高一数学 三角练习(提高)

合集下载

高一数学三角函数图象变换试题答案及解析

高一数学三角函数图象变换试题答案及解析

高一数学三角函数图象变换试题答案及解析1.为了得到函数的图像,只需将函数的图像( )A.向左平移个长度单位B.向右平移个长度单位C.向左平移个长度单位D.向右平移个长度单位【答案】B【解析】先用诱导公式将化为= =,由平移知识知,只需将函数的图像向右平移个长度单位,故选B.考点:诱导公式;平移变换2.为了得到函数的图像,只需把函数的图像()A.向右平移个长度单位B.向右平移个长度单位C.向左平移个长度单位D.向左平移个长度单位【答案】B【解析】=sin2(x-),为了得到函数的图象,只需将的图象向右平移个单位即可,故选A.【考点】函数y=Asin(ωx+φ)的图象变换.三角函数图像的平移.3.将函数的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得的图象向左平移个单位,得到的图象对应的僻析式是( )A.B.C.D.【答案】C【解析】将的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),可得函数,再将所得的图象向左平移个单位,得函数,即故选C.【考点】函数y=Asin(ωx+φ)的图象变换.4.函数(其中,的图象如图所示,为了得到的图象,可以将的图象A.向右平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向左平移个单位长度【答案】A【解析】由图知,,∴,∴.又由图可得,∵,∴,∴,∴为了得到的图象,可以将的图象向右平移个单位长度,故选A.【考点】1、三角函数的图象;2、函数的图象变换.5.要得到函数y=cos()的图像,只需将y=sin的图像( )A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度【答案】A【解析】本题考查三角函数的图像平移问题,要注意将函数解析式变为,然后根据“左加右减”的口诀平移即可.【考点】三角函数图像平移.6.函数的图象向右平移个单位后与函数的图象重合.则的解析式是( )A.B.C.D.【答案】C【解析】根据反方向知:的图像向左平移个单位后得到,根据左加右减的平移原理得到:,故选C.【考点】的图像变换7.函数的最小正周期为()A.B.C.D.【答案】【解析】由三角函数的最小正周期得.解决这类问题,须将函数化为形式,在代时,必须注意取的绝对值,因为是求最小正周期.【考点】三角函数的周期计算8.将函数的图象沿轴向左平移个单位后,得到一个偶函数的图象,则的一个可能取值为()A.B.C.0D.【答案】B【解析】根据题意,由于将函数的图象沿轴向左平移个单位后,得到,故可知的一个可能取值为,故答案为B.【考点】三角函数的图象变换点评:主要是考查了三角函数的图象变换的运用,属于基础题。

高一数学三角函数提高练习

高一数学三角函数提高练习

三角提高练习1. 若θ是一个锐角,且2sin θcos θ=a ,则sin θ+cos θ等于( ) A.a +1 B .(2-1)a +1 C.a +1-a 2-a D .1-a 22. 已知sin x+cos x =15(0≤x <π),则tan x 等于( ) A .-34 B .-43 C.34 D.433. 设θ为斜△ABC 的一个内角,则2cos θ1-sin 2θ+1-cos 2θsin θ=________.4. 若cos α=-35,且tan α>0,求tan αcos 3α1-sin α的值5. 已知△ABC 中,tan A =-512,则cos A =( ) A.1213 B.513 C .-1213D .-513 6. cos 243°+cos 244°+cos 245°+cos 246°+cos 247°=________.7. 已知α是第三象限的角,f (α)=sin ⎝⎛⎭⎫α-π2cos ⎝⎛⎭⎫3π2+αtan (π-α)tan (-α-π)sin (-α-π)(1)化简f (α);(2)若cos ⎝⎛⎭⎫α-3π2=15,求f (α)的值.8. 已知sin(3π+α)=12,求sin(10π-α)-tan(α-π)·cos (2πα-)的值.9. 设f (x )=sin (n π+x )cos (n π-x )cos[(n +1)π-x ](n ∈Z ),求f ⎝⎛⎭⎫π6的值.10. 已知sin α是方程5x 2-7x -6=0的根,求⎣⎡⎦⎤sin ⎝⎛⎭⎫α+32π·sin ⎝⎛⎭⎫32π-α·tan 2(2π-α)·tan (π-α)÷⎣⎡⎦⎤cos ⎝⎛⎭⎫π2-α·cos ⎝⎛⎭⎫π2+α 的值.11. 记cos(-80°)=k ,那么tan100°=( ) A.1-k 2k B .-1-k 2k C.k 1-k 2 D .-k 1-k 2 12. 已知1+sinx cosx =-12,那么cosx sinx -1的值是( ) A.12 B .-12C .2D .-2 13. 若cosα+2sinα=-5,则tanα=( )A.12 B .2 C .-12D .-2 14. 设f(x)=asin(πx +α)+bcos(πx +β),其中a 、b 、α、β都是非零实数,若f(2008)=-1,那么f(2009)等于( )A .-1 B .0 C .1 D .215. 已知sinα+cosα=1,则sin n α+cos n α等于( )A .1B .0 C.12n -1 D .不能确定 16. 设α=sin(sin2008°),b =sin(cos2008°),c =cos(sin2008°),d =cos(cos2008°),则a ,b ,c ,d 从小到大的顺序是________.17. 已知3cos 2(π+x)+5cos ⎝⎛⎭⎫π2-x =1,求6sinx +4tan 2x -3cos 2(π-x)的值.18. (1)已知tanα=3,求23sin 2α+14cos 2α的值.(2)已知1tanα-1=1,求11+sinαcosα的值.19.已知sin()2sin(3),tan(3)3tan(11)αππβπαπβ-=++=+,求2cos α的值.答案:1.A ;2.B ;3. ⎩⎪⎨⎪⎧ 3,当θ为锐角时,-1,当θ为钝角时.;4. -425;5.C ;6. 52;7. (1)-cos α.;(2)265;8.1;9. 当n 为偶数时,-12.当n 为奇数时, 12;10.当α∈Ⅲ时,34;当α∈Ⅳ时,34-;11.B ;12.A ;13.B ;14.C ;15.A ;16. b <a <d <c ;17. -256.18. 58.57.19.31,8。

2018高一数学三角函数难题突破训练(含解析)

2018高一数学三角函数难题突破训练(含解析)

