 的度数,是90°,故答案为:点A ,90;(2)等腰直角三角形,理由是:∵四边形ABCD 是正方形,∴∠BAD=90°,∵△ABE 逆时针旋转后能够与△ADF 重合,∴△ABE ≌△ADF ,∴∠BAE=∠DAF ,AE=AF ,∴∠FAE=∠FAD+∠DAE=∠BAE+∠DAE=∠BAD=90°,∴△AEF 是等腰直角三角形,故答案为:等腰直角.(3)由旋转可知∠EAF=90°,△ABE ≌△ADF ,∴AE=AF ,△EAF 是等腰直角三角形在Rt △ABE 中,∵AB=12,BE=5∴222212513AE AB BE =+=+∴222213132EF AE AF =+=+【点睛】本题考查了旋转的性质,勾股定理,全等三角形的性质的应用,注意:旋转后得出的图形和原图形全等.21.(1)y==﹣4x2+920x+20000(1≤x≤80,且x为整数);(2)王经理想获得利润20000元,需将这批柿饼存放50天后出售;(3)存放75天后出售这批柿饼可获得最大利润22500元【分析】(1)根据等量关系“销售总金额=(市场价格+0.5×存放天数)×(原购入量﹣8×存放天数)”列出函数关系式;(2)根据等量关系“利润=销售总金额﹣收购成本﹣各种费用”列出方程求出即可;(3)根据等量关系“利润=销售总金额﹣收购成本﹣各种费用”列出函数关系式并求最大值.【详解】(1)由题意y与x之间的函数关系式为:y=(10+0.5x)(2000﹣8x)=﹣4x2+920x+20000(1≤x≤80,且x为整数);(2)根据题意可得:20000=﹣4x2+920x+20000﹣10×2000﹣320x,解得:x1=100(不合题意舍去),x2=50,答:王经理想获得利润20000元,需将这批柿饼存放50天后出售.(3)设利润为w,由题意得w=﹣4x2+920x+20000﹣10×2000﹣320x=﹣4(x﹣75)2+22500,∵a=﹣4<0,∴抛物线开口方向向下,∵柿饼在冷库中最多保存75天,=22500元.∴x=75时,w最大答:存放75天后出售这批柿饼可获得最大利润22500元.【点睛】考核知识点:二次函数的应用.理解利润关系,列出二次函数,求函数最值是关键. 22.(1)y=x2+x﹣1;(2)MN=t2+2;(3)t=0或1【分析】(1)将点A、B的坐标代入抛物线表达式,即可求解;(2)点M、N的坐标分别为:(t,2t2+t+1)、(t,t2+t-1),即可求解;(3)分∠ANM=90°、∠AMN=90°两种情况,分别求解即可.【详解】解:(1)将点A、B的坐标代入抛物线表达式得:421111a ba b--=⎧⎨--=-⎩,解得:11ab=⎧⎨=⎩,故抛物线C1的表达式为:y=x2+x﹣1;(2)点M、N的坐标分别为:(t,2t2+t+1)、(t,t2+t﹣1),则MN=(2t2+t+1)﹣(t2+t﹣1)=t2+2;(3)①当∠ANM=90°时,AN=MN,AN=t﹣(﹣2)=t+2,MN=t2+2,t=t2+2,解得:t=0或1(舍去0),故t=1;②当∠AMN=90°时,AM=MN,AM=t+2=MN=t2+2,解得:t=0或1(舍去1),故t=1;综上,t=0或1.【点睛】本题考查的是二次函数综合运用,涉及到一次函数、等腰三角形的性质等,其中(3),要注意分类求解,避免遗漏.23.(1)见解析;(2)见解析【分析】(1)证明:连接OA,OB,证明△OAC≌△OBD(SAS)即可得到结论;(2)根据△OAC≌△OBD,得到∠AOC=∠BOD,即可得到结论.【详解】(1)证明:连接OA,OB,∵OA=OB,∴∠OAC=∠OBD.在△OAC与△OBD中,∵OA OBOAC OBD AC BD=⎧⎪∠=∠⎨⎪=⎩,∴△OAC≌△OBD(SAS).∴OC=OD.(2)∵△OAC≌△OBD,∴∠AOC=∠BOD,∴A EB F..【点睛】此题考查同圆的半径相等的性质,全等三角形的判定及性质,等腰三角形等边对等角的性质,相等的圆心角所对的弧相等的性质,正确引出辅助线证明△OAC≌△OBD是解题的关键.24.(11;(2)﹣4;(3﹣3【分析】(1)先确定出AP最小时点P的位置,如图1中的P'的位置,即可得出结论;(2)先判断出A'M=AM=MD,再构造出直角三角形,利用锐角三角函数求出DH,MH,进而用用勾股定理求出CM,即可得出结论;(3)利用对称性确定出点B关于x轴的对称点B',即可求出结论.【详解】(1)如图1,取BC的中点E,连接AE,交半圆于P',在半圆上取一点P,连接AP,EP,在△AEP中,AP+EP>AE,即:AP'是AP的最小值,∵AE P'E=1,∴AP'1;1;(2)如图2,由折叠知,A'M=AM,∵M是AD的中点,∴A'M=AM=MD,∴以点A'在以AD为直径的圆上,∴当点A'在CM上时,A'C的长度取得最小值,过点M作MH⊥CD于H,在Rt△MDH中,DH=DM•cos∠HDM=2,MH=DM•sin∠HDM=在Rt△CHM中,CM,∴A'C=CM﹣A'M=﹣4;(3)如图3,作⊙B关于x轴的对称圆⊙B',连接AB'交x轴于P,∵B(3,4),∴B'(3,﹣4),∵A(﹣2,3),∴AB'=∴PM+PN的最小值=AB'﹣AM﹣B'N'=AB'﹣AM﹣BN﹣3.﹣3.【点睛】考核知识点:圆,三角函数.根据题意画出图形,构造直角三角形,运用三角函数定义解决问题是关键.。

