2016-2017学年新人教A版必修1高中数学 2.1.4指数函数及期性质教案(精品)
2016秋新人教A版高中数学必修一2.1.2《指数函数及其性质(1)》Word精讲精析

课题:指数函数及其性质(1)精讲部分学习目标展示(1)理解指数函数的概念(2)掌握指数函数的图象(3)掌握指数函数当底数变化时,函数图象的变化规律(4)会求指数形式的函数的定义域 衔接性知识1. 分数指数幂如何定义的?答:(0,,,1)m na a m n N n *=>∈>,1(0,,,1)mnm na a m n N n a-*==>∈>,(1)00(0,,,1)m n a m n N n *=>∈> (2)0(0,,,1)m na m n N n -*>∈>无意义2.比较函数2y x =与2x y =在形式上的不同?答:函数2y x =的指数为定值2,而底数是自变量x ;函数2x y =的底数是2,而指数是自变量x .例1.下列函数中,哪些是指数函数?(1)4y x =;(2)4y x =;(3) 4y x =-;(4)(4)y x =-;(5) y x π=;(6)24y x =;(7)x y x =;(8)1(21)(,1)2xy a a a =->≠ [解析](1)、(5)、(8)为指数函数;(2)中底数x 不是常数,而4不是变数;(3)是-1与指数函数4x 的乘积;(4)中底数-4<0,∴不是指数函数;(6)中指数不是自变量x ,而是x 的函数;(7)中底数x 不是常数.它们都不符合指数函数的定义 例2.求列函数的定义域: (1)()f x = (2)11()()2x f x = (3)()f x =解:(1)使函数有意义,得320x -≥,23x ∴≥,所以()f x 的定义域为2[,)3+∞; (2)使函数有意义,得0x ≠,所以()f x 的定义域为(,0)(0,)-∞+∞; (3)使函数有意义,得120x ->,21x ∴<,由2xy =的图象,可知,0x <,所以()f x 的定义域为(,0)-∞.例3.(1)指数函数()y f x =的图象经过点1(2,)2,求(1)f -,(3)f 的值; (2)若2(3)(21)xy k k =-⋅-是指数函数,求实数k 的值. 解:(1)设()(0,xf x a a =>且1)a ≠,则x y a =x y b =xy c =xy d=指数函数()y f x=的图象经过点1(2,)2,212a∴=,即2a=,所以()(2xf x=1(1)(2f-∴-===3(3)f==(2)由指数函数的定义,得22311210222111kkk k kkk=±⎧⎧-=⎪⎪⎪->⇒>⇒=⎨⎨⎪⎪-≠⎩≠⎪⎩例4.(1)下图分别是函数①y=a x;②y=b x;③y=c x;④y=d x的图象,a、b、c、d 分别是下列四数:2、43、310、15中的一个,则相应的a、b、c、d应是下列哪一组( )A.43,2,15,310B.2,43,310,15C.310,15,2,43D.15,310,43, 2 (2)无论a取何值(a>0且a≠1),函数32xy a+=+的图象恒过定点.解:(1)法一、指数函数y=a x的图象从第一象限看,逆时针方向底数a依次从小变大,故选C.解法二:直线x=1与函数的图象相交,从上到下依次为c>d>a>b,而2>43>310>15,故选C.(2)由指函数y=a x(a>0且a≠1)过定点(0,1)知,x+3=0时,31xa+=.∴此函数图象过定点(-3,3).精练部分A 类试题(普通班用)1. 在同一平面直角坐标系中,函数f (x )=ax 与指数函数g (x )=a x的图象可能是( )[答案] B [解析]由指数函数的定义知a >0,故f (x )=ax 的图象经过一、三象限,∴A 、D 不正确.若g (x )=a x为增函数,则a >1,与y =ax 的斜率小于1矛盾,故C 不正确.B 中0<a <1,故B 正确. 2.指数函数()y f x =的图象过点1(1,)2-,则[(2)]f f =________. [答案] 16[解析]设()(0,x f x a a =>且1)a ≠,∵()f x 图象过点1(1,)2-,∴2a =,∴()2x f x =,∴24[(2)](2)(4)216f f f f ====3.函数2()(3(,1)3f x a b a a =-+>≠的图象过定点0(,3)x , 则0x = ,b =[解析] 0=,得43x =,所以当43x =时,(31a -=,所以043x =, 13b +=,所以2b =4. 如果函数12(1)xy a -=-的定义域为(0,+∞)那么a 的取值范围是( )A .0a >B .01a <<C .1a >D .1a ≥[答案] C[解析] 12(1)xy a -=-=,因此10x a ->,∴1xa >,又∵0x >及指数函数的图象,∴1a >,故选C. 5.当0x >时,指数函数(82)xy a =-的图象在指数函数(2)xy a =的图象的上方,求实数a 的取值范围[解析] 由指数函数的图象的变化规律,得148203821812003211282213a a a a a a a a a a a a ⎧>⎪⎪->⎧⎪≠⎪-≠⎪⎪⎪⎪>⇒>⇒>⎨⎨⎪⎪≠⎪⎪≠->⎪⎪⎩⎪>⎪⎩且38a ≠且12a ≠故实数a 的取值范围为1{|3a a >且38a ≠且1}2a ≠B 类试题(3+3+4)(尖子班用)1. 