2018高一数学三角函数难题练习一.选择题(共19小题)1.若log a x1=log(a+1)x2=log(a+2)x3>0,则x1,x2,x3之间的大小关系为()A.x1<x3<x2B.x2<x1<x3C.x1<x2<x3D.x3<x2<x12.设函数f(x)=Asin(ωx+φ)(A>0,ω>0),若f()=f()=﹣f(),且f(x)在区间[,]上单调,则f(x)的最小正周期是()A.B.C.D.π3.已知函数f(x)=2sin(ωx+φ)(ω>0,|φ|<)的图象过点B(0,﹣1),且在(,)上单调,同时f(x)的图象向左平移π个单位之后与原来的图象重合,当x1,x2∈(﹣,﹣),且x1≠x2时,f(x1)=f(x2),则f(x1+x2)=()A.﹣B.﹣1 C.1 D.4.已知函数f(x)=sin(ωx+φ)(ω>0,|φ|≤),x=﹣为f(x)的零点,x=为y=f(x)图象的对称轴,且f(x)在(,)上单调,则ω的最大值为()A.11 B.9 C.7 D.55.已知函数f(x)=2sin(2x+φ)+1(|φ|<),若f(x)<1,对x∈(﹣,﹣)恒成立,则f()的最小值是()A.1 B.2 C.﹣1 D.﹣+16.已知△ABC,若对任意k∈R,有||≥,则△ABC一定是()A.直角三角形B.钝角三角形C.锐角三角形D.以上均有可能7.已知O为△ABC内一点,若对任意k∈R有|+(k﹣1)﹣k|≥|﹣|,则△ABC一定是()A.直角三角形B.钝角三角形C.锐角三角形D.以上均有可能8.已知△ABC中,AB=4,且满足BC=CA,则△ABC的面积的最大值为()A.B.3 C.2 D.49.设等差数列{a n}满足,公差d∈(﹣1,0),当且仅当n=9时,数列{a n}的前n项和S n取得最大值,求该数列首项a1的取值范围()A.B.[,]C.(,)D.f(x)10.已知数列{a n}中,a1=1,a2k=a2k﹣1+(﹣1)k,a2k+1=a2k+2k(k∈N*),则{a n}的前60项的和S60=()A.231﹣154 B.231﹣124C.232﹣94 D.232﹣12411.已知数列{a n}满足:a1=,a n+2﹣a n≤3n,a n+6﹣a n≥91•3n,则a2015=()A.+B.C.+D.12.正整数按如图的规律排列,则上起第2011行,左起第2012列的数为()A.20112B.20122C.2011+2012 D.2011×201213.对于有限数列A:{a1,a2,a3,…,a n}S i为数列A的前i项和,称为数列A的“平均和”,将数字1,2,3,4,5,6,7任意排列,所对应数列的“平均和”的最大值是()A.12 B.16 C.20 D.2214.有限数列A={a1,a2,…,a n}的前k项和为S k(k=1,2,…,n),定义为A的“凯森和”,如果有99项的数列{a1,a2,…,a99},此数列的“凯森和”为1000,那么有100项的数列{1,a1,a2,…,a99}的“凯森和”为()A.1001 B.999 C.991 D.99015.若关于x的不等式x2+|x﹣a|<2至少有一个正数解,则实数a的取值范围是()A.(﹣,2)B.(﹣,)C.(﹣2,)D.(﹣2,2)16.在锐角△ABC中,∠A=,∠BAC的平分线交边BC于点D,|AD|=1,则△ABC面积的取值范围是()A.[,]B.[,] C.[,)D.[,)17.已知△ABC中,BC=1,AB=,AC=,点P是△ABC的外接圆上的一个动点,则•的最大值是()A.2 B.C.D.18.设△ABC的角A、B、C所对的边分别为a、b、c,若a2+b2=abcosC+absinC,则△ABC的形状为()A.直角非等腰三角形B.等腰非等边三角形C.等腰直角三角形 D.等边三角形19.在△ABC中,a=x,b=2,B=45°,若这样的△ABC有两个,则实数x的取值范围是()A.(2,+∞)B.(0,2) C.(2,2)D.(,2)二.解答题(共11小题)20.已知数列{a n}中,a1=1,a n+1=1+,记b n=(1)求证:数列{b n}是等比数列,并求b n;(2)求数列{a n}的通项公式a n;(3)记c n=nb n,S n=c1+c2+…+c n,对任意正整数n,不等式+S n+n(﹣)n+1﹣(﹣)n>0恒成立,求最小正整数m.21.已知数列{a n}满足a1=1,且a n+12+a n2=2(a n+1a n+a n+1﹣a n﹣).(1)求数列{a n}的通项公式;(2)求证:++…+<;(3)记S n=++…+,证明:对于一切n≥2,都有S n2>2(++…+).22.已知数列{a n}满足a1=1,a n+1=,n∈N*.(1)求证:≤a n≤1;(2)求证:|a2n﹣a n|≤.23.设{a n}和{b n}是两个等差数列,记c n=max{b1﹣a1n,b2﹣a2n,…,b n﹣a n n}(n=1,2,3,…),其中max{x1,x2,…,x s}表示x1,x2,…,x s这s个数中最大的数.(1)若a n=n,b n=2n﹣1,求c1,c2,c3的值,并证明{c n}是等差数列;(2)证明:或者对任意正数M,存在正整数m,当n≥m时,>M;或者存在正整数m,使得c m,c m+1,c m+2,…是等差数列.24.已知数列{x n}满足:x1=1,x n=x n+1+ln(1+x n+1)(n∈N*),证明:当n∈N*时,(Ⅰ)0<x n<x n;+1﹣x n≤;(Ⅱ)2x n+1(Ⅲ)≤x n≤.25.已知{a n}是公差为d的等差数列,{b n}是公比为q的等比数列,q≠±1,正整数组E=(m,p,r)(m<p<r)(1)若a1+b2=a2+b3=a3+b1,求q的值;(2)若数组E中的三个数构成公差大于1的等差数列,且a m+b p=a p+b r=a r+b m,求q的最大值.(3)若b n=(﹣)n﹣1,a m+b m=a p+b p=a r+b r=0,试写出满足条件的一个数组E 和对应的通项公式a n.(注:本小问不必写出解答过程)26.已知数列{a n}和{b n}满足(n∈N*).若{a n}是各项为正数的等比数列,且a1=4,b3=b2+6.(Ⅰ)求a n与b n;(Ⅱ)设c n=,记数列{c n}的前n项和为S n.①求S n;②求正整数k.使得对任意n∈N*,均有S k≥S n.27.已知正项数列{a n}满足+=﹣2(n≥2,n∈N*),且a6=11,前9项和为81.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若数列{lgb n}的前n项和为lg(2n+1),记c n=,求数列{c n}的前n 项和T n.28.已知数列{a n}的各项均为正数,且a1=1,对任意的n∈N*,均有a n+12﹣1=4a n (a n+1),b n=2log2(1+a n)﹣1.(1)求证:{1+a n}是等比数列,并求出{a n}的通项公式;(2)若数列{b n}中去掉{a n}的项后,余下的项组成数列{c n},求c1+c2+…+c100;(3)设d n=,数列{d n}的前n项和为T n,是否存在正整数m(1<m<n),使得T1、T m、T n成等比数列,若存在,求出m的值;若不存在,请说明理由.29.已知数列{a n}中,a1=4,a n+1=,n∈N*,S n为{a n}的前n项和.(Ⅰ)求证:n∈N*时,a n>a n+1;(Ⅱ)求证:n∈N*时,2≤S n﹣2n<.30.数列{a n}的各项均为正数,且a n+1=a n+﹣1(n∈N*),{a n}的前n项和是S n.(Ⅰ)若{a n}是递增数列,求a1的取值范围;(Ⅱ)若a1>2,且对任意n∈N*,都有S n≥na1﹣(n﹣1),证明:S n<2n+1.参考答案与试题解析一.选择题(共19小题)1.(2016春•宁夏校级月考)若log a x1=log(a+1)x2=log(a+2)x3>0,则x1,x2,x3之间的大小关系为()A.x1<x3<x2B.x2<x1<x3C.x1<x2<x3D.x3<x2<x1【解答】解:①当a>1时,如图所示,分别作出函数y1=log a x,y2=log(a+1)x,y3=log(a+2)x,并且作出直线y=1,可得x1<x2<x3.②当0<a<1时,可得0<x1<1<x2<x3.综上可得:x1<x2<x3.故选:C.2.(2017•泉州模拟)设函数f(x)=Asin(ωx+φ)(A>0,ω>0),若f()=f()=﹣f(),且f(x)在区间[,]上单调,则f(x)的最小正周期是()A.B.C.D.π【解答】解:由f()=f()得函数关于x==对称,则x=离最近对称轴距离为.又f()=﹣f(),则f(x)有对称中心(,0),由于f(x)在区间[,]上具有单调性,则≤T⇒T≥,从而=⇒T=π.故选:D.3.(2017•许昌三模)已知函数f(x)=2sin(ωx+φ)(ω>0,|φ|<)的图象过点B(0,﹣1),且在(,)上单调,同时f(x)的图象向左平移π个单位之后与原来的图象重合,当x1,x2∈(﹣,﹣),且x1≠x2时,f (x1)=f(x2),则f(x1+x2)=()A.﹣B.﹣1 C.1 D.【解答】解:由函数f(x)=2sin(ωx+φ)的图象过点B(0,﹣1),∴2sinφ=﹣1,解得sinφ=﹣,又|φ|<,∴φ=﹣,∴f(x)=2sin(ωx﹣);又f(x)的图象向左平移π个单位之后为g(x)=2sin[ω(x+π)﹣]=2sin(ωx+ωπ﹣),由两函数图象完全重合知ωπ=2kπ,∴ω=2k,k∈Z;又﹣≤=,∴ω≤,∴ω=2;∴f(x)=2sin(2x﹣),其图象的对称轴为x=+,k∈Z;当x1,x2∈(﹣,﹣),其对称轴为x=﹣3×+=﹣,∴x1+x2=2×(﹣)=﹣,∴f(x1+x2)=f(﹣)=2sin[2×(﹣)﹣]=2sin(﹣)=﹣2sin=﹣2sin=﹣1.应选:B.4.(2016•新课标Ⅰ)已知函数f(x)=sin(ωx+φ)(ω>0,|φ|≤),x=﹣为f(x)的零点,x=为y=f(x)图象的对称轴,且f(x)在(,)上单调,则ω的最大值为()A.11 B.9 C.7 D.5【解答】解:∵x=﹣为f(x)的零点,x=为y=f(x)图象的对称轴,∴,即,(n∈N)即ω=2n+1,(n∈N)即ω为正奇数,∵f(x)在(,)上单调,则﹣=≤,即T=≥,解得:ω≤12,当ω=11时,﹣+φ=kπ,k∈Z,∵|φ|≤,∴φ=﹣,此时f(x)在(,)不单调,不满足题意;当ω=9时,﹣+φ=kπ,k∈Z,∵|φ|≤,∴φ=,此时f(x)在(,)单调,满足题意;故ω的最大值为9,故选:B5.(2016•郴州四模)已知函数f(x)=2sin(2x+φ)+1(|φ|<),若f(x)<1,对x∈(﹣,﹣)恒成立,则f()的最小值是()A.1 B.2 C.﹣1 D.﹣+1【解答】解:∵函数f(x)=2sin(2x+φ)+1<1,∴sin(2x+φ)<0,∴﹣π+2kπ<2x+φ<2kπ,k∈Z;又x∈(﹣,﹣),∴﹣<2x<﹣,∴﹣+φ<2x+φ<﹣+φ;又∵|φ|<,∴,∴﹣≤φ≤,∴≤2×+φ≤,∴≤sin(2×+φ)≤1,∴2≤2sin(2×+φ)+1≤3,∴f()的最小值是2.故选:B.6.(2011•滨江区校级模拟)已知△ABC,若对任意k∈R,有||≥,则△ABC一定是()A.直角三角形B.钝角三角形C.锐角三角形D.以上均有可能【解答】解:当k为任意实数时,那么k的方向有可能向左,也可能向右.长度也是不确定的,图中BC′的长度就是||,可以看出,当BC′垂直CB时,||有最小值,要使不等式成立,则|AC|必须是BC′的最小值,即AC垂直BC,故角C为直角,故选A.7.(2011•杭州校级模拟)已知O为△ABC内一点,若对任意k∈R有|+(k﹣1)﹣k|≥|﹣|,则△ABC一定是()A.直角三角形B.钝角三角形C.锐角三角形D.以上均有可能【解答】解:从几何图形考虑:|﹣k|≥||的几何意义表示:在BC上任取一点E,可得k=,∴|﹣k|=|﹣|=||≥||,又点E不论在任何位置都有不等式成立,∴由垂线段最短可得AC⊥EC,即∠C=90°,则△ABC一定是直角三角形.故选A8.