高一数学集合与集合的运算测试题(带答案)

合集下载

高一数学集合测试题与答案

高一数学集合测试题与答案

高一数学集合测试题一、选择题〔每题5 分,共 60 分〕1 .以下八个关系式①{0}=②=0③{ }④{} ⑤{0}⑥0⑦{0}⑧{} 其中正确的个数〔〕〔A 〕4〔B〕5〔 C〕6〔D〕72.集合 {1 , 2, 3} 的真子集共有〔〕〔A〕5 个〔B〕6 个〔C〕7个〔D〕8 个3.集合 A={x x2k, k Z }B={x x2k 1, k Z }C={x x4k 1, k Z }又a A,b B, 那么有〔〕〔A〕〔 a+b〕A(B) (a+b)B(C)(a+b) C (D) (a+b) A 、 B、 C任一个4.设 A、 B 是全集U的两个子集,且A B,那么以下式子成立的是〔〕〔A〕CA C B〔B〕CA CB=UU U U U〔C〕 A C U B=〔 D〕 C U A B=5.集合 A={ x x2 2 0 }B={x x24x 30}那么A B =〔〕〔A〕 R〔B〕 { x x2或 x 1}〔C〕 { x x1或 x 2 }〔 D〕 { x x2或 x 3 }6.设 f(n)= 2n+1(n∈N ),P= {1 , 2,3, 4,5} , Q={3 ,4,5, 6,7} ,记P={ n∈N|f(n)∈P} ,Q= { n∈N|f(n)∈ Q} ,那么 ( P∩N Q )∪ ( Q∩NP )= ()e e(A) {0 , 3}(B){1 , 2}(C) (3 , 4,5}(D){1 , 2, 6, 7}7. A={1, 2, a2-3a-1},B={1,3},A B{3,1}那么 a 等于〔〕〔A〕-4 或 1〔B〕-1 或 4〔C〕-1〔D〕 48. 设 U={0, 1, 2, 3, 4} , A={0, 1, 2,3} , B={2, 3, 4} ,那么〔 CA〕〔 C B〕=〔〕U U〔A〕 {0}〔B〕 {0 ,1}〔C〕 {0 , 1, 4}〔D〕 {0 ,1, 2, 3,4}10.设 A={x Z x 2px150 },B={x Z x25x q 0 },假设A B={2,3,5},A、 B 分别为〔〕〔A〕{3 ,5} 、{2 ,3}〔 B〕 {2 ,3} 、 {3 ,5}〔C〕{2 ,5} 、{3 ,5}〔 D〕 {3 ,5} 、 {2 ,5}11.设一元二次方程2的根的判别式 b 24ac,那么不等式ax +bx+c=0(a<0)ax2 +bx+c0 的解集为〔〕〔A 〕R 〔B 〕〔C 〕 { x xb}〔D 〕{b}2a2a12.P={ m4 m0 },Q={m mx 2mx1 0 ,对于一切x R 成立 } ,那么以下关系式中成立的是〔〕( A 〕P Q( B 〕Q P〔 C 〕 P=Q 〔D 〕P Q=13.假设 M={ x n x , n Z },N={x n x 1, n22Z},那么 M N 等于〔〕〔A 〕〔B 〕{}〔C 〕{0}〔D 〕Z14. 集合那么实数 的取值X 围是〔 〕A .B .C . [-1,2]D .15.设 U={1,2,3,4,5} ,A ,B 为 U 的子集, 假设 A B={2} ,〔C U A 〕 B={4} ,〔C U A 〕 〔 C U B 〕 ={1 , 5} ,那么以下结论正确的选项是〔 〕 〔A 〕 3 A,3 B 〔B 〕3 A,3 B 〔C 〕 3 A,3B〔D 〕3A,3 B1,x A16.设集合 A 0,1 ,B1,1 , 函数f xx, 假设x 0A ,且f f x 0A ,2222 1 x ,x B那么x 0的取值X 围是 ( )A .1B .1 1C . 1 1D .30,4 ,4 ,0,422817. 在R 上定义运算:a b ab 2a b ,那么满足xx20 的实数 x 的取值X 围为2A. (0,2)B. (-1,2)C., 2 1,D. (-2,1) .18. 集合 P={x|x 2=1} , Q={x|mx=1} ,假设 QP ,那么 m 等于〔〕A . 1B .-1C .1 或-1D .0,1 或 -119.设全集 U={〔 x,y 〕x, y R },集合M={〔x,y 〕y2 1 },N={(x,y) y x 4 },x2那么〔 C M 〕 〔 C N 〕等于〔〕UU〔A 〕{ 〔2, -2 〕} 〔B 〕{ 〔-2,2〕} 〔C 〕〔 D 〕〔 C U N 〕20.不等式x 2 5x 6 <x 2-4 的解集是〔〕〔A 〕 {x x 2, 或x 2 }〔 B 〕{x x 2 }〔C 〕 { xx 3 }〔 D 〕 { x2 x 3, 且x 2 }二、填空题1.在直角坐标系中,坐标轴上的点的集合可表示为 2.假设 A={1,4,x},B={1,x 2}且 A B=B ,那么 x=3.假设 A={x x 23x 100 } B={x丨 x 3 }, 全集 U=R ,那么 A (C U B)=4.如果集合中只有一个元素,那么a 的值是5.集合 {a,b,c} 的所有子集是真子集是;非空真子集是6.方程 x 2-5x+6=0 的解集可表示为方程组2x 3y 13的解集可表示为3x 2 y7.设集合 A={ x3x 2 },B={x 2k 1 x2k1},且A B ,那么实数 k 的取值X 围是。

高一数学必修一集合练习题及单元测试(含答案及解析)

高一数学必修一集合练习题及单元测试(含答案及解析)

集合练习题1 .设集合A = {x|2 4}, B = {x|3x —7 >8 —2x},贝U A UB 等于()A. {x|x > 3}B. {x|x > 2}C. {x|2 <x3}D. {x|x > 4}2 .已知集合A = {1,3,5,7,9} , B= {0,3,6,9,12},贝U A AB =( )A. {3,5}B. {3,6}C. {3,7}D. {3,9}3. 已知集合A = {x|x>0} , B= {x| —1 w x w 2}则A UB =( )A. {x|x —1}B. {x|x w 2 }C. {x|0<x w 2}D. {x| —1 w x w 2}4. 满足M?{町,口2 ,巾,h },且MQp i ,叱,靭}= ,叱}的集合M的个数是()A . 1B . 2C . 3D . 45 .集合A = {0,2 , a}, B= {1,只}.若A UB = {0,1,2,4,16},贝U a 的值为()A . 0B . 1C . 2 D. 46 .设S= {x|2x + 1>0} , T = {x|3x —5<0},贝U S AT=( )A . ?B . {x|x< —1/2}C . {x|x>5/3}D . {x| —1/2<x<5/3}7 . 50名学生参加甲、乙两项体育活动,每人至少参加了一项,参加甲项的学生有30名,参加乙项的学生有25名,则仅参加了一项活动的学生人数为______________ .8.满足{1,3} U4 {1,3,5}的所有集合A的个数是________________ .9 .已知集合A = {x|x w 1}B = {x|x > a}且A UB = R,则实数a的取值范围是_________________ .10.已知集合A = {—4,2a —1,白}, B= {a —5,1 —a,9},若A AB = {9},求a 的值.11 .已知集合A = {1,3,5} , B= {1,2 , —1},若A UB = {1,2,3,5},求x 及A A B.12 .已知A = {x|2a w x^3}, B= {x|x< —1 或x>5},若A AB = ?,求a 的取值范围.13 . (10分)某班有36名同学参加数学、物理、化学课外探究小组,每名同学至多参加两个小组.已知参加数学、物理、化学小组的人数分别为26,15,13 ,同时参加数学和物理小组的有6人,同时参加物理和化学小组的有4人,则同时参加数学和化学小组的有多少人?集合测试一、选择题:本大题共10小题,每小题5分,共50分。