在同一平面直角坐标系中,函数f (x )=ax 与指数函数g (x )=a x的图象可能是()[答案] B [解析]由指数函数的定义知a >0,故f (x )=ax 的图象经过一、三象限,∴A 、D 不正确.若g (x )=a x为增函数,则a >1,与y =ax 的斜率小于1矛盾,故C 不正确.B 中0<a <1,故B 正确. 2.函数y =a |x |(0<a <1)的图象是( )[答案] C[解析] y =⎩⎪⎨⎪⎧a x (x ≥0)⎝ ⎛⎭⎪⎫1a x(x <0)∵0<a <1,∴在[0,+∞)上单减,在(-∞,0)上单增,且y ≤1,故选C. [点评] 可取a =12画图判断.3. 如果函数12(1)xy a -=-的定义域为(0,+∞)那么a 的取值范围是( )A .0a >B .01a <<C .1a >D .1a ≥[答案] C [解析]12(1)xy a -=-=,因此10x a ->,∴1x a >,又∵0x >及指数函数的图象,∴1a >,故选C.4.指数函数()y f x =的图象过点1(1,)2-,则[(2)]f f =________. [答案] 16[解析]设()(0,x f x a a =>且1)a ≠,∵()f x 图象过点1(1,)2-,∴2a =,∴()2x f x =,∴24[(2)](2)(4)216f f f f ====5.函数2()(3(,1)3f x a b a a =-+>≠的图象过定点0(,3)x , 则0x = ,b =[解析] 0=,得43x =,所以当43x =时,(31a -=,所以043x =, 13b +=,所以2b =6.函数102()(5)(2)f x x x -=-+-的定义域是 (用区间表示)[解析] 由题意得:50220x x x -≠⎧⇒>⎨->⎩且5x ≠所以()f x 的定义域为(2,5)(5,)+∞.7.已知f (x )=12(a x -a -x ),g (x )=12(a x +a -x),求证:[f (x )]2+[g (x )]2=g (2x ).[解析] f 2(x )+g 2(x )=14(a x -a -x )2+14(a x +a -x )2=14(2a 2x +2a -2x)=12(a 2x +a -2x )=g (2x )所以 [f (x )]2+[g (x )]2=g (2x )8.当0x >时,指数函数(82)x y a =-的图象在指数函数(2)xy a =的图象的上方,求实数a 的取值范围[解析] 由指数函数的图象的变化规律,得148203821812003211282213a a a a a a a a a a a a ⎧>⎪⎪->⎧⎪≠⎪-≠⎪⎪⎪⎪>⇒>⇒>⎨⎨⎪⎪≠⎪⎪≠->⎪⎪⎩⎪>⎪⎩且38a ≠且12a ≠故实数a 的取值范围为1{|3a a >且38a ≠且1}2a ≠9.已知()2x f x =,7g()13x x =+,在同一坐标系中画出这两个函数的图象.试问在哪个区间上,()f x 的值小于()g x ?哪个区间上,()f x 的值大于()g x ?[解析]在同一坐标系中,画出函数()2x f x =与7g()13x x =+的图象如图所示,两函数图象的交点为(0,1)和(3,8),由图象可知,当(,0)x ∈-∞或(3,)x ∈+∞时,()g()f x x >, 当(0,3)x ∈时,()g()f x x <.10.已知函数|2|1()()2x f x +=①作出其图象;②试由图象指出()f x 的其单调区间与有最大值. [解析] ①②由图象可知,()f x 的增区间(-∞,-2];减区间[-2,+∞)()f x 的最大值max [()](2)1f x f =-=。
人教A版数学必修一教案:§2.1.2指数函数及其性质(1)

2.1.2指数函数及其性质(2个课时)一. 教学目标:1.知识与技能①通过实际问题了解指数函数的实际背景;②理解指数函数的概念和意义,根据图象理解和掌握指数函数的性质. ③体会具体到一般数学讨论方式及数形结合的思想; 2.情感、态度、价值观①让学生了解数学来自生活,数学又服务于生活的哲理. ②培养学生观察问题,分析问题的能力. 3.过程与方法展示函数图象,让学生通过观察,进而研究指数函数的性质. 二.重、难点重点:指数函数的概念和性质及其应用. 难点:指数函数性质的归纳,概括及其应用. 三、学法与教具:①学法:观察法、讲授法及讨论法. ②教具:多媒体.第一课时一.教学设想:1. 情境设置①在本章的开头,问题(1)中时间x 与GDP 值中的 1.073(20)xy x x =∈≤与问题(2)t 1中时间t和C-14含量P的对应关系P=[(2,请问这两个函数有什么共同特征.②这两个函数有什么共同特征157301][()]2t P =t57301把P=[()变成2,从而得出这两个关系式中的底数是一个正数,自变量为指数,即都可以用xy a =(a >0且a ≠1来表示).二.讲授新课 指数函数的定义一般地,函数xy a =(a >0且a ≠1)叫做指数函数,其中x 是自变量,函数的定义域为R .提问:在下列的关系式中,哪些不是指数函数,为什么?