(2016•新乡模拟)已知△ABC中,AB=4,且满足BC=CA,则△ABC的面积的最大值为()A.B.3 C.2 D.4【解答】解:依题意,设CA=b,则BC=b,又AB=4,由余弦定理得:cosA===﹣,∴cos2A=(﹣)2=+﹣1,∴sin2A=1﹣cos2A=2﹣﹣.=AB•ACsinA=×4bsinA=2bsinA,∵S△ABC=4b2sin2A=4b2(2﹣﹣)=48﹣(b2﹣16)2,∴S2△ABC当b2=16,即b=4时,4、4、4能组成三角形,∴S2max=48,∴S max=4.故选:D.9.(2017春•陆川县校级期中)设等差数列{a n}满足,公差d∈(﹣1,0),当且仅当n=9时,数列{a n}的前n项和S n取得最大值,求该数列首项a1的取值范围()A.B.[,]C.(,)D.f(x)【解答】解:∵等差数列{a n}满足,∴(sina4cosa7﹣sina7cosa4)(sina4cosa7+sina7cosa4)=sin(a5+a6)=sin(a4+a7)=sina4cosa7+sina7cosa4,∴sina4cosa7﹣sina7cosa4=1,或sina4cosa7+sina7cosa4=0即sin(a4﹣a7)=1,或sin(a4+a7)=0(舍)当sin(a4﹣a7)=1时,∵a4﹣a7=﹣3d∈(0,3),a4﹣a7=2kπ+,k∈Z,∴﹣3d=2kπ+,d=﹣﹣π.∴d=﹣∵S n=na1+=n2+(a1﹣)n,且仅当n=9时,数列{a n}的前n项和S n取得最大值,∴8.5<﹣<9.5,∴π<a1<故选:C10.(2016春•衡水校级月考)已知数列{a n}中,a1=1,a2k=a2k﹣1+(﹣1)k,a2k+1=a2k+2k (k∈N*),则{a n}的前60项的和S60=()A.231﹣154 B.231﹣124C.232﹣94 D.232﹣124=a2k+2k=a2k﹣1+(﹣1)k+2k,【解答】解:a2k+1﹣a2k﹣1=2k+(﹣1)k,所以a2k+1﹣a2k﹣3=2k﹣1+(﹣1)k﹣1,同理a2k﹣1…a3﹣a1=2+(﹣1),所以(a2k﹣a2k﹣1)+(a2k﹣1﹣a2k﹣3)+…+(a3﹣a1)+1=(2k+2k﹣1+…+2)+[(﹣1)k+(﹣1)k﹣1+…+(﹣1)],﹣a1=2(2k﹣1)+[(﹣1)k﹣1],由此得a2k+1=2k+1+(﹣1)k﹣,于是a2k+1a2k=a2k﹣1+(﹣1)k=2k+(﹣1)k﹣1﹣+(﹣1)k=2k+(﹣1)k﹣,{a n}的通项公式为:当n为奇数时,a n=2+(﹣1)﹣;当n为偶数时,a n=2+(﹣1)﹣;则S60=(a1+a3+a5+…+a59)+(a2+a4+a6+..+a60)=[(2+22+23+…+230)+(﹣++…﹣)﹣×30]+[(2+22+23+…+230)+(﹣+﹣+…+)﹣×30]=2×+0﹣90=232﹣94.故选:C.11.(2015秋•石家庄校级期末)已知数列{a n}满足:a1=,a n+2﹣a n≤3n,a n+6﹣a n≥91•3n,则a2015=()A.+B.C.+D.﹣a n≤3n,∴,a n+6﹣a n+4≤3n+4,【解答】解:∵a n+2﹣a n≤91•3n,∴a n+6﹣a n≥91•3n,又a n+6∴a n﹣a n=91•3n,+6﹣a n=3n,∴a n+4﹣a n+2=3n+2,a n+6﹣a n+4=3n+4,由题意可得a n+2﹣a n=3n,∵a n+2∴a2n﹣a1=31+33+35+…+32n﹣1,+1=+33+35+…+32n﹣1,∴a2n+1a2015=+31+33+35+…+32013=+=,故选:B.12.(2012•岳麓区校级模拟)正整数按如图的规律排列,则上起第2011行,左起第2012列的数为()A.20112B.20122C.2011+2012 D.2011×2012【解答】解:这些数字排成的是一个正方形上起2011,左起2012列的数是一个2012乘以2012的正方形的倒数第二行的最后一个数字所以这个数是2012×(2012﹣1)=2011×2012.故选D.13.(2012•浙江模拟)对于有限数列A:{a1,a2,a3,…,a n}S i为数列A的前i 项和,称为数列A的“平均和”,将数字1,2,3,4,5,6,7任意排列,所对应数列的“平均和”的最大值是()A.12 B.16 C.20 D.22【解答】解:根据题意可知,将数字1,2,3,4,5,6,7的排列为7,6,5,4,3,2,1时,,所对应数列的“平均和”最大此时====20故答案为:2014.(2011•下陆区校级模拟)有限数列A={a1,a2,…,a n}的前k项和为S k(k=1,2,…,n),定义为A的“凯森和”,如果有99项的数列{a1,a2,…,a99},此数列的“凯森和”为1000,那么有100项的数列{1,a1,a2,…,a99}的“凯森和”为()A.1001 B.999 C.991 D.990【解答】解:A={a1,a2,…,a n}的凯森和由T n来表示,由题意知,,所以S1+S2+…+S99=1000×99,数列{1,a1,a2,…,a99}的“凯森和”为:=,故选C.15.(2011•临海市校级模拟)若关于x的不等式x2+|x﹣a|<2至少有一个正数解,则实数a的取值范围是()A.(﹣,2)B.(﹣,)C.(﹣2,)D.(﹣2,2)【解答】解:原不等式变形为:|x﹣a|<2﹣x2且0<2﹣x2在同一坐标系画出y=2﹣x2(Y>0,X>0)和y=|x|两个图象将绝对值函数y=|x|向左移动当右支经过(0,2)点,a=﹣2将绝对值函数y=|x|向右移动让左支与抛物线相切(1/2,7/4)点,a=故实数a的取值范围是(﹣2,)故选C16.(2016秋•武侯区校级期中)在锐角△ABC中,∠A=,∠BAC的平分线交边BC于点D,|AD|=1,则△ABC面积的取值范围是()A.[,]B.[,] C.[,)D.[,)【解答】解:如图所示,锐角△ABC中,∠A=,∠BAC的平分线交边BC于点D,|AD|=1,根据余弦定理,BD2=c2+1﹣2c•cos=c2﹣c+1,CD2=b2+1﹣2b•cos=b2﹣b+1;根据角平分线定理,=,即=;∴b2c2﹣b2c+b2=b2c2﹣bc2+c2,即bc(c﹣b)=(c﹣b)(c+b);当b=c时,△ABC是正三角形,由|AD|=1,得AB=AC=,则S=bcsin=;△ABC当b≠c时,bc=b+c≥2,当且仅当b=c时“=”成立,取得最小值为;所以bc≥,即b=c=时S△ABC又当AB⊥BC时,BD=,AB=,DC=AD=1,S△ABC=××(1+)=为最大值,△ABC面积的取值范围是[,].故选:D.17.(2016秋•南岸区校级月考)已知△ABC中,BC=1,AB=,AC=,点P 是△ABC的外接圆上的一个动点,则•的最大值是()A.2 B.C.D.【解答】解:如图所示,•=||•||cos∠PBC=||cos∠PBC.设OP为⊙O的半径,则当OP∥BC且同向时,向量在方向上的投影最大,则•取得最大值.由余弦定理可得:cosA==,∴sinA=.∴2R==3.∴||cos∠PBC=|BD|=|BC|+R=2.∴•取得最大值为2.故选:A18.(2012•重庆模拟)设△ABC的角A、B、C所对的边分别为a、b、c,若a2+b2=abcosC+absinC,则△ABC的形状为()A.直角非等腰三角形B.等腰非等边三角形C.等腰直角三角形 D.等边三角形【解答】解:∵≤sin(C+)≤1,∴a2+b2=abcosC+absinC=2ab(cosC+sinC)=2absin(C+)≤2ab,当且仅当C+=,即C=时取等号,又a2+b2≥2ab,且当且仅当a=b时取等号,则a=b且C=,即△ABC为等边三角形.故选D19.(2010•云南模拟)在△ABC中,a=x,b=2,B=45°,若这样的△ABC有两个,则实数x的取值范围是()A.(2,+∞)B.(0,2) C.(2,2)D.(,2)【解答】解:由正弦定理可知,求得x=2sinAA+C=180°﹣45°=135°有两解,即A有两个值这两个值互补若A≤45°则由正弦定理得A只有一解,舍去.∴45°<A<135°又若A=90°,这样补角也是90度,一解,A不为90°所以<sinA<1∵x=2sinA∴2<x<2故选C二.解答题(共11小题)20.(2017•吉州区校级一模)已知数列{a n}中,a1=1,a n+1=1+,记b n=(1)求证:数列{b n}是等比数列,并求b n;(2)求数列{a n}的通项公式a n;(3)记c n=nb n,S n=c1+c2+…+c n,对任意正整数n,不等式+S n+n(﹣)n+1﹣(﹣)n>0恒成立,求最小正整数m.【解答】(1)证明:∵b n=,a n+1=1+,===﹣=﹣.∴b n+1∴数列{b n}是等比数列,公比为﹣,且首项为﹣.∴b n=.(2)由b n==,得a n=.(3)c n=nb n=n,∴S n=﹣+2×+3×+…+n,=+…++n,两式相减得S n=﹣﹣n,∴不等式+S n+n(﹣)n+1﹣(﹣)n>0,即>0,解得m,因此m≥11.因此最小的正整数m=11.21.(2017•浙江模拟)已知数列{a n}满足a1=1,且a n+12+a n2=2(a n+1a n+a n+1﹣a n﹣).(1)求数列{a n}的通项公式;(2)求证:++…+<;(3)记S n=++…+,证明:对于一切n≥2,都有S n2>2(++…+).【解答】解:(1)a1=1,且a n+12+a n2=2(a n+1a n+a n+1﹣a n﹣),可得a n+12+a n2﹣2a n+1a n﹣2a n+1+2a n+1=0,即有(a n+1﹣a n)2﹣2(a n+1﹣a n)+1=0,即为(a n+1﹣a n﹣1)2=0,可得a n+1﹣a n=1,则a n=a1+n﹣1=n,n∈N*;(2)证明:由=<=﹣,n≥2.则++…+=1+++…+<1++﹣+﹣+…+﹣=﹣<,故原不等式成立;(3)证明:S n=++…+=1++…+,当n=2时,S22=(1+)2=>2•=成立;假设n=k≥2,都有S k2>2(++…+).则n=k+1时,S k+12=(S k+)2,S k+12﹣2(++…++)=(S k+)2﹣2(++…+)﹣2•=S k2﹣2(++…+)++2•﹣2•=S k2﹣2(++…+)+,由k>1可得>0,且S k2>2(++…+).可得S k2﹣2(++…+)>0,2>2(++…++)恒成立.则S k+1综上可得,对于一切n≥2,都有S n2>2(++…+).22.(2017•宁波模拟)已知数列{a n}满足a1=1,a n+1=,n∈N*.(1)求证:≤a n≤1;(2)求证:|a2n﹣a n|≤.【解答】证明:(1)用数学归纳法证明:①当n=1时,=,成立;②假设当n=k时,有成立,则当n=k+1时,≤≤1,≥=,∴当n=k+1时,,命题也成立.由①②得≤a n≤1.(2)当n=1时,|a2﹣a1|=,当n≥2时,∵()()=()=1+=,﹣a n|=||=≤|a n﹣a n﹣1|<…<()∴|a n+1n﹣1|a2﹣a1|=,∴|a2n﹣a2n﹣1|≤|a2n﹣a2n﹣1|+|a2n﹣1﹣a2n﹣2|+…+|a n+1﹣a n|≤==()n﹣1﹣()2n﹣1≤,综上:|a2n﹣a n|≤.23.(2017•北京)设{a n}和{b n}是两个等差数列,记c n=max{b1﹣a1n,b2﹣a2n,…,b n﹣a n n}(n=1,2,3,…),其中max{x1,x2,…,x s}表示x1,x2,…,x s这s个数中最大的数.(1)若a n=n,b n=2n﹣1,求c1,c2,c3的值,并证明{c n}是等差数列;(2)证明:或者对任意正数M,存在正整数m,当n≥m时,>M;或者存在正整数m,使得c m,c m+1,c m+2,…是等差数列.