高一年级数学段考试题及答案
高一数学试题大全

高一数学试题答案及解析1.在△ABC中,若a =" 2" ,, , 则B等于()A.B.或C.D.或【答案】B【解析】由正弦定理得,由于是三角形的内角,或,符合大边对大角.【考点】正弦定理的应用.2.已知ABC的重心为G,内角A,B,C的对边分别为a,b,c,若,则角A为()A.B.C.D.【答案】A【解析】由于是的重心,,.代入得由于不共线,【考点】平面向量共线定理和余弦定理的应用.3.等差数列的通项公式,设数列,其前n项和为,则等于A.B.C.D.以上都不对【答案】A【解析】由题意得====【考点】裂项抵消法求数列的前项和4.等于()A.B.C.D.【解析】,故选A.【考点】诱导公式.5.在等差数列中,若,则等于A.45B.75C.180D.300【答案】C【解析】解:∵a3+a4+a5+a6+a7=450,∴5a5=450∴a5=90∴a1+a9=2a5=180,故选C..【考点】等差数列的性质.6.若定义在区间上的函数满足:对于任意的,都有,且时,有,的最大值、最小值分别为,则的值为( )A.2012B.2013C.4024D.4026【答案】C【解析】设,,,,即所以是单调递增函数,其最大值和最小值是,,令代入得:,得,所以,,故选C.【考点】抽象函数7.设m、n是两条不同的直线,是三个不同的平面,给出下列四个命题:①若,,则②若,,,则③若,,则④若,,则其中正确命题的序号是 ( )A.①和②B.②和③C.③和④D.①和④【答案】A【解析】因为平行于同一个平面的两条直线可能相交,也可能异面所以命题②不正确;垂直于同一个平面的两个平面有可能是相交的,所以命题③也不正确.故选A【考点】1、线面平行的性质与判定;2、线面垂直的判定与性质.8.设a,b,c,均为正数,且则( )A.B.C.D.【答案】C【解析】由考虑函数与图像,可知交点横坐标大于1,即c>1.由得,,即,所以0<<1,由得,,所以0<b<1.,.由,即(*).i)当时(*)式左边为负,右边为正,所以不成立;ii)时,(*)式左边为0,右边不为0,所以不成立;所以<1.综上.【考点】本题中通过函数的特殊性选出C最大.通过求差的方法结合对数函数和指数函数的范围比较可得.9. A为△ABC的内角,且A为锐角,则的取值范围是()A.B.C.D.【答案】C【解析】∵,又A为锐角,∴,∴,∴,即的取值范围是,故选C【考点】本题考查了三角函数的值域问题点评:求解三角函数的最值问题,一般都要经过三角恒等变换,转化为y=Asin(ωx+Φ)型等,然后根据基本函数y=sinx等相关的性质进行求解10.在△ABC中,如果,那么cos C等于()【答案】D【解析】∵,∴a:b:c=2:3:4,∴,故选D【考点】本题考查了正余弦定理的综合运用点评:熟练掌握正余弦定理及其变形是解决此类问题的关键,属基础题11.将的图象向左平移个单位,得到的图象,则等于 ( ) A.B.C.D.【答案】D【解析】将的图象向左平移个单位,得到函数的图象,即,所以等于,故选D。
江苏省南通市如皋中学2019_2020学年高一数学下学期6月阶段考试试题创新班含解析

【答案】B
【解析】
【分析】
求出整个抽样过程中,每个学生被抽到的概率为 ,结合样本容量为 可求得该学校学生的总数.