(1)22x y += (2)(2)x y =- (3)2xy =-(4)xy π= (5)2y x = (6)24y x = (7)xy x = (8)(1)xy a =- (a >1,且2a ≠)小结:根据指数函数的定义来判断说明:因为a >0,x 是任意一个实数时,xa 是一个确定的实数,所以函数的定义域为实数集R .000,0xx a a x a ⎧>⎪=⎨≤⎪⎩x当时,等于若当时,无意义若a <0,如1(2),,8xy x x =-=1先时,对于=等等,6在实数范围内的函数值不存在. 若a =1, 11,xy == 是一个常量,没有研究的意义,只有满足(0,1)xy a a a =>≠且的形式才能称为指数函数,5,,3,31x x x a y x y y +===+1xx为常数,象y=2-3,y=2等等,不符合(01)xy a a a =>≠且的形式,所以不是指数函数.我们在学习函数的单调性的时候,主要是根据函数的图象,即用数形结合的方法来研究. 下面我们通过先来研究a >1的情况用计算机完成以下表格,并且用计算机画出函数2xy =的图象x从图中我们看出12()2xxy y ==与的图象有什么关系?通过图象看出12()2xxy y y ==与的图象关于轴对称,实质是2xy =上的x,y 点(-)x y x,y y 1与=()上点(-)关于轴对称.2讨论:12()2xx y y ==与的图象关于y 轴对称,所以这两个函数是偶函数,对吗?②利用电脑软件画出115,3,(),()35x xx x y y y y ====的函数图象.问题:1:从画出的图象中,你能发现函数的图象与底数间有什么样的规律.从图上看x y a =(a >1)与xy a =(0<a <1)两函数图象的特征.问题2:根据函数的图象研究函数的定义域、值域、特殊点、单调性、最大(小)值、奇偶性.问题3:指数函数xy a =(a >0且a ≠1),当底数越大时,函数图象间有什么样的关系.x(1)在[,]xa b f x a 上,()=(a >0且a ≠1)值域是[(),()][(),()];f a f b f b f a 或 (2)若0,x f x f x x ≠≠∈则()1;()取遍所有正数当且仅当R; (3)对于指数函数()x f x a =(a >0且a ≠1),总有(1);f a = (4)当a >1时,若1x <2x ,则1()f x <2()f x ; 例题:例1:(P 56 例6)已知指数函数()xf x a =(a >0且a ≠1)的图象过点(3,π),求(0),(1),(3)f f f -的值.分析:要求(0),(1),(3),,xf f f a x π-13的值,只需求出得出f()=()再把0,1,3分别代入x ,即可求得(0),(1),(3)f f f -.提问:要求出指数函数,需要几个条件? 课堂练习:P 58 练习:第1,2,3题补充练习:1、函数1()()2xf x =的定义域和值域分别是多少? 2、当[1,1],()32xx f x ∈-=-时函数的值域是多少? 解(1),0x R y ∈> (2)(-53,1)例2:求下列函数的定义域: (1)442x y -= (2)||2()3x y =分析:类为(1,0)xy a a a =≠>的定义域是R ,所以,要使(1),(2)题的定义域,保要使其指数部分有意义就得 .3.归纳小结作业:P 59 习题2.1 A 组第5、6题1、理解指数函数(0),101xy a a a a =>><<注意与两种情况。
人教版高中数学必修一《指数函数及其性质》教案

指数函数及其性质教案一、教学目的1、使学生掌握指数函数的概念、图象和性质;能初步简单应用。
2、使学生理解数形结合的基本数学思想方法,培养学生观察、联想、类比、猜测、归纳的能力。
3、使学生体验从特殊到一般的学习规律,认识事物之间的普遍联系与相互转化,培养学生用联系的观点看问题。
4、通过教学互动促进师生情感,激发学生的学习兴趣,提高学生抽象、概括、分析、综合的能力。
二、教学重点、难点教学重点:指数函数的定义、图象、性质.教学难点:指数函数的定义理解,指数函数的图象特征及指数函数性质的归纳、概括。
三、教具、学具准备:多媒体课件:使用多媒体教学手段,增大教学容量和直观性,提高教学效率与质量。
四、教学方法遵循“以学生为主体、教师是数学课堂活动的组织者、引导者和参与者”的现代教育原则。
依据本节为概念学习的特点,探究发现式教学法、类比学习法,并利用多媒体辅助教学,以问题的提出、问题的解决为主线,始终在学生知识的“最近发展区”设置问题,倡导学生主动参与,通过不断探究、发现,在师生互动、生生互动中,让学习过程成为学生心灵愉悦的主动认知过程。
五、学法指导1.再现原有认知结构。
在引入两个实例后,请学生回忆有关指数的概念,帮助学生再现原有认知结构,为理解指数函数的概念做好准备。
2.领会常见数学思想方法。
在借助图象研究指数函数的性质时会遇到分类讨论、数形结合等基本数学思想方法,这些方法将会贯穿整个高中的数学学习。
3.在互相交流和自主探究中获得发展。
在实例的课堂导入、指数函数的性质研究、例题与训练、课内小结等教学环节中都安排了学生的讨论、分组、交流等活动,让学生变被动的接受和记忆知识为在合作学习的乐趣中主动地建构新知识的框架和体系,从而完成知识的内化过程。