【解答】解:(1)a1=1,a2=2,a3=3,b1=1,b2=3,b3=5,当n=1时,c1=max{b1﹣a1}=max{0}=0,当n=2时,c2=max{b1﹣2a1,b2﹣2a2}=max{﹣1,﹣1}=﹣1,当n=3时,c3=max{b1﹣3a1,b2﹣3a2,b3﹣3a3}=max{﹣2,﹣3,﹣4}=﹣2,下面证明:对∀n∈N*,且n≥2,都有c n=b1﹣na1,当n∈N*,且2≤k≤n时,则(b k﹣na k)﹣(b1﹣na1),=[(2k﹣1)﹣nk]﹣1+n,=(2k﹣2)﹣n(k﹣1),=(k﹣1)(2﹣n),由k﹣1>0,且2﹣n≤0,则(b k﹣na k)﹣(b1﹣na1)≤0,则b1﹣na1≥b k﹣na k,因此,对∀n∈N*,且n≥2,c n=b1﹣na1=1﹣n,c n+1﹣c n=﹣1,∴c2﹣c1=﹣1,∴c n﹣c n=﹣1对∀n∈N*均成立,+1∴数列{c n}是等差数列;(2)证明:设数列{a n}和{b n}的公差分别为d1,d2,下面考虑的c n取值,由b1﹣a1n,b2﹣a2n,…,b n﹣a n n,考虑其中任意b i﹣a i n,(i∈N*,且1≤i≤n),则b i﹣a i n=[b1+(i﹣1)d1]﹣[a1+(i﹣1)d2]×n,=(b1﹣a1n)+(i﹣1)(d2﹣d1×n),下面分d1=0,d1>0,d1<0三种情况进行讨论,①若d1=0,则b i﹣a i n═(b1﹣a1n)+(i﹣1)d2,当若d2≤0,则(b i﹣a i n)﹣(b1﹣a1n)=(i﹣1)d2≤0,则对于给定的正整数n而言,c n=b1﹣a1n,此时c n+1﹣c n=﹣a1,∴数列{c n}是等差数列;当d2>0,(b i﹣a i n)﹣(b n﹣a n n)=(i﹣n)d2>0,则对于给定的正整数n而言,c n=b n﹣a n n=b n﹣a1n,﹣c n=d2﹣a1,此时c n+1∴数列{c n}是等差数列;此时取m=1,则c1,c2,…,是等差数列,命题成立;②若d1>0,则此时﹣d1n+d2为一个关于n的一次项系数为负数的一次函数,故必存在m∈N*,使得n≥m时,﹣d1n+d2<0,则当n≥m时,(b i﹣a i n)﹣(b1﹣a1n)=(i﹣1)(﹣d1n+d2)≤0,(i∈N*,1≤i≤n),因此当n≥m时,c n=b1﹣a1n,﹣c n=﹣a1,故数列{c n}从第m项开始为等差数列,命题成立;此时c n+1③若d1<0,此时﹣d1n+d2为一个关于n的一次项系数为正数的一次函数,故必存在s∈N*,使得n≥s时,﹣d1n+d2>0,则当n≥s时,(b i﹣a i n)﹣(b n﹣a n n)=(i﹣1)(﹣d1n+d2)≤0,(i∈N*,1≤i ≤n),因此,当n≥s时,c n=b n﹣a n n,此时==﹣a n+,=﹣d2n+(d1﹣a1+d2)+,令﹣d1=A>0,d1﹣a1+d2=B,b1﹣d2=C,下面证明:=An+B+对任意正整数M,存在正整数m,使得n≥m,>M,若C≥0,取m=[+1],[x]表示不大于x的最大整数,当n≥m时,≥An+B≥Am+B=A[+1]+B>A•+B=M,此时命题成立;若C<0,取m=[]+1,当n≥m时,≥An+B+≥Am+B+C>A•+B+C≥M﹣C﹣B+B+C=M,此时命题成立,因此对任意正数M,存在正整数m,使得当n≥m时,>M;综合以上三种情况,命题得证.24.(2017•浙江)已知数列{x n}满足:x1=1,x n=x n+1+ln(1+x n+1)(n∈N*),证明:当n∈N*时,<x n;(Ⅰ)0<x n+1﹣x n≤;(Ⅱ)2x n+1(Ⅲ)≤x n≤.【解答】解:(Ⅰ)用数学归纳法证明:x n>0,当n=1时,x1=1>0,成立,假设当n=k时成立,则x k>0,<0,则0<x k=x k+1+ln(1+x k+1)<0,矛盾,那么n=k+1时,若x k+1故x n>0,+1因此x n>0,(n∈N*)∴x n=x n+1+ln(1+x n+1)>x n+1,<x n(n∈N*),因此0<x n+1(Ⅱ)由x n=x n+1+ln(1+x n+1)得x n x n+1﹣4x n+1+2x n=x n+12﹣2x n+1+(x n+1+2)ln(1+x n+1),记函数f(x)=x2﹣2x+(x+2)ln(1+x),x≥0∴f′(x)=+ln(1+x)>0,∴f(x)在(0,+∞)上单调递增,∴f(x)≥f(0)=0,因此x n+12﹣2x n+1+(x n+1+2)ln(1+x n+1)≥0,故2x n+1﹣x n≤;(Ⅲ)∵x n=x n+1+ln(1+x n+1)≤x n+1+x n+1=2x n+1,∴x n≥,由≥2x n+1﹣x n得﹣≥2(﹣)>0,∴﹣≥2(﹣)≥…≥2n﹣1(﹣)=2n﹣2,∴x n≤,综上所述≤x n≤.25.(2017•淮安四模)已知{a n}是公差为d的等差数列,{b n}是公比为q的等比数列,q≠±1,正整数组E=(m,p,r)(m<p<r)(1)若a1+b2=a2+b3=a3+b1,求q的值;(2)若数组E中的三个数构成公差大于1的等差数列,且a m+b p=a p+b r=a r+b m,求q的最大值.(3)若b n=(﹣)n﹣1,a m+b m=a p+b p=a r+b r=0,试写出满足条件的一个数组E 和对应的通项公式a n.(注:本小问不必写出解答过程)【解答】解:(1)∵a1+b2=a2+b3=a3+b1,∴a1+b1q==a1+2d+b1,化为:2q2﹣q﹣1=0,q≠±1.解得q=﹣.(2)a m+b p=a p+b r=a r+b m,即a p﹣a m=b p﹣b r,∴(p﹣m)d=b m(q p﹣m﹣q r﹣m),同理可得:(r﹣p)d=b m(q r﹣m﹣1).∵m,p,r成等差数列,∴p﹣m=r﹣p=(r﹣m),记q p﹣m=t,则2t2﹣t﹣1=0,∵q≠±1,t≠±1,解得t=.即q p﹣m=,∴﹣1<q<0,记p﹣m=α,α为奇数,由公差大于1,∴α≥3.∴|q|=≥,即q,当α=3时,q取得最大值为﹣.(3)满足题意的数组为E=(m,m+2,m+3),此时通项公式为:a n=,m∈N*.例如E=(1,3,4),a n=.26.(2017•淄博模拟)已知数列{a n}和{b n}满足(n∈N*).若{a n}是各项为正数的等比数列,且a1=4,b3=b2+6.(Ⅰ)求a n与b n;(Ⅱ)设c n=,记数列{c n}的前n项和为S n.①求S n;②求正整数k.使得对任意n∈N*,均有S k≥S n.【解答】解:(Ⅰ)由题意(n∈N*).b3=b2+6.知,又由a1=4,得公比q=4(q=﹣4,舍去),所以数列{a n}的通项为…(3分)所以.故数列{b n}的通项为…(5分)(Ⅱ)①由(Ⅰ)知…(7分)所以…(9分)②因为c1=0,c2>0,c3>0,c4>0;当n≥5时,而得所以,当n≥5时,c n<0;综上,对任意n∈N*恒有S4≥S n,故k=4…(12分)27.(2017•天津一模)已知正项数列{a n}满足+=﹣2(n≥2,n∈N*),且a6=11,前9项和为81.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若数列{lgb n}的前n项和为lg(2n+1),记c n=,求数列{c n}的前n 项和T n.【解答】解:(Ⅰ)由正项数列{a n}满足+=﹣2(n≥2,n∈N*),得,整理得a n+a n﹣1=2a n,所以{a n}为等差数列.+1由a6=11,前9项和为81,得a1+5d=11,d=81,解得a1=1,d=2.∴a n=1+2(n﹣1)=2n﹣1.(II)当n=1时,lgb1=lg3,即b1=3.当n≥2时,lgb1+lgb2+…+lgb n=lg(2n+1)…①,lgb1+lgb2+…+lgb n﹣1=lg(2n﹣1)…②①﹣②,得,∴b n=,(n≥2).b1=3满足上式,因此b n=,(n≥2).c n==,∴数列{c n}的前n项和T n=+…++,又2T n=+…+,以上两式作差,得T n=+2﹣,,因此,T n=﹣.28.(2017•普陀区一模)已知数列{a n}的各项均为正数,且a1=1,对任意的n∈N*,均有a n+12﹣1=4a n(a n+1),b n=2log2(1+a n)﹣1.(1)求证:{1+a n}是等比数列,并求出{a n}的通项公式;(2)若数列{b n}中去掉{a n}的项后,余下的项组成数列{c n},求c1+c2+…+c100;(3)设d n=,数列{d n}的前n项和为T n,是否存在正整数m(1<m<n),使得T1、T m、T n成等比数列,若存在,求出m的值;若不存在,请说明理由.2﹣1=4a n(a n+1),【解答】(1)证明:∵对任意的n∈N*,均有a n+12=,又数列{a n}的各项均为正数,∴a n+1=2a n+1,变形为a n+1+1=2(a n+1),∴a n+1∴{1+a n}是等比数列,公比为2,首项为2,∴1+a n=2n,即a n=2n﹣1.(2)解:b n=2log2(1+a n)﹣1=2n﹣1.∵n=7时,a7=127;n=8时,a8=255>213=b107.∴c1+c2+…+c100=b1+b2+…+b106+b107(a1+…+a6+a7)=﹣+7=11449﹣256+9=11202.(3)解:d n===,∴数列{d n}的前n项和为T n=+…+==.假设存在正整数m(1<m<n),使得T1、T m、T n成等比数列,则=T1T n,即=,即=>0,即2m2﹣4m﹣1<0,解得1﹣<m<1+.∵m是正整数且m>1,∴m=2,此时n=12当且仅当m=2,n=12时,T1、T m、T n成等比数列.29.(2017•宁波模拟)已知数列{a n}中,a1=4,a n+1=,n∈N*,S n为{a n}的前n项和.(Ⅰ)求证:n∈N*时,a n>a n+1;(Ⅱ)求证:n∈N*时,2≤S n﹣2n<.﹣a n=﹣=【解答】证明:(I)n≥2时,作差:a n+1,﹣a n与a n﹣a n﹣1同号,∴a n+1由a1=4,可得a2==,可得a2﹣a1<0,∴n∈N*时,a n>a n+1.(II)∵2=6+a n,∴=a n﹣2,即2(a n+1﹣2)(a n+1+2)=a n﹣2,①∴a n﹣2与a n﹣2同号,+1又∵a1﹣2=2>0,∴a n>2.∴S n=a1+a2+…+a n≥4+2(n﹣1)=2n+2.∴S n﹣2n≥2.由①可得:=,因此a n﹣2≤(a1﹣2),即a n≤2+2×.∴S n=a1+a2+…+a n≤2n+2×<2n+.综上可得:n∈N*时,2≤S n﹣2n<.30.(2017•温州模拟)数列{a n}的各项均为正数,且a n+1=a n+﹣1(n∈N*),{a n}的前n项和是S n.(Ⅰ)若{a n}是递增数列,求a1的取值范围;(Ⅱ)若a1>2,且对任意n∈N*,都有S n≥na1﹣(n﹣1),证明:S n<2n+1.【解答】(I)解:由a2>a1>0⇔﹣1>a1>0,解得0<a1<2,①.又a3>a2>0,⇔>a2,⇔0<a2<2⇔﹣1<2,解得1<a1<2,②.由①②可得:1<a1<2.下面利用数学归纳法证明:当1<a1<2时,∀n∈N*,1<a n<2成立.(1)当n=1时,1<a1<2成立.(2)假设当n=k∈N*时,1<a n<2成立.则当n=k+1时,a k=a k+﹣1∈⊊(1,2),+1即n=k+1时,不等式成立.综上(1)(2)可得:∀n∈N*,1<a n<2成立.于是a n﹣a n=﹣1>0,即a n+1>a n,+1∴{a n}是递增数列,a1的取值范围是(1,2).(II)证明:∵a1>2,可用数学归纳法证明:a n>2对∀n∈N*都成立.﹣a n=﹣1<2,即数列{a n}是递减数列.于是:a n+1在S n≥na1﹣(n﹣1)中,令n=2,可得:2a1+﹣1=S2≥2a1﹣,解得a1≤3,因此2<a1≤3.下证:(1)当时,S n≥na1﹣(n﹣1)恒成立.事实上,当时,由a n=a1+(a n﹣a1)≥a1+(2﹣)=.于是S n=a1+a2+…+a n≥a1+(n﹣1)=na1﹣.再证明:(2)时不合题意.事实上,当时,设a n=b n+2,可得≤1.由a n=a n+﹣1(n∈N*),可得:b n+1=b n+﹣1,可得=≤≤+1.于是数列{b n}的前n和T n≤<3b1≤3.故S n=2n+T n<2n+3=na1+(2﹣a1)n+3,③.令a1=+t(t>0),由③可得:S n<na1+(2﹣a1)n+3=na1﹣﹣tn+.只要n充分大,可得:S n<na1﹣.这与S n≥na1﹣(n﹣1)恒成立矛盾.∴时不合题意.综上(1)(2)可得:,于是可得=≤≤.(由可得:).故数列{b n}的前n项和T n≤<b1<1,∴S n=2n+T n<2n+1.。

