高一数学三角函数测试题 新人教版

合集下载

高中数学 第五章 三角函数检测试题(含解析)新人教A版必修第一册-新人教A版高一第一册数学试题

高中数学 第五章 三角函数检测试题(含解析)新人教A版必修第一册-新人教A版高一第一册数学试题

第五章检测试题时间:120分钟 分值:150分第Ⅰ卷(选择题,共60分)一、选择题每小题5分,共60分 1.已知cos ⎝ ⎛⎭⎪⎫3π2+σ=-35,且σ是第四象限角,则cos(-3π+σ)的值为( B )A.45 B .-45C .±45D.35解析:∵cos ⎝⎛⎭⎪⎫3π2+σ=sin σ=-35,且σ是第四象限角,∴cos σ=45.∴cos(-3π+σ)=-cos σ=-45.2.计算sin135°cos15°-cos45°sin(-15°)的值为( D ) A.12B.33 C.22D.32解析:原式=cos45°cos15°+si n45°sin15°=cos(45°-15°)=cos30°=32.故选D.3.函数y =2sin ⎝⎛⎭⎪⎫π6-2x (x ∈[0,π])为增函数的区间是( C )A.⎣⎢⎡⎦⎥⎤0,π3 B.⎣⎢⎡⎦⎥⎤π12,7π12C.⎣⎢⎡⎦⎥⎤π3,5π6D.⎣⎢⎡⎦⎥⎤5π6,π 解析:y =2sin ⎝ ⎛⎭⎪⎫π6-2x =-2sin ⎝⎛⎭⎪⎫2x -π6,原函数的单调递增区间就是y =2sin2x -π6的单调递减区间,即2k π+π2≤2x -π6≤2k π+3π2,k ∈Z ,k π+π3≤x ≤k π+5π6,k ∈Z ,对比各选项,令k =0,得选项C 正确.4.函数f (x )=sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|<π2的最小正周期为π,若其图象向右平移π3个单位后关于y 轴对称,则( B )A .ω=2,φ=π3B .ω=2,φ=π6C .ω=4,φ=π6D .ω=2,φ=-π6解析:T =2πω=π,所以ω=2.函数f (x )=sin(2x +φ)的图象向右平移π3个单位得函数g (x )=sin ⎝ ⎛⎭⎪⎫2x +φ-2π3的图象关于y 轴对称,所以φ-2π3=π2+k π,k ∈Z ,所以φ=76π+k π,k ∈Z .因为|φ|<π2,所以φ=π6,故选B.5.函数f (x )=A sin(ωx +φ)+b 的图象如图,则S =f (0)+f (1)+…+f (2 016)等于( C )A .0B .503C .2 017D .2 012解析:由题意知,函数f (x )=12sin π2x +1,周期T =4.S =f (0)+f (1)+…+f (2 016)=504[f (0)+f (1)+f (2)+f (3)]+1=504×4+1=2017.选C.6.已知sin2π+θtan π+θtan 3π-θcos ⎝ ⎛⎭⎪⎫π2-θtan -π-θ=1,则3sin 2θ+3sin θcos θ+2cos 2θ的值是( A ) A .1 B .2 C .3 D .6解析:∵sin2π+θtan π+θtan 3π-θcos ⎝ ⎛⎭⎪⎫π2-θtan -π-θ=sin θtan θtan -θ-sin θtan π+θ=-sin θtan θtan θ-sin θtan θ=tan θ=1, ∴3sin 2θ+3sin θcos θ+2cos 2θ =3sin 2θ+3cos 2θsin 2θ+3sin θcos θ+2cos 2θ=3tan 2θ+3tan 2θ+3tan θ+2=3+31+3+2=1,故选A. 7.若0<α<π2,-π2<β<0,cos ⎝ ⎛⎭⎪⎫π4+α=13,cos ⎝ ⎛⎭⎪⎫π4-β2=33,则cos ⎝⎛⎭⎪⎫α+β2=( C ) A.33 B .-33 C.539D .-69解析:根据条件可得α+π4∈⎝ ⎛⎭⎪⎫π4,34π,π4-β2∈⎝ ⎛⎭⎪⎫π4,π2,所以sin ⎝ ⎛⎭⎪⎫α+π4=223,sin ⎝ ⎛⎭⎪⎫π4-β2=63,所以cos ⎝ ⎛⎭⎪⎫α+β2=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫π4+α-⎝ ⎛⎭⎪⎫π4-β2 =cos ⎝ ⎛⎭⎪⎫π4+αcos ⎝ ⎛⎭⎪⎫π4-β2+sin ⎝⎛⎭⎪⎫π4+αsin ⎝ ⎛⎭⎪⎫π4-β2=13×33+223×63=539.8.已知函数f (x )=3sin ωx +cos ωx (ω>0),y =f (x )的图象与直线y =2的两个相邻交点的距离等于π,则f (x )的单调递增区间是( C )A.⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12,k ∈Z B.⎣⎢⎡⎦⎥⎤k π+5π12,k π+11π12,k ∈Z C.⎣⎢⎡⎦⎥⎤k π-π3,k π+π6,k ∈Z D.⎣⎢⎡⎦⎥⎤k π+π6,k π+2π3,k ∈Z 解析:f (x )=3sin ωx +cos ωx =2sin(ωx +π6),由已知得周期T =π.∴ω=2,即f (x )=2sin(2x +π6).由2k π-π2≤2x +π6≤2k π+π2(k ∈Z )得k π-π3≤x ≤k π+π6(k ∈Z ).9.在区间⎣⎢⎡⎦⎥⎤-3π2,3π2X 围内,函数y =tan x 与函数y =sin x 的图象的交点的个数为( C )A .1B .2C .3D .4解析:在同一坐标系中,首先作出y =sin x 与y =tan x 在⎣⎢⎡⎦⎥⎤-π2,π2内的图象,需明确x ∈⎝⎛⎭⎪⎫0,π2时,有sin x <x <tan x (利用单位圆中的正弦线、正切线结合面积大小的比较就可证明),然后作出x ∈⎣⎢⎡⎦⎥⎤-3π2,3π2的两函数的图象,如图所示,由图象可知它们有3个交点.10.若ω>0,函数y =cos ⎝⎛⎭⎪⎫ωx +π3的图象向右平移π3个单位长度后与函数y =sin ωx的图象重合,则ω的最小值为( B )A.112B.52C.12D.32解析:y =cos ⎝ ⎛⎭⎪⎫ωx +π3向右平移π3个单位长度可得y =cos ⎣⎢⎡⎦⎥⎤ω⎝ ⎛⎭⎪⎫x -π3+π3=cos ⎝ ⎛⎭⎪⎫ωx +π3-ωπ3=sin ⎣⎢⎡⎦⎥⎤π2+⎝ ⎛⎭⎪⎫ωx +π3-ωπ3=sin ⎝ ⎛⎭⎪⎫ωx +56π-ωπ3. 因为函数y =cos ⎝ ⎛⎭⎪⎫ωx +π3的图象向右平移π3个单位长度后与函数y =sin ωx 图象重合,所以ωx +5π6-ωπ3=ωx +2k π(k ∈Z ).又ω>0,所以当k =0时,ω取最小值为52,故选B.11.将函数f (x )=12sin2x sin π3+cos 2x cos π3-12sin(π2+π3)的图象上各点的横坐标缩短到原来的12,纵坐标不变,得到函数y =g (x )的图象,则函数g (x )在[0,π4]上的最大值和最小值分别为( C )A.12,-12B.14,-14C.12,-14D.14,-12解析:f (x )=12×32sin2x +12cos 2x -12sin 5π6=34sin2x +12cos 2x -14 =34sin2x +12×1+cos2x 2-14=12sin(2x +π6), 所以g (x )=12sin(4x +π6).因为x ∈[0,π4],所以4x +π6∈[π6,7π6],所以当4x +π6=π2时,g (x )取得最大值12;当4x +π6=7π6时,g (x )取得最小值-14.12.设函数f (x )=sin ⎝⎛⎭⎪⎫2x +π4⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤0,9π8,若方程f (x )=a 恰好有三个根,分别为x 1,x 2,x 3(x 1<x 2<x 3),则2x 1+3x 2+x 3的值为( D )A .π B.3π4C.3π2 D.7π4解析:由题意x ∈⎣⎢⎡⎦⎥⎤0,9π8,则2x +π4∈⎣⎢⎡⎦⎥⎤π4,5π2,画出函数的大致图象,如图所示.由图可得,当22≤a <1时,方程f (x )=a 恰有三个根. 由2x +π4=π2得x =π8;由2x +π4=3π2得x =5π8.由图可知,点(x 1,a )与点(x 2,a )关于直线x =π8对称;点(x 2,a )和点(x 3,a )关于x =5π8对称,所以x 1+x 2=π4,x 2+x 3=5π4,所以2x 1+3x 2+x 3=2(x 1+x 2)+(x 2+x 3)=7π4,故选D.第Ⅱ卷(非选择题,共90分)二、填空题每小题5分,共20分13.已知一扇形的半径为2,面积为4,则此扇形圆心角的绝对值为2弧度. 解析:设扇形圆心角的绝对值为α弧度,则4=12α·22,所以α=2.14.已知cos(α-π6)+sin α=435,则sin(α+7π6)的值为-45.解析:由已知得32cos α+32sin α=435, 所以12cos α+32sin α=45,即sin(α+π6)=45,因此,sin(α+7π6)=-sin(α+π6)=-45.15.已知f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π3(ω>0),f ⎝ ⎛⎭⎪⎫π6=f ⎝ ⎛⎭⎪⎫π3,且f (x )在区间⎝ ⎛⎭⎪⎫π6,π3内有最小值,无最大值,则ω=143.解析:由题意知x =π6+π32=π4为函数的一条对称轴,且ω·π4+π3=2k π-π2(k ∈Z ),得ω=8k -103(k ∈Z ).①又π3-π6≤2πω(ω>0),∴0<ω≤12.② 由①②得k =1,ω=143.16.关于函数f (x )=cos ⎝ ⎛⎭⎪⎫2x -π3+cos ⎝ ⎛⎭⎪⎫2x +π6,有下列命题: ①y =f (x )的最大值为2; ②y =f (x )的最小正周期是π;③y =f (x )在区间⎣⎢⎡⎦⎥⎤π24,13π24上是减函数;④将函数y =2cos2x 的图象向右平移π24个单位后,与已知函数的图象重合.其中正确命题的序号是①②③④. 解析:f (x )=cos ⎝ ⎛⎭⎪⎫2x -π3+cos ⎝ ⎛⎭⎪⎫2x +π6 =cos ⎝ ⎛⎭⎪⎫2x -π3+sin ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫2x +π6 =cos ⎝ ⎛⎭⎪⎫2x -π3-sin ⎝ ⎛⎭⎪⎫2x -π3 =2⎣⎢⎡⎦⎥⎤22cos ⎝ ⎛⎭⎪⎫2x -π3-22sin ⎝ ⎛⎭⎪⎫2x -π3=2cos ⎝ ⎛⎭⎪⎫2x -π3+π4 =2cos ⎝⎛⎭⎪⎫2x -π12, ∴y =f (x )的最大值为2,最小正周期为π,故①②正确.又当x ∈⎣⎢⎡⎦⎥⎤π24,13π24时,2x -π12∈[0,π],∴y =f (x )在⎣⎢⎡⎦⎥⎤π24,13π24上是减函数,故③正确.由④得y =2cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π24 =2cos ⎝⎛⎭⎪⎫2x -π12,故④正确. 三、解答题写出必要的计算步骤,只写最后结果不得分,共70分17.(10分)函数f 1(x )=A sin(ωx +φ)⎝ ⎛⎭⎪⎫A >0,ω>0,|φ|<π2的一段图象过点(0,1),如图所示.(1)求函数f 1(x )的表达式;(2)将函数y =f 1(x )的图象向右平移π4个单位,得函数y =f 2(x )的图象,求y =f 2(x )的最大值,并求出此时自变量x 的取值集合.解:(1)由题图知,T =π,于是ω=2πT=2.将y =A sin2x 的图象向左平移π12,得y =A sin(2x +φ)的图象,于是φ=2×π12=π6.将(0,1)代入y =A sin ⎝ ⎛⎭⎪⎫2x +π6,得A =2. 故f 1(x )=2sin ⎝ ⎛⎭⎪⎫2x +π6. (2)依题意,f 2(x )=2sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π4+π6=-2cos ⎝ ⎛⎭⎪⎫2x +π6.当2x +π6=2k π+π(k ∈Z ),即x =k π+5π12(k ∈Z )时,y max =2.x 的取值集合为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =k π+5π12,k ∈Z. 18.(12分)已知函数f (x )=2cos ⎝ ⎛⎭⎪⎫2x -π4,x ∈R . (1)求函数f (x )的最小正周期和单调递增区间;(2)求函数f (x )在区间⎣⎢⎡⎦⎥⎤-π8,π2上的最小值和最大值,并求出取得最值时的x 的值.解:(1)∵f (x )=2cos ⎝⎛⎭⎪⎫2x -π4,∴函数f (x )的最小正周期为T =2π2=π.由-π+2k π≤2x -π4≤2k π(k ∈Z ),得-3π8+k π≤x ≤π8+k π(k ∈Z ).故函数f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤-3π8+k π,π8+k π(k ∈Z ). (2)∵f (x )=2cos ⎝ ⎛⎭⎪⎫2x -π4在区间⎣⎢⎡-π8,⎦⎥⎤π8上为增函数,在区间⎣⎢⎡⎦⎥⎤π8,π2上为减函数, 又f ⎝ ⎛⎭⎪⎫-π8=0,f ⎝ ⎛⎭⎪⎫π8=2,f ⎝ ⎛⎭⎪⎫π2=-1,∴函数f (x )在区间⎣⎢⎡⎦⎥⎤-π8,π2上的最大值为2,此时x =π8;最小值为-1,此时x =π2.19.(12分)设函数f (x )=cos ⎝ ⎛⎭⎪⎫2x +π3+sin 2x .(1)求函数f (x )的最大值和最小正周期;(2)设A ,B ,C 为△ABC 的三个内角,若cos B =13,f ⎝ ⎛⎭⎪⎫C 2=-14,且C 为锐角,求sin A .解:(1)f (x )=cos ⎝ ⎛⎭⎪⎫2x +π3+sin 2x=cos2x ·cos π3-sin2x ·sin π3+1-cos2x2=12cos2x -32sin2x -12cos2x +12=12-32sin2x , ∴当2x =-π2+2k π(k ∈Z ),即x =k π-π4(k ∈Z )时,f (x )max =1+32.T =2π2=π. 故f (x )的最大值为1+32,最小正周期为π.(2)由f ⎝ ⎛⎭⎪⎫C 2=-14,即12-32sin C =-14, 解得sin C =32. 又C 为锐角,∴C =π3.由cos B =13,得sin B =223.∴sin A =sin[π-(B +C )]=sin(B +C )=sin B ·cos C +cos B ·sin C =223×12+13×32=22+36.20.(12分)已知函数f (x )=A sin(ωx +φ)+B ⎝ ⎛⎭⎪⎫A >0,ω>0,|φ|<π2的一系列对应值如下表:(2)根据(1)的结果,若函数y =f (kx )(k >0)的周期为2π3,当x ∈⎣⎢⎡⎦⎥⎤0,π3时,方程f (kx )=m 恰有两个不同的解,某某数m 的取值X 围.解:(1)设f (x )的最小正周期为T , 得T =11π6-⎝ ⎛⎭⎪⎫-π6=2π,由T =2πω,得ω=1.又⎩⎪⎨⎪⎧B +A =3,B -A =-1,解得⎩⎪⎨⎪⎧A =2,B =1.令ω·5π6+φ=π2+2k π(k ∈Z ),即5π6+φ=π2+2k π(k ∈Z ), 又|φ|<π2,∴φ=-π3,∴f (x )=2sin ⎝⎛⎭⎪⎫x -π3+1.(2)∵函数y =f (kx )=2sin ⎝ ⎛⎭⎪⎫kx -π3+1的周期为2π3,又k >0,∴k =3, 令t =3x -π3,∵x ∈⎣⎢⎡⎦⎥⎤0,π3,∴t ∈⎣⎢⎡⎦⎥⎤-π3,2π3.如图,sin t =s 在⎣⎢⎡⎦⎥⎤-π3,2π3上有两个不同的解,则s ∈⎣⎢⎡⎭⎪⎫32,1.∴方程f (kx )=m 在x ∈⎣⎢⎡⎦⎥⎤0,π3时恰好有两个不同的解,则m ∈[3+1,3),即实数m 的取值X 围是[3+1,3).21.(12分)已知函数f (x )=23sin x cos x +2sin 2x .(1)若f (x )=0,x ∈⎝ ⎛⎭⎪⎫-π2,π,求x 的值;(2)将函数f (x )的图象向左平移π3个单位长度,再将图象上所有点的横坐标伸长为原来的2倍(纵坐标不变),得到函数g (x )的图象,若y =h (x )与y =g (x )的图象关于直线x =π4对称,求函数h (x )在⎝ ⎛⎦⎥⎤-π6,2π3上的值域.解:f (x )=23sin x cos x +2sin 2x=3sin2x +1-cos2x =2sin ⎝⎛⎭⎪⎫2x -π6+1.(1)由f (x )=0,得2sin ⎝ ⎛⎭⎪⎫2x -π6+1=0, ∴sin ⎝⎛⎭⎪⎫2x -π6=-12,∴2x -π6=-π6+2k π或2x -π6=-5π6+2k π,k ∈Z .又∵x ∈⎝ ⎛⎭⎪⎫-π2,π,∴x =-π3或0或2π3.(2)将函数f (x )的图象向左平移π3个单位长度,可得函数图象的解析式为y =2sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π3-π6+1=2sin2x +π2+1=2cos2x +1,再将图象上所有点的横坐标伸长为原来的2倍(纵坐标不变),得到函数g (x )=2cos x +1.又y =h (x )与y =g (x )的图象关于直线x =π4对称,∴h (x )=g ⎝ ⎛⎭⎪⎫π2-x =2sin x +1. ∵x ∈⎝ ⎛⎦⎥⎤-π6,2π3,∴sin x ∈⎝ ⎛⎦⎥⎤-12,1.故函数h (x )的值域为(0,3].22.(12分)已知函数f (x )=3sin ωx cos ωx +cos 2ωx +b +1.(1)若函数f (x )的图象关于直线x =π6对称,且ω∈[0,3],求函数f (x )的单调递增区间;(2)在(1)的条件下,当x ∈⎣⎢⎡⎦⎥⎤0,7π12时,函数f (x )有且只有一个零点,某某数b 的取值X 围.解:(1)函数f (x )=3sin ωx cos ωx +cos 2ωx +b +1=32sin2ωx +1+cos2ωx2+b +1=sin ⎝⎛⎭⎪⎫2ωx +π6+32+b .∵函数f (x )的图象关于直线x =π6对称,∴2ω·π6+π6=k π+π2,k ∈Z ,且ω∈[0,3],∴ω=1.由2k π-π2≤2x +π6≤2k π+π2(k ∈Z ),解得k π-π3≤x ≤k π+π6(k ∈Z ),∴函数f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-π3,k π+π6(k ∈Z ). (2)由(1)知f (x )=sin ⎝ ⎛⎭⎪⎫2x +π6+32+b .∵x ∈⎣⎢⎡⎦⎥⎤0,7π12,∴2x +π6∈⎣⎢⎡⎦⎥⎤π6,4π3.当2x +π6∈⎣⎢⎡⎦⎥⎤π6,π2,即x ∈⎣⎢⎡⎦⎥⎤0,π6时,函数f (x )单调递增;当2x +π6∈⎣⎢⎡⎦⎥⎤π2,4π3,即x ∈⎣⎢⎡⎦⎥⎤π6,7π12时,函数f (x )单调递减.又f (0)=f ⎝ ⎛⎭⎪⎫π3, ∴当f ⎝ ⎛⎭⎪⎫π3>0≥f ⎝ ⎛⎭⎪⎫7π12或f ⎝ ⎛⎭⎪⎫π6=0时,函数f (x )有且只有一个零点, 即sin 4π3≤-b -32<sin 5π6或1+32+b =0,∴b ∈⎝ ⎛⎦⎥⎤-2,3-32∪⎩⎨⎧⎭⎬⎫-52 .。