高一数学集合试题答案及解析

高一数学集合试题答案及解析

高一数学集合试题答案及解析1.已知全集为U,A∩B =B,且,则下列各式中一定错误的是()A.(A)=B.(A) =C.(A)(B)=D.A(B)【答案】D【解析】因为全集为U,A∩B =B,且,所以,必有,利用韦恩图知选D.【考点】本题主要考查空集、交集、并集、补集的概念。

点评:注意运用韦恩图,数形结合,易于理解。

B={x|x+4<-x},则集合B=()2.已知A∩B=B,且A={x|},若AA.{x|-2≤x<3}B.{x|-2<x<3}C.{x|-2<x≤3}D.{x|-2≤x≤3}【答案】AB={x|x<-2},结合数轴可知选A。

【解析】已知条件即A B,且A={x|x<3},CA【考点】本题主要考查交集、补集的概念、集合的表示方法。

点评:此题考查了交集、补集的概念,简单不等式的解法,主要结合数轴解题。

3.设集合A=,B=,当时,求.【答案】【解析】由已知必有,∴,或,当时集合B中的元素,且,与集合中元素的互异性矛盾,当时集合B适合题意,∴时得到.【考点】本题主要考查交集、并集的概念、集合中元素的性质。

点评:此题考查了集合的交、并运算,探究求得a,利用集合中元素的互异性,确定取舍。

细心解方程。

P=()4.设全集U=R,P={},则UA.{B.{}C.D.【答案】C【解析】集合P=,由数轴分析易得.选C。

【考点】本题主要考查补集的概念。

点评:注意数形结合。

是解答此类问题的常用方法。

5.下面四个命题:(1)集合N中的最小元素是1:(2)方程的解集含有3个元素;(3)(4)满足的实数的全体形成集合。

其中正确命题的个数是______________【答案】2.【解析】集合N中的最小元素是0,不是1,(1)不正确;方程的解为,所以(2)正确;空集中不含任何元素,所以(3)不正确;即,所以(4)正确,故正确命题的个数是2.【考点】本题主要考查集合的基本概念及集合的表示方法。

高一数学集合的运算试题答案及解析

高一数学集合的运算试题答案及解析

高一数学集合的运算试题答案及解析1.设全集,集合,则等于()A.B.C.D.【答案】D【解析】由,,所以.故选D.【考点】集合的简单运算.2.已知集合,,则().A.B.C.D.【答案】A【解析】因为,所以;又因为,所以.【考点】集合的运算.3.已知全集U=R,A={x|﹣3<x≤6,},B={x|x2﹣5x﹣6<0,}.求:(1)A∪B;(2).【答案】(1);(2).【解析】解题思路:由题意,先解出一元二次不等式,化简集合B,再求出集合B的补集,再由交、并的运算法则解出即可.规律总结:在处理集合间的运算问题时,往往先化简集合,再结合数轴求集合间的交、并、补集. 试题解析:(1),则;(2),则 .【考点】交、并、补集的运算.4.已知集合,,且,则实数的值是.【答案】.【解析】∵,,∴.【考点】集合间的关系.5.已知集合,则满足A∩B=B的集合B可以是( )A.{0,}B.{x|-1≤x≤1}C.{x|0<x<}D.{x|x>0}【答案】C【解析】利用复合函数的值域知识可得A={y|0<y},因为A∩B=B,所以B A,所以答案是C.【考点】(1)复合函数;(2)集合的运算.6.已知全集,设集合,集合,若,求实数a的取值范围.【答案】.【解析】先解方程,的x=a,-4将a,与-4比较进行讨论,再利用得进行求解.试题解析:因为,又因为2分当时满足,此时 4分当时若,则 6分当时,满足,此时 8分综合以上得:实数的取值范围,所以 10分.【考点】1.一元二次不等式的解法;2.集合的运算.7.已知全集则()A.B.C.D.【答案】C.【解析】找出全集U中不属于A的元素,确定出A的补集,找出既属于A补集又属于B的元素,即可确定出所求的集合,∵全集U={1,2,3,4},A={1,2},∴∁UA={3,4},又B={2,3},则(∁UA)∪B={2,3,4},故选C.【考点】交、并、补集的混合运算.8.以知集合,则=()A.B.C.D.【答案】C【解析】,即,,,【考点】指数不等式的运算和集合的运算9.集合,,则.【答案】【解析】根据,集合A与集合B中的公共元素为4,7,所以【考点】集合的运算10.已知集合,,则=A.B.C.D.【答案】A【解析】,,,故选:A.【考点】集合的运算11.已知,集合,.(Ⅰ)若,求,;(Ⅱ)若,求的范围.【答案】(Ⅰ),;(Ⅱ).【解析】(Ⅰ)将代入得到集合,然后计算并集和交集;(Ⅱ)结合数轴由,集合B的左端点大于等于1,右端点小于等于4,于是,特别注意端点值是否可以取等号。