高一数学(必修一)《第五章 三角函数的概念》练习题及答案解析-人教版

高一数学(必修一)《第五章 三角函数的概念》练习题及答案解析-人教版

高一数学(必修一)《第五章 三角函数的概念》练习题及答案解析-人教版班级:___________姓名:___________考号:___________一、单选题1.点P 从(2,0)出发,逆时针方向旋转43π到达Q 点,则Q 点的坐标为( )A .1,2⎛- ⎝⎭B .(1)-C .(1,-D .21⎛⎫ ⎪ ⎪⎝⎭2.角α的终边过点()3,4P -,则sin 22πα⎛⎫+= ⎪⎝⎭( )A .2425- B .725- C .725D .24253.已知函数1log a y x =和()22y k x =-的图象如图所示,则不等式120y y ≥的解集是( )A .(]1,2B .[)1,2C .()1,2D .[]1,24.已知(0,2)απ∈,sin 0α<和cos 0α>,则角α的取值范围是( ) A .0,2π⎛⎫ ⎪⎝⎭B .,2ππ⎛⎫ ⎪⎝⎭C .3,2ππ⎛⎫ ⎪⎝⎭D .3,22ππ⎛⎫⎪⎝⎭5.已知α是第二象限角,则( ) A .2α是第一象限角 B .sin02α>C .sin 20α<D .2α是第三或第四象限角6.已知直线l 1的斜率为2,直线l 2经过点(1,2),(,6)A B x --,且l 1∥l 2,则19log x =( ) A .3B .12C .2D .12-7.已知()1cos 3αβ-=,3cos 4β=与0,2παβ⎛⎫-∈ ⎪⎝⎭和0,2πβ⎛⎫∈ ⎪⎝⎭,则( ).A .0,2πα⎛⎫∈ ⎪⎝⎭B .,2παπ⎛⎫∈ ⎪⎝⎭C .()0,απ∈D .0,2πα⎡⎫∈⎪⎢⎣⎭8.已知点()tan ,sin P αα在第四象限,则角α是( ) A .第一象限角 B .第二象限角 C .第三象限角D .第四象限角二、解答题9.设α是第一象限角,作α的正弦线、余弦线和正切线,由图证明下列各等式. (1)22sin cos 1αα+=; (2)sin tan cos ααα=. 如果α是第二、三、四象限角,以上等式仍然成立吗? 10.已知()()()()3sin cos 2cos 2cos sin 2f ππαπαααπαπα⎛⎫--- ⎪⎝⎭=⎛⎫--- ⎪⎝⎭.(1)化简()f α;(2)若α是第三象限角,且()1sin 5απ-=,求()f α的值.11.已知|cosθ|=-cosθ,且tanθ<0,试判断()()sin cos θcos sin θ的符号.12.不通过求值,比较下列各组数的大小: (1)37sin 6π⎛⎫- ⎪⎝⎭与49sin 3π⎛⎫ ⎪⎝⎭;(2)sin194︒与()cos 160︒.13.(1)已知角α的终边经过点43,55P ⎛⎫- ⎪⎝⎭,求()()()πsin tan π2sin πcos 3παααα⎛⎫-⋅- ⎪⎝⎭+⋅-的值; (2)已知0πx <<,1sin cos 5x x +=求tan x 的值. 14.已知角θ的终边与单位圆在第四象限交于点1,2P ⎛ ⎝⎭. (1)求tan θ的值;(2)求()()cos cos 22sin cos πθθπθπθ⎛⎫-+- ⎪⎝⎭++的值.15.在平面直角坐标系xOy 中角θ的始边为x 轴的正半轴,终边在第二象限与单位圆交于点P ,点P 的横坐标为35. (1)求cos 3sin 3sin cos θθθθ+-的值;(2)若将射线OP 绕点O 逆时针旋转2π,得到角α,求22sin sin cos cos αααα--的值.三、多选题16.给出下列各三角函数值:①()sin 100-;②()cos 220-;③tan 2;④cos1.其中符号为负的是( ) A .①B .②C .③D .④四、双空题17.已知55sin ,cos 66P ππ⎛⎫⎪⎝⎭是角α的终边上一点,则cos α=______,角α的最小正值是______. 参考答案与解析1.C【分析】结合已知点坐标,根据终边旋转的角度和方向,求Q 点坐标即可.【详解】由题意知,442cos ,2sin 33Q ππ⎛⎫ ⎪⎝⎭,即(1,Q -. 故选:C. 2.B【分析】化简得2sin 22cos 12παα⎛⎫+=- ⎪⎝⎭,再利用三角函数的坐标定义求出cos α即得解.【详解】解:2sin 2cos 22cos 12πααα⎛⎫+==- ⎪⎝⎭由题得3cos 5α==-,所以237sin 22()12525πα⎛⎫+=⨯--=- ⎪⎝⎭. 故选:B 3.B【分析】可将12,y y 图象合并至一个图,由12,y y 同号或10y =结合图象可直接求解.【详解】将12,y y 图象合并至一个图,如图:若满足120y y ≥,则等价于120y y ⋅>或10y =,当()1,2x ∈时,则120y y ⋅>,当1x =时,则10y =,故120y y ≥的解集是[)1,2故选:B 4.D【分析】根据三角函数值的符号确定角的终边的位置,从而可得α的取值范围.【详解】因为sin 0α<,cos 0α>故α为第四象限角,故3,22παπ⎛⎫∈⎪⎝⎭故选:D. 5.C∴2α是第三象限,第四象限角或终边在y 轴非正半轴,sin20α<,故C 正确,D 错误. 故选:C . 6.D【分析】由已知结合直线平行的斜率关系可求出x ,然后结合对数的运算性质可求.【详解】解:因为直线l 1的斜率为2,直线l 2经过点(1,2),(,6)A B x --,且l 1∥l 2 所以6221x +=+,解得3x =所以2113991log log 3log 32x -===-故选:D . 7.B【分析】由已知得()0,απ∈,再利用同角之间的关系及两角差的余弦公式计算cos 0α<,即可得解.()0,απ∴∈又cos cos()cos()cos sin()sin ααββαββαββ=-+=---13034=⨯=< ,2παπ⎛⎫∴∈ ⎪⎝⎭故选:B 8.C【分析】由点的位置可确定tan ,sin αα的符号,根据符号可确定角α终边的位置.【详解】()tan ,sin P αα在第四象限tan 0sin 0αα>⎧∴⎨<⎩,α位于第三象限.故选:C. 9.见解析【解析】作出α的正弦线、余弦线和正切线 (1)由勾股定理证明;(2)由三角形相似PMO TAO ∆∆∽证明.若α是第二、三、四象限角,以上等式仍成立.【点睛】本题考查三角函数线的应用,考查用几何方法证明同角间的三角函数关系.掌握三角函数线定义是解题基础.10.(1)()cos f αα=-.【分析】(1)根据诱导公式直接化简即可;(2)由()1sin 5απ-=,可以利用诱导公式计算出sin α,再根据角所在象限确定cos α,进而得出结论.【详解】(1)根据诱导公式()()()()3sin cos 2cos 2cos sin 2f ππαπαααπαπα⎛⎫--- ⎪⎝⎭=⎛⎫--- ⎪⎝⎭()sin cos sin sin sin ααααα⋅⋅-=⋅cos α=-所以()cos f αα=-;(2)由诱导公式可知()sin sin απα-=-,即1sin 5α=-又α是第三象限角 所以cos α==所以()=cos f αα-=【点睛】本题主要考查诱导公式的运用,属于基础题.使用诱导公式时,常利用口诀“奇变偶不变,符号看象限”进行记忆. 11.符号为负.【分析】由|cosθ|=﹣cosθ,且tanθ<0,可得θ在第二象限,即可判断出.【详解】由|cosθ|=-cosθ可得cosθ≤0,所以角θ的终边在第二、三象限或y 轴上或x 轴的负半轴上;又tanθ<0,所以角θ的终边在第二、四象限,从而可知角θ的终边在第二象限.易知-1<cosθ<0,0<sinθ<1,视cosθ、sinθ为弧度数,显然cosθ是第四象限的角,sinθ为第一象限的角,所以cos(sinθ)>0,sin(cosθ)<0,故()()sin cos θcos sin θ<0故答案为符号为负.【点睛】本题考查了三角函数值与所在象限的符号问题,考查了推理能力,属于基础题. 12.(1)3749sin sin 63ππ⎛⎫⎛⎫-< ⎪ ⎪⎝⎭⎝⎭(2)sin194cos160︒>︒【分析】根据诱导公式及函数的单调性比较大小. (1)由37sin sin 6sin 666ππππ⎛⎫⎛⎫⎛⎫-=--=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭49sin sin 16sin 333ππππ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭又函数sin y x =在,22ππ⎡⎤-⎢⎥⎣⎦上单调递增所以sin sin 63ππ⎛⎫⎛⎫-< ⎪ ⎪⎝⎭⎝⎭即3749sin sin 63ππ⎛⎫⎛⎫-< ⎪ ⎪⎝⎭⎝⎭;(2)由()sin194sin 18014sin14︒=︒+︒=-︒()cos160cos 9070sin70︒=︒+︒=-︒又0147090︒<︒<︒<︒所以sin14sin70︒<︒,即sin14sin70-︒>-︒ 所以sin194cos160︒>︒.13.(1)54;(2)4tan 3x =- .【分析】(1)由三角函数定义易得4cos 5α=,再利用诱导公式和基本关系式化简为()()()πsin tan π12sin πcos 3πcos ααααα⎛⎫- ⎪-⎝⎭⋅=+-求解; (2)将1sin cos 5x x +=两边平方得到242sin cos 025x x =-<,进而求得7sin cos 5x x -=,与1sin cos 5x x +=联立求解.【详解】解:(1)P 点到原点O的距离1r =由三角函数定义有4cos 5x r α== ()()()πsin tan πcos tan 152sin πcos 3πsin cos cos 4ααααααααα⎛⎫- ⎪-⎝⎭⋅=⨯==+---; (2)∵0πx <<,将1sin cos 5x x +=两边平方得112sin cos 25x x +=∴242sin cos 025x x =-<,可得ππ2x << ∴sin 0x > cos 0x < ∴sin cos 0x x ->∵()()22sin cos sin cos 2x x x x -++= ∴7sin cos 5x x -=,联立1sin cos 5x x +=∴4sin 5x = 3cos 5x =-∴4tan 3x =-. 14.(1)(2)2.【分析】(1)根据三角函数的定义tan yxθ=,代值计算即可; (2)利用诱导公式化简原式为齐次式,再结合同角三角函数关系和(1)中所求,代值计算即可. (1)因为角θ的终边与单位圆在第四象限交于点1,2P ⎛ ⎝⎭故可得tan yxθ==(2)原式=()()cos cos 22sin cos πθθπθπθ⎛⎫-+- ⎪⎝⎭++ sin cos sin cos θθθθ+=-tan 1tan 1θθ+=-由(1)可得:tan θ=tan 12tan 1θθ+==-. 15.(1)35(2)1925-【分析】(1)由题意利用任意角的三角函数的定义,求得tan α的值,再利用同角三角函数的基本关系,计算求得所给式子的值.(2)由题意利用诱导公式求得3tan 4α=,再将22sin sin cos cos αααα--化为22tan tan 1tan 1ααα--+,即可求得答案. (1)P 在单位圆上,且点P 在第二象限,P 的横坐标为35,可求得纵坐标为45所以434sin ,cos ,tan 553θθθ==-=-,则cos 3sin 13tan 33sin cos 3tan 15θθθθθθ++==--. (2)由题知2παθ=+,则3sin()cos 5sin 2παθθ=+==-,24cos cos()sin 5παθθ=+=-=-则sin 3tan cos 4ααα== 故22222222sin sin cos cos tan 1sin sin cos cos sin cos tan tan 1ααααααααααααα------==++ 2233()443()1241951--==-+.16.ABC【分析】首先判断角所在象限,然后根据三角函数在各个象限函数值的符号即可求解. 【详解】解:对①:因为100-为第三象限角,所以()sin 1000-<; 对②:因为220-为第二象限角,所以()cos 2200-<; 对③:因为2弧度角为第二象限角,所以tan20<; 对④:因为1弧度角为第一象限角,所以cos10>; 故选:ABC. 17.125π3【解析】根据三角函数的定义,求得cos α的值,进而确定角α的最小正值. 【详解】由于55sin ,cos 66P ππ⎛⎫ ⎪⎝⎭是角α的终边上一点,所以cos α=5πsin 5π1sin62==.由于5π15πsin0,cos 0626=>=<,所以P 在第四象限,也即α是第四象限角,所以π2π3k α=-,当1k =时,则α取得最小正值为5π3.故答案为:(1)12;(2)5π3【点睛】本小题主要考查三角函数的定义,考查特殊角的三角函数值,考查终边相同的角,属于基础题.。

高一数学解三角形综合练习题

高一数学解三角形综合练习题

高一数学解三角形综合练习题TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】必修五 解三角形一、选择题 1. 在ABC ∆中,若::1:2:3A B C ∠∠∠=,则::a b c 等于 ( )A.1:2:3B.3:2:1C.2D.2 2.在△ABC 中,222a b c bc =++ ,则A 等于 ()A .60°B .45°C .120°D .30°3.有一长为1公里的斜坡,它的倾斜角为20°,现要将倾斜角改为10°,则坡底要伸长A. 1公里B. sin10°公里C. cos10°公里D. cos20°公里4.等腰三角形一腰上的高是3,这条高与底边的夹角为 60,则底边长= ()A .2B .23 C .3 D .32 5.已知锐角三角形的边长分别为2、3、x ,则x 的取值范围是 ()A .135<<xB .13<x <5C .2<x <5D .5<x <56. 在ABC ∆中,60A ∠=,a =3b =,则ABC ∆解的情况 ()A. 无解B. 有一解C. 有两解D. 不能确定7.在△ABC 中,若)())((c b b c a c a +=-+,则∠A= ()A .090B .060C .0120D .01508.在△ABC 中,A 为锐角,lg b +lg(c1)=lgsin A =-lg 2, 则△ABC 为()A. 等腰三角形B. 等边三角形C. 直角三角形D. 等腰直角三角形9.如图,测量河对岸的塔高AB 时,可以选与塔底B 在同一水平面内的两个测点C 与D ,测得75BCD ︒∠=,60BDC ︒∠=,60CD =米,并在点C 测得塔顶A 的 仰角为60︒,则塔高AB = ( )A .B .90米C .D . 10.某人站在山顶向下看一列车队向山脚驶来,他看见第一辆车与第二辆车的俯角差等于他看见第二辆车与第三辆车的俯角差,则第一辆车与第二辆车的距离1d 与第二辆车与第三辆车的距离2d 之间的关系为 ( )A. 21d d >B. 21d d =C. 21d d <D. 不能确定大小二、填空题(本大题共5个小题,每小题5分,共25分)11.在ABC ∆中,三边a 、b 、c 所对的角分别为A 、B 、C ,已知a =2b =,ABC ∆的面积S=3,则C = ;12.在△ABC 中,已知AB =4,AC =7,BC 边的中线72AD =,那么BC = ;13.在△ABC 中,|AB |=3,|AC |=2,AB 与AC 的夹角为60°,则|AB -AC |=____ __;14.三角形的一边长为14,这条边所对的角为60,另两边之比为8:5,则这个三角形的面积为 ;15.下面是一道选择题的两种解法,两种解法看似都对,可结果并不一致,问题出在哪儿?【题】在△ABC 中,a =x ,b =2,B =45,若△ABC 有两解,则x 的取值范围是( )A.()2,+∞B.(0,2)C.()2,22D.()2,2 【解法1】△ABC 有两解,a sin B <b <a ,x sin 45<2<x , 即222,x << 故选C.【解法2】,sin sin abA B = sin sin 452sin .24a Bx x A b===△ABC 有两解,b sin A <a <b , 222,4xx ⨯<< 即0<x <2, 故选B.你认为 是正确的 (填“解法1”或“解法2”)16.在中,若,则的形状是A.正三角形B.等腰三角形C.直角三角形D.等腰直角形三、解答题:(共 6 小题,共75分;解答应写出文字说明、证明过程或演算步骤。