新人教版高中数学必修第一册第五单元《三角函数》测试题(含答案解析)(3)

新人教版高中数学必修第一册第五单元《三角函数》测试题(含答案解析)(3)

一、选择题1.下列三个关于函数()sin 2sin 23f x x x π⎛⎫=-+ ⎪⎝⎭的命题:①只需将函数()2g x x =的图象向右平移6π个单位即可得到()f x 的图象;②函数()f x 的图象关于5,012π⎛⎫⎪⎝⎭对称; ③函数()f x 在,63ππ⎡⎤-⎢⎥⎣⎦上单调递增. 其中,真命题的个数为( ) A .3B .2C .1D .02.已知3sin 5α=-,则cos2=α( ) A .15-B .15C .725-D .7253.如果函数()cos 3f x x θ⎛⎫=+ ⎪⎝⎭的图象关于直线2x π=对称,那么θ的最小值为( )A .6π B .4πC .3π D .2π 4.计算cos 20cos80sin160cos10+=( ).A .12B .2C .12-D .5.函数()(1)cos f x x x =的最小正周期为( ) A .πB .32π C .2πD .2π 6.将函数()f x 的图象向左平移02πϕϕ⎛⎫<<⎪⎝⎭个单位后得到函数()sin 2g x x =的图象,若对满足()()122f x g x -=的1x ,2x ,有12min3x x π-=,则ϕ=( ) A .512π B .3π C .4π D .6π 7.已知函数()cos 2cos sin(2)sin f x x x ϕπϕ=⋅-+⋅在3x π=处取得最小值,则函数()f x 的一个单调递减区间为( )A .4,33ππ⎛⎫⎪⎝⎭B .2,33ππ⎛⎫-⎪⎝⎭ C .5,36ππ⎛⎫⎪⎝⎭D .,63ππ⎛⎫-⎪⎝⎭8.()()sin f x A x =+ωϕ0,0,2A πωϕ⎛⎫>>< ⎪⎝⎭的部分图象如图所示,若将函数()f x 的图象向右平移2π个单位长度,得到函数()g x 的图象,则( )A .()12sin 212g x x π⎛⎫=- ⎪⎝⎭ B .()12sin 212g x x π⎛⎫=+⎪⎝⎭ C .()2sin 212g x x π⎛⎫=- ⎪⎝⎭ D .()2sin 212g x x π⎛⎫=+⎪⎝⎭9.若角α,β均为锐角,25sin α=,()4cos 5αβ+=-,则cos β=( )A .25B .25C .25或25 D .25-10.3tan 26tan 34tan 26tan 34++=( ) A .3 B .3- C .3 D .3-11.函数()()cos f x A x ωϕ=+(其中0A >,0>ω,2πϕ<)的图象如图所示.为了得到()cos g x A x ω=-的图象,只需把()y f x =的图象上所有的点( )A .向右平移12π个单位长度 B .向右平移512π个单位长度 C .向左平移12π个单位长度D .向左平移512π个单位长度 12.若将函数3sin(2)3y x π=+的图象向左平移6π个单位长度,则平移后图象的一个对称中心是( ) A .,06π⎛⎫ ⎪⎝⎭B .,06π⎛⎫-⎪⎝⎭C .,012π⎛⎫⎪⎝⎭D .,03π⎛⎫⎪⎝⎭二、填空题13.已知22034sin παα=<<,,则sin cos αα-=_____________________. 14.若tan 4α=,则2cos 2sin 2αα+= ________.15.已知()sin()cos()1f x a x b x παπβ=++-+,其中α,β,a ,b 均为非零实数,若()20202f =,则()2021f =________. 16.在半径为2米的圆形弯道中,56π角所对应的弯道为_________. 17.已知角α的终边经过点()3,4P -,则sin 2cos αα+的值等于______.18.已知函数()sin (0)5f x x πωω⎛⎫=+> ⎪⎝⎭在[0,2]π有且仅有5个零点.下述四个结论:①()f x 在(0,2)π上有且仅有3个极大值点;②()f x 在(0,2)π上有且仅有2个极小值点:③()f x 在(0,2)π上单调递增;④ω的取值范围是1229,510⎡⎫⎪⎢⎣⎭.其中结论正确的是______.(填写所有正确结论的序号). 19.已知7sin cos 17αα+=,()0,απ∈,则tan α= ________. 20.对任意闭区间I ,用I M 表示函数sin y x =在I 上的最大值,若有且仅有一个正数a 使得[][]0,,2a a a M kM =成立,则实数k 的取值范围是_________.三、解答题21.已知向量()cos ,sin m x x =,()cos x n x =,设函数()12f x m n =⋅-,π0,3x ⎡⎤∈⎢⎥⎣⎦. (1)讨论()f x 的单调性; (2)若方程()23f x =有两个不相等的实数根1x ,2x ,求()12cos x x +,()12cos x x -的值.22.已知函数)(cos cos 2f x x x x =+.(1)求)(f x 的最小正周期和值域.(2)求)(f x 的单调区间.23.已知函数()sin 1f x x x =++. (Ⅰ)设[0,2π]α∈,且()1f α=,求α的值; (Ⅱ)将函数(2)y f x =的图像向左平移π6个单位长度,得到函数()y g x =的图像. 当ππ[,]22x ∈-时,求满足()2g x ≤的实数x 的集合.24.在①函数()()sin 20,2f x x πωϕωϕ⎛⎫=+><⎪⎝⎭的图象向右平移6π个单位长度得到()g x 的图像,()g x 图像关于,012π⎛⎫⎪⎝⎭对称;②函数()()12cos sin 062f x x x πωωω⎛⎫=+-> ⎪⎝⎭这两个条件中任选一个,补充在下而问题中,并解答.已知______,函数()f x 的图象相邻两条对称轴之间的距离为2π. (1)若()f x 在[]0,α上的值域为1,12⎡⎤⎢⎥⎣⎦,求a 的取值范围; (2)求函数()f x 在[]0,2π上的单调递增区间. 25.已知()cos2cos 23f x x x π⎛⎫=+- ⎪⎝⎭. (1)求()f x 的单调递增区间;(2)若23f α⎛⎫=⎪⎝⎭,求12f πα⎛⎫- ⎪⎝⎭的值.26.已知函数())2cos cos 1f x xx x =-+(1)求函数()f x 的最小正周期及单调递增区间. (2)当0,2x π⎡⎤∈⎢⎥⎣⎦时,求函数()f x 的最大值和最小值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C 解析:C 【分析】先对函数()f x 进行化简,得到()26f x x π⎛⎫- ⎪⎝⎭,对于①运用三角函数图像平移进行判断;对于②计算出函数()f x 的对称中心进行判断;对于③计算出函数()f x 的单调增区间进行判断. 【详解】因为1()sin 2sin 2sin 22sin 2322f x x x x x x π⎛⎫=-+=-+ ⎪⎝⎭3sin 222x x =26x π⎛⎫=- ⎪⎝⎭对于①,将函数()2g x x =的图像向右平移6π个单位可得函数23y x π⎛⎫=- ⎪⎝⎭的图像,得不到()26f x x π⎛⎫=- ⎪⎝⎭,故①错误; 对于②,令()26x k k Z ππ-=∈,解得()122k x k Z ππ=+∈,故无论k 取何整数,函数()f x 的图像不会关于点5,012π⎛⎫⎪⎝⎭对称,故②错误; 对于③,当()222262k x k k Z πππππ-+≤-≤+∈,即()63k x k k Z ππππ-+≤≤+∈时函数()f x 递增,当0k =时,()f x 的一个递增区间为,63ππ⎡⎤-⎢⎥⎣⎦,故③正确.只有1个命题正确. 故选:C 【点睛】思路点睛:解答此类题目需要熟练掌握正弦型函数的单调性、对称性,以及三角函数的图像平移,在计算单调区间和对称中心时要能够通过整体代入计算求出结果,如()222262k x k k Z πππππ-+≤-≤+∈等.2.D解析:D 【分析】由题中条件,根据二倍角的余弦公式,可直接得出结果.【详解】 因为3sin 5α=-, 所以297cos 212sin 122525αα=-=-⨯=. 故选:D.3.A解析:A 【分析】利用余弦函数的对称轴以及整体思想可得:θ的表达式,进而得到θ的最小值. 【详解】由题意函数()cos 3f x x θ⎛⎫=+ ⎪⎝⎭的图象关于直线2x π=对称,则有 1,32k πθπ⋅+= 解得 θ=k π6π-,k ∈Z ,所以由此得|θmin 6π=.故选:A . 【点睛】方法点睛:求正余弦函数的对称轴及对称中心一般利用整体思想求解4.A解析:A 【分析】将160化为20,10化为80后,利用两角差的余弦公式可求得结果. 【详解】cos 20cos80sin160cos10+cos 20cos80sin 20sin80=+()cos 8020=-cos60=12=. 故选:A .5.C解析:C 【分析】由切化弦,及两角和的正弦公式化简函数,然后由正弦函数的周期性得结论. 【详解】 由已知,()(1)cos f x x x =+cos x x =+12cos 2x x ⎛⎫=+⎪⎪⎝⎭2sin 6x π⎛⎫=+ ⎪⎝⎭, ∴最小正周期为221T ππ==, 故选:C .6.D解析:D 【分析】利用三角函数的最值,取自变量1x 、2x 的特值,然后判断选项即可. 【详解】因为函数()sin 2g x x =的周期为π,由题意可得:()()sin 2x f x ϕ=-⎡⎤⎣⎦, 若()()122f x g x -=,两个函数的最大值与最小值的差等于2,有12min3x x π-=,所以不妨取24x π=,则1712x π=,即()()sin 2x f x ϕ=-⎡⎤⎣⎦在1712x π=取得最小值, 所以77121s 12in 2f ϕππ⎛⎫=-=- ⎪⎡⎤⎛⎫⎪⎢⎝⎥⎭⎣⎦⎭⎝,此时5+,6k k Z πϕπ=∈,又02πϕ<<,所以此时不符合题意,取24x π=,则112x π=-,即()()sin 2x f x ϕ=-⎡⎤⎣⎦在112x π=-取得最小值, 所以12sin 21ϕπ⎡⎤⎛⎫-=- ⎪⎢⎥⎝⎭⎣⎦-,此时,6k k Z πϕπ=-∈,当0k =时,6π=ϕ满足题意,故选:D . 【点睛】本题考查三角函数的图象的平移,三角函数性质之最值,关键在于取出2x ,得出1x ,再利用正弦函数取得最小值的点,求得ϕ的值,属于中档题.7.D解析:D 【分析】先化简()f x 并根据已知条件确定出ϕ的一个可取值,然后根据余弦函数的单调递减区间求解出()f x 的一个单调递减区间. 【详解】 因为()()()cos2cos sin 2sin cos2cos sin 2sin cos 2f x x x x x x ϕπϕϕϕϕ=⋅-+⋅=⋅+⋅=-,且()f x 在3x π=处有最小值,所以2cos 133f ππϕ⎛⎫⎛⎫=-=-⎪ ⎪⎝⎭⎝⎭,所以22,3k k Z πϕππ-=+∈, 所以2,3k k Z πϕπ=--∈,取ϕ的一个值为3π-, 所以()cos 23f x x π⎛⎫=+ ⎪⎝⎭,令222,3k x k k Z ππππ≤+≤+∈,所以,63k x k k Z ππππ-≤≤+∈,令0k =,所以此时单调递减区间为,63ππ⎡⎤-⎢⎥⎣⎦, 故选:D. 【点睛】思路点睛:求解形如()()cos f x A x ωϕ=+的函数的单调递减区间的步骤如下: (1)先令[]2,2+,k k k x Z ωϕπππ+∈∈;(2)解上述不等式求解出x 的取值范围即为()f x 的单调递减区间.8.A解析:A 【分析】根据图象易得2A =,最小正周期T 2433ππ⎛⎫=-- ⎪⎝⎭,进而求得ω,再由图象过点2,23π⎛⎫⎪⎝⎭求得函数()f x ,然后再根据平移变换得到()g x 即可. 【详解】由图象可知2A =,最小正周期2T 4433πππ⎡⎤⎛⎫=--= ⎪⎢⎥⎝⎭⎣⎦, ∴212T πω==,1()2sin 2f x x ϕ⎛⎫=+ ⎪⎝⎭, 又22sin 233f ππϕ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,∴232k ππϕπ+=+,26k πϕπ=+,∵||2ϕπ<,∴6π=ϕ,1()2sin 26f x x π⎛⎫=+ ⎪⎝⎭,将其图象向右平移2π个单位长度得 11()2sin 2sin 226212g x x x πππ⎡⎤⎛⎫⎛⎫=-+=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,故选:A 9.B解析:B 【分析】由平方关系求得cos α,sin()αβ+,然后由两角差的余弦公式计算. 【详解】α,β均为锐角,sin α=()4cos 5αβ+=-,cos α∴==,()3sin 5αβ+==,cos cos[()]βαβα∴=+-cos()cos sin()sin αβααβα=+++435555=-⨯+⨯=. 故选:B .10.C解析:C 【分析】利用两角和的正切公式,特殊角的三角函数值化简已知即可求解. 【详解】26tan34tan 26tan34︒︒+︒+︒26tan 34tan(2634)(1tan 26tan 34)=︒︒+︒+︒-︒︒26tan 34tan 26tan 34)=︒︒+-︒︒26tan3426tan34=︒︒︒︒=故选:C .11.B解析:B 【分析】先根据图象求出,,A ωϕ的值即可得()f x 和()g x 的解析式,再利用函数图象的平移变换即可得正确选项. 【详解】 由图知:1A =,74123T πππ⎛⎫=-= ⎪⎝⎭,所以22T πω==,()()cos 2f x x φ=+,当712x π=时,()()cos 2f x x φ=+有最小值,所以()72212k k Z πϕππ⨯+=+∈,所以()26k k Z πϕπ=-+∈,又因为2πϕ<,所以0,6k πϕ==-,所以()cos 26f x x π⎛⎫=- ⎪⎝⎭,()()cos2cos 2g x x x π=-=-,所以只需要把()cos 26f x x π⎛⎫=- ⎪⎝⎭图象上所有的点向右平移512π个单位长度得()()5cos 2cos 2cos 2126x x x g x πππ⎡⎤⎛⎫--=-=-= ⎪⎢⎥⎝⎭⎣⎦,故选:B 【点睛】关键点点睛:本题的关键点是由函数的部分图象求出,,A ωϕ的值,进而求出()f x 和()g x 的解析式,()()cos2cos 2g x x x π=-=-,由平移变换的规律求解,注意左右平移指一个x 变化多少,此点容易出错,属于中档题.12.A解析:A 【分析】先求出平移后的解析式为23sin 23y x π⎛⎫=+ ⎪⎝⎭,令()223x k k Z ππ+=∈解方程即可求解. 【详解】将函数3sin(2)3y x π=+的图象向左平移6π个单位长度得:23sin 23sin 2633y x x πππ⎡⎤⎛⎫⎛⎫=++=+⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 令()223x k k Z ππ+=∈,解得:()32kx k Z ππ=-+∈, 当1k =时,326x πππ=-+=,所以平移后图象的一个对称中心为,06π⎛⎫⎪⎝⎭,故选:A二、填空题13.【分析】结合二倍角的正弦公式和同角三角函数的基本关系由即可求出正确答案【详解】解:因为所以所以故答案为:解析:3-【分析】结合二倍角的正弦公式和同角三角函数的基本关系,由sin cos αα-=即可求出正确答案. 【详解】 解:因为04πα<<,所以0sin cos αα-<,所以sin cos αα-====,故答案为: -14.1【分析】把求值式转化为关于的二次齐次分式然后转化为代入求值【详解】∵∴故答案为:1【点睛】方法点睛:本题考查二倍角公式考查同角间的三角函数关系在已知求值时对关于的齐次式一般转化为关于的式子再代入值解析:1 【分析】把求值式转化为关于sin ,cos αα的二次齐次分式.然后转化为tan α,代入求值. 【详解】 ∵tan 4α=,∴222222cos 4sin cos 14tan 144cos 2sin 21sin cos tan 141ααααααααα+++⨯+====+++.故答案为:1. 【点睛】方法点睛:本题考查二倍角公式,考查同角间的三角函数关系.在已知tan α求值时,对关于sin ,cos αα的齐次式,一般转化为关于tan α的式子.再代入tan α值计算.如一次齐次式:sin cos sin cos a b c d αααα++,二次齐次式:2222sin sin cos cos sin sin cos cos a b c d e f αααααααα++++, 另外二次式22sin sin cos cos m n p αααα++也可化为二次齐次式.15.0【分析】由题设条件结合周期性及诱导公式运算即可得解【详解】由题意所以所以故答案为:0解析:0 【分析】由题设条件结合周期性及诱导公式运算即可得解. 【详解】由题意,()sin(2020)cos(2020)1sin cos()12020a b a b f παπβαβ++-++-=+=sin cos 12a b αβ=++=,所以sin cos 1αβ+=a b ,所以()sin(2021)cos(202)201211f a b παπβ++-+=sin()cos()1sin cos 1110a b a b παπβαβ==++-+-+=-+=-.