九年级期中数学试卷及答案

九年级期中数学试卷及答案

九年级期中数学试卷及答案(考试时间:90分钟,满分:100分)一、选择题(每题2分,共30分)1.若a>b,则下列哪个选项一定成立?A.ac>bcB.a+c>b+cC.ac>bcD.a/c>b/c(c≠0)答案:A2.下列哪个是无理数?A.√9B.√16C.√3D.π答案:C3.若x^25x+6=0,则x的值为?A.2或3B.1或6C.-2或-3D.-1或-6答案:A4.下列哪个函数是增函数?A.y=-2x+3B.y=x^2C.y=1/xD.y=-x^2答案:A5.若一个等腰三角形的底边长为8,腰长为10,则该三角形的周长为?A.26B.28C.30D.32答案:C6.下列哪个图形不是正多边形?A.矩形B.菱形C.正五边形D.正六边形答案:A7.若一个数的算术平方根是3,则该数为?A.9B.6C.12D.18答案:A二、判断题(每题1分,共20分)8.若a>b,则ac>bc。

(c>0)答案:错误9.两个无理数的和一定是无理数。

答案:错误10.两个等腰三角形的面积相等,则它们的周长也相等。

答案:错误11.若一个数的平方是正数,则该数一定是正数。

答案:错误12.任何两个奇数之和都是偶数。

答案:正确13.任何两个负数相乘都是正数。

答案:正确14.若一个数的立方是负数,则该数一定是负数。

答案:正确三、填空题(每空1分,共10分)15.若a=3,b=-2,则a+b=___________,ab=___________。

答案:1516.若x^25x+6=0,则x的值为___________或___________。

答案:2317.若一个等腰三角形的底边长为8,腰长为10,则该三角形的周长为___________。

答案:2818.若一个数的算术平方根是3,则该数为___________。

答案:919.两个等腰三角形的面积相等,则它们的周长也相等。

(判断对错)答案:错误四、简答题(每题10分,共10分)20.请简述勾股定理的内容。

人教版九年级上册数学期中考试试卷及答案

人教版九年级上册数学期中考试试卷及答案

人教版九年级上册数学期中考试试题一、单选题1.下列图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .2.方程2x x =的解是()A .1x =B .0x =C .11x =,20x =D .11x =-,20x =3.对于二次函数y=(x-1)2+2的图象,下列说法正确的是()A .开口向下B .对称轴是x=-1C .顶点坐标是(1,2)D .与x 轴有两个交点4.已知点A (2,﹣2),如果点A 关于x 轴的对称点是B ,点B 关于原点的对称点是C ,那么C 点的坐标是()A .(2,2)B .(﹣2,2)C .(﹣1,﹣1)D .(﹣2,﹣2)5.已知x =2是一元二次方程x 2+mx+2=0的一个解,则m 的值是()A .﹣3B .3C .0D .0或36.若关于x 的一元二次方程2x 2x m 0-+=没有实数根,则实数m 的取值范围是()A .1m <B .1m >-C .1m >D .1m <-7.在同一直角坐标系中,一次函数y=ax+c 和二次函数y=ax 2+c 的图象大致为()A .B .C .D .8.对于任意实数x ,多项式x 2-5x+8的值是一个()A .非负数B .正数C .负数D .无法确定9.已知关于x 的一元二次方程x2+2x+m ﹣2=0有两个实数根,m 为正整数,且该方程的根都是整数,则符合条件的所有正整数m 的和为()A .6B .5C .4D .310.若t 是一元二次方程()200ax bx c a ++=≠的根,则判别式24b ac =- 和完全平方式2(2)M at b =+的关系是()A .M =B . M >C .M< D .大小关系不能确定二、填空题11.如果关于x 的方程(m ﹣3)27mx -﹣x+3=0是一元二次方程,那么m 的值为_____12.把抛物线y =2x 2向左平移3个单位,再向下平移2个单位,所得抛物线的解析式为_____.13.如图,在ABC 中,20BAC =︒∠,将ABC 绕点A 按顺时针方向旋转50°得到AB C ''△,则C AB ∠'的度数为______.14.若x=1是方程2ax 2+bx=3的根,当x=2时,函数y=ax 2+bx 的函数值为_____.15.已知二次函数y =ax 2+4ax+c 的图象与x 轴的一个交点为(﹣1,0),则它与x 轴的另一个交点的坐标是_____.16.二次函数y =ax 2+bx+c 的图象如图所示,下列结论:①abc <0;②3a+c <0;③b 2﹣4ac >0;④16a+4b+c >0.其中正确结论的个数是:___.17.二次函数y=x 2-2x -3与x 轴交点交于A 、B 两点,交y 轴于点C ,则△OAC 的面积为____三、解答题18.