【详解】从高一学生中用简单随机抽样抽取样本时,学生甲被抽到的概率为 ,
所以,在整个抽样过程中,每个学生被抽到的概率为 ,
所以,从该学校中抽取一个容量为 的样本时,则该学校学生的总数为 。
【答案】
【解析】
【分析】
列举出所有的基本事件,并确定事件“取出的两个球的编号之和小于 ”所包含的基本事件,利用古典概型的概率公式可计算出所求事件的概率。
【详解】从袋中随机抽取出两个球,则所有的基本事件有: 、 、 、 、 、 ,共 种,
其中,事件“取出的两个球的编号之和小于 ”所包含的基本事件有: 、 ,共 种,
当a=0时,e2x﹣alnx a即为e2x≥0显然成立;
当a>0时,f(x)=e2x﹣alnx的导数为 =2e2x ,
由于y=2e2x 在(0,+∞)递增(增函数+增函数=增函数),
设 =0的根为m,即有a=2me2m, .
当0<x<m时, <0,f(x)单调递减;当x>m时, >0,f(x)单调递增,
因此,所求事件的概率为 .
故答案为: 。
【点睛】本题考查古典概型概率的计算,一般利用列举法列举出基本事件,考查计算能力,属于基础题.
14.如表是某厂2020年1~4月份用水量(单位:百吨)的一组数据
月份x
1
2
3
4
用水量y
2.5
3
4
4。5
由散点图可知,用水量y与月份x之间有较明显的线性相关关系,其线性回归方程是 ,预测2020年6月份该厂的用水量为_____百吨.
高一数学试题大全

高一数学试题答案及解析1.下列说法中不正确的是()A.对于线性回归方程,直线必经过点B.茎叶图的优点在于它可以保存原始数据,并且可以随时记录C.将一组数据中的每一个数据都加上或减去同一常数后,方差恒不变D.掷一枚均匀硬币出现正面向上的概率是,那么一枚硬币投掷2次一定出现正面【答案】D【解析】对于A由线性回归方程的推导可知直线必经过点,作为常规结论最好记住;对于B也正确;对于C可以对新的一组数据重新计算它的方差会发现方差与原来的方差一样,不会改变,也正确,作为常规结论最好记住;对于D,主要是对概率概念的理解不正确,概率说的是一种可能性,概率大的事件一次实验中也可能不发生,概率小的事件一次试验中也可能发生,所以一枚硬币投掷2次也可能不会出现正面,因此D不正确.【考点】统计与概率的基本概念.2.如图BC是单位圆A的一条直径, F是线段AB上的点,且,若DE是圆A中绕圆心A运动的一条直径,则的值是().A.B.C.D.【答案】C.【解析】根据题意有,则,又且圆的半径为1,所以则因此.【考点】向量的三角形法则,向量的数乘运算,数量积的定义,相反向量,.3.已知,则的值为()A.B.C.D.【答案】D【解析】根据诱导公式,故选D.【考点】诱导公式4.从某小区抽取100户居民进行月用电量调查,发现其用电量都在50到300度之间,频率分布直方图所示,则在这些用户中,用电量落在区间内的户数为()A.B.C.D.【答案】B【解析】所以用电户的频率之和等于,所以,所以,所以用电量落在区间内的频率等于,所以户数等于,故选B.【考点】频率分布直方图的应用5.数列满足,其中,设,则等于()A.B.C.D.【答案】C【解析】由题意可知该数列依次为1,1,3,1,5,3,7,1,9,5 ,可以计算出,, ,,推理可得.【考点】数列的表示法.6.下面四个判断中,正确的是()A.式子1+k+k2+…+k n(n∈N*)中,当n=1时式子值为1B.式子1+k+k2+…+k n-1(n∈N*)中,当n=1时式子值为1+kC.式子1++…+(n∈N*)中,当n=1时式子值为1+D.设f(x)=(n∈N*),则f(k+1)=f(k)+【答案】C【解析】对于A,f(1)恒为1,正确;对于B,f(1)恒为1,错误;对于C,f(1)恒为1,错误;对于D,f(k+1)=f(k)+++-,错误;故选A..【考点】数学归纳法.7.若直线的倾斜角为,则直线的斜率为()A.B.C.D.【答案】【解析】【考点】利用倾斜角求斜率.8.的值是A.B.C.D.【答案】C【解析】根据三角函数的诱导公式可知,故C为正确答案.【考点】三角函数的诱导公式、三角函数值的计算.9.在△ABC中,已知++ab=,则∠C=()A.30°B.60°C.120°D.150°【答案】C【解析】因为,△ABC中,已知++ab=,所以,,∠C=120°,选C。