故答案为:0.16.【分析】根据扇形的弧长公式即可求解【详解】由题意根据扇形的弧长公式可得所对应的弯道为故答案为: 解析:53π 【分析】根据扇形的弧长公式,即可求解. 【详解】由题意,根据扇形的弧长公式,可得所对应的弯道为55263ππ⨯=. 故答案为:53π. 17.【分析】根据三角函数定义求出的值由此可求得的值【详解】由三角函数的定义可得因此故答案为:解析:25-【分析】根据三角函数定义求出sin α、cos α的值,由此可求得sin 2cos αα+的值. 【详解】由三角函数的定义可得3cos 5α==-,4sin 5α==,因此,432sin 2cos 2555αα⎛⎫+=+⨯-=- ⎪⎝⎭. 故答案为:25-. 18.①④【分析】作出函数的图象根据在有且仅有5个零点再逐项判断【详解】如图所示:由图象可知在上有且仅有3个极大值点故①正确;在上可能有3个极小值点故②错误;因为函数在有且仅有5个零点所以解得故④正确;因解析:①④ 【分析】作出函数的图象,根据()f x 在[0,2]π有且仅有5个零点,再逐项判断. 【详解】 如图所示:由图象可知()f x 在(0,2)π上有且仅有3个极大值点,故①正确; ()f x 在(0,2)π上可能有3个极小值点,故②错误;因为函数()sin (0)5f x x πωω⎛⎫=+> ⎪⎝⎭在[0,2]π有且仅有5个零点,所以2429255πππωω≤<,解得1229510ω≤<,故④正确;因为()0,2x π∈,所以,2555x πππωπω⎛⎫+∈+ ⎪⎝⎭,若()f x 在(0,2)π上单调递增,则252πππω+<,解得320ω<,不符合1229510ω≤<,故③错误;故答案为:①④ 【点睛】关键点点睛:本题的关键是作出函数的图象,根据零点的个数确定ω的范围.19.【分析】根据已知条件求得的值由此求得的值【详解】依题意两边平方得而所以所以由解得所以故答案为:【点睛】知道其中一个可通过同角三角函数的基本关系式求得另外两个在求解过程中要注意角的范围 解析:158-【分析】根据已知条件求得sin ,cos αα的值,由此求得tan α的值. 【详解】依题意7sin cos 17αα+=,两边平方得 4924012sin cos ,2sin cos 0289289αααα+==-<, 而()0,απ∈,所以sin 0,cos 0αα><,所以23sin cos 17αα-====. 由7sin cos 1723sin cos 17αααα⎧+=⎪⎪⎨⎪-=⎪⎩解得158sin ,cos 1717αα==-, 所以sin 15tan cos 8ααα==-. 故答案为:158-【点睛】sin cos ,sin cos αααα±知道其中一个,可通过同角三角函数的基本关系式求得另外两个,在求解过程中要注意角的范围.20.【分析】讨论的范围得出的表达式求出的值域即可【详解】①当时由得所以此时即则即;②当时由得此时即;③当时由得所以此时则即;④当时则由得不成立此时不存在;⑤当时由得所以此时则即;⑥当时由得综上实数的取值解析:1,2⎡⎫+∞⎪⎢⎣⎭【分析】讨论a 的范围得出k 的表达式,求出()k f a =的值域即可. 【详解】①当0,4πa ⎡⎤∈⎢⎥⎣⎦时,[0,][,2]20,,sin ,sin 22a a a πa M a M a ⎡⎤∈==⎢⎥⎣⎦,由[][]0,,2a a a M kM =,得sin sin 2a k a =,所以12cos k a=,cos 1a≤≤2cos 2a ≤≤,则1122cos 2a ≤≤,即122k ⎡∈⎢⎣⎦; ②当,42ππa ⎡⎤∈⎢⎥⎣⎦时,[0,][,2]2,,sin ,12a a a πa πM a M ⎡⎤∈==⎢⎥⎣⎦, 由[][]0,,2a a a M kM =,得sin k a =,此时sin 12a ≤≤,即k ⎤∈⎥⎣⎦; ③当,2a ππ⎛⎫∈ ⎪⎝⎭时,()[0,][,2]2,2,1,sin a a a a M M a ππ∈==,由[][]0,,2a a a M kM =,得1sin k a =,所以1sin k a=, 此时0sin 1a <<,则11sin a>,即()1,k ∈+∞; ④当a π=时,22a π=,则[0,][,2]1,0a a a M M ==, 由[][]0,,2a a a M kM =,得10=不成立,此时k 不存在; ⑤当5,4πa π⎛⎫∈ ⎪⎝⎭时,[0,][,2]522,,1,sin 22a a a a ππM M a ⎛⎫∈== ⎪⎝⎭, 由[][]0,,2a a a M kM =,得1sin 2k a =,所以1sin 2k a=, 此时0sin 21a <<,则11sin 2a>,即()1,k ∈+∞; ⑥当5,+4a π⎡⎫∈∞⎪⎢⎣⎭时,[0,][,2]52,,1,12a a a a πM M ⎡⎫∈+∞==⎪⎢⎣⎭, 由[][]0,,2a a a M kM =,得1k =, 综上,实数k 的取值范围是1,2⎡⎫+∞⎪⎢⎣⎭. 【点睛】本题考查三角函数最值的求解,解题的关键是分段讨论a 的范围,根据a 的不同取值范围得出k 的表达式,再利用三角函数的性质求解.三、解答题21.(1)π0,6x ⎡⎤∈⎢⎥⎣⎦时,()f x 单调递增;ππ,63x ⎛⎤∈ ⎥⎝⎦时,()f x 单调递减;(2)()121cos 2x x +=,()122cos 3x x -=. 【分析】(1)根据平面向量的数量积和三角恒等变换,求出函数()f x 的解析式,再根据x 的范围,即可得到()f x 的单调性; (2)由方程()23f x =有两个不相等的实数根1x 、2x ,根据对称性求出12x x +的值,再计算()12cos x x +和()12cos x x -的值即可. 【详解】(1)因为向量()cos ,sin m x x =,()cos x n x =,所以函数()12f x m n =⋅-21cos cos 2x x x =-1cos 212222x x +=+-πcos 23x ⎛⎫=- ⎪⎝⎭,π0,3x ⎡⎤∈⎢⎥⎣⎦,当π0,3x ⎡⎤∈⎢⎥⎣⎦时,πππ2,333x ⎡⎤-∈-⎢⎥⎣⎦,令π203x -=,解得π6x =, 所以π0,6x ⎡⎤∈⎢⎥⎣⎦时,即ππ2,033x ⎡⎤-∈-⎢⎥⎣⎦时,()f x 单调递增, ππ,63x ⎛⎤∈ ⎥⎝⎦时,即ππ20,33x ⎛⎤-∈ ⎥⎝⎦时,()f x 单调递减;(2)当π0,3x ⎡⎤∈⎢⎥⎣⎦时,πππ2,333x ⎡⎤-∈-⎢⎥⎣⎦;所以π1cos 2,132x ⎛⎫⎡⎤-∈ ⎪⎢⎥⎝⎭⎣⎦,即()1,12f x ⎡⎤∈⎢⎥⎣⎦; 又方程()23f x =在π0,3x ⎡⎤∈⎢⎥⎣⎦上有两个不相等的实数根1x 、2x , 所以12ππ2220033x x ⎛⎫⎛⎫-+-=⨯= ⎪ ⎪⎝⎭⎝⎭,解得12π3x x +=, 所以()12π1cos cos 32x x +==; 由12π3x x =-, 所以()122πcos cos 23x x x ⎛⎫-=- ⎪⎝⎭2πcos 23x ⎛⎫=- ⎪⎝⎭()223f x ==.【点睛】解题的关键是熟练掌握三角函数的图象与性质、数量积公式、三角恒等变换公式,并灵活应用,()23f x =需结合余弦函数的对称性与值域进行求解,综合性较强,属中档题. 22.(1)周期为π,值域为]2,2⎡-⎣;(2)单调递增区间为)(,36k k k Z ππππ⎡⎤-+∈⎢⎥⎦⎣,单调递减区间为)(2,63k k k Z ππππ⎡⎤++∈⎢⎥⎦⎣. 【分析】(1)利用二倍角公式和辅助角公式化简可得)(2sin 26f x x π⎛⎫=+⎪ ⎭⎝,则可求出周期和值域;(2)解不等式)(222262k x k k Z πππππ-≤+≤+∈可得单调递增区间,解不等式)(3222262k x k k Z πππππ+≤+≤+∈可得单调递减区间. 【详解】(1)∵)(cos 222sin 26f x x x x π⎛⎫==+⎪ ⎭⎝, 所以,函数)(y f x =的周期为22T ππ==,值域为]2,2⎡-⎣. (2)解不等式)(222262k x k k Z πππππ-≤+≤+∈,得)(36k k k Z ππππ-≤+∈, 所以,函数)(y f x =的单调递增区间为)(,36k k k Z ππππ⎡⎤-+∈⎢⎥⎦⎣, 解不等式)(3222262k x k k Z πππππ+≤+≤+∈,得)(263k x k k Z ππππ+≤≤+∈, 因比,函数)(y f x =的单调递减区间为)(2,63k k k Z ππππ⎡⎤++∈⎢⎥⎦⎣. 23.(Ⅰ)2=3απ或53π;(Ⅱ){|24x x ππ-≤≤-或}122x ππ≤≤.【分析】(Ⅰ)化简得()2sin()13f x x π=++,则可得sin(+)03πα=,即可求出;(Ⅱ)由题可得2()2sin 2+13g x x π⎛⎫=+ ⎪⎝⎭,不等式化为21sin(2)32x π+≤,利用正弦函数的性质即可求解. 【详解】解:(Ⅰ)由()sin 2sin()131f x x x x π=++=++,由()=2sin()113f παα++=,得sin(+)03πα=,又[0,2]απ∈, 得2=3απ或53π; (Ⅱ)由题知,2sin(23(2)1)x f x π+=+2()2sin 2++12sin 2+1633g x x x πππ⎡⎤⎛⎫⎛⎫=+=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 由()2g x ≤,得21sin(2)32x π+≤,∴72+22+2,636k x k k Z πππππ-≤+≤∈, 22x ππ-≤≤,252333x πππ-≤+≤, ∴22336x πππ-≤+≤,或5252633x πππ≤+≤, ∴24x ππ-≤≤-,或122x ππ≤≤, 即所求x 的集合为{|24x x ππ-≤≤-或}122x ππ≤≤. 【点睛】关键点睛:本题考查三角函数的性质,解题的关键是根据图象变换得出2()2sin 2+13g x x π⎛⎫=+ ⎪⎝⎭,将不等式化为21sin(2)32x π+≤,即可根据正弦函数的性质求解. 24.(1),63ππ⎡⎤⎢⎥⎣⎦;(2)06,π⎡⎤⎢⎥⎣⎦,27,36ππ⎡⎤⎢⎥⎣⎦,5,23ππ⎡⎤⎢⎥⎣⎦.【分析】先选条件①或条件②,结合函数的性质及图像变换,求得函数()sin 26f x x π⎛⎫+ ⎝=⎪⎭, (1)由[]0,x α∈,得到2,2666x πππα⎡⎤+∈+⎢⎥⎣⎦,根据由正弦函数图像,即可求解; (2)根据函数正弦函数的形式,求得36k x k ππππ-+≤≤+,k Z ∈,进而得出函数的单调递增区间. 【详解】 方案一:选条件①由函数()f x 的图象相邻两条对称轴之间的距离为2π,可得22T ππω==,解得1ω=, 所以()()sin 2f x x ϕ=+, 又由函数()f x 的图象向右平移6π个单位长度得到πsin 2φ3g x x, 又函数()g x 图象关于,012π⎛⎫⎪⎝⎭对称,可得6k πϕπ=+,k Z ∈,因为2πϕ<,所以6π=ϕ,所以()sin 26f x x π⎛⎫+ ⎝=⎪⎭.(1)由[]0,x α∈,可得2,2666x πππα⎡⎤+∈+⎢⎥⎣⎦,因为函数()f x 在[]0,α上的值域为1,12⎡⎤⎢⎥⎣⎦, 根据由正弦函数图像,可得52266ππαπ≤+≤,解得63ππα≤≤,所以α的取值范围为,63ππ⎡⎤⎢⎥⎣⎦.(2)由222262k x k πππππ-+≤+≤+,k Z ∈,可得36k x k ππππ-+≤≤+,k Z ∈,当0k =时,可得66x ππ-≤≤;当1k =时,可得2736x ππ≤≤; 当2k =时,可得51336x ππ≤≤,所以函数()f x 在[]0,2π上的单调递增区间为06,π⎡⎤⎢⎥⎣⎦,27,36ππ⎡⎤⎢⎥⎣⎦,5,23ππ⎡⎤⎢⎥⎣⎦.方案二:选条件②: 由()12cos sin 62f x x x πωω⎛⎫=+- ⎪⎝⎭12cos sin cos cos sin 662x x x ππωωω⎛⎫=+- ⎪⎝⎭211cos cos 2cos 222x x x x x ωωωωω=+-=+sin 26x πω⎛⎫=+ ⎪⎝⎭,因为函数()f x 的图象相邻两条对称轴之间的距离为2π,可得22T ππω==,所以1ω=, 可得()()sin 2f x x ϕ=+, 又由函数()f x 的图象向右平移6π个单位长度得到πsin 2φ3g x x, 又函数()g x 图象关于,012π⎛⎫⎪⎝⎭对称,可得6k πϕπ=+,k Z ∈,因为2πϕ<,所以6π=ϕ,所以()sin 26f x x π⎛⎫+ ⎝=⎪⎭.(1)由[]0,x α∈,可得2,2666x πππα⎡⎤+∈+⎢⎥⎣⎦, 因为函数()f x 在[]0,α上的值域为1,12⎡⎤⎢⎥⎣⎦, 根据由正弦函数图像,可得52266ππαπ≤+≤,解得63ππα≤≤,所以α的取值范围为,63ππ⎡⎤⎢⎥⎣⎦.(2)由222262k x k πππππ-+≤+≤+,k Z ∈,可得36k x k ππππ-+≤≤+,k Z ∈,当0k =时,可得66x ππ-≤≤;当1k =时,可得2736x ππ≤≤; 当2k =时,可得51336x ππ≤≤,所以函数()f x 在[]0,2π上的单调递增区间为06,π⎡⎤⎢⎥⎣⎦,27,36ππ⎡⎤⎢⎥⎣⎦,5,23ππ⎡⎤⎢⎥⎣⎦.【点睛】解答三角函数图象与性质的综合问题的关键是首先将已知条件化为()sin()f x A wx ϕ=+或()cos()f x A wx ϕ=+的形式,然后再根据三角函数的基本性质,结合数形结合法的思想研究函数的性质(如:单调性、奇偶性、对称性、周期性与最值等),进而加深理解函数的极值点、最值点、零点及有界性等概念与性质.25.(1)5,,1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦;(2). 【分析】(1)利用三角恒等变换化简()23f x x π⎛⎫=+ ⎪⎝⎭,再整体代入求单调递增区间;(2)由已知得233f απα⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,求出sin 3πα⎛⎫+ ⎪⎝⎭的值,再利用倍角公式求12f πα⎛⎫- ⎪⎝⎭的值; 【详解】(1)1()cos2cos 2cos2cos2232f x x x x x x π⎛⎫=+-=++ ⎪⎝⎭3cos22223x x x π⎛⎫=+=+ ⎪⎝⎭ 当22,2,322x k k k Z πππππ⎡⎤+∈-+∈⎢⎥⎣⎦,函数()f x 单调递增, 所以()f x 的单调递增区间5,,1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦.(2)由已知得23f απα⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,所以1sin 33πα⎛⎫+= ⎪⎝⎭,而2221263f πππααα⎛⎫⎛⎫⎛⎫-=+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭212sin 39πα⎤⎛⎫=-+=- ⎪⎥⎝⎭⎦. 【点睛】求正弦型三角函数的单调区间,常用整体代入法,但要注意保证x 的系数为正,才比较不容易出错;求三角函数值时,要注意整体观察角.26.(1)T π=,,,63k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦;(2)()()max min 2,1f x f x ==-. 【分析】(1)先利用二倍角公式和辅助角公式化简()f x ,然后根据周期计算公式求解出T ,再采用整体替换法求解出单调递增区间;(2)采用整体替换的方法先分析出26x π-的取值范围,然后再结合正弦函数的单调性,求解出()f x 的最值.【详解】(1)因为())22cos cos 1212cos 2cos 2f x x x x x x x x =-+=+-=-, 所以()2sin 26f x x π⎛⎫=- ⎪⎝⎭,所以最小正周期22T ππ==, 令222,262k x k k Z πππππ-≤-≤+∈,所以,63k x k k Z ππππ-≤≤+∈, 所以单调递增区间为:,,63k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦; (2)因为0,2x π⎡⎤∈⎢⎥⎣⎦,所以52,666x πππ⎛⎫⎡⎤-∈- ⎪⎢⎥⎝⎭⎣⎦, 又因为sin y x =在,62ππ⎡⎫-⎪⎢⎣⎭上单调递增,在5,26ππ⎛⎤ ⎥⎝⎦上单调递减, 所以()max 2sin 22f x π==,此时3x π=,又()min 2sin 16f x π⎛⎫=-=- ⎪⎝⎭,此时0x =, 综上可知:()()max min 2,1f x f x ==-.【点睛】思路点睛:求解形如()sin y A ωx φ=+在指定区间上的值域或最值的一般步骤如下: (1)先确定t x ωϕ=+这个整体的范围;(2)分析sin y A t =在(1)中范围下的取值情况;(3)根据取值情况确定出值域或最值,并分析对应的x 的取值.。