高一数学复习考点知识专题提升练习37--- 三角函数诱导公式及恒等变换(解析版)

高一数学复习考点知识专题提升练习37--- 三角函数诱导公式及恒等变换(解析版)

高一数学复习考点知识专题提升练习三角函数诱导公式和恒等变换一、诱导公式化简与求值1,则()()()sin 3cos 2tan παπαπα+⋅-⋅-等于()A B C D 答案: D解析: 利用诱导公式化简,原式2sin α=,之后利用同角三角函数关系式求得结果. 详解:原式()()()sin cos tan πααπα=+⋅-⋅-()()2sin cos tan sin αααα=-⋅⋅-=,故选:D. 【点睛】该题考查的是有关三角函数化简求值问题,涉及到的知识点有诱导公式,同角三角函数关系式,属于简单题目.2 ) A .sin cos θθ+B .sin cos θθ-C .3sin cos θθ-D .3sin cos θθ+答案: A解析: 根据题意可判断cos sin θθ>,再根据诱导公式和同角三角函数关系可化简.详解:由题意,()22sin sin cos θθθ=+-2sin cos sin θθθ=+- sin cos θθ=+故选:A 【点睛】本题考查诱导公式化简三角函数,属于基础题. 3、已知角α满足sin cos 0αα⋅≠,则表达式()()()sin cos sin cos k k k Z απαπαα+++∈的取值集合为( ) A .}{2,0,2-B .}{1,1,2-C .}{2,2-D .[]22-,答案: C解析: 分类讨论k 为奇数与偶数两种情况,原式利用诱导公式化简,计算可得到结果.详解:当k 为奇数时,原式()()sin cos 112sin cos αααα--=+=-+-=-; 当k 为偶数时,原式sin cos 112sin cos αααα=+=+=. ∴原表达式的取值集合为}{2,2-. 故选:C. 【点睛】本题考查了运用诱导公式化简求值,熟练掌握诱导公式是解题的关键.4、已知()2tan 3πα-=-,且,则()()()cos 3sin cos 9sin απαπαα-++-+的值为( )A .15-B .37-C .15 D .37答案: A解析:()2tan tan 3παα-=-=-,所以2tan 3α=,A.考点:1.诱导公式;2.同角三角函数基本关系.5、已知角α的终边经过点(1)求tan α的值;(2.答案: (1(2试题分析:(1)直接利用任意角的三角函数的定义,求得tan α的值. (2详解:解:(1)因为角α的终边经过点(2)由(1【点睛】本题主要考查任意角的三角函数的定义,诱导公式,属于基础题6(1)若角x 的终边经过点(3,4)-,求()f x 的值;(2且角x 为第三象限角,求.答案: (1)35(2试题分析:(1. (2)由(1根据同角三角函数关系式,即可求解.详解:解:(1∵角x 的终边经过点(3,4)-,(22f x π⎛+ ⎝∴由(cos x 又∵角x为第三象限角,cos sin 0x x ∴+<【点睛】本题考查(1)诱导公式(2)sin cos x x ⋅与cos sin x x +关系的常用公式;考查计算能力,属于基础题.7的值等于()A B C D 答案: C解析: 等式代入即可求出值.故选:C 【点睛】本题考查了运用诱导公式化简求值,熟练掌握诱导公式,灵活变换角度是解本题的关键,属于基础题.8 )A B C D .35答案: C解析: .【详解】cos 3π⎛- ⎝ C.【点睛】本题考查利用诱导公式求值,解题的关键就是弄清所求角与已知角之间的关系,考查计算能力,属于中等题. 9) ABCD答案: A解析:.详解:cos故选:A 【点睛】本题考查三角函数组合角的诱导公式,属于基础题10______.答案:解析: 利用诱导公式可得,且进而求解即可. 详解:由题故答案为【点睛】本题考查利用诱导公式求三角函数值,考查运算能力.11________. 答案:解析:.【点睛】本题考查了三角恒等变换,意在考查学生的计算能力和转化能力.12(1)化简()f α; (2,(0,)απ∈求.答案:(1)()sin cosfααα=+(2试题分析:(1)利用诱导公式化简求解即可;(2进而求得代入求解即可.详解:解:(1(2)()sinfα=两边平方得12sin+又(0,)απ∈,【点睛】本题考查利用诱导公式化简,考查同角的三角函数关系的应用,考查运算能力.13、设()()()sinπcosπ7f x a x b xαβ=++++,α,β,a,b均为实数,若()20196f=,则()2020f=__________.答案:8解析: 由()20196f =结合诱导公式,可得sin cos a b αβ+=1,()2020f =sin cos +7a b αβ+可得答案.详解:由()20196f =,有(2019)sin(2019)cos(2019)7f a b παπβ=++++ sin()cos()7a b παπβ=++++sin cos 76a b αβ=--+=.即sin cos 1αβ+=a b .又()2020f =sin(2020)cos(2020)7a b παπβ++++sin cos 78a b αβ=++=.故答案为:8. 【点睛】本题考查利用诱导公式进行化简求值,整体代换的方法,属于中档题.二、和差公式1、sin163sin223sin253sin313︒︒+︒︒=.答案:解析:sin163sin 223sin 253sin313sin163sin 223sin(16390)sin(22390)︒︒+︒︒=︒︒+︒+︒︒+︒2 )A B C D答案: B解析: 利用两角和差正弦公式拆开sin 43,化简知原式等于cos30,进而得到结果.详解:()sin 1330cos13sin3043cos13sin30sin13cos30cos13sin30cos13sin30sin13sin13sin13+--+-==3cos302=故选:B . 【点睛】本题考查利用两角和差正弦公式化简求值的问题,属于基础题.3,则sin2α=( )A D 答案: B解析: 本题可以先通过题意计算出()sin αβ-以及()cos αβ+的值,再通过()sin2?sin ααβαβ=-++解得sin2α的值.()()()()()sin ?sin cos cos ?sin αβαβαβαβαβαβ-++=-++-+故选B . 【点睛】在计算三角函数的时候,对于公式的灵活运用十分重要,比如说sin2α即可化简成()sin αβαβ-++的值.4、已知()540,0,cos ,sin 22135a ππβαβα<<-<<-=-=,则sin β= A .725B .725-C .5665D .5665-答案: D 解析:因为sin 4tan cos 3ααα==,结合22sin cos 1αα+=及02πα<<,得43sin ,cos 55αα==,又2πβ-<<,所以()()()2120,,sin 1cos 13αβπαβαβ-∈-=--=,所以()()()4531256sin sin sin cos cos sin 51351365βααβααβααβ⎛⎫⎡⎤=--=---=⨯--⨯=- ⎪⎣⎦⎝⎭故选D .考点:1、同角三角形的基本关系;2、两角差的正弦公式;3、拆角凑角法.【思路点睛】本题考查了同角三角形的基本关系、两角差的正弦公式与拆角凑角法在三角函数中的应用,重点考查学生综合知识的能力和创新能力,属中档题.其解题的一般思路为:首先根据同角三角函数的基本关系并结合已知条件可求出的值,然后运用拆角公式并结合两角差的正弦公式即可计算出所求的结果.5、已知tan ,tan αβ是方程23340x x ++=的两根,且3,,22ππαβ⎛⎫∈ ⎪⎝⎭,则αβ+的值为( ) A .43π B .73π C .43π或73π D .53π答案: A解析: ∵tan ,tan αβ是方程23340x x ++=的两根,∴tan 0,tan 0αβ<<,∴2παβπ<+<,A . 点睛:解决三角恒等变换中给值求角问题的注意点解决“给值求角”问题时,解题的关键也是变角,即把所求角用含已知角的式子表示,然后求出适合的一个三角函数值.再根据所给的条件确定所求角的范围,最后结合该范围求得角,有时为了解题需要压缩角的取值范围.6、已知tan tan m αβ=,cos()n αβ-=,则cos()αβ+=()A B C D 答案: B解析: 根据tan tan m αβ=,利用商数关系得到sin sin cos cos m αβαβ=,再结合cos()n αβ-=,分别求得解.详解:因为tan tan m αβ=, 所以sin sin cos cos m αβαβ=,又cos()cos cos sin sin n αβαβαβ-=+=,故选:B 【点睛】本题主要考查商数关系和两角和与差的三角函数,还考查了运算求解的能力,属于中档题.7、在ABC 中,A .AB =B .BC =C .C A =D 答案: B解析: 利用降幂公式得,又由()A B C π=-+化简可得cos cos sin sin 1B CB C +=,所以cos()1B C -=,从而可得答案因为()A B C π=-+,所以2sin sin 1cos[()]1cos()B C B C B C π=+-+=-+,2sin sin 1cos()1cos cos sin sin B C B C B C B C =-+=-+,cos cos sin sin 1B C B C +=,所以cos()1B C -=, 因为0B C π≤-<, 所以0B C -=,所以B C =, 故选:B 【点睛】此题考查三角函数恒等变换公式的应用,考查计算能力,属于基础题 8(1)求()cos αβ-的值; (2)求sin β的值.答案: (1(2试题分析:(1解cos()αβ-的值.(2)由已知利用同角三角函数基本关系式可求cos α的值,又()βααβ=--,利用两角差的正弦函数公式即可计算求解. 详解:解:(1(2因为()sin sin βααβ=--⎡⎤⎣⎦sin cos()cos sin()ααβααβ=---,【点睛】本题主要考查了同角三角函数基本关系式,两角差的正弦函数公式在三角函数化简求值中的应用,考查了计算能力和转化思想,属于基础题. 9、(1)已知x 是第三象限角,且,求cos sin x x +的值; (2)已知α,β为锐角,,求β. 答案: (1(2试题分析:(1,最后得出cos sin x x +的值; (2)结合已知条件利用()()()sin sin sin cos cos sin βαβααβααβα=+-=+-+⎡⎤⎣⎦进行计算即可得解.∵x 是第三象限角,(2)∵α为锐角,∵()0,αβπ+∈,∴()()()sin sin sin cos cos sin βαβααβααβα=+-=+-+⎡⎤⎣⎦531114331471472⎛⎫=⋅--⋅=⎪⎝⎭, ∵β为锐角,∴3πβ=.【点睛】本题考查同角三角函数关系式的应用,考查两角差的正弦公式的应用,考查逻辑思维能力和计算能力,其中()βαβα=+-属于此类题常见角的变形,属于常考题.三、二倍角公式1、若1sin 3α=,则cos2=α() A .229B .79C .79-D .429±答案:B解析: 2cos 212sin αα=-,由此能求出结果.详解:解:1sin 3α=, 217cos212sin 1299αα∴=-=-⨯=.故选:B . 【点睛】本题考查二倍角的余弦值的求法,考查二倍角公式等基础知识,考查运算求解能力,考查函数与方程思想,属于基础题. 2、已知10cos 410πα⎛⎫+= ⎪⎝⎭,则sin 2α的值是( ) A .45-B .25-C .25D .45答案: D解析:.故选:D. 【点睛】本题考查三角恒等变换的应用,涉及到配角技巧及倍角公式等知识,考查学生基本计算能力,是一道基础题. 3,则tan2α=________. 答案:解析: 直接利用二倍角公式计算得到答案.【点睛】本题考查了二倍角的计算,意在考查学生的计算能力. 4,则sin 2α=(). AC D 答案: A解析: 所以选A. 【点睛】本题考查了二倍角及同角正余弦的差与积的关系,属于基础题5、已知tan 2α=,则cos2=α() AB .35CD 答案: B解析: 根据tan 2α=,利用二倍角的余弦公式结合平方关系和商数关系,将cos2α转化为正切的齐次式求解.详解:因为tan 2α=,故选:B 【点睛】本题主要考查二倍角公式公式的应用以及同角三角函数基本关系式的应用,还考查了运算求解的能力,属于基础题. 6的终边与单位圆221x y +=交于,则sin 2α等于() ABCD 答案: A解析:可得结果.故选:A. 【点睛】本题考查任意角的三角函数定义和诱导公式以及余弦的二倍角公式的应用,属于基础7答案:解析:8,则cos sin αα+的值为() ABCD答案: C解析: 利用倍角公式、两角差的正弦进行化简,即可得到答案.详解:sin故选:C. 【点睛】本题考查三角函数恒等变换求值,考查函数与方程思想、转化与化归思想,考查运算求解能力.9)A .18-B .-8C .18D .8答案: B解析: 分析:由cos2522sin 4απα=⎛⎫+ ⎪⎝⎭,利用两角和的正弦公式以及二倍角的余弦公式,化简可得5cos 2sin αα-=,平方可得1cos 8sin αα=-,化简11tan tan cos sin αααα+=结果.详解:22cos 2cos sin 2222cos 422sin sin αααπααα-=⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭()()cos cos cos cos sin sin sin sin αααααααα-+==-+,cos 255,cos 2224sin sin αααπα=∴-=⎛⎫+ ⎪⎝⎭, ()255cos ,12cos 44sin sin αααα∴-=∴-=,1cos 8sin αα∴=-,221cos sin cos 1tan 8tan cos cos cos sin sin sin sin αααααααααααα+∴+=+===-,故选B.点睛:本题主要考查二倍角的余弦公式、两角和的正弦公式以及同角三角函数之间的关系,综合性较强.解答这类问题,两角和与差的正余弦公式、诱导公式以及二倍角公一定要熟练掌握并灵活应用,特别是二倍角公式的各种变化形式要熟记于心. 10、若1sin()63πα-=,则2cos(2)3πα+=()A .13-B .79-C .79D .13答案: B解析:的值.故选:B.【点睛】本题考查了二倍角公式,考查了诱导公式.本题的关键是熟练掌握公式对所求式子进行变形.11答案:解析:.再根据诱导公式求得.【点睛】本小题主要考查三角函数二倍角公式,考查三角函数诱导公式,考查三角恒等变换,属于基础题.12、已知θ是第三象限角,且ABCD答案:B 解析:然后利用诱导公式和二倍角公式求解即可.【详解】sin(6πθ-,故选:B.【点睛】本题考查三角恒等变换的综合应用,需要学生对相关公式熟练掌握且灵活应用.13______.答案:解析:或tan2α=;利用两角和差余弦公式和,代入tan α即可求得结果.当tan 2α=时,【点睛】本题考查利用三角恒等变换公式化简求值、正余弦齐次式的求解问题,涉及到两角和差正切公式和余弦公式、二倍角公式的应用、同角三角函数关系的应用等知识;关键是能够将正余弦齐次式配凑出正切的形式.14. 答案:试题分析:由已知条件结合两角和的正切公式可求出tan 3α=-,结合二倍角的正弦公式、同角,分子分母同时除以2cos α可,代入tan 3α=-即可求出最后结果. ,解得tan 3α=-,所以【点睛】本题考查了同角三角函数的基本关系,考查二倍角公式,考查了两角和的正切公式.本题的难点是对所求式子进行变形整理.15(1)求sin β的值;(2答案: (12)12试题分析:详解:(1)利用题意可知()βαβα=+-,结合两角和差正余弦公式可得 (2)利用二倍角公式结合题意整理计算可得三角函数式的值为12.试题解析: (1()()()sin sin sin cos cos sin ββααβααβαα⎡⎤=+-=+-+⎣⎦16(1)求sin cosx x -的值;(2. 答案: (1(2试题分析:(1)先求出2sin cos x x 的值,再求出()2sin cos x x -后可得sincos x x -的值;(2求的值.详解:(1,sin cos 0x x -<,(2【点睛】本题考查同角的三角函数的基本关系式、二倍角公式,属于中档题题.四、恒等变换1答案:解析: 观察角之间的特殊关系:103020=-,709020=-,运用两角差的余弦公式和诱导公式可得解.【详解】 20)sin 9020︒--)cos30cos 20sin30sin 20sin cos 20︒︒+-【点睛】本题考查两角差的余弦公式和诱导公式,关键在于观察出题目的角之间的特殊关系,属于中档题.2,则α的一个可能值为()A .70︒B .50︒C .40︒D .10︒ 答案: C解析: 利用同角三角函数关系和诱导公式,以及辅助角公式和二倍角正弦公式化简已知等式,可得cos cos40α=︒,即可得出答案. 详解:解:cosα的一个可能值为40︒. 故选:C .【点睛】本题考查利用同角三角函数关系和诱导公式,以及辅助角公式和二倍角正弦公式进行化简,考查计算能力,属于基础题.3. A .4B .2-C .4-D .2答案: C解析: 切化弦后根据二倍角公式及辅助角公式化简即可求值.故选:C【点睛】本题主要考查了三角恒等变形,涉及二倍角公式,两角和差的正弦、正切公式,切化弦的思想,属于中档题.4、已知tan α和是方程20ax bx c ++=的两个根,则,,a b c 的关系是( ) A .b a c =+B .2b a c =+C .c b a =+D .c ab =答案: C解析:故选C . 考点:1、韦达定理的应用;2、两角和的正切公式及数学的转化与划归思想.【方法点睛】本题主要考查韦达定理的应用、两角和的正切公式及数学的转化与划归思想.属于难题. 数学中常见的思想方法有:函数与方程的思想、分类讨论思想、转化与划归思想、数形结合思想、建模思想等等,转化与划归思想解决高中数学问题的一种重要思想方法,是中学数学四种重要的数学思想之一,尤其在解决知识点较多以及知识跨度较大的问题发挥着奇特功效,大大提高了解题能力与速度.运用这种方法的关键是将题设条件研究透,这样才能快速找准突破点.以便将问题转化为我们所熟悉的知识领域,进而顺利解答,希望同学们能够熟练掌握并应用于解题当中.5、化简:(1(2)已知α为第三象限角,化简: 答案: (1)1(2)sin cos 2αα+- 试题分析:(1)把正切化成正弦与余弦的商的形式,利用辅助角公式、诱导公式、二倍角的正弦公式求解即可;(2)利用同角的三角函数关系的平方和关系,结合二次根式化简的方法及性质进行求解即可.详解:(1(2因为α第三象限角,所以上式sin 1cos 1sin cos 2αααα=-+-=+-.【点睛】本题考查了同角的三角函数关系式的应用,考查了辅助角公式,考查了二次根式的化简,考查了数学运算能力.6、化简求值(1,且α,()0,βπ∈,求2αβ-的值.(2答案: (12)2- 解析: (1)根据角的变换,利用两角和的正切,再求得()tan 21αβ-=,利用为α,()0,βπ∈,确定α,β相对小的范围,进而确定2αβ-的范围来确定角的取值.(2)先利用正切化正弦,余弦,然后通分,利用两角和与差的正弦函数公式的逆用,再用诱导公式化简求值.【详解】(1又因为α,(23cos10cos10cos10sin ⎫⎪⎪⎭⋅50)cos10cos10sin ︒︒⋅50cos10cos10sin ︒⋅2=-【点睛】本题主要考查了三角恒等变换中的求值求角问题,还考查了转化化归,运算求解的能力,属于中档题.7答案: 1试题分析:将所求关系式中的正切和余切化为正弦和余弦,通分,逆用二倍角的正弦及和两角和差正余弦和差公式即可求出答案.所以原式1=.【点睛】本题考查三角函数的化简求值,将所求关系式的正余切化为正余弦函数后通分是关键,考查转化思想与运算求解能力,属于中档题.8、求值:(120cos351sin 20-; (2tan19tan1013tan19tan101+-;(3 答案:(1(2(3试题分析:(1)利用二倍角的正弦、余弦公式结合辅助角公式化简可得结果;(2)利用两角和正切公式变形()()tan tan tan 1tan tan αβαβαβ+=+-,将所求代数式化简计算可得结果;(3)将所求代数式变形为公式结合诱导公式化简可求得所求代数式的值.详解:(1222220cos 10sin 10cos351sin 20cos35cos 10sin 102sin10cos10-=-+- )()()()()2cos10sin10cos10sin102sin 1045cos10sin10cos 9055cos35cos 0co 310sin1s 5+-++==--552sin 55==; (2)()tan19tan101tan120tan 1910131tan19tan101+=+==--, ()tan19tan10131tan19tan10133tan19tan101+=--=-+,tan19tan1013tan19tan1013+-=-;(3【点睛】本题考查三角代数式求值,考查二倍角公式、两角和的正切公式的应用,考查计算能力,属于中等题.。