解方程:2(23)5(23)x x -=-19.抛物线2y ax =与直线23y x =-交于点()1,A b .(1)求a ,b 的值;(2)求抛物线2y ax =与直线2y =-的两个交点B ,C 的坐标(点B 在点C 右侧).20.如图所示,在宽为16m ,长为20m 的矩形耕地上,修筑同样宽的两条道路(互相垂直),把耕地分成大小不等的四块试验田,要使试验田的面积为285m 2,道路应为多宽?21.如图,已知二次函数y =ax 2+bx+c 的图象过A (2,0),D (﹣1,0)和C (4,5)三点.(1)求二次函数的解析式;(2)在同一坐标系中画出直线y =x+1,并写出当x 在什么范围内时,一次函数的值大于二次函数的值.22.已知:关于x 的方程x 2﹣(k +2)x +2k =0(1)求证:无论k 取任何实数值,方程总有实数根;(2)若等腰三角形ABC 的一边长a =1,另两边长b ,c 恰好是这个方程的两个根,求△ABC 的周长.23.如图,A ,B ,C ,D 为矩形的四个顶点,16cm AB =,6cm AD =,动点P ,Q 分别从点A,C同时出发,点P以3cm/s的速度向点B移动,点Q以2cm/s的速度向点D移动,当点P运动到点B停止时,点Q也随之停止运动,问P,Q两点从出发经过几秒时,点P,Q间的距离是10cm?24.如图,在等边△BCD中,DF⊥BC于点F,点A为直线DF上一动点,以B为旋转中心,把BA顺时针方向旋转60°至BE,连接EC.(1)当点A在线段DF的延长线上时,①求证:DA=CE;②判断∠DEC和∠EDC的数量关系,并说明理由;(2)当∠DEC=45°时,连接AC,求∠BAC的度数.25.已知一元二次方程x2-4x+3=0的两根是m,n且m<n.如图,若抛物线y=-x2+bx+c的图像经过点A(m,0)、B(0,n).(1)求抛物线的解析式.(2)若(1)中的抛物线与x轴的另一个交点为C.根据图像回答,当x取何值时,抛物线的图像在直线BC的上方?(3)点P在线段OC上,作PE⊥x轴与抛物线交于点E,若直线BC将△CPE的面积分成相等的两部分,求点P的坐标.参考答案1.C 2.C 3.C 4.D 5.A 6.C 7.D 8.B 9.B 10.A 11.-3【分析】根据一元二次方程的定义解答即可.【详解】∵关于x 的方程(m ﹣3)27m x -﹣x+3=0是一元二次方程,∴27=2m -,m-3≠0,故答案为-3.12.y =2(x+3)2﹣2【分析】根据二次函数图象与几何变换的方法即可求解.【详解】解:y=2x 2向左平移3个单位,再向下平移2个单位,所得抛物线的解析式为y=2(x+3)2-2;故答案是:y=2(x+3)2-2.13.70°【解析】根据旋转可得=50CAC '∠︒,再根据角之间的和差关系可得答案.【详解】解:∵将ABC 绕点A 按顺时针方向旋转50°得到A B C '''V ,∴=50CAC '∠︒,∵=20BCA ∠︒,∴+=50+20=70C AB CAC BCA ''∠=∠∠︒︒︒,故答案为;70°.14.6【分析】由x=1是方程2ax 2+bx=3的根,得到2a+b=3,由x=2时,得到函数y=ax 2+bx=4a+2b=2(2a+b ),代入即可.【详解】∵x=1是方程2ax 2+bx=3的根,∴2a+b=3,∴当x=2时,函数y=ax 2+bx=4a+2b=2(2a+b )=6,故答案为6.【点睛】本题考查了二次函数图象上点的坐标特征,解题的关键是掌握图象上的点的坐标适合解析式.15.(﹣3,0)【解析】先求出抛物线的对称轴,再根据轴对称性求出与x 轴的另一个交点坐标,x 轴的两个交点到对称轴距离相等.【详解】解:二次函数y=ax 2+4ax+c 的对称轴为:x=42aa-=2-∵二次函数y=ax 2+4ax+c 的图象与x 轴的一个交点为(-1,0),∴它与x 轴的另一个交点坐标是(-3,0).【点睛】本题主要考查抛物线与x 轴的交点,解题的关键是熟练掌握抛物线的对称性,根据对称性找到交点坐标.16.3【解析】【分析】根据二次函数图像的性质(开口方向、对称轴、与坐标轴交点以及特殊点的值),确定对应代数值的符号即可.【详解】解:图像开口方向向上,所以0a >,对称轴为12ba-=,20b a =-<图像与y 轴交点在x 轴下方,∴0c <∴0abc >,①错误;由图像可得,当1x =-时,0y <,即0a b c -+<,∴30a c +<,②正确;图像与x 轴有两个交点,∴240b ac ->,③正确;由图像可知,当2x =-时,0y >,又因为(2,)y -关于1x =对称的点为(4,)y ∴当4x =时,0y >,即1640a b c ++>,④正确所以正确的个数为3故答案为3【点睛】此题考查了二次函数的图像与系数的关系,解题的关键是根据函数图像确定出对应代数值的符号.17.32或92【解析】【详解】∵在223y x x =--中,当0x =时,3y =-,∴点C 的坐标为(0,-3).