(完整版)高一数学三角函数测试题

(完整版)高一数学三角函数测试题

高一数学必修4三角函数试题一、选择题(本大题10小题,每小题5分,共50分.只有一项是符合题目要求的)1.cos(60)-的值是 ( )A.12B.12- C. D. 2.下列函数是偶函数且周期为π的是 ( )A. sin y x =B. cos y x =C.tan y x =D. cos 2y x =3.已知sin 0,cos 0θθ<>,则θ的终边在 ( )A.第一象限B. 第二象限C. 第三象限D. 第四象限4.函数()sin f x x =的周期为 ( )A. πB. 2πC. 3πD. 4π 5.已知sin(),cos(),tan()654a b c πππ=-=-=-,则大小关系为 ( ) A. a b c << B. c a b << C. b a c << D. c b a << 6.已知扇形的半径为3,圆心角为120°,则扇形的弧长和面积分别为 ( )A.π、2πB. 2π、3πC. 3π、4πD. 4π、4π7.集合{sin }A y y x ==,{cos }B y y x ==,下列结论正确的是 ( )A. A B =B. A B ⊆C. [1,0)A C B =-D. [1,0]A C B =-8.下列关于正切函数tan y x =的叙述不正确的是 ( )A.定义域为{,}2x x k k Z ππ≠+∈ B. 周期为πC.在(,),22k k k Z ππππ-++∈上为增函数 D.图象不关于点(,0)2k π,k Z ∈对称 9.下列关系式成立的是 ( )A.sin(3)sin παα+= B .tan(5)tan παα-= C.3cos()sin 2παα+= D.3sin()cos 2παα-= 10. 下列不等式成立的是 ( )A. sin1cos1<B. sin 2cos2<C. sin3cos3<D. sin 4cos4<第Ⅱ卷(非选择题 共100分)二、填空题:本大题共5小题,每小题5分,共25分.把答案填在题中横线上.11.函数2sin(3)6y x π=+的最大值为 . 12.已知1cos 3α=,则sin()2πα-= . 13.已知tan 1α=,(,2)αππ∈,则cos α= .14.函数()sin(3)f x x π=+的最小正周期为 .15.已知sin()y A x ωϕ=+(0,0,)2A πωϕ<><的部分图象,则y = .三、解答题:本大题共6小题,共75分,解答题应写出文字说明、证明过程或演算步骤。