(完整版)高一数学试题及答案解析

高一数学试卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ卷(选择题,满分50分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的,把正确的答案填在指定位置上.)1.9090αβ<<<,则2β-A.第二象限角C.第三象限角2.α终边上的一点,且满足A.3.设()g x1 (30)2=,则A1sin2x.2sin4.α的一个取值区间为()A.5.A.6.设A.C.7.ABC∆中,若cot cot1A B>,则ABC∆一定是()A.钝角三角形B.直角三角形C.锐角三角形D.以上均有可能8.发电厂发出的电是三相交流电,它的三根导线上的电流分别是关于时间t的函数:2sin sin()sin()3A B C I I t I I t I I t πωωωϕ==+=+且0,02A B C I I I ϕπ++=≤<,则ϕ=() A .3πB .23πC .43πD .2π9.当(0,)x π∈时,函数21cos 23sin ()sin x x f x x++=的最小值为()A ..3C ..410.()f x =的A .1112131415的映射:(,)()cos3sin3f a b f x a x b x→=+.关于点(的象()f x 有下列命题:①3()2sin(3)4f x x π=-; ②其图象可由2sin3y x =向左平移4π个单位得到; ③点3(,0)4π是其图象的一个对称中心④其最小正周期是23π⑤在53[,124x ππ∈上为减函数 其中正确的有三.解答题(本大题共5个小题,共计75分,解答应写出文字说明,证明过程或演算步骤.)24)t ≤≤经长期观察,()y f t =的曲线可近似的看成函数cos (0)y A t b ωω=+>.(1)根据表中数据,求出函数cos y A t b ω=+的最小正周期T 、振幅A 及函数表达式;(2)依据规定,当海浪高度高于1m 时才对冲浪者开放,请根据(1)中的结论,判断一天中的上午8:00到晚上20:00之间,有多少时间可供冲浪者运动?20.(本题满分13分)关于函数()f x 的性质叙述如下:①(2)()f x f x π+=;②()f x 没有最大值;③()f x 在区间(0,2π上单调递增;④()f x 的图象关于原点对称.问:(1)函数()sin f x x x =⋅符合上述那几条性质?请对照以上四条性质逐一说明理由.(221.0)(0,)+∞上的奇函数)x 满足(1)f =cos 2m θ-(1(2的最大值和最小值;(3N . 的两个不等实根,函数22()1x tf x x -+的(1(2(3123。
东北师范大学附属中学2024年高一上学期9月阶段性考试数学试题(解析版)

2024-2025学年东北师大附中 高一年级数学科试卷上学期阶段性考试考试时长:90分钟 试卷总分:120分一、单选题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求.)1. 下列元素的全体可以组成集合的是( ) A. 人口密度大的国家 B. 所有美丽的城市 C. 地球上四大洋 D. 优秀的高中生【答案】C 【解析】【分析】根据集合的确定性,互异性和无序性即可得出结论.详解】由题意,选项ABD ,都不满足集合元素的确定性,选项C 的元素是确定的,可以组成集合. 故选:C.2. 若全集R U =,集合{}0,1,2,3,4,5,6A =,{|3}B x x =<,则图中阴影部分表示的集合为( )A. {3,4,5,6}B. {0,1,2}C. {0,1,2,3}D. {4,5,6}【答案】A 【解析】【分析】根据图中阴影部分表示()U A B 求解即可. 【详解】由题知:图中阴影部分表示()U A B ,{}|3U Bx x =≥ ,则(){}3,4,5,6U B A = .故选:A3. 命题“[1,3]x ∀∈−,2320x x −+<”的否定为( )的【A. []1,3x ∃∈−,2320x x −+≥B. []1,3x ∃∈−,2320x x −+>C. []1,3x ∀∈−,2320x x −+≥D. []1,3x ∃∉−,2320x x −+≥【答案】A 【解析】【分析】根据给定条件,利用全称量词命题的否定直接写出结论即可.