∵在223y x x =--中,当0y =时,可得2230x x --=,解得1231x x ==-,,∴点A 、B 中,一个点的坐标为(3,0),另一个点的坐标为(-1,0).当点A 的坐标为(3,0)时,S △OAC =193322⨯⨯=;当点A 的坐标为(-1,0)时,S △OAC =133122⨯⨯=;∴△OAC 的面积为92或32.18.132x =或24x =【解析】【分析】把原方程式移项可得2(23)5(23)0x x ---=,利用提公因式法求解即可.【详解】把原方程式变形为:2(23)5(23)0x x ---=,∴(23)(235)0x x ---=,∴(23)(28)0x x --=解得:132x =或24x =.【点睛】本题考查了提公因式法求解一元二次方程,掌握提公因式法解一元二次方程是解题的关键.19.(1)1a b ==-;(2)点C 坐标(2)-,点B 坐标2)-.【解析】【分析】(1)将点A 代入23y x =-求出b ,再把点A 代入抛物线2y ax =求出a 即可.(2)解方程组即可求出交点坐标.【详解】解:(1) 点()1,A b 在直线23y x =-上,1b ∴=-,∴点A 坐标(1,1)-,把点(1,1)A -代入2y ax =得到1a =-,1a b ∴==-.(2)由22y x y ⎧=-⎨=-⎩解得2x y ⎧⎪⎨=-⎪⎩2x y ⎧=⎪⎨=-⎪⎩∴点C 坐标(,2)-,点B 坐标,2)-.【点睛】本题考查二次函数性质,解题的关键是灵活掌握待定系数法,学会利用方程组求函数图象交点坐标.20.1m 【解析】【分析】设道路宽为xm ,根据试验田的面积=试验田的长×试验田的宽列出方程进行求解即可.【详解】设道路宽为xm ,则根据题意,得(20-x )(16-x)=285,解得:x 1=35,x 2=1,∵16-x>0,即x<16,∴x=35舍去,∴x=1,答:道路宽为1m .【点睛】本题考查了一元二次方程的应用,弄清题意,找准等量关系列出方程是解题的关键.21.(1)y =12x 2﹣12x ﹣1;(2)图详见解析,﹣1<x <4.【解析】【分析】(1)根据二次函数y=ax2+bx+c的图象过A(2,0),B(0,-1)和C(4,5)三点,代入得出关于a,b,c的三元一次方程组,求得a,b,c,从而得出二次函数的解析式;(2)设二次函数的图象与x轴的另一个交点为D,令y=0,解一元二次方程,求得x的值,从而得出与x轴的另一个交点坐标;画出图象,再根据图象直接得出答案.【详解】解:(1)∵二次函数y=ax2+bx+c的图象过A(2,0),B(0,﹣1)和C(4,5)三点,∴42011645a b cca b c++⎧⎪-⎨⎪++⎩==,=∴a=,12b=﹣12,c=﹣1,∴二次函数的解析式为y=12x2﹣12x﹣1;(2)当y=0时,得12x2﹣12x﹣1=0;解得x1=2,x2=﹣1,∴点D坐标为(﹣1,0);∴图象如图,∴当一次函数的值大于二次函数的值时,x的取值范围是﹣1<x<4.【点睛】本题考查了用待定系数法求二次函数的解析式以及一次函数的图象、抛物线与x轴的交点问题,是中档题,要熟练掌握.22.(1)见解析;(2)5【解析】【分析】(1)把一元二次方程根的判别式转化成完全平方式的形式,得出△≥0,可得方程总有实数根;(2)根据等腰三角形的性质分情况讨论求出b、c的长,并根据三角形三边关系检验,综合后求出△ABC的周长.【详解】(1)证明:由题意知:Δ=(k+2)2﹣4•2k=(k﹣2)2,∵(k﹣2)2≥0,即△≥0,∴无论取任何实数值,方程总有实数根;(2)解:当b=c时,Δ=(k﹣2)2=0,则k=2,方程化为x2﹣4x+4=0,解得x1=x2=2,∴△ABC的周长=2+2+1=5;当b=a=1或c=a=1时,把x=1代入方程得1﹣(k+2)+2k=0,解得k=1,方程化为x2﹣3x+2=0,解得x1=1,x2=2,不符合三角形三边的关系,此情况舍去,∴△ABC的周长为5.【点睛】本题考查了根的判别式△=b2-4ac:①当△>0时,方程有两个不相等的实数根;②当△=0时,方程有两个相等的实数根;③当△<0时,方程没有实数根.也考查了等腰三角形的性质以及三角形三边的关系.23.1.6或4.8秒【解析】【分析】作PE⊥CD,垂足为E,设运动时间为t秒,用t表示线段长,用勾股定理列方程求解.【详解】解:过点P做PE⊥CD交CD于E.QE=DQ-AP=16-5t ,在Rt △PQE 中,PE 2+QE 2=PQ 2,可得:(16-5t )2+62=102,解得t 1=4.8,t 2=1.6.答:P 、Q 两点从出发开始1.6s 或4.8s 时,点P 和点Q 的距离是10cm .24.(1)①证明见解析②∠DEC+∠EDC=90°;(2)150°或30°【解析】(1)①证明△BAD ≌△BEC ,即可证明.