高一数学集合试题及答案

高一数学集合试题及答案

高一数学集合试题及答案一、单选题1.已知集合{}23100A x x x =--<,{}21,Z B x x k k ==+∈ ,则A B 的子集的个数是( ) A .3B .4C .7D .82.已知集合{}1,4,M x x =,{}21,N x =,若N M ⊆,则实数x 组成的集合为( )A .{}0B .{}2,2-C .2,0,2D .2,0,1,23.设全集{}1,2,3,4U =,{}1,3A =,{}4B =,则()U A B =( ) A .{}2,4B .{}4C .∅D .{}1,3,44.设全集U =R ,集合302x A xx ⎧⎫-=≤⎨⎬+⎩⎭,集合{}ln 1B x x =≥,则()UA B =( )A .()e,3B .[]e,3C .[)2,e -D .()2,e -5.记集合{}22M x x x =><-或,{}2|30N x x x =-≤,则MN =( )A .{|23}x x <≤B .或{}02}x x x ><-或C .{|02}x x ≤<D .{}|23x x -<≤6.已知全集为R ,集合115xA x ⎧⎫⎪⎪⎛⎫=<⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,11B x x ⎧⎫=≥⎨⎬⎩⎭,则A B ⋂=R( )A .{}0x x ≤B .{}01x x <≤C .{}1x x >D .∅7.设集合{}()(){}|32,|130A x x B x x x =-<<=+-≤,则A B =( ) A .{}|12x x -≤<B .{}|33x x -<≤C .{}|32x x -<≤D .{}|13x x -≤≤8.设集合{}2,1,0,1,2,3A =--,{|B x y ==,则AB =( )A .{}2B .{}0,1C .{}2,3D .{}2,1,0,1,2--9.已知集合{}14,Z A x x x =-<<∈,{}110B x x =<<,则集合A B 中元素的个数为( ) A .2B .3C .4D .510.若全集为R ,集合{2x A x=≤∣,{ln(2)0}B x x =-<∣,则()A B =R ( ) A .3,2⎛⎤-∞ ⎥⎝⎦B .30,2⎛⎤⎥⎝⎦C .3,22⎛⎫ ⎪⎝⎭D .()2,+∞11.已知集合{}35A x x =-≤<,{B x y ==,则()R A B ⋂=( ) A .13,2⎡⎫--⎪⎢⎣⎭B .1,52⎛⎫- ⎪⎝⎭C .[)3,2--D .()2,5-12.设集合{}{}(,)|20(,)|35A x y x y B x y x y =-==+=,,则A B =( ) A .{1,2}B .{1,2}xyC .(1,2)D .{(1,2)}13.设集合{}A x x a =>,{}2320B x x x =-+>,若A B ⊆,则实数a 的取值范围是( ). A .(),1-∞ B .(],1-∞ C .()2,+∞D .[)2,+∞14.已知集合{}22A x x =-≤<,{}13B x x =≤<,则A B =( ) A .[)2,2-B .[)2,3-C .[)1,2D .[]1,215.已知集合{}2280,Z A x x x x =--<∈,则A 的非空子集的个数为( )A .32B .31C .16D .15二、填空题16.已知集合{}21A x x =-<<,{}0B x x =<,则A B ⋃= ____________. 17.已知集合A ={x |(x -3)(x +1)<0},B ={x |x -1>0},则A ∪B =___________.18.已知集合{}2Z,4A x x x =∈<,{}1,2B =-,则A B ⋃=_________.19.若“x a >”是“39x >”的必要条件,则a 的取值范围是________.20.已知集合{}4194,A x x n n *==-+∈N ,{}6206,B y y n n *==-+∈N ,将A B 中的所有元素按从大到小的顺序排列构成一个数列{}n a ,则数列{}n a 的前n 项和的最大值为___________.21.满足条件:{}a {},,,M a b c d ⊆的集合M 的个数为______.22.若集合{}23,21,4A a a a =---,且3A -∈,则实数=a ___________.23.集合{}31A x x =-<,{}3782B x x x =-≥-,则A B =___________. 24.若实数2a =,集合{}|13B x x =-<<,则a 与B 的关系是______.25.已知A ={x |2a <x ≤a +8},B ={x |x <-1或x >5},若A ∪B =R , 则a 的取值范围是________.三、解答题26.已知集合{|28}x a A x -=>,2{|20}B x x x =+-<,再从条件① ,条件② ,条件③这三个条件中选择一个作为已知,求实数a 的取值范围. 条件①:A B =∅;条件②:A B A =;条件③:RA B ⊆.27.已知全集为实数集R ,集合{A x y ==,(){}lg 2B x y x ==-. (1)求A B 及()R B A ;(2)设集合{}1C x x a =<<,若C A ⊆,求实数a 的取值范围.28.对于任意的*n N ∈,记集合{1,2,3,,}n E n =,,n n n P x x a E b E ⎧⎫==∈∈⎨⎬⎩⎭,若集合A 满足下列条件:①n A P ⊆;②12,x x A ∀∈,且12x x ≠,不存在*N k ∈,使212x x k +=,则称A 具有性质Ω.如当2n =时,2{1,2}E =,2P ⎧=⎨⎩,112,x x P ∀∈,且12x x ≠,不存在*N k ∈,使212x x k +=,所以2P 具有性质Ω.(1)写出集合3P ,4P 中的元素个数,并判断3P 是否具有性质Ω. (2)证明:不存在A 、B 具有性质Ω,且A B =∅,使15E A B =⋃. (3)若存在A 、B 具有性质Ω,且A B =∅,使n P A B =⋃,求n 的最大值.29.对于正整数a ,b ,存在唯一一对整数q 和r ,使得a bq r =+,0r b ≤<.特别地,当0r =时,称b 能整除a ,记作|b a ,已知{}1,2,3,,23A =⋅⋅⋅(1)存在q A ∈,使得()202291091q r r =+≤<,试求r 的值;(2)求证.不存在这样的函数f :{}1,2,3A →,使得对任意的整数1x ,2x A ∈,若{}121,2,3x x -∈,则()()12f x f x ≠(3)若B A ⊆,()12card B =(()card B 指集合B 中的元素的个数).且存在,a b B ∈,b a <,|b a ,则称B 为“和谐集”.判断:当7m =时,集合A 中有12个元素并且含有m 的任意子集是否都为“和谐集”,并说明理由.30.设R a ∈,关于x 的二次不等式2220ax x a -->的解集为A ,集合{}12B x x =<<,满足A B ⋂≠∅,求实数a 的取值范围.【参考答案】一、单选题 1.D 【解析】 【分析】解一元二次不等式可得到{}()231002,5A x x x =--<=-,根据集合的交集运算求得A B ,即可求得答案.【详解】因为{}()231002,5A x x x =--<=-,{}21,Z B x x k k ==+∈,所以{}1,1,3A B ⋂=-,所以A B 的子集的个数是328= , 故选:D . 2.C 【解析】 【分析】若N M ⊆,所以2x x =或24x =,解出x 的值,将x 的值代入集合,检验集合的元素满足互异性. 【详解】因为N M ⊆,所以2x x =,解得0x =,1x =或24x =,解得2x =±, 当0x =时,{}1,4,0M =,{}1,0N =,N M ⊆,满足题意. 当1x =时,{}1,4,1M =,不满足集合的互异性. 当2x =时,{}1,4,2M =,1,4N ,若N M ⊆,满足题意. 当2x =-时,{}1,4,2M =-,1,4N ,若N M ⊆,满足题意.