【详解】命题“[1,3]x ∀∈−,2320x x −+<”是全称量词命题,其否定是存在量词命题, 因此命题“[1,3]x ∀∈−,2320x x −+<”的否定是[]1,3x ∃∈−,2320x x −+≥. 故选:A4. 已知集合{}240A x x=−>,{}2430B x xx =−+<,则A B = ( )A. {}21x x −<< B. {}12x x <<C. {}23x x −<<D. {}23x x <<【答案】D 【解析】【分析】解出集合,A B ,再利用交集含义即可.【详解】{}{2402A x xx x =−>=或}2x <−,{}{}2430|13B x xx x x =−+<=<<,则{}23A Bx x ∩=<<.故选:D.5. 若,,a b c ∈R ,0a b >>,则下列不等式正确的是( ) A.11a b> B. a c b c >C. 2ab b >D. ()()2211a c b c −>−【答案】C 【解析】【分析】对BD 举反例即可,对AC 根据不等式性质即可判断. 【详解】对A ,因为0a b >>,则11a b<,故A 错误; 对B ,当0c =时,则a c b c =,故B 错误;对C ,因为0a b >>,则2ab b >,故C 正确; 对D ,当1c =时,则()()2211a c b c −=−,故D 错误. 故选:C.6. “2a <−”是“24a >”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件【答案】A 【解析】【分析】解出不等式24a >,根据充分不必要条件的判定即可得到答案. 【详解】24a >,解得2a >或2a <−,则“2a <−”可以推出“24a >”,但“24a >”无法推出“2a <−”, 则“2a <−”是“24a >”的充分不必要条件. 故选:A .7. 关于x 的一元二次方程(1)(4)x x a −−=有实数根12,x x ,且12x x <,则下列结论中错误的说法是( ) A. 当0a =时,11x =,24x = B. 当0a >时,1214x x << C. 当0a >时,1214x x <<< D. 当904a −<<时,122544x x <<【答案】B 【解析】【分析】根据给定条件,借助二次函数的图象,逐项分析判断即可.【详解】对于A ,当0a =时,方程(1)(4)0x x −−=的二实根为121,4x x ==,A 正确; 对于B ,方程(1)(4)x x a −−=,即2540x x a −+−=,254(4)0a ∆=−−>,解得94a >−, 当0a >时,1244x x a =−<,B 错误;对于C ,令()(1)(4)f x x x =−−,依题意,12,x x 是函数()y f x =的图象与直线y a =交点的横坐标, 在同一坐标系内作出函数()y f x =的图象与直线y a =,如图,观察图象知,当0a >时,1214x x <<<,C 正确; 对于D ,当904a −<<时,12254(4,)4x x a =−∈,D 正确.故选:B8. 已知[]x 表示不超过x 的最大整数,集合[]{}03A x x =∈<<Z ,()(){}2220Bx xax x x b =+++=,且 R A B ∩=∅ ,则集合B 的子集个数为( ).A. 4B. 8C. 16D. 32【答案】C 【解析】【分析】由新定义及集合的概念可化简集合{}1,2A =,再由()A B ∩=∅R 可知A B ⊆,分类讨论1,2的归属,从而得到集合B 的元素个数,由此利用子集个数公式即可求得集合B 的子集的个数. 