4.注意学习过程的循序渐进。
在概念、图象、性质、应用的过程中按照先易后难的顺序层层递进,让学生感到有挑战、有收获,跳一跳,够得着,不同难度的题目设计将尽可能照顾到课堂学生的个体差异。
高中数学——《指数函数及其性质》(第一课时)说课稿

《指数函数及其性质》(第一课时)各位评委、老师,大家好!我是来自河南省实验中学的崔爽,今天我说课的题目是《指数函数及其性质》,我将从以下六个方面来实现我的教学设想.一、教学内容分析本节课是(人教A版必修1)第二章第一节的第二课(§2.1.2),根据我所教的学生的实际情况,我将《指数函数及其性质》划分为“指数函数的概念及其性质”和“指数函数及其性质的应用”这两课时,今天我所说的课是第一课时.指数函数是重要的基本初等函数之一,它不仅是今后学习对数函数和幂函数的基础,同时其在生活和生产实际中的应用十分广泛,所以指数函数不仅是教学的重点,同时也是学生体会数学之美和数学在实际生活中的意义的重要课程.二、学生实际情况分析指数函数是在学生系统学习了函数概念,掌握了函数的性质的基础上第一次对一个函数进行全面、系统的研究,因此在初期会给学生带来一定的学习困难,但指数函数的总体难度不大,随着数学思想的建立和对函数知识系统的学习,大部分学生均可熟练掌握.三、设计思想1.函数及其图象在高中数学中占有很重要的位置。
为了突出重点,突破难点,本节课采用列表法、图象法、解析法及图形计算器的实际操作,让学生从不同的角度去研究指数函数,对其有一个全方位的认识,从而达到知识的迁移运用.2.在教学过程中通过自主探究、生生对话、师生对话,培养学生“体会-总结-反思”的数学思维习惯,提高数学素养,激发学生勇于探索的精神.四、学习目标“目标导引教学”是数学学科的教学模式之一,一节好课,首先要解决的是要把学生带到哪里去的问题,所以我对课标中的要求做了详细的分解。
课程标准对本节课的要求是:理解并掌握指数函数的概念;能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的单调性与特殊点.首先,我从认知层次的三个维度对课标进行了分解,具体如下:依据行为动词,我又从能力层次将课标进行了再分解,具体如下:由此确定的学习目标为:1.通过具体实例,经过合作交流活动得到指数函数的概念,由学生自主归纳总结并对指数函数的概念进行分析;2.借助图形计算器画出具体指数函数的图象,探索、归纳、猜想指数函数的单调性与特殊点;3.学生在数学活动中感受数学思想之美、体会数学方法之重要,培养学生主动学习、合作交流的集体意识.五、教学重点与难点教学重点:指数函数的概念的产生过程;教学难点:用数形结合的方法,从具体到一般地探索概括指数函数性质.六、教学过程本节课我采取“目标、评价、教学一致性”的教学设计,同时采用“点拨式自主学习与合作探究”的教学方法,将学生分成六人小组,每组由一名组长负责,借助五个环节实现本节课的学习目标.具体内容如下:这是我的板书设计我的板书设计分为教师板书和学生板书两块内容,教师板书,我侧重将本节的三个主要内容展示在黑板上,便于学生理解和记忆.学生板书,我将留给学生展示作图成果,便于对学生掌握的情况进行总结和评价.课后实践:教材59页A组第7题(2)、(3);第8题(1)、(4)我将以从上六个方面来实现本节课教学设想,让学生们在快乐中学习,在学习中寻找快乐.谢谢!。
2016-2017学年高一数学人教A版必修1课件:2.1.2.2 指数函数及其性质的应用

第十一页,编辑于星期五:十五点 四十四分。
1.指数函数本身不具有奇偶性,但是与指数函数有关的函数可以具有奇偶 性,其解决方法一般是利用函数奇偶性的定义和性质.
2.证明指数函数与其它函数复合而成的函数的单调性,一般用函数单调性 的定义进行.
第十二页,编辑于星期五:十五点 四十四分。
[再练一题] 2.已知函数 f(x)=a·4x-a·2x+1+2 在区间[-2,2]上的最大值为 3,求实数 a 的值. 【导学号:97030088】
)
【导学号:97030087】
A.a>b>c
B.a>c>b
C.b>a>c
D.c>a>b
【解析】 考察函数 y=3x 在 R 上单调递增,a=31.8,b=270.48=31.44,c=
31.5.∴a>c>b. 【答案】 B
第八页,编辑于星期五:十五点 四十四分。
与指数函数有关的最值或值域问题
(2016·荆州高一检测)已知函数 f(x)=a1- +22xx(a∈R),且 x∈R 时,总 有 f(-x)=-f(x)成立.
阶 段 一
学
第 2 课时 指数函数及其性质的 段 二
第一页,编辑于星期五:十五点 四十四分。
1.掌握指数函数的性质并会应用,能利用指数函数的单调性比较幂的大小 及解不等式.(重点)
2.通过本节内容的学习,进一步体会函数图象是研究函数的重要工具,并 能运用指数函数研究一些实际问题.(难点)
第二十五页,编辑于星期五:十五点 四十四分。
4.函数 y=2|x|的单调减区间是________. 【解析】 ∵当 x>0 时,|x|=x,∴y=2|x|=2x 是单调增函数; 当 x≤0 时,|x|=-x,∴y=2|x|=2-x=12x 是单调减函数. ∴函数 y=2|x|的单调减区间是(-∞,0]. 【答案】 (-∞,0].