新人教版高中数学必修第一册第五单元《三角函数》检测题(有答案解析)

新人教版高中数学必修第一册第五单元《三角函数》检测题(有答案解析)

一、选择题1.已知()0,πα∈,2sin cos 1αα+=,则cos 21sin 2αα=-( )A .2425-B .725-C .7-D .17-2.已知α为第二象限角,且π3cos 25α⎛⎫-= ⎪⎝⎭,则tan α=( ). A .34-B .43-C .53-D .45-3.将函数()sin 2cos 2f x x x =+的图象向左平移12π个单位长度后,得到函数()g x 的图象,则函数()g x 图象的一条对称轴方程为( ) A .6x π=B .12x π=C .3x π=D .24x π=4.计算cos21cos9sin 21sin9︒︒-︒︒的结果是( ).A .B .12-C D .125.已知函数()sin (0)6f x x πωω⎛⎫=+> ⎪⎝⎭在区间2,43ππ⎡⎤-⎢⎥⎣⎦上单调递增,则ω的取值范围为( ) A .80,3⎛⎤ ⎥⎝⎦B .10,2⎛⎤ ⎥⎝⎦C .18,23⎡⎤⎢⎥⎣⎦D .3,28⎡⎤⎢⎥⎣⎦6.sin15cos15+=( )A .12B .2 C D 7.sin34sin64cos34sin 206︒︒-︒︒的值为( )A .12B .2C D .18.已知3πin 325s α⎛⎫+= ⎪⎝⎭,0απ<<,则tan α=( ) A .43-B .34-C .34D .439.若1sin 63πα⎛⎫-= ⎪⎝⎭,则2cos 23πα⎛⎫+ ⎪⎝⎭等于( ).A .79-B .13-C .13D .7910.已知1cos 2α=,322παπ<<,则sin(2)πα-=( )A .B .12C .12-D .211.已知某扇形的弧长为32π,圆心角为2π,则该扇形的面积为( ) A .4π B .6π C .2π D .94π 12.已知tan 2α=,则sin sin 44ππαα⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎝⎭( ) A .310-B .310 C .35D .35二、填空题13.若1sin 42πθ⎛⎫+= ⎪⎝⎭,则sin 2θ=____________ 14.已知角α的终边经过点()3,4P -,则sin 2cos αα+的值等于______.15.已知函数()log (21)3a f x x =-+的图象过定点P ,且角α的终边过点P ,始边与x 轴的正半轴重合,则tan3α的值为__________. 16.将函数()cos 2f x x =图象上的所有的点向左平移4π个单位长度后,得到函数g (x )的图象,如果g (x )在区间[0]a ,上单调递减,那么实数a 的最大值为_________.17.设函数2()2cos cos f x x x x m =++,当0,2x π⎡⎤∈⎢⎥⎣⎦时()f x 的值域为17,22⎡⎤⎢⎥⎣⎦,则实数m 的值是________. 18.若函数()πsin 26g x x ⎛⎫=+ ⎪⎝⎭在区间0,3a ⎡⎤⎢⎥⎣⎦和7π4,6a ⎡⎤⎢⎥⎣⎦上均递增,则实数a 的取值范围是______.19.对任意闭区间I ,用I M 表示函数sin y x =在I 上的最大值,若有且仅有一个正数a 使得[][]0,,2a a a M kM =成立,则实数k 的取值范围是_________. 20.设函数()()2sin 0,2f x x πωφφφ⎛⎫=+><⎪⎝⎭的部分图象如图.若对任意的()()2x R f x f t x ∈=-,恒成立,则实数t 的最小正值为____.三、解答题21.已知函数()sin cos f x a x b x =+,其中0ab ≠.(1)若1b =,是否存在实数a 使得函数()f x 为偶函数,若存在,求出a 的值;若不存在,请说明理由; (2)若34x π=为函数()f x 的对称轴,求函数()f x 的单调增区间. 22.已知()π2sin cos 23cos 44f x x x x x π⎛⎫⎛⎫=+-+ ⎪ ⎪⎝⎭⎝⎭. (1)求函数()f x 的单调递减区间:(2)若函数()()42sin 2g x f x k x =--在区间7,1212ππ⎡⎤⎢⎥⎣⎦上有唯一零点,求实数k 的取值范围.23.已知 3sin 5α=,12cos 13,,2παπ⎛⎫∈ ⎪⎝⎭,3,2πβπ⎛⎫∈ ⎪⎝⎭求sin()αβ+,cos()αβ-,tan2α的值.24.已知()sin (sin 3)f x x x x =,ABC ∆中,角A ,B ,C 所对的边为a ,b ,c .(1)求()f x 的单调递增区间; (2)若3()2f A =,2a =,求ABC ∆周长的最大值 25.已知()()cos 0f x x ωω=>(1)若f (x )的周期是π,求ω,并求此时()12f x =的解集; (2)若()()()21,32g x f x x f x πω⎛⎫==+-+ ⎪⎝⎭,0,2x π⎡⎤∈⎢⎥⎣⎦,求()g x 的值域.26.已知π0π2αβ<<<<,且5sin()13αβ+=,1tan 22α=. (1)求cos α的值; (2)求sin β.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】利用22sin cos 1αα+=以及2sin cos 1αα+=解出sin α,cos α的值,再利用二倍角公式化简即可求解. 【详解】因为2sin cos 1αα+=,所以cos 12sin αα=-, 代入22sin cos 1αα+=得()22sin 12sin 1αα+-=, 因为()0,πα∈,所以4sin 5α,所以43cos 12sin 1255αα=-=-⨯=-,所以4324sin 22sin cos 25525ααα⎛⎫==⨯⨯-=- ⎪⎝⎭, 2247cos 212sin 12525αα⎛⎫=-=-⨯=- ⎪⎝⎭cos 211sin 2717252425αα-==--⎛⎫- ⎪⎭-⎝, 故选:D 【点睛】关键点点睛:本题的关键点是熟记同角三角函数基本关系,以及三角函数值在每个象限内的符号,熟记正余弦的二倍角公式,计算仔细.2.A解析:A 【分析】 由已知求出3sin 5α=,即可得cos α,进而求出所求. 【详解】 ∵π3cos 25α⎛⎫-=⎪⎝⎭,∴3sin 5α=,∵α为第二象限角,∴4cos 5α==-,∴sin 3tan cos 4ααα==-. 故选:A .3.D解析:D 【分析】由()24f x x π⎛⎫=+ ⎪⎝⎭,向左平移12π个单位长度得到()5212g x x π⎛⎫=+ ⎪⎝⎭,再令52122x k πππ+=+求解. 【详解】因为函数()sin 2cos 224f x x x x π⎛⎫=+=+ ⎪⎝⎭,由题意得()5212g x x π⎛⎫=+ ⎪⎝⎭,所以52122x k πππ+=+, 解得1,224x k k Z ππ=+∈, 故选:D4.C解析:C 【分析】 直接化简求值即可. 【详解】解: cos21cos9sin 21sin9︒︒-︒︒()cos 219=︒+︒cos30=︒= 故选:C.5.B解析:B 【分析】由正弦函数的性质可得121(2)(2),33k x k k Z ππππωω-≤≤+∈,结合已知单调区间列不等式组求ω解集即可. 【详解】由函数解析式知:()f x 在()2,222k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦上单调递增,∴121(2)(2),33k x k k Z ππππωω-≤≤+∈,()f x 单调递增, 又∵()f x 在区间2,43ππ⎡⎤-⎢⎥⎣⎦上单调递增, ∴12(2)3412(2)33k k πππωπππω⎧-≤-⎪⎪⎨⎪+≥⎪⎩,解得8831320k k k Z ωωω⎧≤-⎪⎪⎪≤+⎨⎪>⎪⎪∈⎩,所以当0k =时,有102ω<≤,故选:B 【点睛】关键点点睛:利用整体代入法得到121(2)(2),33k x k k Z ππππωω-≤≤+∈,结合已知单调区间与所得区间的关系求参数范围.6.D解析:D 【分析】由辅助角公式可直接计算得到结果. 【详解】()6sin15cos152sin 15452sin 602+=+==. 故选:D.7.C解析:C 【分析】利用诱导公式化简整理,结合两角和的正弦公式,即可求得答案. 【详解】()sin34sin64cos34sin 206sin34cos26cos34sin 26sin 3426sin60︒︒-︒︒=︒︒+︒︒=︒+︒=︒= 故选:C .8.A解析:A 【分析】根据诱导公式,可得cos α的值,根据同角三角函数的关系,结合α的范围,可求得sin α的值,即可求得答案. 【详解】因为3πin 325s α⎛⎫+=⎪⎝⎭,所以3cos 5α=-,所以4sin 5α===±, 又0πα<<,所以α为第二象限角,所以4sin 5α 所以sin tan s 43co ααα==-. 故选:A .9.A解析:A 【分析】 根据1sin 63πα⎛⎫-=⎪⎝⎭,利用诱导公式得到cos 3πα⎛⎫+ ⎪⎝⎭,再由2cos 2cos 233ππαα⎛⎫⎛⎫⎛⎫+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,利用二倍角公式求解. 【详解】 因为1sin sin 6233πππαα⎛⎫⎛⎫⎛⎫-=-+=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 所以1cos 33πα⎛⎫+=⎪⎝⎭, 所以227cos 2cos 22cos 13339πππααα⎛⎫⎛⎫⎛⎫⎛⎫+=+=+-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,故选:A10.D解析:D 【分析】由已知利用同角三角函数基本关系式可求sin α的值,进而根据诱导公式即可求解. 【详解】 解:因为1cos 2α=,322παπ<<,所以sin α==,所以sin(2)sin 2παα-=-=. 故选:D .11.D解析:D 【分析】由弧长公式求出3r =,再由扇形的面积公式求出答案. 【详解】扇形的圆心角322l r r ππθ===,所以3r =,则扇形的面积113932224S lr ππ==⨯⨯=. 故选:D. 12.B解析:B 【分析】利用两角和与差的正弦公式、同角三角函数的基本关系式化简所求表达式,由此求得所求表达式的值. 【详解】sin sin sin cos cos sin sin cos cos sin 444444ππππππαααααα⎛⎫⎛⎫⎛⎫⎛⎫-+=-⋅+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭()22222211sin cos sin cos 22sin cos αααααα-=-=⨯+ 221tan 114132tan 124110αα--=⨯=⨯=++. 故选:B二、填空题13.【分析】由题意结合诱导公式二倍角余弦公式直接运算即可得解【详解】若则故答案为:解析:12-【分析】由题意结合诱导公式、二倍角余弦公式直接运算即可得解. 【详解】 若π1sin 42θ⎛⎫+= ⎪⎝⎭,则2ππ11cos 2sin212sin 122442θθθ⎛⎫⎛⎫+=-=-+=-⨯= ⎪ ⎪⎝⎭⎝⎭, ∴1sin22θ=-.故答案为:12-. 14.【分析】根据三角函数定义求出的值由此可求得的值【详解】由三角函数的定义可得因此故答案为:解析:25-【分析】根据三角函数定义求出sin α、cos α的值,由此可求得sin 2cos αα+的值. 【详解】由三角函数的定义可得3cos 5α==-,4sin 5α==,因此,432sin 2cos 2555αα⎛⎫+=+⨯-=- ⎪⎝⎭. 故答案为:25-. 15.【分析】先求出定点为再利用正切函数的两角和公式求解即可【详解】函数的图象过定点可得定点为又由角的终边过点且始边与轴的正半轴重合故答案为: 解析:913【分析】先求出定点P 为(1,3),再利用正切函数的两角和公式求解即可 【详解】函数()log (21)3a f x x =-+的图象过定点P ,可得定点P 为(1,3),又由角α的终边过点P ,且始边与x 轴的正半轴重合,3tan 31α,22tan 3tan 21tan 4ααα∴==--, tan 2tan 9tan 31tan 2tan 13ααααα+==-故答案为:91316.【分析】求出的平移后的解析式再利用函数在区间上是单调递减函数从而得到的最大值【详解】由题意将函数的图象向左平移个单位长度得到函数的图象因为函数在区间上是单调递减所以解得所以实数的最大值为故答案为:解析:4π【分析】求出()y g x =的平移后的解析式,再利用函数()g x 在区间0,2π⎡⎤⎢⎥⎣⎦上是单调递减函数,从而得到a 的最大值.【详解】由题意,将函数()cos 2f x x =的图象向左平移4x个单位长度,得到函数()cos 2+n 4si 2g x x x π⎡⎤⎛⎫==- ⎪⎢⎥⎝⎭⎣⎦的图象,因为函数()g x 在区间[0]a ,上是单调递减,所以022a π<≤,解得04a π<≤,所以实数a 的最大值为4π. 故答案为:4π. 17.【分析】利用二倍角公式与辅助角公式化简解析式为根据定义域求出函数值域为利用可得答案【详解】因为则由得且故故答案为:【点睛】高考解答题对三角三角函数的考查主要以三角恒等变形三角函数的图象和性质利用正余 解析:12【分析】利用二倍角公式与辅助角公式化简解析式为2sin 216x m π⎛⎫+++ ⎪⎝⎭,根据定义域求出函数值域为[,3]m m +,利用17[,3],22m m ⎡⎤+=⎢⎥⎣⎦可得答案.【详解】因为2()2cos cos f x x x x m =++1cos 222sin 216x x m x m π⎛⎫=++=+++ ⎪⎝⎭.0,2x π⎡⎤∈⎢⎥⎣⎦,2666x ππ7π∴≤+≤,则1sin 2,162x π⎛⎫⎡⎤+∈- ⎪⎢⎥⎝⎭⎣⎦. ()2sin 21[,3]6f x x m m m π⎛⎫∴=+++∈+ ⎪⎝⎭,由17[,3],22m m ⎡⎤+=⎢⎥⎣⎦得,12m =且732m +=,故12m =. 故答案为:12. 【点睛】高考解答题对三角三角函数的考查主要以三角恒等变形,三角函数的图象和性质,利用正余弦定理解三角形为主,在研究三角函数的图象和性质问题时,一般先运用三角恒等变形,将表达式转化为一个角的三角函数的形式,再结合正弦函数与余弦函数的性质求解.18.【分析】由的范围求出的范围结合正弦函数性质得不等关系【详解】时时由题意又解得故答案为:【点睛】方法点睛:本题考查正弦型复合函数的单调性在中则的单调性与的单调性一致因此对一个区间我们只要求得的范围它应解析:π7π,624⎡⎫⎪⎢⎣⎭【分析】由x 的范围求出26x π+的范围,结合正弦函数性质得不等关系.【详解】0,3a x ⎡⎤∈⎢⎥⎣⎦时,22,6636a x πππ⎡⎤+∈+⎢⎥⎣⎦,7π4,6x a ⎡⎤∈⎢⎥⎣⎦时,528,662x a πππ⎡⎤+∈+⎢⎥⎣⎦,由题意23623862a a ππππ⎧+≤⎪⎪⎨⎪+≥⎪⎩,又03746aa π⎧>⎪⎪⎨⎪<⎪⎩,解得7624a ππ≤<.故答案为:π7π,624⎡⎫⎪⎢⎣⎭. 【点睛】方法点睛:本题考查正弦型复合函数的单调性,在sin()y A x ωϕ=+中,0,0A ω>>,则sin()y A x ωϕ=+的单调性与sin y x =的单调性一致,因此对一个区间[,]a b ,我们只要求得x ωϕ+的范围,它应在sin y x =的单调区间内,那么sin()y A x ωϕ=+在[,]a b 上就有相同的单调性.这是一种整体思想的应用.19.【分析】讨论的范围得出的表达式求出的值域即可【详解】①当时由得所以此时即则即;②当时由得此时即;③当时由得所以此时则即;④当时则由得不成立此时不存在;⑤当时由得所以此时则即;⑥当时由得综上实数的取值解析:1,2⎡⎫+∞⎪⎢⎣⎭【分析】讨论a 的范围得出k 的表达式,求出()k f a =的值域即可. 【详解】①当0,4πa ⎡⎤∈⎢⎥⎣⎦时,[0,][,2]20,,sin ,sin 22a a a πa M a M a ⎡⎤∈==⎢⎥⎣⎦,由[][]0,,2a a a M kM =,得sin sin 2a k a =,所以12cos k a=,cos 1a ≤≤2cos 2a ≤≤,则1122cos 2a ≤≤,即122k ⎡∈⎢⎣⎦; ②当,42ππa ⎡⎤∈⎢⎥⎣⎦时,[0,][,2]2,,sin ,12a a a πa πM a M ⎡⎤∈==⎢⎥⎣⎦, 由[][]0,,2a a a M kM =,得sin k a =,sin 1a ≤≤,即k ⎤∈⎥⎣⎦; ③当,2a ππ⎛⎫∈⎪⎝⎭时,()[0,][,2]2,2,1,sin a a a a M M a ππ∈==, 由[][]0,,2a a a M kM =,得1sin k a =,所以1sin k a=, 此时0sin 1a <<,则11sin a>,即()1,k ∈+∞; ④当a π=时,22a π=,则[0,][,2]1,0a a a M M ==, 由[][]0,,2a a a M kM =,得10=不成立,此时k 不存在; ⑤当5,4πa π⎛⎫∈ ⎪⎝⎭时,[0,][,2]522,,1,sin 22a a a a ππM M a ⎛⎫∈== ⎪⎝⎭, 由[][]0,,2a a a M kM =,得1sin 2k a =,所以1sin 2k a=, 此时0sin 21a <<,则11sin 2a>,即()1,k ∈+∞; ⑥当5,+4a π⎡⎫∈∞⎪⎢⎣⎭时,[0,][,2]52,,1,12a a a a πM M ⎡⎫∈+∞==⎪⎢⎣⎭, 由[][]0,,2a a a M kM =,得1k =, 综上,实数k 的取值范围是1,2⎡⎫+∞⎪⎢⎣⎭. 【点睛】本题考查三角函数最值的求解,解题的关键是分段讨论a 的范围,根据a 的不同取值范围得出k 的表达式,再利用三角函数的性质求解.20.【分析】由图象求得再根据求得从而求得函数解析式再根据由函数图象的对称轴为直线x=t 求解【详解】由图象知:即则由五点法得所以即因为所以所以又因为所以函数图象的对称轴为直线x=t 则所以解得当k=0时t 取 解析:12π【分析】 由图象5556124T ππ⎛⎫--= ⎪⎝⎭,求得ω,再根据506f π⎛⎫= ⎪⎝⎭,求得φ,从而求得函数解析式,再根据()()2f x f t x =-,由函数()f x 图象的对称轴为直线x =t 求解. 【详解】 由图象知:5556124T ππ⎛⎫--= ⎪⎝⎭,即T π=, 则22Tπω==, 由“五点法”得552sin 063f ππφ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,所以()53k k Z πφπ+=∈,即()53k k Z πφπ=-∈, 因为2πφ<,所以3πφ=,所以()2sin 23f x x π⎛⎫=+⎪⎝⎭, 又因为()()2f x f t x =-,所以函数()f x 图象的对称轴为直线x =t , 则()2sin 223f t t π⎛⎫=+=± ⎪⎝⎭, 所以23t π+()2k k Z ππ=+∈,解得()212k t k Z ππ=+∈, 当k =0时,t 取到了最小正值为12π. 故答案为:12π. 【点睛】方法点睛:根据三角函数()()sin f x A x b ωϕ=++的部分图象求函数解析式的方法: (1)求A 、()()max min:2f x f x b A -=,()()max min2f x f x b +=;(2)求出函数的最小正周期T ,进而得出2Tπω=;(3)取特殊点代入函数可求得ϕ的值.三、解答题21.(1)不存在,理由见解析;(2)0a >时,单调增区间是32,244k k ππππ⎡⎤-+⎢⎥⎣⎦,k Z ∈,0a <时,单调增区间是372,244k k ππππ⎡⎤++⎢⎥⎣⎦,k Z ∈.【分析】(1)利用函数奇偶性的定义可得答案;(2)由条件结合辅助角公式可得22a -=,化简可得=-b a ,()()sin cos sin 4f x a x x x π⎛⎫=-=- ⎪⎝⎭,然后分0a >、0a <两种情况讨论.【详解】(1)当1b =时,()sin cos f x a x x =+若存在实数a 使得函数()f x 为偶函数,则()()f x f x -=恒成立, 即()()sin cos sin cos a x x a x x -+-=+恒成立, 整理得sin 0a x =恒成立,所以0a =,与0ab ≠矛盾, 故不存在;(2)结合三角函数的性质知,三角函数在对称轴处取最值,又由辅助角公式知()f x 的最值为所以3422f a π⎛⎫=-=⎪⎝⎭两边平方,得22221122a b ab a b +-=+,所以2211022a b ab ++=, 即()2102a b +=,所以=-b a ,所以()()sin cos sin 4f x a x x x π⎛⎫=-=- ⎪⎝⎭,当0a >时,令22242k x k πππππ-≤-≤+,k Z ∈,解得32244k x k ππππ-≤≤+,k Z ∈, 所以单调增区间是32,244k k ππππ⎡⎤-+⎢⎥⎣⎦,k Z ∈,当0a <时,令322242k x k πππππ+≤-≤+,k Z ∈, 解得372244k x k ππππ+≤≤+,k Z ∈, 所以单调增区间是372,244k k ππππ⎡⎤++⎢⎥⎣⎦,k Z ∈.22.(1)7,()1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦;(2)11|44k k ⎧-<≤⎨⎩或12k ⎫=-⎬⎭.【分析】(1)化简()f x ,利用正弦函数的递减区间列式可解得结果; (2)转化为函数()cos 26h x x π⎛⎫=+ ⎪⎝⎭在7,1212x ππ⎡⎤∈⎢⎥⎣⎦上的图象与2y k =的图象有唯一交点,根据图象可得结果. 【详解】(1)()2sin cos cos 44f x x x x x ππ⎛⎫⎛⎫=+-+ ⎪ ⎪⎝⎭⎝⎭sin 2cos 244x x x πππ⎛⎫⎛⎫=++-+ ⎪ ⎪⎝⎭⎝⎭sin 2cos 44x x x ππ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭sin 222x x π⎛⎫=++ ⎪⎝⎭sin 222sin 23x x x π⎛⎫=+=+ ⎪⎝⎭,令3222232k x k πππππ+≤+≤+,k Z ∈,解得:71212k x k ππππ+≤≤+,k Z ∈, ∴()f x 的单调递减区间为7,()1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦.(2)由(1)知,函数2n 2)3(si f x x π⎛⎫=+⎪⎝⎭, ()g x =2sin 242sin 23x k x π⎛⎫+-- ⎪⎝⎭在7,1212ππ⎡⎤⎢⎥⎣⎦上有唯一零点等价于12sin 2sin 2sin 2cos 2cos 23226k x x x x x ππ⎛⎫⎛⎫=+-=-+=+ ⎪ ⎪⎝⎭⎝⎭在7,1212ππ⎡⎤⎢⎥⎣⎦上有唯一实根,设()cos 26h x x π⎛⎫=+⎪⎝⎭,7,1212x ππ⎡⎤∈⎢⎥⎣⎦,依题意可知2y k =与()y h x =的图象有唯一交点,函数()h x 在7,1212x ππ⎡⎤∈⎢⎥⎣⎦上的图象如图:由图可知实数k 应满足11222k -<≤或21k =-, ∴1144k -<≤或12k =-,故实数k 的取值范围11|44k k ⎧-<≤⎨⎩或12k ⎫=-⎬⎭. 【点睛】关键点点睛:转化为函数()cos 26h x x π⎛⎫=+ ⎪⎝⎭在7,1212x ππ⎡⎤∈⎢⎥⎣⎦上的图象与2y k =的图象有唯一交点,根据图象求解是解题关键.23.1665-;3365;247- 【分析】由已知条件,利用同角三角函数基本关系结合角所在的象限求出cos α,sin β,以及tan α的值,再利用两角和的正弦公式,两角差的余弦公式,正切的二倍角公式即可求解.【详解】 因为,2παπ⎛⎫∈⎪⎝⎭,3sin 5α=,所以2234cos 1sin 155αα⎛⎫=-=--=- ⎪⎝⎭,因为3,2πβπ⎛⎫∈ ⎪⎝⎭,12cos 13, 所以22125sin 1cos 11313ββ⎛⎫=--=---=- ⎪⎝⎭, 所以3124516sin()sin cos cos sin 51351365αβαβαβ⎛⎫⎛⎫⎛⎫+=+=⨯-+-⨯-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,4123533cos()cos cos sin sin 51351365αβαβαβ⎛⎫⎛⎫⎛⎫-=+=-⨯-+⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭因为sin 3tan cos 4ααα==-,所以22322tan 244tan 21tan 7314ααα⎛⎫⨯- ⎪⎝⎭===--⎛⎫-- ⎪⎝⎭, 综上所述:16sin()65αβ+=-,33cos()65αβ-=,24tan 27α=-. 24.(1)2,63k k ππππ⎡⎤++⎢⎥⎣⎦,k Z ∈;(2)23+. 【分析】(1)首先利用降幂公式和辅助角公式化简函数()1sin 226f x x π⎛⎫=-+ ⎪⎝⎭,再求函数的单调递增区间;(2)先求角A ,再根据余弦定理和基本不等式求周长的最大值. 【详解】(1)()2111sin cos (cos22)sin(2)2226f x x x x x x x π==-=-+, ∴()f x 在3222262k x k πππππ+≤+≤+上单调递增, ∴2[,]63x k k ππππ∈++,k Z ∈ (2)()13sin(2)262f A A π=-+=,得32262A k k Z πππ+=+∈,,即23A k ππ=+,0A π<<,则23A π=, 而2a =,由余弦定理知:2222cos 4a b c bc A =+-=,有22()()444b c b c bc ++=+≤+,所以03b c <+≤当且仅当b c =时等号成立, ∵周长2l a b c b c =++=++, ∴周长最大值为2+【点睛】思路点睛:已知一边及一边所对角求解三角形面积或周长的最大值时,可利用余弦定理构造方程,再利用基本不等式求所需的两边和或乘积的最值,代入三角形周长或面积公式,求得结果.25.(1)2ω=;{|,}6ππ=±∈x x k k Z ;(2)1[-,1]2. 【分析】(1)由条件求出2ω=,然后可得答案;(2)将()g x 化为()1cos(2)32g x x π=++,然后可算出其值域.【详解】 (1)由2T ππω==得2ω=;此时令1()cos22f x x ==得223x k ππ=±,6x k k Z ππ∴=±∈ 所求方程的解集为{|,}.6x x k k Z ππ=±∈(2)()2cos )cos()2g x x x x π=-+2cos sin x x x =1cos212cos(2)232x x x π+==++ 4022333x x ππππ≤≤∴≤+≤11cos(2)32x π∴-≤+≤ 11cos(2)1232x π∴-≤++≤即()g x 的值域为1[-,1]226.(1)3cos 5α=;(2)6365. 【分析】(1)根据二倍角的正切公式以及同角三角函数的关系,可求得结果; (2)由3cos 5α=求出4sin 5α,由5sin()13αβ+=求出12cos()13αβ+=-,再根据[]sin sin ()βαβα=+-以及两角差的正弦公式可得结果.【详解】(1)因为1tan22α=,所以22tan42tan 31tan 2ααα==-, 所以22sin 4cos 3sin cos 1αααα⎧=⎪⎨⎪+=⎩,0,2πα⎛⎫∈ ⎪⎝⎭,解得3cos 5α=.(2)由已知得322ππαβ<+<,又5sin()13αβ+=,所以12cos()13αβ+==-,又24sin 1cos 5αα, sin sin[()]βαβα=+-sin()cos cos()sin αβααβα=+-+531246313515565⎛⎫=⨯--⨯= ⎪⎝⎭. 【点睛】本题考查了同角三角函数间的关系,二倍角的公式,两角差的正弦公式,关键在于观察,用已知角表示待求的角,属于中档题.。