②分别求出BCD ∠和BCE ∠的度数,即可求出∠DEC 和∠EDC 的数量关系.(2)分三种情况进行讨论.【详解】解:(1)①证明:∵把BA 顺时针方向旋转60°至BE ,∴BA BE ABE =∠=,60°,在等边△BCD 中,DB BC ∴=,60DBC ∠=︒60DBA DBC FBA FBA ∴∠=∠+∠=︒+∠,60CBE FBA ∠=︒+∠ ,DBA CBE ∴∠=∠,∴△BAD ≌△BEC ,∴DA=CE ;②判断:∠DEC+∠EDC=90°.DB DC =Q ,DA BC ⊥,1302BDA BDC ∴∠=∠=︒,∵△BAD ≌△BEC ,∴∠BCE=∠BDA=30°,在等边△BCD 中,∠BCD=60°,∴∠DCE=∠BCE+∠BCD =90°,∴∠DEC+∠EDC=90°.(2)分三种情况考虑:①当点A 在线段DF 的延长线上时(如图1),由(1)可得,DCE ∆是直角三角形,90DCE ︒∴∠=,当45DEC ∠=︒时,9045EDC DEC ∠=-∠=︒︒,EDC DEC ∴∠=∠,CD CE ∴=,由(1)得DA=CE ,∴CD=DA ,在等边BDC 中,BD CD =,BD DA CD ∴==,60BDC ∴∠=︒,DA BC ⊥ ,1302BDA CDA BDC ∴∠=∠=∠=︒,在BDA V 中,DB DA =,180-752BDABAD ∠∴∠=︒=︒,在DCA △中,DA DC =,180-752ADCDAC ∠∴∠=︒=︒,7575150BAC BAD DAC ︒︒∴∠=∠+∠=+=︒.②当点A 在线段DF 上时(如图2),以B 为旋转中心,把BA 顺时针旋转60︒至BE.60BA BE ABE ∴=∠=︒,,在等边BDC 中,60BD BC DBC =∠=︒,,DBC ABE ∴∠=∠,--DBC ABC ABE ABC ∠∠=∠∠,DBA EBC ∠=∠,DBA ∴∆≌CBE ∆,DA CE ∴=,在Rt DFC ∆90DFC =︒∠,,DF ∴<DC ,∵DA <DF ,DA=CE ,∴CE <DC ,由②可知DCE ∆为直角三角形,∴∠DEC≠45°.③当点A 在线段FD 的延长线上时(如图3),同第②种情况可得DBA ∆≌CBE ∆,DA CE ADB ECB ∴=∠=∠,,在等边BDC 中,60BDC BCD ∠=∠=︒,DA BC ⊥ ,1302BDF CDF BDC ∴∠=∠=∠=︒,180150ADB BDF ∴∠=︒-∠=︒,150ECB ADB ∴∠=∠=︒,90DCE ECB BCD ∴∠=∠-∠=︒,当45DEC ∠=︒时,9045EDC DEC ∠=-∠=︒︒,EDC DEC ∴∠=∠,CD CE ∴=,∴AD=CD=BD ,∵150ADB ADC ∠=∠=︒,180-152ADB BAD ∠∴∠=︒=︒,180-152CDA CAD ∠=︒∠=︒,30BAC BAD CAD ∴∠=∠+∠=︒,综上所述,BAC ∠的度数是150︒或30.︒25.(1)抛物线的解析式为y=-x 2-2x+3;(2)当-3<x<0时,抛物线的图像在直线BC 的上方;(3)P 点的坐标是(-1,0)【解析】【分析】(1)用待定系数法求解;(2)作直线BC ,求交点C 坐标,可得;(3)设直线BC 交PE 于F ,P 点坐标为(a ,0),则E 点坐标为(a ,-a 2-2a+3),再求得直线BC 的解析式为y=x+3,点F 在直线BC 上,所以点F 的坐标满足直线BC 的解析式,即2232a a --+=a+3.【详解】(1)∵x 2-4x+3=0的两个根为x 1=1,x 2=3∴A 点的坐标为(1,0),B 点的坐标为(0,3)又∵抛物线y=-x 2+bx+c 的图像经过点A(1,0)、B(0,3)两点10233b c b c c -++==-⎧⎧∴⎨⎨==⎩⎩得∴抛物线的解析式为y=-x 2-2x+3;(2)作直线BC由(1)得,y=-x2-2x+3∵抛物线y=-x2-2x+3与x轴的另一个交点为C令-x2-2x+3=0解得:x1=1,x2=-3∴C点的坐标为(-3,0)由图可知:当-3<x<0时,抛物线的图像在直线BC的上方.(3)设直线BC交PE于F,P点坐标为(a,0),则E点坐标为(a,-a2-2a+3),∵直线BC将△CPE的面积分成相等的两部分.∴F是线段PE的中点.即F点的坐标是(a,2232a a--+),∵直线BC过点B(0,3)和C(-3,0),易得直线BC的解析式为y=x+3,∵点F在直线BC上,所以点F的坐标满足直线BC的解析式,即2232a a--+=a+3,解得a1=-1,a2=-3(此时P点与点C重合,舍去),∴P点的坐标是(-1,0).【点睛】二次函数与一次函数应用.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