故选:C. 3.A 【解析】 【分析】根据补集的概念求出UA ,再根据并集运算即可求出结果.【详解】 由题意可知{}2,4UA =,又{}4B =,所以(){}2,4U A B =.故选:A. 4.D 【解析】【分析】求出集合A 、B ,利用交集和补集的定义可求得集合()U A B ∩. 【详解】因为{}30232x A xx x x ⎧⎫-=≤=-<≤⎨⎬+⎩⎭,{}{}ln 1e B x x x x =≥=≥, 所以,{}e UB x x =<,因此,()()2,e UA B =-.故选:D. 5.A 【解析】 【分析】先求出集合N ,再由交集的定义即可得出答案. 【详解】{}{}2|30|03N x x x x x =-≤=≤≤,所以MN ={|23}x x <≤.故选:A 6.C 【解析】 【分析】根据题意解得集合{}|0A x x =>,{}|01B x x =<≤,由集合补集运算得到(](),01,B =-∞⋃+∞R,再由集合交集运算得到最后结果.【详解】集合115x A x ⎧⎫⎪⎪⎛⎫=<⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,解得{}|0A x x =>,11B x x ⎧⎫=≥⎨⎬⎩⎭,()101110010x x xx x x x ⎧-≥-≥⇔≥⇔⇒<≤⎨≠⎩{}|01B x x ∴=<≤,(](),01,B =-∞⋃+∞R由集合交集运算得到:A B ⋂=R{}1x x >.故选:C. 7.A 【解析】 【分析】首先解一元二次不等式求出集合B ,再根据交集的定义计算可得; 【详解】解:由()()130x x +-≤,解得13x -≤≤, 所以()(){}{}|130|13B x x x x x =+-≤=-≤≤, 又{}|32A x x =-<<,所以{}|12A B x x ⋂=-≤<. 故选:A8.C 【解析】 【分析】根据偶次根式有意义及一元二次不等式的解法,再结合集合的交集的定义即可求解. 【详解】由y =()()250x x --≥,解得25x ≤≤,所以{}|25B x x =≤≤,A B ={}{}{}2,1,0,1,2,3|252,3x x --≤≤=,故选:C. 9.A 【解析】 【分析】利用集合交运算求A B ,即可确定元素个数. 【详解】由题设,{0,1,2,3}A =,又{|110}B x x =<<, 所以{2,3}A B =,共有2个元素. 故选:A 10.C 【解析】 【分析】先求出集合A ,B ,再根据补集交集的定义即可求出. 【详解】 因为32A x x ⎧⎫=≤⎨⎬⎩⎭∣,{}12B x x =<<,所以()322R A B xx ⎧⎫⋂=<<⎨⎬⎩⎭∣. 故选:C . 11.A 【解析】 【分析】先求出集合B ,得出其补集,再由交集运算得出答案. 【详解】由420x +≥,得21x ≥-,即集合1,2B ⎡⎫=-+∞⎪⎢⎣⎭,所以R 1,2B ∞⎛⎫=-- ⎪⎝⎭.所以()R 13,2AB ⎡⎫=--⎪⎢⎣⎭. 故选:A 12.D 【解析】 【分析】联立方程求解即可. 【详解】集合A 表示在直线2x -y =0上所有的点,集合B 表示3x +y =5上所有的点,所以联立方程2035x y x y -=⎧⎨+=⎩ ,解得x =1,y =2, ()1,2A B ⋂= ,即A 与B 的交集是点(1,2);故选:D. 13.D 【解析】 【分析】先求出集合B ,再由A B ⊆求出实数a 的范围. 【详解】{}{23202B x x x x x =-+>=>或}1x <.因为集合{}A x x a =>,A B ⊆,所以2a ≥. 故选:D 14.C 【解析】 【分析】 直接求解即可 【详解】因为{}|22A x x =-≤<,{}|13B x x =≤< 所以{}|12A B x x =≤< 故选:C 15.B 【解析】 【分析】求出集合A ,利用集合的非空子集个数公式可求得结果. 【详解】{}{}{}2280,Z 24,Z 1,0,1,2,3A x x x x x x x =--<∈=-<<∈=-,即集合A 含有5个元素,则A 的非空子集有52131-=(个). 故选:B.二、填空题16.{}1x x <【解析】 【分析】利用并集概念及运算法则进行计算.【详解】在数轴上画出两集合,如图:{}{}{}2101A B x x x x x x ⋃=-<<⋃<=<.故答案为:{}1x x < 17.{x |x >-1} 【解析】 【分析】利用集合的并集运算求解. 【详解】解:因为集合A ={x |(x -3)(x +1)<0}={x |-1<x <3},B ={x |x >1}, 所以A ∪B ={x |x >-1}. {x |x >-1}18.1,0,1,2【解析】 【分析】求出集合A ,利用并集的定义可求得结果. 【详解】{}{}{}2Z,4Z,221,0,1A x x x x x x =∈<=∈-<<=-,因此,{}1,0,1,2A B ⋃=-.故答案为:1,0,1,2.19.2a ≤【解析】 【分析】根据题意39x >解得:2x >,得出()()2,,a +∞⊆+∞,由此可得出实数a 的取值范围. 【详解】根据题意39x >解得:2x >,由于“x a >”是“39x >”的必要条件,则()()2,,a +∞⊆+∞,2a ∴≤. 因此,实数a 的取值范围是:2a ≤. 故答案为:2a ≤.20.1472【解析】 【分析】由题意设4194n b n =-+,6206m c m =-+,根据n m b c =可得326m n -=,从而312194n n a b n ==-+,即可得出答案.【详解】设4194n b n =-+,由41940n b n =-+>,得48n ≤ 6206m c m =-+,由62060m c m =-+>,得34m ≤A B 中的元素满足n m b c =,即41946206n m -+=-+,可得326m n -=所以223m n =+,由,*m n N ∈,所以3,*n k k N =∈ 所以312194n n a b n ==-+,要使得数列{}n a 的前n 项和的最大值,即求出数列{}n a 中所以满足0n a ≥的项的和即可. 即121940n a n =-+≥,得16n ≤,则116182,2a a == 所以数列{}n a 的前n 项和的最大值为121618221614722a a a ++++=⨯= 故答案为:1472 21.7 【解析】 【分析】根据{}a {},,,M a b c d ⊆可知,M 中的元素应该是多于一个不多于{},,,a b c d 中的元素个数,由此可求得答案. 【详解】由{}a {},,,M a b c d ⊆可知,M 中的元素个数多于{}a 中的元素个数,不多于{},,,a b c d 中的元素个数 因此M 中的元素来自于b ,c,d 中,即在b ,c,d 中取1元素时,M 有3个;取2个元素时,有3个;取3个元素时,有1个, 故足条件:{}a {},,,M a b c d ⊆的集合M 的个数有7个, 故答案为:7. 22.0或1. 【解析】 【分析】根据题意,分33a -=-、213a -=-和243a -=-,三种情况讨论,结合元素的互异性,即可求解. 【详解】由题意,集合{}23,21,4A a a a =---,且3A -∈,若33a -=-时,可得0a =,此时集合{}3,1,4A =---,符合题意;若213a -=-时,可得1a =-,此时243a -=-,不满足集合元素的互异性,舍去; 若243a -=-时,可得1a =或1a =-(舍去), 当1a =时,集合{}2,1,3A =--,符合题意,综上可得,实数a 的值为0或1. 故答案为:0或1.23.{}34x x ≤<【解析】 【分析】求出{}24A x x =<<与{}3B x x =≥,进而求出A B . 【详解】31x -<,解得:24x <<,故{}24A x x =<<,3782x x -≥-解得:3x ≥,故{}3B x x =≥,所以A B ={}34x x ≤<故答案为:{}34x x ≤<24.a B ∈【解析】 【分析】根据元素与集合关系即可判断. 【详解】因为2a =,满足123-<<,所以a B ∈. 