人教版高中数学必修一2.1.2《指数函数及其性质》word教材分析1

《指数函数及其性质》一、教材分析(一)教材的地位和作用人民教育出版社《普通高中课程标准实验教科书••数学(1)》(人教A版)$2.1.2“指数函数”是在学生系统地学习了函数概念及性质,掌握了指数与指数幂的运算性质的基础上展开研究的。
作为重要的基本初等函数之一,指数函数既是函数近代定义及性质的第一次应用, 又对高中阶段研究对数函数、三角函数等完整的函数知识,初步培养函数的应用意识打下了良好的学习基础,也为今后研究其他函数提供了方法和模式。
指数函数在知识体系中起了承上启下的作用,同时在生活及生产实际中有着广泛的应用,因此它也是对学生进行情感价值观教育的好素材,所以指数函数应重点研究。
(二)课时划分指数函数的教学在中共分三个课时完成。
指数函数的图象及其性质,指数函数及其性质的应用(1),指数函数及其性质的应用(2)。
这是第一课时“指数函数的图象及其性质”。
“指数函数”第一课时是在学习了指数与指数幂的运算基础上学习指数函数的概念和性质,通过学习指数函数的定义,图象及性质,可以进一步深化学生对函数概念的理解与认识,使学生得到较系统的函数知识和研究函数的方法,并且为学习对数函数作好准备。
二、学情分析(一)有利因素通过初中学段的学习和高中对集合、函数等知识的系统学习,学生对函数和图象的关系已经构建了一定的认知结构,主要体现在三个层面:知识层面:对正比例函数、反比例函数、一次函数,二次函数等最简单的函数概念和性质已有了初步认识,能够从初中运动变化的角度认识函数初步转化到从集合与对应的观点来认识函数。
技能层面:学生对采用“描点法”描绘函数图象的方法已基本掌握,能够为研究《指数函数》的性质做好准备。
由观察到抽象的数学活动过程已有一定的体会,已初步了解了数形结合的思想。
情感层面:学生对数学新内容的学习有相当的兴趣和积极性。
(二)不利因素本节内容思维量较大,对思维的严谨性和分类讨论、归纳推理等能力有较高要求,学生学习起来有一定难度。
[教案精品]新课标高中数学人教A版必修一全册教案2.1.2指数函数及其性质(一
![[教案精品]新课标高中数学人教A版必修一全册教案2.1.2指数函数及其性质(一](https://img.taocdn.com/s3/m/9832720e1eb91a37f1115cd7.png)
-4
-2
-3 -2 -1 0
1 22 3 44 5
6
8
比较函数 y= 2 x 1 、 y= 2 x 2 与 y= 2 x 的关系:将指数函数 y= 2 x 的图象向右平行移动 1 个
单位长度, 就得到函数 y= 2x 1的图象,将指数函数 y= 2x 的图象向右平行移动 2 个单位长度,
就得到函数 y= 2x 2 的图象
用计算机完成以下表格,并且用计算机画出
函数 y 2 x 的图象x深化xy23.001 8
2.50
2.00
1 4
1.50
通过列
表、计算使
学生体会、
感受指数函
数图象的化
趋势,通过
描点,作图
学生列表计算, 描点、作图.培养学生的
动手实践能
教师动画演示.
力.
概念
1.00 0.00 0.50 1.00 1.50 2.00
1
不同情况进
1
2
4
2
学生观察、 归纳、 总结, 教师诱 行对照,使
再研究先来研究
y
a
x
(
0<
a
<
1)的图象,导、点评.
学生再次经
用计算机完成以下表格并绘出函数 的图象 .
y ( 1)x 2
x
y (1)x 2
2.50 2.00 1.50 1.00 0.00
1
1
4
2
1
历从特殊到 一般,由具 体到抽象的 思维过 程.培养学
生 对本节
归纳
学生先自回顾反思, 教师点 课 所 学 知
总结
评完善.
识 的结构
2、解题利用指数函数的图象, 可有利于清晰 地分析题目,培养数型结合与分类讨论的数学思 想.
新课标人教版高中A版数学目录(超详细完美版)

人教版高中数学A版目录新课标A版必修1•第一章集合与函数概念•第二章基本初等函数(Ⅰ)•第三章函数的应用•单元测试•综合专栏第一章集合与函数概念• 1.1集合• 1.2函数及其表示• 1.3函数的基本性质•实习作业•同步练习•单元测试•本章综合1.1集合• 1.1.1集合的含义与表示• 1.1.2集合间的基本关系• 1.1.3集合的基本运算•本节综合1.2函数及其表示• 1.2.1函数的概念• 1.2.2函数的表示法•本节综合1.3函数的基本性质• 1.3.1单调性与最大(小)值• 1.3.2奇偶性•本节综合实习作业同步练习单元测试本章综合第二章基本初等函数(Ⅰ)• 2.1指数函数• 2.2对数函数• 2.3幂函数•同步练习•单元测试•本章综合2.1指数函数• 2.1.1指数与指数幂的运算• 2.1.2指数函数及其性质•本节综合2.2对数函数• 2.2.1对数与对数运算• 2.2.2对数函数及其性质•本节综合2.3幂函数同步练习单元测试本章综合第三章函数的应用• 3.1函数与方程• 3.2函数模型及其应用•实习作业•同步练习•单元测试•本章综合3.1函数与方程• 3.1.1方程的根与函数的零点• 3.1.2用二分法求方程的近似解•本节综合3.2函数模型及其应用• 3.2.1几类不同增长的函数模型• 3.2.2函数模型的应用实例•本节综合实习作业同步练习单元测试本章综合单元测试综合专栏新课标A版必修2•第一章空间几何体•第二章点、直线、平面之间的位置关系•第三章直线与方程•第四章圆与方程•单元测试综合专栏第一章空间几何体• 1.1空间几何体的结构• 