FEDCBADCBAA CBD初三数学期中试卷一、填空(本题共11题, 每空3分,共33分)1.已知a 、b 、c 、d 是成比例线段,其中a =5cm ,b=3cm ,c=6cm .则线段d=___________cm . 2.若x ∶y =1∶2,则yx y x +-=_____________.3.等腰梯形的周长是36cm ,腰长是7cm ,则它的中位线长为________cm . 4.在Rt △ABC 中,∠C=90°,AB=5,AC=4,则sinA 的值为____ __.5.地图比例尺为1:2000,一块多边形地区在地图上周长为60cm ,面积为200 cm 2,则实际周长为_________米,实际面积为_ _______平方米.6.如图,在ABC △中,90ACB ∠= ,CD AB ⊥于D,若AC =AB =tan BCD ∠的值为_____.7.计算sin 2660-2tan540·tan360+sin 224 0 =___ ____.8.二次函数362+-=x kx y 的图象与x 轴有交点,则k 的取值范围是 ___.9.如图,一束光线照在坡度为1坡面的夹角α是 度.10.抛物线)9)(1(-+=x x a y 与x 轴交于A 、B 两点,与y 轴交于点C ,若090ACB ∠=,则a =___ ____. 二.选择题(本题共8题,每题3分,共24分)11.如图,F 是平行四边形ABCD 对角线BD 上的点,BF ∶FD=1∶3,则BE ∶EC=( ).A .41B .32C . 31D . 21第9题图班级___________________姓名__________________班内学号 考试号___________________ .......................密......................................封............................线..............第6题图..12.如图,Rt ΔABC 中,∠C=90°,D 是AC 边上一点,AB =10,AC =8,若ΔABC∽ΔBDC ,则CD =( ).A .2B .32C .43D .2913.已知α为锐角,且cos ( 90°α-)=12,则α的度数为 ( ).A .30°B .45°C .60°D .90°14.如图,水库大坝的横断面为梯形,坝顶宽8米,坝高4米,斜坡AB 的坡角为45º,斜坡CD 的坡度为i =1:2,则坝底宽BC 为( ).A.20米B.(1234+)米C.(1624+)米D.(1634+)米 15.若(-1,5)、(5,5)是抛物线c bx ax y ++=2上两点,则它的对称轴是( ).A .ab x -=直线 B .直线2=x C .直线3=x D .直线1=x 16.已知反比例函数)0(≠=a xay ,当x <0时,y 随x 的增大而增大,则函数a ax y +=2 的图象经过的象限是( ).A .第三、四象限B .第一、二象限C .第二、三、四象限D .第一、二、三象限 17. 抛物线22++=x x y的图象与坐标轴交点的个数是( ). A .没有交点 B .只有一个 C .有两个 D .有三个 18.二次函数c bx ax y ++=2的图象如图所示,则下列关系式不正确的是( )A .a <0B .abc >0C .c b a ++>0D .ac b 42->0 三.解答题:(本题共10题,共73分) 19.计算 (每题5分,共10分)第11题图第12题图第14题图(1)046cot 46tan 60cos 2330cos 21∙++ (2)000045tan 30cot 30sin 30cos +-20. (6分)如图,图中小方格都是边长为1的正方形, △ABC 与△A′ B′ C′是关于点O 为位似中心的位似图形,它们的顶点都在小正方形顶点上. (1)画出位似中心点O ;(2)△ABC 与△A′B′C′的位似比为 ;(3)以点O 为位似中心,再画一个△A 1B 1C 1,使它与△ABC 的位似为1:221.(6分)某段笔直的限速公路上,规定汽车的最高行驶速度不能超过60 km/h (即503m/s ).交通管理部门在离该公路100 m 处设置了一速度监测点A ,在如图所示的坐标系中,点A 位于y 轴上,ABCD北测速路段BC 在x 轴上,点B 在点A 的北偏西60°方向上,点C 在点A 的北偏东45°方向上. (1)请在图中画出表示北偏东45°方向的射线AC ,并标出点C 的位置; (2)点B 坐标为 ,点C 坐标为;(3)一辆汽车从点B 行驶到点C 所用的时间为15 s ,请通过计算,判断该汽车在限速公路上是否超1.7)22°的山坡AB 行走600m ,到达一个景点B ,再由B 沿山C 处观测到景点B 的俯角为45°,求山高CD .(结果保留根号).....封............................线......................23. (8分)如图,在同一直角坐标系中,抛物线与两坐标轴分别交A (-1,0)、B (3,0)和C (0,-3),一次函数的图象与抛物线交于B 、C 两点。