故答案为:a B ∈.25.13,2⎡⎫--⎪⎢⎣⎭【解析】 【分析】由集合{|28}A x a x a =<+,{|1B x x =<-,或5}x >,A B R =,列出不等式组,能求出a 的取值范围. 【详解】集合{|28}A x a x a =<+,{|1B x x =<-,或5}x >,A B R =,∴2185a a <-⎧⎨+⎩, 解得132a -<-.a ∴的取值范围为[3-,1)2-.故答案为:[3-,1)2-.三、解答题26.若选① ,[2-,)∞+. 若选② ,(-∞,5]-.若选③ ,[2-,)∞+. 【解析】 【分析】先将集合A,B 中的不等式求解,根据集合运算的最后结果分析参数a 需要满足的范围即可求解. 【详解】{|28}{|3}{|3}x a A x x x a x x a -=>=->=>+,2{|20}{|(2)(1)0}{|21}B x x x x x x x x =+-<=+-<=-<<,若选择条件①:A B =∅,则需31a +,即2a -, 所求实数a 的取值范围为[2-,)∞+.若选择条件②:A B A =,即B A ⊆,则需32a +-,即5a -, 所求实数a 的取值范围为(-∞,5]-. 若选择条件③:RA B ⊆,因为{|2R B x x =-或1}x ,所以要使RA B ⊆,则需31a +,即2a -,所求实数a 的取值范围为[2-,)∞+. 27.(1){|1}A B x x =≥,R(){|12}B A x x =≤≤(2)(,3]a ∈-∞ 【解析】 【分析】(1)先求出集合A 、B ,再求A B ,R()B A ;(2)对C 是否为∅分类讨论,分别求出a 的范围.(1)由1030x x -≥⎧⎨-≥⎩可得{}|13A x x =≤≤ 又{|20}{|2}B x x x x =->=>,则R{|2}B x x =≤所以{|1}A B x x =≥,R(){|12}B A x x =≤≤(2)当1a ≤时,C =∅,此时C A ⊆; 当1a >时,C A ⊆,则13a ; 综上可得(,3]a ∈-∞28.(1)3P ,4P 中的元素个数分别为9,14,3P 不具有性质Ω. (2)证明见解析 (3)14 【解析】 【分析】(1)由已知条件能求出集合3P ,4P 中的元素个数,并判断出3P 不具有性质Ω.(2)假设存在A ,B 具有性质Ω,且A B =∅,使15E A B =.其中15{1E =,2,3,⋯,15},从而1AB ∈,由此推导出与A 具有性质Ω矛盾.从而假设不成立,即不存在A ,B具有性质Ω,且A B =∅,使15E A B =.(3)当15n 时,不存在A ,B 具有性质Ω,且A B =∅,使n P A B =.14n =,根据1b =、4b =、9b =分类讨论,能求出n 的最大值为14.(1)解: 对于任意的*n N ∈,记集合{1n E =,2,3,⋯,}n ,,n n n P x x a E b E ⎧⎫=∈∈⎨⎬⎩⎭.当3n =时{}31,2,3E =,3P ⎧=⎨⎩;当4n =时{}41,2,3,4E =,413,22P ⎧⎫=⎨⎬⎩⎭,∴集合3P ,4P 中的元素个数分别为9,14,集合A 满足下列条件:①n A P ⊆;②1x ∀,2x A ∈,且12x x ≠,不存在*k N ∈,使212x x k +=,则称A 具有性质Ω,因为31P ∈,33P ∈,2132+=,*2∈N ,不符合题意,3P ∴不具有性质Ω.(2)证明:假设存在A ,B 具有性质Ω,且A B =∅,使15E A B =.其中15{1E =,2,3,⋯,15}.因为151E ∈,所以1A B ∈,不妨设1A ∈.因为2132+=,所以3A ∉,3B ∈.同理6A ∈,10B ∈,15A ∈.因为21154+=,这与A 具有性质Ω矛盾. 所以假设不成立,即不存在A ,B 具有性质Ω,且A B =∅,使15E A B =. (3)解:因为当15n 时,15n E P ⊆,由(2)知,不存在A ,B 具有性质Ω,且A B =∅,使n P AB =.若14n =,当1b =时,1414x x a E E ⎧⎫∈=⎨⎬⎩⎭, 取1{1A =,2,4,6,9,11,13},1{3B =,5,7,8,10,12,14}, 则1A ,1B 具有性质Ω,且11A B =∅,使1411E A B =.当4b =时,集合14x x a E ⎧⎫=∈⎨⎬⎩⎭中除整数外,其余的数组成集合为13513{,,,,}2222⋯, 令215911{,,,}2222A =,23713{,,}222B =,则2A ,2B 具有性质Ω,且22A B =∅,使2213513{,,,,}2222A B ⋯=.当9b =时,集14x x a E ⎧⎫=∈⎨⎬⎩⎭中除整数外,其余的数组成集合12457810111314{,,,,,,,,,}3333333333, 令31451013{,,,,}33333A =,32781114{,,,,}33333B =. 则3A ,3B 具有性质Ω,且33A B =∅,使3312457*********{,,,,,,,,,}3333333333A B =.集合1414,,1,4,9C x x a E b E b ⎧⎫==∈∈≠⎨⎬⎩⎭中的数均为无理数, 它与14P 中的任何其他数之和都不是整数, 因此,令123A A A A C =,123B B B B =,则AB =∅,且14P AB =.综上,所求n 的最大值为14.29.(1)20 (2)证明见解析 (3)是,理由见解析 【解析】 【分析】(1)由2022除以91求解; (2)利用反证法证明; (3)利用“和谐集”的求解. (1)解:因为2022912220=⨯+,且q A ∈, 所以q =22,r =20; (2)假设存在这样的函数f :{}1,2,3A →,使得对任意的整数1x ,2x A ∈,若{}121,2,3x x -∈,则()()12f x f x ≠,设(){}(){}1,1,2,3,2,1,2,3f a a f b b =∈=∈, 由已知ab ,由于312,321-=-=, 所以()()()()31,32f f f f ≠≠,不妨设(){}3,1,2,3f c c =∈,且,c a c b ≠≠, 同理()()4,4f b f c ≠≠, 因为{}1,2,3只有三个元素, 所以()4f a =,即()()14f f =,但413-=,与已知矛盾,所以假设不成立,即不存在这样的函数f :{}1,2,3A →,使得对任意的整数1x ,2x A ∈,若{}121,2,3x x -∈,则()()12f x f x ≠ (3)设{}1211,,...,,7B a a a =,若1,14,21中之一为集合B 的元素,显然为“和谐集”, 现考虑1,14,21都不属于集合B ,构造集合{}{}{}1232,4,8,16,3,6,12,5,10,20B B B ===,{}{}459,18,11,22B B ==,{}13,15,17,19,23B '=,12345,,,,B B B B B 每个集合中的元素都是倍数关系,考虑B B '⊆的情况,也即B '中5个元素全都是B 的元素,则B 中剩下的6个元素必须从12345,,,,B B B B B 这5个集合中选取6个元素, 则至少有一个集合有两个元素被选,即集合B 中至少有两个元素存在倍数关系, 综上:当7m =时,集合A 中有12个元素并且含有m 的任意子集都为“和谐集”.30.()(),22,∞∞--⋃+【解析】 【分析】由题意0a ≠,求出方程2220ax x a --=的两根,讨论a 的正负,确定二次不等式的解集A 的形式,然后结合数轴列出不等式求解即可得答案. 【详解】解:由题意0a ≠,令2220ax x a --=,解得两根为1211x x aa ==可知120,0x x <>,当0a >时,解集{}{}12||A x x x x x x =<>,因为120,1x x <>,所以A B ⋂≠∅的充要条件是22x <,即12a +<,解得2a >;当0a <时,解集{}12|A x x x x =<<,因为120,2x x <<,所以A B ⋂≠∅的充要条件是21>x ,即11a+,解得2a <-;综上,实数a 的取值范围为()(),22,∞∞--⋃+.。