高一数学(人教版)必修四单元测试:三角函数(word版,有答案)

高一数学(人教版)必修四单元测试:三角函数(word版,有答案)

高一数学三角函数部分单元试卷班级________ 姓名__________学号________一、 选择题(每题5分)1. 集合|,24k M x x k Z ππ⎧⎫==+∈⎨⎬⎩⎭,|,42k N x x k Z ππ⎧⎫==+∈⎨⎬⎩⎭( ) (A)M N = (B)M N ≠⊂ (C) N M ≠⊂ (D)M N φ=2.下列函数中,周期为π,且在[,]42ππ上为减函数的是 ( )(A )sin ||y x =-(B )cos ||y x =(C )sin(2)2y x π=+ (D )cos(2)2y x π=+ 3.如果1cos()2A π+=-,那么sin()2A π+的值是 ( )(A ).12-(B )12(C )4.已知1sin 1a a θ-=+,31cos 1a aθ-=+,若θ为第二象限角,则下列结论正确的是( ) (A ).1(1,)3a ∈- (B ). 1a = (C). 119a a ==或 (D). 19a = 5. 方程cos x x =在(,)-∞+∞内 ( )(A).没有根 (B).有且只有一个根 (C).有且仅有两个根 (D).有无穷多个根 6. 设将函数()cos (0)f x x ωω=>的图像向右平移3π个单位后与原图像重合,则ω的最小值是 (A )13(B ) 3 (C ) 6 (D ) 9 7.为了得到函数sin(2)3y x π=-的图像,只需把函数sin(2)6y x π=+的图像 ( )(A )向左平移4π个长度单位 (B )向右平移4π个长度单位 (C )向左平移2π个长度单位 (D )向右平移2π个长度单位8.已知函数()sin(2),f x x ϕ=+其中ϕ为实数. 若()()6f x f π≤对x R ∈恒成立,且()()2f f ππ>,则()f x 的单调递增区间是 ( )A . ,()36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦ B. ,()2k k k Z πππ⎡⎤+∈⎢⎥⎣⎦C . 2,()63k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦ D . ,()2k k k Z πππ⎡⎤-∈⎢⎥⎣⎦二、填空题(每题4分)9.函数sin y x ω=和函数tan (0)y x ωω=>的最小正周期之和为π,则ω=________ 10.已知α、β∈[-π2,π2]且α+β<0,若sin α=1-m ,sin β=1-m 2,则实数m 的取值范围是_________________11.令tan a θ=,sin b θ=,cos c θ=,若在集合π3π,44θθθ⎧-<<≠⎨⎩ππ0,,42⎫⎬⎭中,给θ取一个值,,,a b c三数中最大的数是b ,则θ的值所在范围是____________ 12.若函数()2sin (01)f x x ωω=<<在闭区间0,3π⎡⎤⎢⎥⎣⎦2,则ω的值为______ 13.22sin120cos180tan 45cos (330)sin(210)︒+︒+︒--︒+-︒=_______三、解答题(每题10分)14. 已知tan 2α=,计算①2cos()cos()2sin()3sin()2παπαπαπα+----+ ②33sin cos sin 2cos αααα-+15. 已知函数3)62sin(3)(++=πx x f(1(2)指出)(x f16.已知在ABC ∆中,17sin cos 25A A += ①求sin cos A A②判断ABC ∆是锐角三角形还是钝角三角形 ③求tan A 的值17.已知函数lg cos(2)y x ,(1)求函数的定义域、值域; (2)讨论函数的奇偶性;(3)讨论函数的周期性 (4)讨论函数的单调性高一数学三角函数部分试卷参考答案一、 选择题(每小题3分,共40分)二、 填空题(每小题4分,共20分)9. 3 10.11. 3(,)24ππ 12. 3413. 1三.解答题:(本大题共4小题,共40分,解答应写出文字说明,证明过程或演算步骤) 14.解 (1)tan 2α=2sin cos 2tan 13cos 3sin 13tan 7αααααα-+-+∴==-++原式=(5分)(2)322322sin cos (sin cos )sin 2cos sin cos αααααααα-+=++原式()3232tan tan 11tan 2tan 26αααα--==++ (10分) 15解:(1)图略 (5分) (2)04,3,6T A ππϕ===,22()3x k k Z ππ=+∈对称轴 3ππ对称中心(-+2k ,3), (10分)16解:(1)17sin cos 25A A +=两边平方得 21712sin cos 25A A ⎛⎫+= ⎪⎝⎭336sin cos 625A A =-.......(3分)(2)17sin cos 125A A +=< 2A π∴>,ABC ∆为钝角三角形 ..................(6分)(3)2217sin cos 25sin cos 1A A A A ⎧+=⎪⎨⎪+=⎩ 得24sin 257cos 25A A ⎧=⎪⎪⎨-⎪=⎪⎩24tan 7∴=- ....(10分)17. 解(1)定义域(,)()44k k k Z ππππ-++∈ 值域(,0]-∞ ....(3分)(2) 偶函数 ........(5分) (3)T π= ........(8分) (4)增区间(,)()4k k k Z πππ-+∈减区间(,)()4k k k Z πππ+∈ ........(10分)。

人教版高一数学必修四测试题(含详细答案)

人教版高一数学必修四测试题(含详细答案)

人教版高一数学必修四测试题(含详细答案)高一数学试题(必修4)第一章三角函数一、选择题:1.已知A={第一象限角},B={锐角},C={小于90°的角},那么A、B、C的关系是()A.B=A∩C。

B.B∪C=C。

C.AC。

D.A=B=C2.已知$\sin\theta=\frac{1}{2}$,$\theta\in\mathrm{Q}$,则$\cos\theta$等于()A。

$\frac{\sqrt{3}}{2}$。

B。

$-\frac{\sqrt{3}}{2}$。

C。

$\frac{1}{2}$。

D。

$-\frac{1}{2}$3.已知$\sin\alpha=-\frac{2}{\sqrt{5}}$,$\alpha\in\mathrm{III}$,则$\cos\alpha$等于()A。

$-\frac{1}{\sqrt{5}}$。

B。

$\frac{1}{\sqrt{5}}$。

C。

$-\frac{2}{\sqrt{5}}$。

D。

$\frac{2}{\sqrt{5}}$4.下列函数中,最小正周期为$\pi$的偶函数是()A。

$y=\sin2x$。

B。

$y=\cos x$。

C。

$y=\sin2x+\cos2x$。

D。

$y=\cos2x$5.若角$\theta$的终边上有一点$P$,则$\sin\theta$的值是()A。

$\frac{OP}{1}$。

B。

$\frac{1}{OP}$。

C。

$\frac{OA}{1}$。

D。

$\frac{1}{OA}$6.要得到函数$y=\cos x$的图象,只需将$y=\sin x$的图象()A。

向左平移$\frac{\pi}{2}$个单位。

B。

向右平移$\frac{\pi}{2}$个单位C。

向左平移$\pi$个单位。

D。

向右平移$\pi$个单位7.若函数$y=f(x)$的图象上每一点的纵坐标保持不变,横坐标伸长到原来的2倍,再将整个图象沿$x$轴向左平移1个单位,沿$y$轴向下平移1个单位,得到函数$y=\sin x$的图象,则$y=f(x)$是()A。

最新人教版高中数学必修第一册第五单元《三角函数》检测题(含答案解析)(2)

最新人教版高中数学必修第一册第五单元《三角函数》检测题(含答案解析)(2)