(1) 求出抛物线解析式;(2)求此抛物线的顶点坐标和对称轴;(3)当自变量x 满足 时,两函数的函数值都随x 增大而增大; (4)当自变量x 满足 时,一次函数值大于二次函数值.24. (6分)已知抛物线k x x y +-=42的图象与x 轴交于A(1x ,0)、B(2x ,0)两点.(1x ≠2x ).(1)求实数k 的取值范围;(2)如果(21x +1)(22x +1)=7,求二次函数的解析式。

考试号___________________ ..........................线..............25.(6分)如图,D是AC上一点,BE∥AC,BE=AD,AE分别交BD、BC于点F、G,∠1=•∠2.求证:FD2=FG·FE.26. (7分)如图,某居民要装修自己带阁楼的新居,•在搭建客厅到阁楼的楼梯AC时,为避免上升时墙角F碰头,设计墙角F到楼梯的竖直距离FG为1.75m,他量得客厅高AB=2.8m,楼梯洞口宽AF=2m,阁楼阳台宽EF=3m,请你帮助解决下列问题,•要使墙角F到楼梯的竖直距离FG为1.75m,楼梯底端C到墙角D的距离CD是多少米?27.(8分)如图,在矩形ABCD中,AB=6米,BC=8米,动点P以2米/秒的速度从点A出发,沿AC向点C移动,同时动点Q以1米/秒的速度从点C出发,沿CB向点B移动,设P、Q两点移动t秒(0<t<5)后,四边形ABQP的面积为S米2。