1.2空间几何体的三视图和直观图• 1.3空间几何体的表面积与体积•复习参考题•实习作业•同步练习•单元测试•本章综合•第二章点、直线、平面之间的位置关系• 2.1空间点、直线、平面之间的位置关系• 2.2直线、平面平行的判定及其性质• 2.3直线、平面垂直的判定及其性质•同步练习•单元测试•本章综合第三章直线与方程• 3.1直线的倾斜角与斜率• 3.2直线的方程• 3.3直线的交点坐标与距离公式•同步练习•单元测试•本章综合第四章圆与方程• 4.1圆的方程• 4.2直线、圆的位置关系• 4.3空间直角坐标系•同步练习•单元测试•本章综合单元测试综合专栏新课标A版必修3•第一章算法初步•第二章统计•第三章概率•单元测试•综合专栏第一章算法初步• 1.1算法与程序框图• 1.2基本算法语句• 1.3算法与案例•同步练习•单元测试•本章综合1.1算法与程序框图• 1.1.1算法的概念• 1.1.2程序框图和算法的逻辑结构•本节综合1.2基本算法语句• 1.2.1输入、输出、赋值语句• 1.2.2条件语句• 1.2.3循环语句•本节综合1.3算法与案例同步练习单元测试本章综合第二章统计• 2.1随机抽样• 2.2用样本估计总体• 2.3变量间的相关关系•实习作业•同步练习•单元测试•本章综合2.1随机抽样• 2.1.1简单随机抽样• 2.1.2系统抽样• 2.1.3分层抽样•本节综合2.2用样本估计总体• 2.2.1用样本的频率分布估计总体• 2.2.2用样本的数字特征估计总体•本节综合2.3变量间的相关关系• 2.3.1变量之间的相关关系• 2.3.2两个变量的线性相关•本节综合实习作业同步练习单元测试本章综合第三章概率• 3.1随机事件的概率• 3.2古典概型• 3.3几何概型•同步练习•单元测试•本章综合3.1随机事件的概率• 3.1.1随机事件的概率• 3.1.2概率的意义• 3.1.3概率的基本性质•本节综合3.2古典概型• 3.2.1古典概型• 3.2.2随机数的产生•本节综合3.3几何概型• 3.3.1几何概型• 3.3.2均匀随机数的产生•本节综合同步练习单元测试本章综合单元测试综合专栏新课标A版必修4•第一章三角函数•第二章平面向量•第三章三角恒等变换•单元测试•综合专栏第一章三角函数• 1.1任意角和弧度制• 1.2任意的三角函数• 1.3三角函数的诱导公式• 1.4三角函数的图象与性质• 1.5函数y=Asin(ωx+ψ)• 1.6三角函数模型的简单应用•同步练习•单元测试•本章综合第二章平面向量• 2.1平面向量的实际背景及基本概念• 2.2平面向量的线性运算• 2.3平面向量的基本定理及坐标表示• 2.4平面向量的数量积• 2.5平面向量应用举例•同步练习•单元测试•本章综合第三章三角恒等变换• 3.1两角和与差的正弦、余弦和正切公式• 3.2简单的三角恒等变换•同步练习•单元测试•本章综合单元测试综合专栏新课标A版必修5•第一章解三角形•第二章数列•第三章不等式•单元测试•综合专栏第一章解三角形• 1.1正弦定理和余弦定理• 1.2应用举例• 1.3实习作业•探究与发现解三角形的进一步讨论•同步练习•单元测试•本章综合第二章数列• 2.1数列的概念与简单表示法• 2.1等差数列• 2.3等差数列的前n项和• 2.4等比数列• 2.5等比数列的前n项和•同步练习•单元测试•本章综合第三章不等式• 3.1不等关系与不等式• 3.2一元二次不等式及其解法• 3.3二元一次不等式(组)与简单的线性• 3.4基本不等式:•同步练习•单元测试•本章综合单元测试综合专栏新课标A版选修一•新课标A版选修1-1•新课标A版选修1-2新课标A版选修1-1•第一章常用逻辑用语•第二章圆锥曲线与方程•第三章导数及其应用•月考专栏•期中专栏•期末专栏•单元测试•综合专栏第一章常用逻辑用语• 1.1命题及其关系• 1.2充分条件与必要条件• 1.3简单的逻辑联结词• 1.4全称量词与存在量词•同步练习•单元测试•本章综合第二章圆锥曲线与方程• 2.1椭圆• 2.2双曲线• 2.3抛物线•同步练习•单元测试•本章综合第三章导数及其应用• 3.1变化率与导数• 3.2导数的计算• 3.3导数在研究函数中的应用• 3.4生活中的优化问题举例•同步练习•单元测试•本章综合月考专栏期中专栏期末专栏单元测试新课标A版选修1-2•第一章统计案例•第二章推理与证明•第三章数系的扩充与复数的引入•第四章框图•月考专栏•期中专栏•期末专栏•单元测试•本章综合点击这里展开-- 查看子节点索引目录,更精确地筛选资料!第一章统计案例• 1.1回归分析的基本思想及其初步应用• 1.2独立性检验的基本思想及其初步应用•实习作业•同步练习•综合第二章推理与证明• 2.1合情推理与演绎推理• 2.2直接证明与间接证明•同步练习•综合第三章数系的扩充与复数的引入• 3.1数系的扩充和复数的概念• 3.2复数代数形式的四则运算•同步练习•综合第四章框图• 4.1流程图• 4.2结构图•同步练习•综合月考专栏期中专栏期末专栏单元测试本章综合新课标A版选修二•新课标人教A版选修2-1•新课标人教A版选修2-2•新课标人教A版选修2-3新课标人教A版选修2-1•第一章常用逻辑用语•第二章圆锥曲线与方程•第三章空间向量与立体几何•单元测试•本册综合第一章常用逻辑用语• 1.1命题及其关系• 1.2充分条件与必要条件• 1.3简单的逻辑联结词• 1.4全称量词与存在量词•同步练习•本章综合第二章圆锥曲线与方程• 2.1曲线与方程• 2.2椭圆• 2.3双曲线• 