高一数学三角函数练习题

高一数学三角函数练习题

高一数学三角函数练习题1. 简答题1. 请简要说明正弦函数、余弦函数和正切函数的定义和性质。

- 正弦函数(sin)的定义:对于任意角θ,其正弦值sinθ等于对边与斜边的比值。

- 正弦函数的性质:- 值域:[-1, 1]- 周期:2π- 对称性:sin(-θ) = -sinθ- 函数图像:以原点为中心,上下振动的波形,曲线在x轴的正半轴和负半轴上交替。

- 余弦函数(cos)的定义:对于任意角θ,其余弦值cosθ等于邻边与斜边的比值。

- 余弦函数的性质:- 值域:[-1, 1]- 周期:2π- 对称性:cos(-θ) = cosθ- 函数图像:以原点为中心,左右摆动的波形,曲线在x轴的正半轴和负半轴上交替。

- 正切函数(tan)的定义:对于任意角θ,其正切值tanθ等于对边与邻边的比值。

- 正切函数的性质:- 值域:(-∞, +∞)- 周期:π- 奇偶性:tan(-θ) = -tanθ- 函数图像:周期性的上升或下降波形,曲线在x轴的正半轴和负半轴上交替。

2. 请解释单位圆与三角函数之间的关系。

- 单位圆是半径为1的圆,其圆心是原点(0,0)。

单位圆与三角函数之间的关系如下:- 正弦函数:单位圆的上半圆弧上的点的纵坐标等于该点所对应的角的正弦值。

- 余弦函数:单位圆的右半圆弧上的点的横坐标等于该点所对应的角的余弦值。

- 正切函数:单位圆的右半圆弧上的点的纵坐标等于该点所对应的角的正切值。

- 三角函数的性质和图像可以通过单位圆来计算和理解。

2. 计算题1. 求解方程sinx = 0.5在区间[0, 2π]内的所有解。

解答:sinx = 0.5根据等式sinx = 0.5,可知x等于π/6(或30°)和11π/6(或330°)两个解。

在区间[0, 2π]内,满足sinx = 0.5的解为x = π/6和x = 11π/6。

2. 已知tanθ = 2,求解θ的值,且θ满足π/2 ≤ θ ≤ π。

2021-2022学年上海高一数学下学期考试满分全攻略第6章 三角(新文化与压轴30题)(练习版)

2021-2022学年上海高一数学下学期考试满分全攻略第6章 三角(新文化与压轴30题)(练习版)