【详解】由题设可知,[]{}{}Z |31,2A x x =∈<<=,又因为()A B ∩=∅R ,所以A B ⊆, 而()(){}22|20B x xax x x b =+++=,因为20x ax 的解为=0x 或x a =−,220x x b ++=的两根12,x x 满足122x x +=−, 所以1,2分属方程20x ax 与220x x b ++=的根,若1是20x ax 的根,2是220x x b ++=的根,则有221+1=02+22+=0a b × × ,解得=1=8a b −− , 代入20x ax 与220x x b ++=,解得=0x 或=1x 与=2x 或4x =−,故{}0,1,2,4B=−;若2是20x ax 的根,1是220x x b ++=的根,则有222+2=01+21+=0a b × × ,解得=2=3a b −− ,代入20x ax 与220x x b ++=,解得=0x 或=2x 与=1x 或3x =−,故{}0,1,2,3B=−;所以不管1,2如何归属方程20x ax 与220x x b ++=,集合B 总是有4个元素, 故由子集个数公式可得集合B 的子集的个数为42=16. 故选:C二、多选题(本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.)9. 已知关于x 的不等式20ax bx c ++<的解集为(1,6)−,则( ) A. 0a < B. 不等式0ax c +>的解集是{|6}x x > C. 0a b c ++< D. 不等式20cx bx a −−<的解集为11(,)32【答案】BC 【解析】【分析】利用一元二次不等式的解集用a 表示,b c ,再逐项分析判断即得.【详解】对于A ,由不等式20ax bx c ++<的解集为(1,6)−,得1,6−是方程20ax bx c ++=的两个根,且0a >,A 错误;对于B ,16,16b ca a−+=−−×=,则5,6b a c a =−=−, 不等式0ax c +>,即60ax a −>,解得6x >,B 正确; 对于C ,56100a b c a a a a ++=−−=−<,C 正确;对于D ,不等式20cx bx a −−<,即2650ax ax a −+−<,整理得()()31210x x −−>,解得13x <或12x >,D 错误. 故选:BC10. 已知x y 、都是正数,且满足2x y +=,则下列说法正确的是( )A. xy 的最大值为1B.+的最小值为2C. 11x y+的最小值为2D. 2211x y x y +++的最小值为1【答案】ACD【解析】【分析】根据给定条件,借助基本不等式及“1”的妙用逐项计算判断即得.【详解】对于A ,由0,0x y >>,2x y +=,得2()12x y xy +≤=,当且仅当1xy ==时取等号,A 正确;对于B2+≤,当且仅当1xy ==时取等号,B 错误; 对于C,1111111()()(2)(22222y x x y x y x y x y +=++=++≥+=, 当且仅当1xy ==时取等号,C 正确; 对于D ,222211111111111111x y x y x y x y x y x y −+−++=+=−++−+++++++ 11111111[(1)(1)]()(2)11411411y x x y x y x y x y ++=+=++++=++++++++1(214≥+=,当且仅当1111y x x y ++=++,即1x y ==时取等号,D 正确. 故选:ACD11. 用()C A 表示非空集合A 中元素的个数,定义()()()()()()()(),,C A C B C A C B A B C B C A C A C B −≥ ∗=−< ,已知集合222{0},{R |()(1)0}A x x x B x x ax x ax =+==∈+++=|,则下面正确结论正确的是( )A. a ∃∈R ,()3C B =B. a ∀∈R ,()2C B ≥C. “0a =”是“1A B ∗=”的充分不必要条件D 若{}R1S a A B =∈∗=∣,则()4C S = 【答案】AC 【解析】【分析】根据集合新定义,结合一元二次方程,逐项分析判断即可. 【详解】对于A ,当2a =时,{}0,2,1B =−−,此时()3C B =,A 正确;对于B ,当0a =时,{}0B =,此时()1C B =,B 错误;.