高一数学集合练习题及答案(5篇)

高一数学集合练习题及答案(5篇)

高一数学集合练习题及答案(5篇)高一数学练习题及答案篇1一、填空题.(每题有且只有一个正确答案,5分×10=50分)1、已知全集U = {1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 }, A= {3 ,4 ,5 }, B= {1 ,3 ,6 },那么集合 { 2 ,7 ,8}是 ( )2 . 假如集合A={x|ax2+2x+1=0}中只有一个元素,则a的值是 ( )A.0B.0 或1C.1D.不能确定3. 设集合A={x|1A.{a|a ≥2}B.{a|a≤1}C.{a|a≥1}.D.{a|a≤2}.5. 满意{1,2,3} M {1,2,3,4,5,6}的集合M的个数是 ( )A.8B.7C.6D.56. 集合A={a2,a+1,1},B={2a1,| a2 |, 3a2+4},A∩B={1},则a的值是( )A.1B.0 或1C.2D.07. 已知全集I=N,集合A={x|x=2n,n∈N},B={x|x=4n,n∈N},则 ( )A.I=A∪BB.I=( )∪BC.I=A∪( )D.I=( )∪( )8. 设集合M= ,则 ( )A.M =NB. M NC.M ND. N9 . 集合A={x|x=2n+1,n∈Z},B={y|y=4k±1,k∈Z},则A 与B的关系为 ( )A.A BB.A BC.A=BD.A≠B10.设U={1,2,3,4,5},若A∩B={2},( UA)∩B={4},( UA)∩( UB)={1,5},则以下结论正确的选项是( )A.3 A且3 BB.3 B且3∈AC.3 A且3∈BD.3∈A且3∈B二.填空题(5分×5=25分)11 .某班有同学55人,其中音乐爱好者34人,体育爱好者43人,还有4人既不爱好体育也不爱好音乐,则班级中即爱好体育又爱好音乐的有人.12. 设集合U={(x,y)|y=3x1},A={(x,y)| =3},则 A= .13. 集合M={y∣y= x2 +1,x∈ R},N={y∣ y=5 x2,x∈ R},则M∪N=_ __.14. 集合M={a| ∈N,且a∈Z},用列举法表示集合M=_15、已知集合A={1,1},B={x|mx=1},且A∪B=A,则m的值为三.解答题.10+10+10=3016. 设集合A={x, x2,y21},B={0,|x|,,y}且A=B,求x, y的值17.设集合A={x|x2+4x=0},B={x|x2+2(a+1)x+a21=0} ,A∩B=B,求实数a的值.18. 集合A={x|x2ax+a219=0},B={x|x25x+6=0},C={x|x2+2x8=0}.?(1)若A∩B=A∪B,求a的值;(2)若A∩B,A∩C= ,求a的值.19.(本小题总分10分)已知集合A={x|x23x+2=0},B={x|x2ax+3a5=0}.若A∩B=B,求实数a的取值范围.20、已知A={x|x2+3x+2 ≥0}, B={x|mx24x+m10 ,m∈R}, 若A∩B=φ, 且A∪B=A, 求m的取值范围.21、已知集合,B={x|2参考答案C B AD C D C D C B26 {(1,2)} R {4,3,2,1} 1或1或016、x=1 y=117、解:A={0,4} 又(1)若B= ,则,(2)若B={0},把x=0代入方程得a= 当a=1时,B=(3)若B={4}时,把x=4代入得a=1或a=7.当a=1时,B={0,4}≠{4},∴a≠1.当a=7时,B={4,12}≠{4},∴a≠7.(4)若B={0,4},则a=1 ,当a=1时,B={0,4},∴a=1综上所述:a18、.解:由已知,得B={2,3},C={2,4}.(1)∵A∩B=A∪B,∴A=B于是2,3是一元二次方程x2ax+a219=0的两个根,由韦达定理知:解之得a=5.(2)由A∩B ∩ ,又A∩C= ,得3∈A,2 A,4 A,由3∈A,得323a+a219=0,解得a=5或a=2?当a=5时,A={x|x25x+6=0}={2,3},与2 A冲突;当a=2时,A={x|x2+2x15=0}={3,5},符合题意.∴a=2.19、解:A={x|x23x+2=0}={1,2},由x2ax+3a5=0,知Δ=a24(3a5)=a212a+20=(a2)(a10).(1)当2(2)当a≤2或a≥10时,Δ≥0,则B≠ .若x=1,则1a+3a5=0,得a=2,此时B={x|x22x+1=0}={1} A;若x=2,则42a+3a5=0,得a=1,此时B={2,1} A.综上所述,当2≤a10时,均有A∩B=B.20、解:由已知A={x|x2+3x+2 }得得.(1)∵A非空,∴B= ;(2)∵A={x|x }∴ 另一方面,,于是上面(2)不成立,否则,与题设冲突.由上面分析知,B= .由已知B= 结合B= ,得对一切x 恒成立,于是,有的取值范围是21、∵A={x|(x1)(x+2)≤0}={x|2≤x≤1},B={x|1∵ ,(A∪B)∪C=R,∴全集U=R。

高一数学集合的运算试题答案及解析

高一数学集合的运算试题答案及解析

高一数学集合的运算试题答案及解析1.若,则的值为【答案】-1【解析】由集合相等的概念可知有元素,又,则,故,根据集合中元素的互异性知,故。

【考点】集合相等的概念及集合中元素的互异性。

2.设集合,A.B.C.D.【答案】B【解析】集合=,N= ;所以M N=【考点】交集的运算3.已知集合,,则.【答案】【解析】集合,集合,.【考点】集合的交集.4.已知全集,集合(1)求(2)求【答案】(1)(2)【解析】分别求出两集合A,B的解集,,再求出,分别求出,.由,得-6<x-1<6,解得-5<x<7,由,得(x-8)(2x-1)>0,解得x>8,或x<.(1);(2).【考点】集合的运算.5.已知集合,集合,若是单元素集,则=【答案】6 或-4【解析】由条件,得,可知集合表示一条直线,集合表示圆心为,半径为的圆,若是单元素,则直线与圆相切,则有,即,解得.【考点】1、集合的交集运算;2、直线与圆的位置关系.6.集合.(1)当时,求;(2)若是只有一个元素的集合,求实数的取值范围.【答案】(1)(2)m=3或m≥【解析】(1)两集合的交集即两集合的公共部分,所以应联立方程解方程组。

(2)要使是只有一个元素的集合,只需联立的方程只有一个根,消去y或x后整理出一元二次方程,当判别式等于0时,对称轴需在内,当判别式大于0时,函数的一个零点应在内。

试题解析:(1),所以。

(2)消去y整理可得。

因为是只有一个元素的集合,即此方程在只有一个根。

所以或解得m=3或m≥【考点】集合运算一元二次函数图像7.集合.(1)若A B=,求a的取值范围.(2)若A B=,求a的取值范围.【答案】(1)(2)【解析】(1)A B=时,集合A集合B没有公共点,所以时成立。