第6章 三角(新文化与压轴30题专练)一、单选题1.(2021·上海·高一期末)南宋数学家秦九韶在《数书九章》中提出“三斜求积术”,即“以小斜幂并大斜幂减中斜幂,余半之,自乘于上;以小斜幂乘大斜幂减上,余四约之,为实;一为从隅,开平方得积”,可用公式S a ,b ,c ,S 为三角形的三边和面积)表示,在ABC 中,a ,b ,c 分别为角A ,B ,C 所对的边,若2a =,且2cos cos b C c B c -=,则ABC 面积的最大值为( )A .1BCD .2.(2021·上海·高一课时练习)我们把顶角为36︒的等腰三角形称为黄金三角形,它的0.618≈,该三角形被认为是最美的三角形.根据这些信息,可得cos36︒=( )A B C D 3.(2021·上海·高一期末)《九章算术》是中国古代第一部数学专著,成于公元一世纪左右,系统总结了战国、秦、汉时期的数学成就,其中《方田》一章中记载了计算弧田(弧田就是由圆弧和其所对弦所围成弓形)的面积所用的经验公式:弧田面积=12(弦⨯矢+矢⨯矢),公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,按照上述经验公式计算所得弧田面积与其实际面积之间存在误差,现有圆心角为23π,弦长为( )平方米(其中3π≈ 1.73≈)A .14B .16C .18D .204.(2021·上海市南洋模范中学高一期中)若[]0,,,,44R ππαπβλ⎡⎤∈∈-∈⎢⎥⎣⎦,满足3cos 202πααλ⎛⎫---= ⎪⎝⎭,34sin cos 0βββλ++=,则cos 2αβ⎛⎫+ ⎪⎝⎭的值是( )A .0B .2C .2-D .15.(2021·上海市延安中学高一期中)当函数3cos 4sin y x x =-取得最大值时,tan x 的值是( ) A .43B .34C .43-D .34-6.(2021·上海·高一课时练习)若24sin 3k x x k -=+,则k 的取值范围是( )A .13,2⎛⎫-- ⎪⎝⎭B .1,2⎡⎫-+∞⎪⎢⎣⎭C .()3,-+∞D .()1,33,2⎛⎤-∞--- ⎥⎝⎦二、填空题7.(2021·上海徐汇·高一期末)赵爽是我国古代数学家、天文学家,约公元222年,赵爽为《周髀算经》一书作序时,介绍了“勾股圆方程”亦称“赵爽弦图”,它是由四个全等的直角三角形与一个小正方形拼成的个大正方形,如图是一张弦图已知大正方形的面积为25,小正方形的面积为1,若直角三角形较小的锐角为α,则tan 4πα⎛⎫- ⎪⎝⎭的值为________.8.(2021·上海·高一期末)著名数学家华罗庚先生被誉为“中国现代数学之父”,他倡导的“0.618优选法”在生产和科研实践中得到了非常广泛的应用,黄金分割比t 0.618≈2=___________.9.(2021·上海·华东师范大学第三附属中学高一阶段练习)我国古代数学家秦九韶左《数书九章》中记述了了“一斜求积术”,用现代式子表示即为:在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,则ABC 的面积S =,根据公式cos (3)cos 0c B b a C ⋅++=,且2224c a b --=,则ABC 的面积为________.10.(2021·上海·高一期中)第24届国际数学家大会的会标是以我国古代数学家赵爽的弦图为基础进行设计的.如图,会标是由4个全等的直角三角形与一个小正方形拼成的一个大正方形,若小正方形的面积为4,大正方形的面积为100,设直角三角形中较大的锐角为θ,则tan 4πθ⎛⎫-= ⎪⎝⎭___________.11.(2021·上海·高一课时练习)我国古代数学家秦九韶在《数学九章》中记述了“三斜求积术”,用现代式子表示即为:在ABC 中,,,A B C ∠∠∠所对的边长分别为,,a b c ,则ABC 的面积S =根据此公式若cos (3)cos 0a B b c A ++=,且2222a b c --=,则△ABC 的面积为______________.12.(2019·上海市晋元高级中学高一阶段练习)在△ABC 中,已知2sin sin sin()sin A B C C θλ-=,其中1tan 022πθθ⎛⎫=<< ⎪⎝⎭.若112tan tan tan A B C++为定值,则实数λ=_________.13.(2021·上海市七宝中学高一期中)设ABC 的内角A 、B 、C 满足6cos a bC b a=+,则cot cot A B +的最小值为________.14.(2021·上海·高一期末)设锐角ABC ∆的三个内角、、A B C 的对边分别为a b c 、、,且4c =,2A C =,则ABC ∆的周长的取值范围为______________.15.(2021·上海·高一期末)已知()f x 是定义域为R 的单调函数,且对任意实数x ,都有()32415x f f x ⎡⎤+=⎢⎥+⎣⎦,则217log sin6f π⎛⎫= ⎪⎝⎭______. 16.(2021·上海·高一期末)已知(sin )21f x x =+([,])22x ππ∈-,那么(cos10)f =________17.(2021·上海·高一课时练习)已知sin()sin()m αββα+⋅-=,则22cos cos αβ-的值为________.18.(2021·上海·高一专题练习)下面这道填空题,由于一些原因造成横线上的内容无法认清,现知结论,请在横线上填写原题的一个条件,题目:已知α、β均为锐角,且1sin sin 2αβ-=-,______,则()59cos 72αβ-=.三、解答题19.(2021·上海·高一课时练习)《九章算术》是我国古代数学成就的杰出代表.其中《方田》章给出计算弧田面积所用的经验公式为:弧田面积=(弦´矢+矢2).弧田(如图),由圆弧和其所对弦所围成,公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差.按照上述经验公式计算所得弧田面积与其实际面积之间存在误差.现有圆心角为,弦长等于9米的弧田.(1)计算弧田的实际面积;(2)按照《九章算术》中弧田面积的经验公式计算所得结果与(1)中计算的弧田实际面积相差多少平方米?(结果保留两位小数)20.(2021·上海市西南位育中学高一期中)已知函数()|sin ||cos |()f x x x x R =+∈,函数()4sin cos ()g x x x k x R =+∈,设()()()F x f x g x =-. (1)求证:2π是函数f (x )的一个周期; (2)当k =0时,求F (x )在区间,2ππ⎡⎤⎢⎥⎣⎦上的最大值;(3)若函数F (x )在区间(0,)π内恰好有奇数个零点,求实数k 的值.21.(2021·上海·高一专题练习)对于集合{}12,,,n A θθθ=⋅⋅⋅和常数0θ,定义:()()()22210200cos cos cos n nθθθθθθμ-+-++-=为集合A 相对0θ的“余弦方差”.(1)若集合ππ,34A ⎧⎫=⎨⎬⎩⎭,00θ=,求集合A 相对0θ的“余弦方差”;(2)求证:集合π2π,,π33A ⎧⎫=⎨⎬⎩⎭相对任何常数0θ的“余弦方差”是一个与0θ无关的定值,并求此定值;(3)若集合π,,4A αβ⎧⎫=⎨⎬⎩⎭,[)0,πα∈,[)π,2πβ∈,相对任何常数0θ的“余弦方差”是一个与0θ无关的定值,求出α、β.22.(2021·上海·复旦附中高一期中)在非直角三角形ABC 中,角,,A B C 的对边分别为,,a b c .(1)若2a c b +=,且3B π=,判断三角形ABC 的形状;(2)若(1)a c mb m +=>, (i )证明:1tantan 221A C m m -=+;(可能运用的公式有sin sin 2sin cos 22αβαβαβ+-+=) (ii )是否存在函数()m ϕ,使得对于一切满足条件的m ,代数式cos cos ()()cos cos A C m m A Cϕϕ++恒为定值?若存在,请给出一个满足条件的()m ϕ,并证明之;若不存在,请给出一个理由.23.(2021·上海·高一期末)如图是一个“蝴蝶形图案(阴影区域)”,其中AC BD、是过抛物线2y x 的两条互相垂直的弦(点A B 、在第二象限),且AC BD 、交于点10,4F ⎛⎫⎪⎝⎭,点E 为y 轴上一点,EFA α∠=,其中α为锐角(1)设线段AF 的长为m ,将m 表示为关于α的函数(2)求“蝴蝶形图案”面积的最小值,并指出取最小值时α的大小24.(2021·上海·高一专题练习)在ABC 中,已知223sin cossin cos sin 222C A A C B +=. (1)求证:2a c b +=; (2)求角B 的取值范围.25.(2021·上海·高一课时练习)已知关于x 的方程()24210x m x m -++=的两个根恰好是一个直角三角形的两个锐角的余弦,求实数m 的值.26.(2021·上海·高一课时练习)已知函数3sin()cos()tan(2)22()tan()sin()f ππααπαααπαπ-+-=++. (1)化简()f α;(2)若1()()28f f παα⋅+=-,且5342αππ≤≤,求()()2f f παα++的值;(3)若()2()2f f παα+=,求()()2f f παα⋅+的值.27.(2021·上海·高一期末)已知函数()f x ,如果存在给定的实数对(,a b ),使得()()f a x f a x b +⋅-=恒成立,则称()f x 为“S -函数”.(1)判断函数12(),()3xf x x f x ==是否是“S -函数”;(2)若3()tan f x x =是一个“S -函数”,求出所有满足条件的有序实数对(,)a b ; (3)若定义域为R 的函数()f x 是“S -函数”,且存在满足条件的有序实数对(0,1)和(1,4),当[0,1]x ∈时,()f x 的值域为[1,2],求当[2012,2012]x ∈-时函数()f x 的值域.28.(2021·上海·华师大二附中高一阶段练习)如图,某公司要在AB 、两地连线上的定点C 处建造广告牌CD ,其中D 为顶端,AC 长35米,CB 长80米,设AB 、在同一水平面上,从A 和B 看D 的仰角分别为.(1)设计中CD 是铅垂方向,若要求,问CD 的长至多为多少(结果精确到0.01米)?(2)施工完成后.CD 与铅垂方向有偏差,现在实测得求CD 的长(结果精确到0.01米)?29.(2021·上海市复兴高级中学高一期中)如果对于三个数a 、b 、c 能构成三角形的三边,则称这三个数为“三角形数”,对于“三角形数”a 、b 、c ,如果函数()y f x =使得三个数()f a 、()f b 、()f c 仍为“三角形数”,则称()y f x =为“保三角形函数”. (1)对于“三角形数”α、2α、4απ+,其中84ππα<<,若()tan f x x =,判断函数()y f x =是否是“保三角形函数”,并说明理由;(2)对于“三角形数”α、6πα+、3πα+,其中7612ππα<<,若()sin g x x =,判断函数()y g x =是否是“保三角形函数”,并说明理由.30.(2021·上海·高一期末)对于集合{}12,,,n A θθθ=和常数0θ,定义:()()()22210200cos cos cos -+-++-=n nθθθθθθμ为集合A 相对的0θ的“余弦方差”.(1)若集合,34A ππ⎧⎫=⎨⎬⎩⎭,00θ=,求集合A 相对0θ的“余弦方差”;(2)判断集合2,,33A πππ⎧⎫=⎨⎬⎩⎭相对任何常数0θ的“余弦方差”是否为一个与0θ无关的定值,并说明理由;(3)若集合,,4A παβ⎧⎫=⎨⎬⎩⎭,[0,)απ∈,[,2)βππ∈,相对任何常数0θ的“余弦方差”是一个与0θ无关的定值,求出α、β.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


高一数学 一、训练:
1.若
三角练习(1)
1 cos 1 cos =______________ , 0 ,化简 1 cos 1 cos 2
2.若 13sin 5cos 9,13cos 5sin 15, 则sin( ) _____________
三、反馈:
x cos 4 x 1 sin 4 x cos 4 x
4
1、若 a sin tan , b cos cot ,则以下诸式中错误的是 ( ab 1 1 ab A. sin = B. cos b 1 a 1 2 (a b 1) 1 2ab (a b)(a b 2) C. tan cot = D. tan cot = (a 1)(b 1) (a 1)(b 1)
C D B A


二、提高: 例 1:已知 tan n tan , n 1
求证:
sin 2 n 1 sin 2 n 1
Ex:已知 sin 2 n sin 2
(n 1) ,求
tan 的值 tan
=________________
5、如果 A1 B1C1 的三个内角的余弦值分别是 A2 B2C2 的三个内角的正弦值,那么( A. A1 B1C1 与 A2 B2 C2 都是锐角三角形 B. A1 B1C1 是锐角三角形, A2 B2 C2 是钝角三角形 C. A1 B1C1 是钝角三角形, A2 B2 C2 是锐角三角形 D. A1 B1C1 与 A2 B2 C2 都是钝角三角形
sin 2 20 cos 2 50 sin 20 cos 50 3 ; 4 3..观察等式: 2 2 3 sin 12 cos 42 sin12 cos 42 ; 4
请写出一个与上式规律相同的一般性恒等式:_______________________________ 4.已知 、 为锐角,且 (1 tan )(1 tan
例 2:化简: sin
2
sin 2 cos2 cos2 cos 2 cos 2
1 2
Ex: (1)化简
2 cos 4 x 2 cos 2 x
2 tan x sin 2 x 4 4
1 2
(2)化简 1 sin

2
2
) 2 ,则 tan tan ____________
5.如图,是我国古代数学家赵爽的弦图,它是由四个全等的直角三角形 与一个小正方形组成的一个大正方形,如果小正方形的面积为 4, 大正方形的面积为 100,直角三角形中较小的锐角为 , tan

=______ 2
6.某船在海面 A 处测得灯塔 D 与 A 相距 10 3 海里,且在北偏东 30 方向;测得灯塔 B 与 A 相距 10 6 海里,且在北偏西 75 方向,船由 A 向正北方向航行到 C 处,测得灯塔 B 在南偏 西 60 方向,这时灯塔 D 与 C 相距多少海里?D 在 C 的什么方向?
)
2、已知 cos 4 ,则 sin 4 cos4
1 5
3、设锐角 使关于 x 的方程 x2 4 x cos cot 0 有重根,则 的弧度数为______
4、在 ABC 中,如果 a2 b2 6c2 ,则 cot A cot B tan C
相关文档
最新文档