2.4抛物线•同步练习•本章综合第三章空间向量与立体几何• 3.1空间向量及其运算• 3.2立体几何中的向量方法•同步练习•本章综合单元测试本册综合新课标人教A版选修2-2•第一章导数及其应用•第二章推理与证明•第三章数系的扩充与复数的引入•单元测试•本册综合第一章导数及其应用• 1.1变化率与导数• 1.2导数的计算• 1.3导数在研究函数中的应用• 1.4生活中的优化问题举例• 1.5定积分的概念• 1.6微积分基本定理• 1.7定积分的简单应用•同步练习•本章综合第二章推理与证明• 2.1合情推理与演绎推理• 2.2直接证明与间接证明• 2.3数学归纳法•同步练习•本章综合第三章数系的扩充与复数的引入• 3.1数系的扩充和复数的概念• 3.2复数代数形式的四则运算•同步练习•本章综合单元测试本册综合新课标人教A版选修2-3•第一章计数原理•第二章随机变量及其分布•第三章统计案例•单元测试•本册综合第一章计数原理• 1.1分类加法计数原理与分步乘法计.• 1.2排列与组合• 1.3二项式定理•同步练习•本章综合第二章随机变量及其分布• 2.1离散型随机变量及其分布列• 2.2二项分布及其应用• 2.3离散型随机变量的均值与方差• 2.4正态分布•同步练习•本章综合第三章统计案例• 3.1回归分析的基本思想及其初步应用• 3.2独立性检验的基本思想及其初步•本章综合•同步练习单元测试本册综合新课标A版选修三•新课标A版选修3-1•新课标A版选修3-3•新课标A版选修3-4新课标A版选修3-1•第一讲早期的算术与几何•第二讲古希腊数学•第三讲中国古代数学瑰宝•第四讲平面解析几何的产生•第五讲微积分的诞生•第六讲近代数学两巨星•第七讲千古谜题•第八讲对无穷的深入思考•第九讲中国现代数学的开拓与发展•单元测试•本册综合第一讲早期的算术与几何•一古埃及的数学•二两河流域的数学•三丰富多彩的记数制度•同步练习•本章综合第二讲古希腊数学•一希腊数学的先行者•二毕达哥拉斯学派•三欧几里得与《原本》•四数学之神──阿基米德•同步练习•本章综合第三讲中国古代数学瑰宝•一《周髀算经》与赵爽弦图•二《九章算术》•三大衍求一术•四中国古代数学家•同步练习•本章综合第四讲平面解析几何的产生•一坐标思想的早期萌芽•二笛卡儿坐标系•三费马的解析几何思想•四解析几何的进一步发展•同步练习•本章综合第五讲微积分的诞生•一微积分产生的历史背景•二科学巨人牛顿的工作•三莱布尼茨的“微积分”•同步练习•本章综合第六讲近代数学两巨星•一分析的化身──欧拉•二数学王子──高斯•同步练习•本章综合第七讲千古谜题•一三次、四次方程求根公式的发现•二高次方程可解性问题的解决•三伽罗瓦与群论•四古希腊三大几何问题的解决•同步练习•本章综合第八讲对无穷的深入思考•一古代的无穷观念•二无穷集合论的创立•三集合论的进一步发展与完善•同步练习•本章综合第九讲中国现代数学的开拓与发展•一中国现代数学发展概观•二人民的数学家──华罗庚•三当代几何大师──陈省身•同步练习•本章综合单元测试本册综合新课标A版选修3-3•第一讲从欧氏几何看球面•第二讲球面上的距离和角•第三讲球面上的基本图形•第四讲球面三角形•第五讲球面三角形的全等•第六讲球面多边形与欧拉公式•第七讲球面三角形的边角关系•第八讲欧氏几何与非欧几何•单元测试•本册综合第一讲从欧氏几何看球面•一平面与球面的位置关系•二直线与球面的位置关系和球幂定理•三球面的对称性•同步练习•本章综合第二讲球面上的距离和角•一球面上的距离•二球面上的角•同步练习•本章综合第三讲球面上的基本图形•一极与赤道•二球面二角形•三球面三角形•同步练习•本章综合第四讲球面三角形•一球面三角形三边之间的关系•二、球面“等腰”三角形•三球面三角形的周长•四球面三角形的内角和•同步练习•本章综合第五讲球面三角形的全等•1.“边边边”(s.s.s)判定定理•2.“边角边”(s.a.s.)判定定理•3.“角边角”(a.s.a.)判定定理•4.“角角角”(a.a.a.)判定定理•同步练习•本章综合第六讲球面多边形与欧拉公式•一球面多边形及其内角和公式•二简单多面体的欧拉公式•三用球面多边形的内角和公式证明欧拉公式•同步练习•本章综合第七讲球面三角形的边角关系•一球面上的正弦定理和余弦定理•二用向量方法证明球面上的余弦定理•三从球面上的正弦定理看球面与平面•四球面上余弦定理的应用──求地球上两城市间的距离•同步练习•本章综合第八讲欧氏几何与非欧几何•一平面几何与球面几何的比较•二欧氏平行公理与非欧几何模型──庞加莱模型•三欧氏几何与非欧几何的意义•同步练习•本章综合单元测试本册综合新课标A版选修3-4•第一讲平面图形的对称群•第二讲代数学中的对称与抽象群的概念•第三讲对称与群的故事•综合专栏•单元测试第一讲平面图形的对称群•平面刚体运动•对称变换•平面图形的对称群•同步练习•本章综合第二讲代数学中的对称与抽象群的概念•n元对称群S•多项式的对称变换•抽象群的概念•同步练习•本章综合第三讲对称与群的故事•带饰和面饰•化学分子的对称群•晶体的分类•伽罗瓦理论•同步练习•本章综合综合专栏单元测试新课标A版选修四•新课标人教A版选修4-1•选修4-2•新课标A版选修4-4•新课标A版选修4-5新课标人教A版选修4-1•第一讲相似三角形的判定及有关性质•第二讲直线与圆的位置关系•第三讲圆锥曲线性质的探讨•单元测试•本册综合第一讲相似三角形的判定及有关性质•一平行线等分线段定理•二平行线分线段成比例定理•三相似三角形的判定及性质•四直角三角形的射影定理