当时,两集合仍没有公共点,所以;(2)集合B中必须含有小于等于的元素,集合A中含有的元素在集合B中仍可含有所以试题解析:(1)因为,A B=,所以(2)当A B=时【考点】集合的运算8.满足A∪{-1,1}={-1,0,1}的集合A共有( )A.10个B.8个C.6个D.4个【答案】D【解析】根据题意,分析可得,集合A中必须有元素0,可能含有元素1或-1,由此列举可得全部可能的集合集合A可能为{0}、{0,1}、{0,-1}、{0,1,-1},共有4个;故选D【考点】子集与真子集.9.设集合若,则实数 .【答案】4【解析】,或或,当时,,此时不合题意,.【考点】集合的交、并、补运算10.已知集合,.(Ⅰ)若,求();(Ⅱ)若,求实数的取值范围.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)解出集合,再根据确定集合,然后由数轴找出交集是;(Ⅱ)由可知,由子集概念求出的取值范围是.试题解析:(Ⅰ)因为当时,.所以.又因为集合,所以().(Ⅱ)因为,所以.当时,有:,此时;当时,有:,解得.综上所述,实数的取值范围是.【考点】集合的基本运算.11.已知全集为实数集R,集合,.(1)分别求,;(2)已知集合,若,求实数的取值集合.【答案】(1),;(2)的取值范围是.【解析】(1)只要求出集合,根据集合交集,并集,补集的定义就可以得出结论;(2)由于,可以在数轴上表示出两个集合,从而得出的范围.试题解析:(Ⅰ),,,.(Ⅱ)①当时,,此时;②当时,,则.综合①②,可得的取值范围是.【考点】1、集合的运算;2、子集的概念.A=12.已知集合A={y | y=2x,x∈R},则CRA.B.(-∞,0]C.(0,+∞)D.R【答案】B【解析】A={y | y=2x,x∈R},所以CA=(-∞,0].R【考点】本小题主要考查指数函数的值域和补集运算.点评:涉及到集合的运算,可以借助数轴辅助解决问题.13.已知全集U={1,2,3,4,5,6,7},A={3,4,5},B={1,3,6},则A∩(CB)等于()UA.{4,5} B.{2,4,5,7} C.{1,6} D.{3}【答案】AB={2,4,5,7},【解析】根据题意,由于全集U={1,2,3,4,5,6,7},A={3,4,5},B={1,3,6}那么可知,CU则A∩(CB)= {4,5},故选A.U【考点】交、并、补的定义点评:本题考查利用交、并、补的定义进行集合间的混合运算,属于基础题14.已知A={xú 2a≤x≤a+3},B={xú x<-1或x>5} 且A∩B=Ф,求实数a的取值范围.【答案】.【解析】当时,,所以,这时A∩B="Ф" (2分)当时,根据题意得,即,所以(8分)综上可得,或(9分)∴实数的取值范围是(10分)【考点】本题主要考查集合的运算,一元一次不等式组的解法。

高一数学必修一集合练习题含答案

高一数学必修一集合练习题含答案

高一数学必修一集合练习题含答案进入高中一之后,第一个学习的重要数学知识点就是集合,学生需要通过练习巩固集合内容,下面是店铺给大家带来的高一数学必修一集合练习题,希望对你有帮助。

高一数学必修一集合练习题一、选择题(每小题5分,共20分)1.下列命题中正确的( )①0与{0}表示同一个集合;②由1,2,3组成的集合可表示为{1,2,3}或{3,2,1};③方程(x-1)2(x-2)=0的所有解的集合可表示为{1,1,2};④集合{x|4A.只有①和④B.只有②和③C.只有②D.以上语句都不对【解析】{0}表示元素为0的集合,而0只表示一个元素,故①错误;②符合集合中元素的无序性,正确;③不符合集合中元素的互异性,错误;④中元素有无穷多个,不能一一列举,故不能用列举法表示.故选C.【答案】 C2.用列举法表示集合{x|x2-2x+1=0}为( )A.{1,1}B.{1}C.{x=1}D.{x2-2x+1=0}【解析】集合{x|x2-2x+1=0}实质是方程x2-2x+1=0的解集,此方程有两相等实根,为1,故可表示为{1}.故选B.【答案】 B3.已知集合A={x∈N*|-5≤x≤5},则必有( )A.-1∈AB.0∈AC.3∈AD.1∈A【解析】∵x∈N*,-5≤x≤5,∴x=1,2,即A={1,2},∴1∈A.故选D.【答案】 D4.定义集合运算:A*B={z|z=xy,x∈A,y∈B}.设A={1,2},B={0,2},则集合A*B的所有元素之和为( )A.0B.2C.3D.6【解析】依题意,A*B={0,2,4},其所有元素之和为6,故选D.【答案】 D二、填空题(每小题5分,共10分)5.已知集合A={1,a2},实数a不能取的值的集合是________.【解析】由互异性知a2≠1,即a≠±1,故实数a不能取的值的集合是{1,-1}.【答案】{1,-1}6.已知P={x|2【解析】用数轴分析可知a=6时,集合P中恰有3个元素3,4,5.【答案】 6三、解答题(每小题10分,共20分)7.选择适当的方法表示下列集合集.(1)由方程x(x2-2x-3)=0的所有实数根组成的集合;(2)大于2且小于6的有理数;(3)由直线y=-x+4上的横坐标和纵坐标都是自然数的点组成的集合.【解析】(1)方程的实数根为-1,0,3,故可以用列举法表示为{-1,0,3},当然也可以用描述法表示为{x|x(x2-2x-3)=0},有限集.(2)由于大于2且小于6的有理数有无数个,故不能用列举法表示该集合,但可以用描述法表示该集合为{x∈Q|2(3)用描述法表示该集合为M={(x,y)|y=-x+4,x∈N,y∈N}或用列举法表示该集合为{(0,4),(1,3),(2,2),(3,1),(4,0)}.8.设A表示集合{a2+2a-3,2,3},B表示集合{2,|a+3|},已知5∈A且5∉B,求a的值.【解析】因为5∈A,所以a2+2a-3=5,解得a=2或a=-4.当a=2时,|a+3|=5,不符合题意,应舍去.当a=-4时,|a+3|=1,符合题意,所以a=-4.9.(10分)已知集合A={x|ax2-3x-4=0,x∈R}.(1)若A中有两个元素,求实数a的取值范围;(2)若A中至多有一个元素,求实数a的取值范围.【解析】(1)∵A中有两个元素,∴方程ax2-3x-4=0有两个不等的实数根,∴a≠0,Δ=9+16a>0,即a>-916.∴a>-916,且a≠0.(2)当a=0时,A={-43};当a≠0时,若关于x 的方程ax2-3x-4=0有两个相等的实数根,Δ=9+16a=0,即a=-916;若关于x的方程无实数根,则Δ=9+16a<0,即a<-916;故所求的a的取值范围是a≤-916或a=0.高一数学必修一集合知识点集合通常用大写字母表示集合,用小写字母表示元素,如集合A={a,b,c}。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学集合与集合的运算测试题
第I卷(共60分)
一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是
符合题目要求的.
1 •若集合a,b,C当中的元素是△ ABC的三边长,则该三角形是(