一、选择题1.已知()3sin 5πα+=,则sin()cos()sin 2απαπα--=⎛⎫- ⎪⎝⎭( )A .45-B .45 C .35 D .352.若角α的终边过点(3,4)P -,则cos2=α( )A .2425-B .725C .2425D .725-3.在ABC 中,tan sin cos A B B <,则ABC 的形状是( ) A .锐角三角形 B .直角三角形 C .钝角三角形D .不确定4.如果角α的终边过点2sin 30,2cos3()0P -,则sin α的值等于( ) A .12B .12-C .3-D .33-5.sin34sin64cos34sin 206︒︒-︒︒的值为( ) A .12B .22C .3 D .16.若4cos 5θ=-,θ是第三象限的角,则1tan21tan 2θθ-=+( ) A .12B .12-C .35D .-27.若角α,β均为锐角,25sin α=,()4cos 5αβ+=-,则cos β=( )A .25B .25C .25或25 D .25-8.已知函数()y f x =的图象如图所示,则此函数可能是( )A .sin 6()22x x x f x -=- B .sin 6()22x x x f x -=- C .cos6()22x xx f x -=- D .cos6()22x x xf x -=-9.在ABC 中,2,6AB C π==,则AC 的最大值为( )A .B .C .D .10.若4cos ,5αα=-是第三象限角,则sin α等于( )A .35B .35C .34D .34-11.已知函数()()log 330,1a y x a a =-+>≠的图象恒过点P ,若角α的终边经过点P ,则sin 2α的值等于( )A .2425-B .35C .2425D .3512.函数()log 44a y x =++(0a >,且1a ≠)的图象恒过定点A ,且点A 在角θ的终边上,则7πcos 2θ⎛⎫+= ⎪⎝⎭( ) A .35 B .35C .45-D .45第II 卷(非选择题)请点击修改第II 卷的文字说明参考答案二、填空题13.已知22034sin παα=<<,,则sin cos αα-=_____________________.14.已知函数()22sin cos f x x x x ωωω=-,且()f x 图象的相邻对称轴之间的距离为π4,则当π0,4x ⎡⎤∈⎢⎥⎣⎦时,()f x 的最小值为______. 15.若()5sin 4513α︒+=,则()sin 225α︒+=________. 16.已知tan 212πα⎛⎫+=- ⎪⎝⎭,则tan 3πα⎛⎫+= ⎪⎝⎭_________. 17.将函数sin(2)y x ϕ=+的图像向左平移12π个单位后所得函数图像关于原点中心对称,则sin 2ϕ=_________.18.已知1tan 43πθ⎛⎫-= ⎪⎝⎭,则cos2θ的值为_______. 19.已知tan 3α=,则2sin 21sin cos 2ααα-=+_________.20.对任意闭区间I ,用I M 表示函数sin y x =在I 上的最大值,若有且仅有一个正数a 使得[][]0,,2a a a M kM =成立,则实数k 的取值范围是_________.三、解答题21.已知函数()2sin cos f x x x = (1)求函数()f x 的最小正周期和最大值; (2)求函数()f x 的单调递减区间.22.已知函数()22sin cos 2sin 1f x x x x =-+.(1)求4f π⎛⎫ ⎪⎝⎭的值; (2)求()f x 的最小正周期; (3)求()f x 在区间,02π⎡⎤-⎢⎥⎣⎦上的最小值. 23.已知()sin (sin 3cos )f x x x x =-,ABC ∆中,角A ,B ,C 所对的边为a ,b ,c .(1)求()f x 的单调递增区间; (2)若3()2f A =,2a =,求ABC ∆周长的最大值 24.如图,以坐标原点O 为圆心的单位圆与x 轴正半轴相交于点A ,点B ,P 在单位圆上,且525,B ⎛⎫- ⎪ ⎪⎝⎭,AOB α∠=.(1)求4cos 3sin 5cos 3sin -+αααα的值;(2)若四边形OAQP 是平行四边形,(i )当P 在单位圆上运动时,求点Q 的轨迹方程;(ii )设0)2(POA θθπ∠=≤≤,点(,)Q m n ,且()3f m n θ=+.求关于θ的函数()fθ的解析式,并求其单调增区间.25.如图为函数()sin()(0,0,||)2f x A x A πωφωφ=+>><的一个周期内的图象.(1)求函数()f x 的解析式及单调递减区间; (2)当1,43x ⎛⎫∈ ⎪⎝⎭时,求()f x 的值域.26.如图,设矩形()ABCD AB BC >的周长为m ,把ABC 沿AC 翻折到AB C ',AB '交DC 于点P ,设AB x =.(1)若CP =2PD ,求x 的值; (2)求ADP △面积的最大值.参考答案【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由条件利用诱导公式进行化简所给的式子,可得结果. 【详解】∵3sin()sin 5παα+==-,∴3sin 5α=-, 则sin()cos()sin (cos )3sin cos 5sin 2απααααπαα---⋅-===-⎛⎫- ⎪⎝⎭, 故选:C2.D解析:D 【分析】先利用任意角三角函数的定义求sin α和cos α,再利用二倍角的余弦公式计算即可. 【详解】由角α的终边过点(3,4)P -知,4sin 5α,3cos 5α=-,故229167cos 2cos sin 252525ααα=-=-=-. 故选:D.3.C解析:C 【详解】∵tan sin cos A B B <,∴sin sin cos cos A BB A<,若A 是钝角,此不等式显然成立,三角形为钝角三角形,若A 是锐角,则sin sin cos cos A B A B <,cos cos sin sin cos()0A B A B A B -=+>,,A B 是三角形内角,∴02A B π<+<,从而()2C A B ππ=-+>,C 为钝角,三角形仍然为钝角三角形. 故选:C . 【点睛】易错点睛:本题考查三角形形状的判断.解题过程中,由sin sin cos cos A BB A<常常直接得出sin sin cos cos A B A B <,然后可判断出C 是钝角,三角形是钝角三角形,也选择了正确答案,但解题过程存在不全面.即应该根据A 角是锐角还是钝角分类讨论.实际上就是不等式性质的应用要正确.4.C解析:C 【分析】先计算三角函数值得(1,P,再根据三角函数的定义sin ,yr rα==可.【详解】解:由题意得(1,P ,它与原点的距离2r ==,所以sin y r α===. 故选:C.5.C解析:C 【分析】利用诱导公式化简整理,结合两角和的正弦公式,即可求得答案. 【详解】()sin34sin64cos34sin 206sin34cos26cos34sin 26sin 3426sin60︒︒-︒︒=︒︒+︒︒=︒+︒=︒= 故选:C .6.D解析:D 【分析】根据4cos 5θ=-,θ是第三象限的角,先利用半角公式求得tan 2θ,然后代入1tan21tan 2θθ-+求解. 【详解】因为θ为第三象限角, 所以2θ可能为二、四象限角,所以tan 32θ===-, 所以1tan1322131tan2θθ-+==--+. 故选:D.7.B解析:B 【分析】由平方关系求得cos α,sin()αβ+,然后由两角差的余弦公式计算. 【详解】α,β均为锐角,sin α=()4cos 5αβ+=-,cos α∴==,()3sin 5αβ+==,cos cos[()]βαβα∴=+-cos()cos sin()sin αβααβα=+++435555=-⨯+⨯=. 故选:B .8.D解析:D 【分析】由函数图象可得()y f x =是奇函数,且当x 从右趋近于0时,()0f x >,依次判断每个函数即可得出. 【详解】由函数图象可得()y f x =是奇函数,且当x 从右趋近于0时,()0f x >,对于A ,当x 从右趋近于0时,sin60x >,22x x -<,故()0f x <,不符合题意,故A 错误; 对于B ,()()sin 6sin 6()2222x x x xx xf x f x ----===--,()f x ∴是偶函数,不符合题意,故B 错误; 对于C ,()()cos 6cos 6()2222x x x xx xf x f x ----===--,()f x ∴是偶函数,不符合题意,故C 错误; 对于D ,()()cos 6cos 6()2222x x x xx xf x f x ----===---,()f x ∴是奇函数,当x 从右趋近于0时,cos60x >,22x x ->,()0f x ∴>,符合题意,故D 正确. 故选:D. 【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置. (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象.9.B解析:B 【分析】将AC +表示为角的形式,结合三角函数最值的求法,求得AC 的最大值. 【详解】有正弦定理得24sin sin sin sin 6a b c A B C π====, 所以4sin ,4sin a A b B ==,所以AC+4sin b B A =+=+()4sin 4sin 6B B C B B π⎛⎫=++=++ ⎪⎝⎭4sin sin cos cos sin 66B B B ππ⎫=++⎪⎭14sin sin cos 22B B B ⎫=++⎪⎪⎭()()10sin B B B B ϕϕ=+=+=+.其中tan 06πϕϕ==<⇒<<, 由于566B ππ<<,所以3B πϕπ<+<,故当2B πϕ+=时,AC +的最大值为故选:B 【点睛】要求与三角形边长有关的最值问题,可以利用正弦定理将边转化为角,然后利用三角函数的最值的求法来求最值.10.B解析:B 【分析】运用同角的三角函数关系式直接求解即可. 【详解】4cos ,5a a =-是第三象限角,3sin 5a ∴==-,故选:B 11.C解析:C【分析】由已知求出点P 的坐标,再利用三角函数的定义求出sin ,cos αα的值,进而可得到sin 2α的值 【详解】解:因为函数()()log 330,1a y x a a =-+>≠的图象恒过(4,3), 所以点P 的坐标为(4,3) 因为角α的终边经过点P , 所以34sin ,cos 55αα====, 所以3424sin 22sin cos 25525ααα==⨯⨯=, 故选:C12.D解析:D 【分析】先利用对数函数图象的特点求出点()3,4A -,再利用三角函数的定义求出sin θ的值,利用诱导公式可得7πcos sin 2θθ⎛⎫+= ⎪⎝⎭,即可求解. 【详解】 对数函数log ay x =恒过点()1,0,将其图象向左平移4个单位,向上平移4个单位可得()log 44a y x =++的图象,点()1,0平移之后为点()3,4-,所以()3,4A -,令3x =-,4y =,则5OA ===,所以4sin 5y OA θ==, 由诱导公式可得:7π4cos sin 25θθ⎛⎫+== ⎪⎝⎭,故选:D 【点睛】关键点点睛:本题的关键点是求出()3,4A -,会利用三角函数的定义求出θ的三角函数值,会利用诱导公式化简7πcos 2θ⎛⎫+⎪⎝⎭. 二、填空题13.【分析】结合二倍角的正弦公式和同角三角函数的基本关系由即可求出正确答案【详解】解:因为所以所以故答案为:解析:3-【分析】结合二倍角的正弦公式和同角三角函数的基本关系,由sin cos αα-=即可求出正确答案. 【详解】 解:因为04πα<<,所以0sin cos αα-<,所以3sin cos αα-====-,故答案为: -14.【分析】先将函数化简整理根据相邻对称轴之间距离求出周期确定再根据正弦函数的性质结合给定区间即可求出最值【详解】因为由题意知的最小正周期为所以即所以当时所以因此所以函数的最小值为故答案为:解析:-【分析】先将函数化简整理,根据相邻对称轴之间距离求出周期,确定2ω=,再根据正弦函数的性质,结合给定区间,即可求出最值. 【详解】因为()21cos 22sin cos sin 22xf x x x x x ωωωωω+=-=- πsin 222sin 23x x x ωωω⎛⎫=-=-- ⎪⎝⎭由题意知()f x 的最小正周期为ππ242⨯=,所以2ππ22ω=,即2ω=,所以()π2sin 43f x x ⎛⎫=-⎪⎝⎭当π0,4x ⎡⎤∈⎢⎥⎣⎦时,ππ2π4,333x ⎡⎤-∈-⎢⎥⎣⎦,所以π2sin 423x ⎛⎫⎡⎤-∈ ⎪⎣⎦⎝⎭,因此()π2sin 423f x x ⎛⎫⎡=-- ⎪⎣⎝⎭,所以函数()f x 的最小值为-.故答案为:-15.【分析】直接利用诱导公式计算可得;【详解】解:因为故答案为: 解析:513-【分析】直接利用诱导公式计算可得; 【详解】解:因为()5sin 4513α︒+=,()()()5sin 225sin 45180sin 4513ααα︒+=︒++︒=-︒+=-⎡⎤⎣⎦ 故答案为:513-16.【分析】由结合利用两角和的正切公式求解【详解】故答案为:解析:13-【分析】 由tan tan 3124πππαα⎛⎫⎛⎫+=++ ⎪ ⎪⎝⎭⎝⎭,结合tan 212πα⎛⎫+=- ⎪⎝⎭,利用两角和的正切公式求解. 【详解】tan tan1124tan tan 312431tan tan 124ππαπππααππα⎛⎫++ ⎪⎛⎫⎛⎫⎝⎭+=++==- ⎪ ⎪⎛⎫⎝⎭⎝⎭-+ ⎪⎝⎭,故答案为:13-17.【分析】先根据函数平移变换得平移后的解析式为再根据其图象关于原点中心对称得进而计算得【详解】解:根据题意得函数的图像向左平移个单位后得到的函数解析式为:由函数图象关于原点中心对称故即所以故答案为:【解析: 【分析】先根据函数平移变换得平移后的解析式为sin 26y x πϕ⎛⎫=++ ⎪⎝⎭,再根据其图象关于原点中心对称得,6k k Z πϕπ=-+∈,进而计算得sin 2ϕ=. 【详解】解:根据题意得函数sin(2)y x ϕ=+的图像向左平移12π个单位后得到的函数解析式为:sin 26y x πϕ⎛⎫=++ ⎪⎝⎭,由函数sin 26y x πϕ⎛⎫=++ ⎪⎝⎭图象关于原点中心对称, 故,6k k Z πϕπ+=∈,即,6k k Z πϕπ=-+∈所以sin 2sin 2sin 33k ππϕπ⎛⎫⎛⎫=-+=-= ⎪ ⎪⎝⎭⎝⎭.故答案为: 【点睛】三角函数的图象变换,提倡“先平移,后伸缩”,但“先伸缩,后平移”也常出现在题目中,所以也必须熟练掌握.无论是哪种变形,切记每一个变换总是对字母x 而言. 函数()sin ,y A x x R ωϕ=+∈是奇函数()k k Z ϕπ⇔=∈ ; 函数()sin ,y A x x R ωϕ=+∈是偶函数2()k k Z πϕπ⇔=+∈; 函数()cos ,y A x x R ωϕ=+∈是奇函数2()k k Z πϕπ⇔=+∈;函数()cos ,y A x x R ωϕ=+∈是偶函数()k k Z ϕπ⇔=∈.18.【分析】利用三角恒等变换公式得到求出后进而求出cos2即可【详解】由题意可知解得则故答案为 解析:35【分析】利用三角恒等变换公式,得到tan 11tan 41tan 3πθθθ-⎛⎫-== ⎪+⎝⎭,求出tan θ后,进而求出cos2θ即可 【详解】由题意可知,tan 11tan 41tan 3πθθθ-⎛⎫-== ⎪+⎝⎭,解得tan 2θ=,则222222cos sin 1tan 3cos 2cos sin 1tan 5θθθθθθθ--===-++ 故答案为35. 19.【分析】可将式子化简为即可求解【详解】故答案为: 解析:4-【分析】可将式子化简为22tan tan 1αα--,即可求解. 【详解】tan 3α=,()22222sin cos sin cos sin 21sin cos 2cos αααααααα-+-∴=+ 222tan tan 123314αα=--=⨯--=-. 故答案为:4-.20.【分析】讨论的范围得出的表达式求出的值域即可【详解】①当时由得所以此时即则即;②当时由得此时即;③当时由得所以此时则即;④当时则由得不成立此时不存在;⑤当时由得所以此时则即;⑥当时由得综上实数的取值解析:1,2⎡⎫+∞⎪⎢⎣⎭【分析】讨论a 的范围得出k 的表达式,求出()k f a =的值域即可. 【详解】①当0,4πa ⎡⎤∈⎢⎥⎣⎦时,[0,][,2]20,,sin ,sin 22a a a πa M a M a ⎡⎤∈==⎢⎥⎣⎦, 由[][]0,,2a a a M kM =,得sin sin 2a k a =,所以12cos k a=,此时cos 12a ≤≤2cos 2a ≤≤,则1122cos a ≤≤12k ⎡∈⎢⎣⎦;②当,42ππa ⎡⎤∈⎢⎥⎣⎦时,[0,][,2]2,,sin ,12a a a πa πM a M ⎡⎤∈==⎢⎥⎣⎦,由[][]0,,2a a a M kM =,得sin k a =,此时sin 12a ≤≤,即2k ⎤∈⎥⎣⎦; ③当,2a ππ⎛⎫∈⎪⎝⎭时,()[0,][,2]2,2,1,sin a a a a M M a ππ∈==, 由[][]0,,2a a a M kM =,得1sin k a =,所以1sin k a=, 此时0sin 1a <<,则11sin a>,即()1,k ∈+∞; ④当a π=时,22a π=,则[0,][,2]1,0a a a M M ==, 由[][]0,,2a a a M kM =,得10=不成立,此时k 不存在;⑤当5,4πa π⎛⎫∈ ⎪⎝⎭时,[0,][,2]522,,1,sin 22a a a a ππM M a ⎛⎫∈== ⎪⎝⎭, 由[][]0,,2a a a M kM =,得1sin 2k a =,所以1sin 2k a=, 此时0sin 21a <<,则11sin 2a>,即()1,k ∈+∞; ⑥当5,+4a π⎡⎫∈∞⎪⎢⎣⎭时,[0,][,2]52,,1,12a a a a πM M ⎡⎫∈+∞==⎪⎢⎣⎭, 由[][]0,,2a a a M kM =,得1k =, 综上,实数k 的取值范围是1,2⎡⎫+∞⎪⎢⎣⎭. 【点睛】本题考查三角函数最值的求解,解题的关键是分段讨论a 的范围,根据a 的不同取值范围得出k 的表达式,再利用三角函数的性质求解.三、解答题21.(1)T π=;最大值为1;(2)3[,]()44k k k Z ππππ++∈ 【分析】(1)应用二倍角公式,将函数化为正弦型三角函数,即可求解; (2)根据正弦函数的单调递减区间结合整体代换,即可求出结论. 【详解】(1)()2sin cos sin 2f x x x x ==, 最小正周期为22T ππ==,最大值为1; (2)由3222()22k x k k Z ππππ+≤≤+∈, 解得3()44k x k k Z ππππ+≤≤+∈, ()f x ∴单调递减区间是3[,]()44k k k Z ππππ++∈.22.(1)1;(2)π;(3). 【分析】(1)由题意利用三角恒等变换化简函数的解析式,从而求得4f π⎛⎫⎪⎝⎭的值 (2)由(1)得,利用正弦函数的周期性,得出结论; (3)由(1)得,利用正弦函数的单调性,得出结论; 【详解】(1)()22sin cos 2sin 1sin 2cos2f x x x x x x =-+=+π24x ⎛⎫=+ ⎪⎝⎭∴πππ1424f ⎛⎫⎛⎫=+=⎪ ⎪⎝⎭⎝⎭或直接求2ππππ2sin cos 2sin 114444f ⎛⎫=-+=⎪⎝⎭. (2)由(1)得,所以()f x 的最小正周期为2π2ππ2T ω=== (3)由(1)得,∵π02x -≤≤,∴3πππ2444x -≤+≤,∴πsin 21,42x ⎡⎛⎫+∈-⎢ ⎪⎝⎭⎣⎦当ππ242x +=-,即3π8x =-时,()f x 取得最小值为. 【点睛】关键点睛:解题的关键在于,利用三角恒等变换化简函数的解析式得到()π24f x x ⎛⎫=+ ⎪⎝⎭,进而利用正弦函数的性质求解,属于中档题23.(1)2,63k k ππππ⎡⎤++⎢⎥⎣⎦,k Z ∈;(2)2+ 【分析】(1)首先利用降幂公式和辅助角公式化简函数()1sin 226f x x π⎛⎫=-+ ⎪⎝⎭,再求函数的单调递增区间;(2)先求角A ,再根据余弦定理和基本不等式求周长的最大值. 【详解】(1)()2111sin cos (cos22)sin(2)2226f x x x x x x x π==-=-+, ∴()f x 在3222262k x k πππππ+≤+≤+上单调递增, ∴2[,]63x k k ππππ∈++,k Z ∈ (2)()13sin(2)262f A A π=-+=,得32262A k k Z πππ+=+∈,,即23A k ππ=+,0A π<<,则23A π=, 而2a =,由余弦定理知:2222cos 4a b c bc A =+-=,有22()()444b c b c bc ++=+≤+,所以03b c <+≤当且仅当b c =时等号成立, ∵周长2l a b c b c =++=++, ∴周长最大值为2+【点睛】思路点睛:已知一边及一边所对角求解三角形面积或周长的最大值时,可利用余弦定理构造方程,再利用基本不等式求所需的两边和或乘积的最值,代入三角形周长或面积公式,求得结果.24.(1)10-;(2)(i )22(1)1x y -+=;(ii )()2sin 16f πθθ⎛⎫=++ ⎪⎝⎭;增区间为0,3π⎡⎤⎢⎥⎣⎦和4,23ππ⎡⎤⎢⎥⎣⎦. 【分析】(1)由三角函数定义得tan 2α,再弦化切代入计算,即可求4cos 3sin 5cos 3sin -+αααα的值;(2)(i )设PA 中点为H ,()11,P x y ,(),Q x y ,则22111x y +=,111,22x y H +⎛⎫⎪⎝⎭,由此可求点O 的轨迹方程;(ii)确定()cos 12sin 16f πθθθθ⎛⎫=++=++ ⎪⎝⎭,即可求其单调增区间. 【详解】解:(1)由三角函数定义得tan 2α==-,所以44cos 3sin 5cos 3si 3tan 1010tan 1n 53αααααα-===-+--+.(2)∵四边形OAQP 是平行四边形,∴PA 与OQ 互相平分,(i )设PA 中点为H ,()11,P x y ,(),Q x y ,则22111x y +=,111,22x y H +⎛⎫⎪⎝⎭, 又,22x y H ⎛⎫⎪⎝⎭,所以111x x y y =-⎧⎨=⎩, 代入上式得点Q 的轨迹方程为22(1)1x y -+=.(ii )因为0)2(POA θθπ∠=≤≤,所以11cos sin x y θθ=⎧⎨=⎩,又由(i )知111x m y n =-⎧⎨=⎩,∴cos 1sin m n θθ=+⎧⎨=⎩,∴()cos 12sin 16f πθθθθ⎛⎫=+=++ ⎪⎝⎭∵22,26202k k k ππππθπθπ⎧-≤+≤+∈⎪⎨⎪≤≤⎩Z , ∴03πθ≤≤或423πθπ≤≤, ∴()fθ的增区间为0,3π⎡⎤⎢⎥⎣⎦和4,23ππ⎡⎤⎢⎥⎣⎦. 【点睛】方法点睛:求轨迹方程的常用方法(1)直接法:如果动点满足的几何条件本身就是一些几何量,如(距离和角)的等量关系,或几何条件简单明了易于表达,只需要把这种关系转化为,x y 的等式,就能得到曲线的轨迹方程;(2)定义法:某动点的轨迹符合某一基本轨迹如直线、圆锥曲线的定义,则可根据定义设方程,求方程系数得到动点的轨迹方程;(3)几何法:若所求轨迹满足某些几何性质,如线段的垂直平分线,角平分线的性质,则可以用几何法,列出几何式,再代入点的坐标即可;(4)相关点法(代入法):若动点满足的条件不变用等式表示,但动点是随着另一动点(称之为相关点)的运动而运动,且相关点满足的条件是明显的或是可分析的,这时我们可以用动点的坐标表示相关点的坐标,根据相关点坐标所满足的方程,求得动点的轨迹方程;(5)交轨法:在求动点轨迹时,有时会出现求两个动曲线交点的轨迹问题,这类问题常常通过解方程组得出交点(含参数)的坐标,再消去参数参数求出所求轨迹的方程. 25.(1)()2sin()44f x x ππ=+,[]8 1.85,k k k Z ++∈;(2)(2⎤⎦. 【分析】(1)由图可求出()2sin()44f x x ππ=+,令322()2442k x k k Z ππππππ+≤+≤+∈,即可求出单调递减区间; (2)由题可得5,4434x ππππ⎛⎫+∈ ⎪⎝⎭,则可求得值域. 【详解】(1)由题图,知2,7(1)8A T ==--=,所以2284T πππω===, 所以()2sin()4f x x πφ=+.将点(-1,0)代入,得2sin()04πφ-+=.因为||2πφ<,所以4πφ=,所以()2sin()44f x x ππ=+.令322()2442k x k k Z ππππππ+≤+≤+∈, 得8185()k x k k Z +≤≤+∈.所以()f x 的单调递减区间为[]8 1.85,k k k Z ++∈. (2)当1,43x ⎛⎫∈ ⎪⎝⎭时,5,4434x ππππ⎛⎫+∈ ⎪⎝⎭,此时sin()144x ππ<+≤,则()2f x <≤,即()f x 的值域为(2⎤⎦. 【点睛】方法点睛:根据三角函数()sin()f x A x ωϕ=+部分图象求解析式的方法: (1)根据图象的最值可求出A ; (2)求出函数的周期,利用2T πω=求出ω;(3)取点代入函数可求得ϕ.26.(1)(34m ;(2)(2316m ⋅-. 【分析】(1)设CAB CAP θ∠=∠=,求得222PAD APD πθθ∠=-∠=,,得到且tan 23tan θθ=,结合正切的二倍角公式,即可求解.(2)设CAB CAP θ∠=∠=,则2APD θ∠=,且()tan 01θ∈,,由()tan 2x x m θ+⨯=,求得x 得值,求得()tan 21tan m AD BC θθ==+,1tan 4PD m θ-=,设1tan t θ+=,得到()12t ∈,,利用三角形的面积公式和二次函数的性质,即可求解. 【详解】(1)由题意,在ABC 中,可设CAB CAP θ∠=∠=, 则由角度关系可得222PAD APD πθθ∠=-∠=,,设BC y = ,且tan tan 23tan 3y yx xθθθ===,, 则有22tan tan 23tan 1tan θθθθ==-,解得tan θ=,则有y x =,所以23x x m ⎛⎫+= ⎪ ⎪⎝⎭,解得(34x m =. (2)设CAB CAP θ∠=∠=,则222PAD APD πθθ∠=-∠=,,且()tan 01θ∈,, 则有()tan 2x x m θ+⨯=,解得()21tan m x θ=+,即()tan 21tan m AD BC θθ==+,所以()2tan 1tan 1tan tan 221tan 2tan 4AD PD m m θθθθθθ--==⋅=+, 则S △ADP =()2221tan 1tan tan tan 221tan 4161tan m m θθθθθθ--⋅⋅=⋅++,令()1tan 12t t θ+=∈,, 所以S △ADP =()22222113223161616t t m m t t m t t t t ---⎡⎤-+-⎛⎫⋅=⋅=⋅-++ ⎪⎢⎥⎝⎭⎣⎦(2316m ≤⋅-,当且仅当2t t t==,时取等号. 则ADP △面积的最大值为(2316m ⋅-.【点睛】对于三角函数模型的应用问题,解答的关键是建立符合条件的函数模型,结合示意图,然后再由三角形中的相关知识进行求解,解题时要注意综合利用所学的三角恒等变换的公式及三角函数的性质求解.。