•同步练习•本章综合第二讲直线与圆的位置关系•一圆周角定理•二圆内接四边形的性质与判定定理•三圆的切线的性质及判定定理•四弦切角的性质•五与圆有关的比例线段•同步练习•本章综合第三讲圆锥曲线性质的探讨•一平行射影•二平面与圆柱面的截线•三平面与圆锥面的截线•同步练习•本章综合单元测试本册综合选修4-2•第一讲线性变换与二阶矩阵•第二讲变换的复合与二阶矩阵的乘法•第三讲逆变换与逆矩阵•第四讲变换的不变量与矩阵的特征向量•单元测试•本册综合第一讲线性变换与二阶矩阵•一线性变换与二阶矩阵•二二阶矩阵与平面向量的乘法•三线性变换的基本性质•同步练习•本章综合第二讲变换的复合与二阶矩阵的乘法•一复合变换与二阶短阵的乘法•二矩阵乘法的性质•同步练习•本章综合第三讲逆变换与逆矩阵•一逆变换与逆矩阵•二二阶行列式与逆矩阵•三逆矩阵与二元一次方程组•同步练习•本章综合第四讲变换的不变量与矩阵的特征向量•一变换的不变量---矩阵的特征向量•二特征向量的应用•同步练习•本章综合单元测试本册综合新课标A版选修4-4•第一章坐标系•第二章参数方程•单元测试•本册综合第一章坐标系• 1.1直角坐标系、平面上的伸缩变换• 1.2极坐标系• 1.3曲线的极坐标方程• 1.4圆的极坐标方程• 1.5柱坐标系与球坐标系•同步练习•本章综合第二章参数方程• 2.1曲线的参数方程• 2.2直线和圆的参数方程• 2.3圆锥曲线的参数方程• 2.4一些常见曲线的参数方程•同步练习•本章综合单元测试本册综合新课标A版选修4-5•第一讲不等式和绝对值不等式•第二讲讲明不等式的基本方法•第三讲柯西不等式与排序不等式•第四讲数学归纳法证明不等式•单元测试•本册综合第一讲不等式和绝对值不等式•一不等式•二绝对值不等式•单元测试•本章综合第二讲讲明不等式的基本方法•一比较法•二综合法与分析法•三反证法与放缩法•单元测试•本章综合第三讲柯西不等式与排序不等式•一二维形式的柯西不等式•二一般形式的柯西不等式•三排序不等式•单元测试•本章综合第四讲数学归纳法证明不等式•一数学归纳法•二用数学归纳法证明不等式•单元测试•本章综合单元测试本册综合。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题: 指数函数及其性质(1)
课时:004
课 型:新授课
教学目标:
使学生了解指数函数模型的实际背景,认识数学与现实生活及其他学科的联系;理解指数函数的的概念和意义,能画出具体指数函数的图象,掌握指数函数的性质. 教学重点:掌握指数函数的的性质.
教学难点:用数形结合的方法从具体到一般地探索、概括指数函数的性质. 教学过程:
一、复习准备:
1. 提问:零指数、负指数、分数指数幂是怎样定义的?
2. 提问:有理指数幂的运算法则可归纳为几条?
二、讲授新课:
1.教学指数函数模型思想及指数函数概念:
① 探究两个实例:
A .细胞分裂时,第一次由1个分裂成2个,第2次由2个分裂成4个,第3次由4个分裂成8个,如此下去,如果第x 次分裂得到y 个细胞,那么细胞个数y 与次数x 的函数关系式是什么?
B .一种放射性物质不断变化成其他物质,每经过一年的残留量是原来的84%,那么以时间x 年为自变量,残留量y 的函数关系式是什么?
② 讨论:上面的两个函数有什么共同特征?底数是什么?指数是什么?
③ 定义:一般地,函数(0,1)x y a a a =>≠且叫做指数函数(exponential function ),其中x 是自变量,函数的定义域为R .
④讨论:为什么规定a >0且a ≠1呢?否则会出现什么情况呢?→ 举例:生活中其它指数模型?
2. 教学指数函数的图象和性质:
① 讨论:你能类比前面讨论函数性质时的思路,提出研究指数函数性质的内容和方法吗? ② 回顾:研究方法:画出函数的图象,结合图象研究函数的性质.
研究内容:定义域、值域、特殊点、单调性、最大(小)值、奇偶性.
③ 作图:在同一坐标系中画出下列函数图象: 1()2x y =, 2x y = (师生共作→小结作法) ④ 探讨:函数2x y =与1()2x y =的图象有什么关系?如何由2x y =的图象画出1()2x y =的图
象?根据两个函数的图象的特征,归纳出这两个指数函数的性质. → 变底数为3或1/3等后?
⑤ 根据图象归纳:指数函数的性质 (书P 56)
3、例题讲解
例1:(P 56 例6)已知指数函数()x f x a =(a >0且a ≠1)的图象过点(3,π),求
(0),(1),(3)f f f -的值.
例2:(P 56例7)比较下列各题中的个值的大小
(1)1.72.5 与 1.73
( 2 )0.10.8-与0.20.8-
( 3 ) 1.70.3 与 0.93.1
例3:求下列函数的定义域:
(1)442
x y -= (2)||2()3
x y =
三、巩固练习:
1、 P 58 1、2题
2、 函数2(33)x y a a a =-+是指数函数,则a 的值为 .
3、 比较大小:0.70.90.80.8,0.8, 1.2a b c ===; 01, 2.50.4,-0.22-, 1.62.5.
4、探究:在[m ,n ]上,()(01)x f x a a a =>≠且值域?
四、小结
1、理解指数函数(0),101x y a a a a =>><<注意与两种情况。
2、解题利用指数函数的图象,可有利于清晰地分析题目,培养数型结合与分类讨论的数学思想 .
五、作业
P 59 习题2.1 A
组第5、7、8题
六、后记:。