A •正三角形
B •等腰三角形
C •不等边三角形
D •等腰直角三角形
2 •集合{1 , 2, 3}的真子集共有(

A • 5个
B • 6个
C • 7个
D • 8个
3 .设A、B是全集U 的两个子集,且 A B,则下列式子成立的是( )
A• C u A C u B B • C U A C U B=U C • A C u B= D • C u A B=
4 .如果集合A={x|ax 2+ 2x + 仁0} 中只有一个元素,那么a的值是( )
A • 0
B • 0 或1
C • 1
D •不能确定
5 •设集合M x| x 2 .3 , a -.11 b其中b 0,1,则下列关系中正确的是( )
A • a M
B • a M
C • a M
D • a M
6 .已知A={1 , 2, a2-3a-1},B={1,3},A B {3,1}则a等于( )
A • -4 或1
B • -1 或4
C • -1
D • 4
7 •设S、T是两个非空集合,且S_ T,T_S,令X=S T,那么S X= ( )
A • X
B • T
C •
D • S
8 •给定集合 A B ,定义 A % B { x| x m n , m A , n B } •若 A {4,5,6}, B {1, 2,3},
J 厂厂-——-■
-Tr-t 、f ( )则集合 A -※B 中的所有兀素之和为
A • 15
B • 14
C • 27
D • -14
9 •设集合M={x|x € Z 且一10 W x W
3},N={x|x € Z 且|x| W 5 },贝U M U N中元素的个—
数为( )
(C u A) (C u B )={1 , 5},则下列结论正确的是( )
A • 11
B • 10
C • 16
D • 15
10 •设 U={1 , 2 , 3 , 4 , 5}, A , B 为 U 的子集,若A B={2},
(C u A ) B={4}
A . 3
A,3 B
B .3 A,3 B
C . 3 A,3 B
D .
3 A,3 B 11 . 设 A={x Z
2
x px 15 °},B={x
Z
2
x 5x
q 0 },若A
B={2,3,5},A 、B 分
别为
( )
A . {3 , 5}、{2 , 3}
B . {2 , 3}、 {3, 5}
C . {2, 5}、 {3
, 5}
D . {3, 5}、 {2, 5}
12 .设※是集合A 中元素的一种运算,如果对于任意的x 、y A ,都有乂※y A ,则称运
算※对集合A 是封闭的,若M {x|x a . 2b,a, b Z},则对集合M 不封闭的运算 是 (
)
A .加法
B .减法
C .乘法
D .除法
第n 卷(共90分)
二、填空题:本题共 4小题,每小题4分,共16分.把答案填在题中的横线上. 13 .已知集合
A ={0, 2 , 3},
B ={x|x ab, a 、b A },贝U B 的子集的个数是 _________ .
14 .若一数集中的任一元素的倒数仍在该集合中,则称该集合为“可倒数集”
,试写出一个
含三个元素的可倒数集 ___________ .(只需写出一个集合) 15 .定义集合A 和B 的运算:A B xx A,且
x B .试写出含有集合运算符号“

“ U ”、“I ”,并对任意集合 A 和B 都成立的一个等式: _________________ . 16 .设全集为
,用集合A 、B 、C 的交、并、补集符号表图中的阴影部分.
(1 ) ______________________________ (2 ) ______________________________
(3) ____________________________
三、解答题:本大题共6小题,共74分.解答应写出必要的文字说明、证明过程及演算步 骤.
17.已知集合A={x|1 < x v 4 = , B={x| x v a =,若A^B,试求实数a的取值集合.
求实数a 的取值范围.
19 .设全集U={x
x 5,且x N * },集合 A={x
2
x 5x q 0},B={ x
2
x +px+12=0},
且(C U A )
B={1 , 4 , 3 , 5},求实数 P 、 q 的值.
18 .设 A={x
x 2 4x 0, B {x x 2 2(a 1)x a 2
1 0},其中x R,如果A
B=B ,
2
20 •集合 A={ (x,y ) x
mx y 2 0},集合 B={ (x,y ) x y 1
0,且 0 x 2},
又A B ,求实数m 的取值范围.(12分)
21 .集合 A ={ x | x 2 — ax + a 2 — 19 = 0 }, B ={ x | x 2
5x + 6 = 0}.若 A Cl B = A U B ,
求a 的值.(12分)
22.知集合 A (x,y) y
4
4 2x x 2
, x R , B
x,y (x 1)2 y 2 a 2,a 0 ,
是否存在正实数a ,使得A B A ,如果存在求a 的集合?如果不存在请说明理由.
二、填空题
综上所述实数a=1或a -1 . 4}或 A={2 , 3} CuA={2,3,5}或{1 , 4 , 5}
B={3 ,
4} ( C U A ) B= (1 , 3 , 4 , 5),又 B={3 , 4} C U A={1 , 4 , 5} 故 A 只有等于
集合{2 , 3},
P=- (3+4 ) =-7 ,
q=2 X 3=6 .
、选择题
集合与集合的运算答案
8 . A 9 . C 10 . C 11 . A
13 . 16 .
14 .
15
A (Al B)
(AUB) B ;
B (AI B) (AUB) A ;
(AUB) (Al
B) (A B)U(B A)
16 . (1 ) (A
C u (A B);
(2) [ (C u A )
(C u B )] C ;
(3) (A
(C u C ).
三、解答题
17 .将数集A 表示在数轴上(如图),要满足AWB ,表示数
a 的点必须在4或4的右边,
所求a 的取值集合为{a | a > 4}.
18 . A={0 , (i ) B=
(ii)B={0} -4},又 A B=B ,所以 B A .
时,
4 (a+1 ) 2-4(a 2-1)<0,得 a<-1 ;
或 B={-4}时,
得 a=-1 ;
2(a 1) ⑴)B={0
,-4}
,a 2 1
4
解得a=1 . 19 . U={1 , 2 , 3 , 4, 5}
A={1 ,
.21 2
2
x mx y 20 亠 在0 x
由A B 知方程组 x y 1 0
若 3,则X 1+X 2=1-m<0,x 1X 2=1,所以方程只有负根。

个小于1,即至少有一根在[0, 2]内。

由韦达定理知:
设 T(x) (x 1)2 、4 2x x 2 ,
当t 丄时,
2
得x 2+(m-1)x=0 在0 x 2内有解,
(m 1)2
4 0 即 m 3 或 m -1。

若m -1,x 1+X 2=1-m>0,x 1x 2=1,所以方程有两正根, -H-
且两根均为1或两根一个大于1,
21 因此
{m
<m
-1} •
由已知,得B =
•/ A n B = A U B ,
兀二次方程 x 2 — ax + a 2 — 19 = 0 的两个
根,
22 •/ A
3 a 3 a 2
19解之,得a = 5 .
4
4 2x x 2 代入(x 1)2
a 2,得(x 1)2 ,4 2x x 2 a 2,
令 t .4 2x x 2 1)2
2
依题意得a
21 4
•••适合
条件的
a 存在其集合为
20
2内有解,消去y,
-H-
21 4。

相关文档
最新文档