人教版高中数学必修第一册第五单元《三角函数》检测题(包含答案解析)(1)

人教版高中数学必修第一册第五单元《三角函数》检测题(包含答案解析)(1)

一、选择题1.已知3sin 5α=-,则cos2=α( ) A .15-B .15C .725-D .7252.已知一个扇形的半径与弧长相等,且扇形的面积为22cm ,则该扇形的周长为( ) A .6cmB .3cmC .12cmD .8cm3.已知函数()()sin 0,2f x A x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的部分图象如图所示,则()f x 的解析式为( )A .()2sin 26f x x π⎛⎫=+ ⎪⎝⎭B .()2sin 26f x x π⎛⎫=- ⎪⎝⎭C .()sin 23f x x π⎛⎫=+⎪⎝⎭D .()sin 23πf x x ⎛⎫=-⎪⎝⎭4.计算cos21cos9sin 21sin9︒︒-︒︒的结果是( ). A .3 B .12-C 3D .125.将函数()f x 的图象向左平移02πϕϕ⎛⎫<<⎪⎝⎭个单位后得到函数()sin 2g x x =的图象,若对满足()()122f x g x -=的1x ,2x ,有12min3x x π-=,则ϕ=( ) A .512π B .3πC .4π D .6π 6.sin34sin64cos34sin 206︒︒-︒︒的值为( )A .12B .22C .32D .17.若角α,β均为锐角,25sin α=,()4cos 5αβ+=-,则cos β=( )A .25B .2525C .25或2525D .25-8.若函数sin 3y x πω⎛⎫=+ ⎪⎝⎭的图象向右平移6π个单位后与函数cos y x ω=的图象重合,则ω的值可能为( ) A .1- B .2-C .1D .29.已知sin()cos(2)()cos()tan x x f x x xπππ--=--,则313f π⎛⎫- ⎪⎝⎭的值为( ) A .12B .13 C .12-D .13-10.已知,2παπ⎛⎫∈ ⎪⎝⎭且1sin 23πα⎛⎫+=- ⎪⎝⎭,则()tan απ+=( )A .22-B .22C .24- D .2411.若将函数3sin(2)3y x π=+的图象向左平移6π个单位长度,则平移后图象的一个对称中心是( ) A .,06π⎛⎫ ⎪⎝⎭B .,06π⎛⎫- ⎪⎝⎭C .,012π⎛⎫ ⎪⎝⎭D .,03π⎛⎫ ⎪⎝⎭12.函数()sin()0,||2f x x πωϕωϕ⎛⎫=+><⎪⎝⎭的图象如图所示,为了得到g()sin 34x x π⎛⎫=- ⎪⎝⎭的图象,只需将()f x 的图象( )A .向右平移π6个单位长度 B .向左平移π6个单位长度 C .向右平移π2个单位长度 D .向左平移π2个单位长度 二、填空题13.已知3sin 2cos()sin 2παπαα⎛⎫++-=⎪⎝⎭,则2sin sin cos ααα+=__________. 14.已知函数()sin 2cos 2f x x a x =+,对x R ∀∈,|()|8f x f π⎛⎫≤⎪⎝⎭成立,则a =_______.15.已知22034sin παα=<<,,则sin cos αα-=_____________________. 16.方程cos 306x π⎛⎫+= ⎪⎝⎭在[]0,π上的解的个数为______. 17.在ABC 中,tan 1A =,tan 2B =,则tan C =______.18.已知23sin 33x π⎛⎫-=-⎪⎝⎭,则cos 6x π⎛⎫-= ⎪⎝⎭________. 19.设()sin 2cos2f x a x b x =+,0ab ≠,若()6f x f π⎛⎫≤ ⎪⎝⎭对任意x ∈R 成立,则下列命题中正确的命题是______.(填序号) ①11012f π⎛⎫=⎪⎝⎭;②7105f f ππ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭;③()f x 不具有奇偶性;④()f x 的单调增区间是()2,63k k k ππ⎡⎤π+π+∈⎢⎥⎣⎦Z ;⑤可能存在经过点(),a b 的直线与函数的图象不相交. 20.已知1cos cos 2αβ+=,1sin sin 3αβ+=,则()cos αβ-=________. 三、解答题21.有一展馆形状是边长为2的等边三角形ABC ,DE 把展馆分成上下两部分面积比为1:2(如图所示),其中D 在AB 上,E 在AC 上.(1)若D 是AB 中点,求AE 的值; (2)设AD x =,ED y =. ①求用x 表示y 的函数关系式;②若DE 是消防水管,为节约成本,希望它最短,DE 的位置应在哪里?22.已知函数()2cos 3sin cos f x x x x =+.(1)求()f x 的最小正周期; (2)函数()f x 的单调递减区间. 23.在①函数()f x 的图象关于点,6b π⎛⎫- ⎪⎝⎭对称; ②函数()f x 在,44ππ⎡⎤-⎢⎥⎣⎦上的最小值为12;③函数()f x 的图象关于直线12x π=对称.这三个条件中任选两个补充在下面的问题中,再解答这个问题. 已知函数()()n 22si f x x b ϕϕπ=⎛⎫⎪⎝+<⎭+,若满足条件 与 .(1)求函数()f x 的解析式;(2)若将函数()y f x =的图象上点的横坐标缩短到原来的12,纵坐标不变,再将所得图象向右平移8π个单位,得到函数()y g x =的图象,求函数()g x 的单调递减区间. 24.已知函数()()2cos 23sin cos sin f x x x x x =+-.(1)求函数()f x 的单调递增区间; (2)若当0,2x π⎡⎤∈⎢⎥⎣⎦时,关于()f x m ≥的不等式 _______,求实数m 的取值范围. 请选择①和②中的一个条件,补全问题(2),并求解.其中,①有解;②恒成立. 注意:如果选择①和②两个条件解答,以解答过程中书写在前面的情况计分. 25.如图,在平面直角坐标系xOy 中,角θ的终边与单位圆交于点P .(1)若点P 的横坐标为35,求cos2sin cos θθθ-⋅的值. (2)若将OP 绕点O 逆时针旋转4π,得到角α(即4παθ=+),若1tan 2α=,求tan θ的值.26.已知函数()3sin 22f x x x =.(1)若2A f ⎛⎫= ⎪⎝⎭,0A π<<,求A 的值.(2)先将函数()y f x =的图像上所有点向左平移3π个单位,再把所有点的横坐标缩短为原来的12,纵坐标不变,得到函数y g x 的图像,求函数y g x 的单调递增区间.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】由题中条件,根据二倍角的余弦公式,可直接得出结果. 【详解】 因为3sin 5α=-, 所以297cos 212sin 122525αα=-=-⨯=. 故选:D.2.A解析:A 【分析】由题意利用扇形的面积公式可得2122R =,解得R 的值,即可得解扇形的周长的值.【详解】解:设扇形的半径为Rcm ,则弧长l Rcm =, 又因为扇形的面积为22cm , 所以2122R =,解得2R cm =, 故扇形的周长为6cm . 故选:A .3.A解析:A【分析】利用图象可得出()max A f x =,求出函数()f x 的最小正周期,可求得ω的值,再将点,26π⎛⎫⎪⎝⎭代入函数()f x 的解析式,结合ϕ的取值范围,求出ϕ的值,进而可得出函数()f x 的解析式.【详解】由图象可得()max 2A f x ==,函数()f x 的最小正周期为2236T πππ⎛⎫=⨯-=⎪⎝⎭, 22Tπω∴==,()()2sin 2f x x ϕ∴=+, 又2sin 2266f ππϕ⎛⎫⎛⎫=⨯+= ⎪ ⎪⎝⎭⎝⎭,可得sin 13πϕ⎛⎫+= ⎪⎝⎭, 22ππϕ-<<,5636πππϕ∴-<+<,32ππϕ∴+=,解得6π=ϕ, 因此,()2sin 26f x x π⎛⎫=+ ⎪⎝⎭. 故选:A. 【点睛】方法点睛:根据三角函数()()sin f x A x b ωϕ=++的部分图象求函数解析式的方法: (1)求A 、()()max min:2f x f x b A -=,()()max min2f x f x b +=;(2)求出函数的最小正周期T ,进而得出2Tπω=; (3)取特殊点代入函数可求得ϕ的值.4.C解析:C 【分析】 直接化简求值即可. 【详解】解: cos21cos9sin 21sin9︒︒-︒︒()cos 219=︒+︒cos30=︒= 故选:C.5.D解析:D 【分析】利用三角函数的最值,取自变量1x 、2x 的特值,然后判断选项即可. 【详解】因为函数()sin 2g x x =的周期为π,由题意可得:()()sin 2x f x ϕ=-⎡⎤⎣⎦, 若()()122f x g x -=,两个函数的最大值与最小值的差等于2,有12min3x x π-=,所以不妨取24x π=,则1712x π=,即()()sin 2x f x ϕ=-⎡⎤⎣⎦在1712x π=取得最小值, 所以77121s 12in 2f ϕππ⎛⎫=-=- ⎪⎡⎤⎛⎫⎪⎢⎝⎥⎭⎣⎦⎭⎝,此时5+,6k k Z πϕπ=∈,又02πϕ<<,所以此时不符合题意,取24x π=,则112x π=-,即()()sin 2x f x ϕ=-⎡⎤⎣⎦在112x π=-取得最小值, 所以12sin 21ϕπ⎡⎤⎛⎫-=- ⎪⎢⎥⎝⎭⎣⎦-,此时,6k k Z πϕπ=-∈,当0k =时,6π=ϕ满足题意,故选:D . 【点睛】本题考查三角函数的图象的平移,三角函数性质之最值,关键在于取出2x ,得出1x ,再利用正弦函数取得最小值的点,求得ϕ的值,属于中档题.6.C解析:C 【分析】利用诱导公式化简整理,结合两角和的正弦公式,即可求得答案. 【详解】()sin34sin64cos34sin 206sin34cos26cos34sin 26sin 3426sin60︒︒-︒︒=︒︒+︒︒=︒+︒=︒2= 故选:C .7.B解析:B 【分析】由平方关系求得cos α,sin()αβ+,然后由两角差的余弦公式计算. 【详解】α,β均为锐角,sin α=()4cos 5αβ+=-,cos 5α∴==,()3sin 5αβ+==,cos cos[()]βαβα∴=+-cos()cos sin()sin αβααβα=+++4355=-25=. 故选:B .8.A解析:A 【分析】先求解出sin 3y x πω⎛⎫=+ ⎪⎝⎭右移6π个单位后的函数解析式,然后根据诱导公式求解出ω的可取值. 【详解】 因为sin 3y x πω⎛⎫=+⎪⎝⎭右移6π个单位后得到sin 63y x ωππω⎛⎫=-+ ⎪⎝⎭, 又因为sin 63y x ωππω⎛⎫=-+ ⎪⎝⎭与cos sin 2y x x πωω⎛⎫==+ ⎪⎝⎭的图象重合,所以令2,632k k Z ωππππ-+=+∈,所以121,k k Z ω=--∈,所以ω可取1-,此时0k =, 故选:A. 【点睛】思路点睛:根据三角函数的图象重合求解参数ω或ϕ的思路: (1)先根据诱导公式将函数名统一; (2)然后分析三角函数初相之间的关系;(3)对k 进行取值(有时注意结合所给范围),确定出满足条件的ω或ϕ的值.9.C解析:C 【分析】利用诱导公式先化简整理函数()f x ,再利用诱导公式求值即可. 【详解】 由sin()cos(2)()cos()tan x x f x x xπππ--=--,利用诱导公式得:sin cos ()cos cos tan x xf x x x x==--,所以31311cos cos 103332f ππππ⎛⎫⎛⎫⎛⎫-=--=---=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; 故选:C.10.A解析:A【分析】由条件可得1cos 3α=-,然后可得sin α=,然后()sin tan tan cos ααπαα+==,即可算出答案. 【详解】因为1sin cos 23παα⎛⎫+==- ⎪⎝⎭,,2παπ⎛⎫∈ ⎪⎝⎭,所以sin 3α=所以()sin tan tan cos ααπαα+===-故选:A11.A解析:A 【分析】先求出平移后的解析式为23sin 23y x π⎛⎫=+ ⎪⎝⎭,令()223x k k Z ππ+=∈解方程即可求解. 【详解】将函数3sin(2)3y x π=+的图象向左平移6π个单位长度得:23sin 23sin 2633y x x πππ⎡⎤⎛⎫⎛⎫=++=+⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 令()223x k k Z ππ+=∈,解得:()32kx k Z ππ=-+∈, 当1k =时,326x πππ=-+=,所以平移后图象的一个对称中心为,06π⎛⎫⎪⎝⎭,故选:A12.A解析:A 【分析】首先根据函数()f x 的图象得到()sin 34f x x π⎛⎫=+ ⎪⎝⎭,再根据三角函数的平移变换即可得到答案. 【详解】 由题知:541246T πππ=-=,所以223T ππω==,解得3ω=. 3sin 044f ππϕ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,所以324k πϕππ+=+,k Z ∈,解得24k ϕπ=+π,k Z ∈. 又因为2πϕ<,所以4πϕ=,()sin 34f x x π⎛⎫=+⎪⎝⎭. 因为4436πππ--=-,所以只需将()f x 的图象向右平移π6个单位长度.故选:A 二、填空题13.【分析】利用诱导公式化简得出根据的代换结合齐次式化简计算得出函数值【详解】由已知得:则故答案为:解析:35【分析】利用诱导公式化简得出tan 3α=-,根据”1”的代换结合齐次式化简计算得出函数值. 【详解】由已知得:cos 2cos 3cos sin αααα--=-=,则tan 3α=-222222sin sin cos tan tan 933sin sin cos sin cos tan 1915ααααααααααα++-+====+++故答案为:3514.1【分析】利用辅助角公式和为的形式:根据已知可得是f(x)的图象的对称轴进而求得利用的关系和诱导公式求得的值【详解】解:其中∵对成立∴是f(x)的图象的对称轴即∴故答案为:1【点睛】本题考查三角函数解析:1 【分析】利用辅助角公式和为()Asin x ωϕ+的形式:()sin 2cos2)f x x a x x ϕ=+=+,根据已知可得π8x =是f(x)的图象的对称轴,进而求得ϕ,利用,a ϕ的关系tan a ϕ=和诱导公式求得a 的值. 【详解】解:()sin 2cos2)f x x a x x ϕ=+=+,其中sin tan a ϕϕϕ===.∵对x R ∀∈,|()|8f x f π⎛⎫≤⎪⎝⎭成立,∴π8x =是f(x)的图象的对称轴,即π2,82k k Z πϕπ⨯+=+∈, ∴,4k k Z πϕπ=+∈,tan 1a ϕ==,故答案为:1. 【点睛】本题考查三角函数的图象和性质,涉及辅助角公式化简三角函数,利用辅助角化简是前提,理解,a ϕ的关系是基础,由对x R ∀∈,|()|8f x f π⎛⎫≤ ⎪⎝⎭成立,得出π8x =是f(x)的图象的对称轴是关键.15.【分析】结合二倍角的正弦公式和同角三角函数的基本关系由即可求出正确答案【详解】解:因为所以所以故答案为:解析:【分析】结合二倍角的正弦公式和同角三角函数的基本关系,由sin cos αα-=即可求出正确答案. 【详解】 解:因为04πα<<,所以0sin cos αα-<,所以3sin cos αα-====-,故答案为: -16.3【分析】先求出解的一般形式再根据范围可求解的个数【详解】因为故故令故故答案为:3解析:3 【分析】先求出解的一般形式,再根据范围可求解的个数. 【详解】 因为cos 306x π⎛⎫+= ⎪⎝⎭,故3,62x k k Z πππ+=+∈, 故,39k x k Z ππ=+∈,令039k πππ≤+≤,故0,1,2k =, 故答案为:3.17.3【分析】由已知和正切和角公式求得再利用三角形的内角和公式和诱导公式可得答案【详解】中有所以所以故答案为:3解析:3 【分析】由已知和正切和角公式求得()tan +A B ,再利用三角形的内角和公式和诱导公式可得答案. 【详解】ABC 中,有++A B C π=,所以()()tan tan +tan +C A B A B π⎡⎤=-=-⎣⎦,()tan +tan 1+2tan +31tan tan 112A B A B A B ===---⨯,所以tan 3C =,故答案为:3. 18.【分析】由再结合诱导公式可得结果【详解】【点睛】方法点睛:利用诱导公式求值或化简时常用拼凑角常见的互余关系有:与与与等;常见的互补关系有:与与等;解析:【分析】 由2623x x πππ⎛⎫-=-- ⎪⎝⎭,再结合诱导公式可得结果. 【详解】22cos cos sin 62333x x x ππππ⎛⎫⎛⎫⎛⎫⎛⎫-=--=-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭【点睛】方法点睛:利用诱导公式求值或化简时,常用拼凑角,,常见的互余关系有:3πα+与6πα-,3πα-与6πα+,4πα-与4απ+等;常见的互补关系有: 3πα+与23πα-,4πα+与34πα-等; 19.①③【分析】由题可知直线与函数的图象的一条对称轴可求得可化简函数的解析式为计算出的值可判断①的正误;计算可判断②的正误;利用特殊值法可判断③的正误;取利用正弦函数的单调性可判断④的正误;假设命题⑤正解析:①③ 【分析】 由题可知,直线6x π=与函数()f x 的图象的一条对称轴,可求得3ab ,可化简函数()f x 的解析式为()2sin 26f x b x π⎛⎫=+ ⎪⎝⎭.计算出1112f π⎛⎫⎪⎝⎭的值,可判断①的正误;计算710f π⎛⎫⎪⎝⎭、5f π⎛⎫⎪⎝⎭,可判断②的正误;利用特殊值法可判断③的正误;取0b >,利用正弦函数的单调性可判断④的正误;假设命题⑤正确,求出直线的方程,结合函数()f x 的最值可判断⑤的正误.【详解】 由题可知,直线6x π=与函数()f x 的图象的一条对称轴,可得162f b π⎛⎫=+=⎪⎝⎭,整理可得2230a b -+=,即()20a -=,a ∴=.()sin 2cos 22sin 26f x x b x b x π⎛⎫∴=+=+ ⎪⎝⎭.对于命题①,11112sin 2012126f b πππ⎛⎫⎛⎫=⨯+= ⎪ ⎪⎝⎭⎝⎭,①正确; 对于命题②,7747172sin 22sin 2sin 101063030f b b b ππππππ⎛⎫⎛⎫⎛⎫=⨯+==+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭17172sin 2sin 3030b b ππ=-=,172sin 22sin 55630f b b ππππ⎛⎫⎛⎫=⨯+= ⎪ ⎪⎝⎭⎝⎭,所以,7105f f ππ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,②不正确; 对于命题③,2sin 66f b b ππ⎛⎫⎛⎫-=-=- ⎪ ⎪⎝⎭⎝⎭,2sin 262f b b ππ⎛⎫== ⎪⎝⎭,则66f f ππ⎛⎫⎛⎫-≠ ⎪ ⎪⎝⎭⎝⎭且66f f ππ⎛⎫⎛⎫-≠- ⎪ ⎪⎝⎭⎝⎭,所以,函数()f x 不具有奇偶性,③正确; 对于命题④,当()2,63x k k k ππππ⎡⎤∈++∈⎢⎥⎣⎦Z 时,则()3222262k x k k Z πππππ+≤+≤+∈, 当0b >时,函数()f x 在区间()2,63k k k ππ⎡⎤π+π+∈⎢⎥⎣⎦Z 上单调递减,④错误; 对于命题⑤,假设经过点(),a b 的直线与函数()f x 的图象不相交,则该直线与x 轴平行,此时该直线的方程为y b =,则2b b >,由于0b ≠,矛盾,⑤错误.故答案为:①③. 【点睛】关键点点睛:本题考查正弦型函数()()sin f x A x =+ωϕ的单调性、奇偶性、三角函数值的计算,解题的关键就是从()6f x f π⎛⎫≤⎪⎝⎭分析得出直线6x π=与函数()f x 的图象的一条对称轴,进而借助辅助角公式化简得出a 、b 的倍数关系.20.【分析】将和两边同时平方然后两式相加再由两角差的余弦公式即可求解【详解】由两边同时平方可得由两边同时平方可得两式相加可得即所以故答案为:【点睛】本题主要考查同角三角函数基本关系以及两角差余弦公式解题 解析:5972-【分析】 将1cos cos 2αβ+=和1sin sin 3αβ+=两边同时平方,然后两式相加,再由两角差的余弦公式即可求解. 【详解】 由1cos cos 2αβ+=两边同时平方可得221cos cos 2cos cos 4αβαβ++=,由1sin sin 3αβ+=两边同时平方可得221sin sin 2sin sin 9αβαβ++=,两式相加可得22221113cos cos 2cos cos +sin sin 2sin sin 946=3+αβαβαβαβ++++=即cos cos sin si 5972n αβαβ+=-,所以()cos cos cos sin s 9n 7i 52αβαβαβ-=+=-. 故答案为:5972- 【点睛】本题主要考查同角三角函数基本关系以及两角差余弦公式,解题的关键是熟练掌握公式()cos cos cos sin sin αβαβαβ-=+,,22cos sin 1αα+=并应用,属于中档题. 三、解答题21.(1)43AE =;(2)①2,23y x ⎡⎤=∈⎢⎥⎣⎦;②//DE BC . 【分析】(1)利用三角形的面积公式,得到43AD AE ⋅=,根据D 是AB 中点,即可求得AE 的长;(2)对于①中,由(1)得到4433AE AD x==,求得223x ≤≤,在ADE 中,由余弦定理,即可求得函数的解析式;②根据DE 是消防水管,结合基本不等式,即可求得x 的值,得到DE 的位置. 【详解】(1)依题意,可得211112sin 60sin 603322ADE ABC S S AD AE ==⋅⋅⋅︒==⋅︒△△ 解得43AD AE ⋅=, 又因为D 是AB 中点,则1AD =,所以43AE =. (2)对于①中,由(1)得43AD AE ⋅=,所以4433AE AD x==, 因为2AE ≤,可得23x ≥,所以223x ≤≤, 在ADE 中,由余弦定理得2222221642cos6093y DE AD AE AD AE x x ==+-⋅⋅︒=+-,所以2,23y x ⎡⎤=∈⎢⎥⎣⎦.②如果DE 是消防水管,可得y =≥=,当且仅当243x =,即x =此时3AE =,故//DE BC ,且消防水管路线最短为3DE =. 【点睛】利用基本不等式求解实际问题的解题技巧:利用基本不等式求解实际应用问题时,一定要注意变量的实际意义及其取值范围; 根据实际问题抽象出函数的解析式,再利用基本不等式求得函数的最值; 在应用基本不等式求最值时,若等号取不到,可利用函数的单调性求解. 22.(1)π;(2)2,,63k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦【分析】(1)利用二倍角的正弦、余弦公式将函数化为()1sin 262f x x π⎛⎫=++ ⎪⎝⎭,由周期公式即可求解.(2)由正弦函数的单调递减区间32,2,22k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦,整体代入即可求解. 【详解】(1)()21cos 221cos cos sin 22262x x f x x x x x π+⎛⎫==+=++ ⎪⎝⎭, 所以函数的最小正周期222T πππω===, (2)3222,262k x k k Z πππππ+≤+≤+∈, 解不等式可得2,63k x k k Z ππππ+≤≤+∈, 所以函数()f x 的单调递减区间为2,,63k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦23.(1)答案见解析;(2)5,,26212k k k ππππ⎡⎤++∈⎢⎥⎣⎦Z . 【分析】(1)分别选①②,②③,①③三种情况,根据三角函数的性质,即可求出函数解析式;(2)由(1)的结果根据三角函数的伸缩变换与平移原则,求出()g x ,再根据正弦函数的单调性,即可求出单调递减区间. 【详解】 解:(1)选①②因为,6b π⎛⎫- ⎪⎝⎭为()f x 的对称中心,所以2,,63k k k ππϕπϕπ⎛⎫⨯-+==+∈ ⎪⎝⎭Z 又2πϕ<,所以3πϕ=;因为44x ππ-≤≤,所以52636x πππ-≤+≤,所以1sin 2123x π⎛⎫-≤+≤ ⎪⎝⎭ 所以()min 1122f x b =-+=,所以1b =; 所以()sin 213f x x π⎛⎫=++ ⎪⎝⎭选②③因为12x π=为()f x 的一条对称轴,所以2122k ππϕπ⨯+=+,所以,3k k πϕπ=+∈Z ,又2πϕ<,所以3πϕ=,因为44x ππ-≤≤,所以52636x πππ-≤+≤;所以1sin 2123x π⎛⎫-≤+≤ ⎪⎝⎭, 所以()min 1122f x b =-+=,所以1b =, 所以()sin 213f x x π⎛⎫=++ ⎪⎝⎭;选①③,由前面两种情况,可得,根据对称性只能求得3πϕ=,所以()sin 23f x x b π⎛⎫=++ ⎪⎝⎭; (2)当()sin 213f x x π⎛⎫=++ ⎪⎝⎭时, 将函数()y f x =的图象上点的横坐标缩短到原来的12,纵坐标不变,可得sin 413y x π⎛⎫=++ ⎪⎝⎭的图像,再将所得图象向右平移8π个单位,得到函数()y g x =的图象,所以()sin 416g x x π⎛⎫=-+ ⎪⎝⎭; 当()sin 23f x x b π⎛⎫=++ ⎪⎝⎭时,同理可得()sin 46g x x b π⎛⎫=-+ ⎪⎝⎭,令3242,262k x k k πππππ+≤-≤+∈Z 解得:5,26212k k x k ππππ+≤≤+∈Z 所以函数()g x 的减区间为5,,26212k k k ππππ⎡⎤++∈⎢⎥⎣⎦Z . 【点睛】 思路点睛:求解三角函数解析式,以及三角函数性质的题目,一般需要根据三角函数的单调性、对称性等,结合题中条件,求出参数,即可得出解析式;求解三角函数性质问题时,一般根据整体代入的方法,结合正余弦函数的性质求解.24.(1)[,],36k k k Z ππππ-++∈;(2)若选择①,2m ≤. 若选择②,1m ≤-.【分析】(1)先结合二倍角公式及辅助角公式对已知函数进行化简,然后结合正弦函数的单调性可求; (2)若选择①,由()f x m ≥有解,即max ()m f x ≤,结合正弦函数的性质可求; 若选择②,由()f x m ≥恒成立,即min ()m f x ≤,结合正弦函数的性质可求. 【详解】(1)因为()()2cos cos sin f x x x x x =+-22cos s n cos i x x x x =+-2cos2x x =+2sin(2).6x π=+令222,262k x k k Z πππππ-+≤+≤+∈,解得36k x k k Z ππ-+π≤≤+π,∈. 所以函数()f x 的单调递增区间,,.36k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦(2)若选择①,由题意可知,不等式()f x m ≥有解,即max ()m f x ≤,因为0,2x π⎡⎤∈⎢⎥⎣⎦,所以72666x πππ≤+≤, 故当262x ππ+=,即6x π=时,()f x 取得最大值,且最大值为()26f π=,所以2m ≤.若选择②,由()f x m ≥恒成立,即min ()m f x ≤, 因为0,2x π⎡⎤∈⎢⎥⎣⎦,所以72666x πππ≤+≤, 故当7266x ππ+=,即2x π=时,()f x 取得最小值,且最小值为()12f π=-,所以1m ≤- 【点睛】关键点点睛:考查了二倍角公式辅助角公式在三角函数化简中的应用,还考查了正弦函数性质的综合应用,其中,考查了存在性命题与全称命题的理解,理解含量词命题转化成适当的不等式是解题关键,属于中档试题. 25.(1)15(2)13-【分析】(1)由三角函数的定义知,3cos 5θ=-,4sin 5θ=,又2cos22cos 1θθ=-,代入即可得到答案;(2)利用公式()tan tan tan 1tan tan αβαβαβ--=+⋅计算即可.【详解】 (1)P 在单位圆上,且点P 的横坐标为35,则3cos 5θ=-,4sin 5θ=,2cos2sin cos 2cos 1sin cos θθθθθθ∴-⋅=--⋅93412125555⎛⎫=⨯---⨯= ⎪⎝⎭. (2)由题知4παθ=+,则4πθα=-则1tan tan1142tan tan 1431tan tan 142παπθαπα--⎛⎫=-===- ⎪⎝⎭+⋅+. 【点睛】本题考查二倍角公式以及两角差的正切公式的应用,涉及到三角函数的定义,是一道容易题.26.(1)512A π=或1112A π=;(2),,422k k k πππ⎡⎤-+∈⎢⎥⎣⎦Z . 【分析】(1)化简得())6f x x π=-6A π⎛⎫-= ⎪⎝⎭(2)先求出函数()g x 的解析式,再求函数的单调递增区间. 【详解】(1)())6f x x π=-)所以26A f A π⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭,即sin 6A π⎛⎫-= ⎪⎝⎭又0A π<<,所以5666A πππ-<-<, 所以64A ππ-=或34π,所以512A π=或1112A π=(2)()2,6f x x π⎛⎫- ⎪⎝⎭将函数()y f x =的图像上所有点向左平移3π个单位得到)])362y x x πππ=+-=+,再把所有点的横坐标缩短为原来的12,纵坐标不变,得到函数()442g x x x π⎛⎫=+= ⎪⎝⎭的图像,令242k x k πππ-+≤≤,k Z ∈, 所以422k k x πππ-+≤≤, 所以递增区间为,,422k k k πππ⎡⎤-+∈⎢⎥⎣⎦Z . 【点睛】方法点睛:求函数sin()y A wx h φ=++的单调区间,一般利用复合函数的单调性原理解答:首先是对复合函数进行分解,接着是根据复合函数的单调性原理分析出分解出的函数的单调性,最后根据分解函数的单调性求出复合函数的单调区间.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.设 分别表示函数 的最大值和最小值,则 ()
A. B. C. D.
3. ,且 终边上一点为 ,则
A. B. C. D.
4.已知 ,且 ,其中 ,则关于 的值,以下四个答案中,可能正确的是:()
A.-3B. 3或1/3 C. -1/3 D. -3或-1/3
5.已知 ()
A. B. C. D.
6.若 是三角形的内角,且 ,则 等于()
15.(13分)已知
16.(13分)已知函数 在同一周期内有最高点 和最低点 ,求此函数的解析式
20.(14分).已知函数 , .
(1)当函数 取得最大值时,求自变量 的集合;
(2)该函数的图象可由 经过怎样的平移和伸缩变换得到?
[参考答案]
一.ADACC BBCCA
二.11. 12. 13.钝角三角形14.-5
C.横坐标伸长到原来的2倍(纵坐标不变),再向左平行移动 个单位长度
D.横坐标伸长到原来的2倍(纵坐标不变),再向右平行移动 个单位长
10.函数 , 的值域是()
A. B. C. D.
二.填空题:(每小题5分,共20分)
11.已知
12.已知角 的终边过点 的.解答题(共80分)
的图象
④把得到的图象向上平移 个单位,得到函数 的图象
综上,得到函数 的图象
2006年广东省梅州市兴宁一中高一数学三角函数测试题
(本试卷共20道题,总分150分。时间120分钟)
一.选择题:(每小题5分,共50分)
1.下列命题中,真命题的是()
A.终边相同的角不一定相等,但它们有相同的三角函数值
B.π等于180
C.周期函数一定有最小正周期
D.正切函数在定义域上为增函数,余切函数在定义域上为减函数
A. B. 或 C. D. 或
7.若 在()
A.第一、二象限B.第一、三象限C.第一、四象限D.第二、四象限
8. =()
A. B. C. D.
9.要得到函数 的图象,只需将函数 的图象上所有的点的()
A.横坐标缩短到原来的 倍(纵坐标不变),再向左平行移动 个单位长度
B.横坐标缩短到原来的 倍(纵坐标不变),再向右平行移动 个单位长度
三、
15、
16、由题意知:
所求函数的解析式为
20. (1)
=
取最大值必须且只需= ,即 ,
取最大值时,自变量的集合是
(2)将函数 的图象依次进行如下变换
①把函数 的图象向左平移 个单位,得到函数 的图象
②把得到的图象上各点的横坐标缩短到原来的 倍(纵坐标不变),得到函数
的图象
③把得到的图象上各点的纵坐标缩短到原来的 倍(横坐标不变),得到函数
相关文档
最新文档