(1)求面积S与时间t的关系式;(2)在P、Q两点移动的过程中,四边形ABQP 与△CPQ的面积能否相等?若能,求出此时点P的位置;若不能,请说明理由。

28. (10分) 矩形OABC 在直角坐标系中的位置如图所示,A 、C 两点的坐标分别为(60)A ,、(03)C ,,直线34y x =与BC 边相交于点D . (1)求点D 的坐标;(2)若抛物线2y ax bx =+经过D 、A 两点,试确定此抛物线的表达式; (3)P 为x 轴上方(2)中抛物线上一点,求△POA 面积的最大值;(4)设(2)中抛物线的对称轴与直线OD 交于点M ,点Q 为对称轴上一动点,以Q 、O 、M 为顶点的三角形与△OCD 相似,求符合条件的Q 点的坐标.......密......................................封............................线......................参考答案一.填空题:1、5182、31-3、114、535、1.2×103 8×1046、227、-1 8、k ≤3且k ≠0 9、300 10、3131-或二、选择题 DDAA BABC 三、解答题 19、计算: (1)123+ ( 2 )232- 20、(1.)略,(2)1:2 (3)略21.(1)画图略,(2)B(-1003,0),C(100,0) (3)350354> ∴超速 22.CD=(1002+300)m23. (1)2)1(-=x y -4 (2)(1,-4),直线x=1(3)x>1 (4)0<x<324.(1)k<4,(2)y=2142--x x25、∵B E ∥AC ∴∠1=∠E 又∵∠1=∠2 ∴∠2=∠E 又∵∠FGB=∠FGB ∴△BFG ∽△EFB ∴BF/EF=FG/BF ∴BF 2=FG ·EF26∵AF ∥BC ∴∠FAG=∠ACB ∵∠AFG=∠ABC=900∴△ABC ∽△GFA ∴AB/GF=BC/FA∵AB=2.8m GF=1.75m FA=2m ∴BC=3.2m ∴BD=AE=5m ∴CD=BD-BC=1.8m 答:到墙角的距离CD 为1.8 m 27.(1)S=243532+-t t (2)不存在这样的P 点。

28.(1)D(4,3) (2)x x y 49832+-= (3)S 的最大值是881 (4)Q(3,0)或Q(3,-4)。

相关文档
最新文档