对于C ,当0a =时,{}0B =,则()1C B =,而{}0,1A =−,()2C A =,因此1A B ∗=;当1A B ∗=时,而()2C A =,则()1C B =或3,若()1C B =,满足2Δ40a a ==−< ,解得0a =; 若()3C B =,则方程20x ax 的两个根120,x x a ==−都不是方程210x ax ++=的根,且20Δ40a a ≠ =−=,解得2a =±,因此“0a =”是“1A B ∗=”的充分不必要条件,C 正确; 对于D ,由1A B ∗=,而()2C A =,得()1C B =或3,由C 知:0a =或2a =±,因此{}0,2,2S =−, 3C S ,D 错误.故选:AC三、填空题(本题共3小题,每小题5分,共15分.)12. 已知集合{}A x x a =<,{}13B x x =<<,若A B B = ,则实数a 的取值范围是______.【答案】3a ≥ 【解析】【分析】根据给定条件,利用交集的定义,结合集合的包含关系求解即得.【详解】由A B B = ,得B A ⊆,而{}A x x a =<,{}13B x x =<<,则3a ≥,所以实数a 的取值范围是3a ≥. 故答案:3a ≥13.若一个直角三角形的斜边长等于,当这个直角三角形周长取最大值时,其面积为______. 【答案】18 【解析】【分析】由题意画出图形,结合勾股定理并通过分析得知当()2722AB AC AB AC +=+⋅最大值,这个直角三角形周长取最大值,根据基本不等式的取等条件即可求解. 【详解】如图所示:为在Rt ABC △中,90,A BC ==而直角三角形周长l AB BC CA AB CA =++=++,由勾股定理可知(222272AB CA BC +===,若要使l 最大,只需+AB AC 即()2222722AB AC AB AC AB AC AB AC +=++⋅=+⋅最大即可, 又22272AB AC AB AC ⋅≤+=,等号成立当且仅当6AB AC ==, 所以()2722144AB AC AB AC +=+⋅≤,12AB AC +≤,12l ≤+, 等号成立当且仅当6AB AC ==, 此时,其面积为11661822S AB AC =⋅=××=. 故答案为:18.14. 若不等式22x x a ax +−>+对(]0,1a ∀∈恒成立,则实数x 取值范围是______. 【答案】(]),2∞∞−−∪+【解析】【分析】根据主元法得()2120x a x x +−−+<对(]0,1a ∀∈恒成立,再利用一次函数性质即可得到答案.【详解】由不等式22x x a ax +−>+对(]0,1a ∀∈恒成立, 得()2120x a x x +−−+<对(]0,1a ∀∈恒成立,令()()212g a x a x x =+−−+,得22(0)20(1)120g x x g x x x =−−+≤ =+−−+< , 解得(]),2x ∈−∞−+∞,∴实数x的取值范围是(.故答案为:(]),2∞∞−−∪+.四、解答题(本题共3小题,共47分)15. 设集合U =R ,{}05Ax x =≤≤,{}13B x m x m =−≤≤. (1)3m =,求()U A B ∪ ;(2)若“x B ∈”是“x A ∈”的充分不必要条件,求m 的取值范围.的【答案】(1){|5x x ≤或}9x > (2)12m <−或513m ≤≤. 【解析】【分析】(1)根据 集合的补集定义以及集合的交集运算,即可求得答案;(2)依题意可得B A ,讨论集合B 是否为空集,列出相应的不等式,即可求得结果. 【小问1详解】当3m =时,可得{}|29B x x =≤≤,故可得{|2U B x x =< 或}9x >,而{}|05A x x =≤≤, 所以(){|5U A B x x ∪=≤ 或}9x >. 【小问2详解】由“x B ∈”是“x A ∈”的充分不必要条件可得B A ; 当B =∅时,13m m −>,解得12m <−,符合题意; 当B ≠∅时,需满足131035m m m m −≤−≥ ≤,且10m −≥和35m ≤中的等号不能同时取得,解得513m ≤≤; 综上可得,m 的取值范围为12m <−或513m ≤≤. 16. (1)已知03x <<,求y =的最大值; (2)已知0x >,0y >,且5x y xy ++=,求x y +的最小值; (3)解关于x 的不等式()2330ax a x −++<(其中0a ≥). 【答案】(1)92;(2)2+;(3)答案见解析 【解析】【分析】(1)化简得y,再利用基本不等式即可;(2)利用基本不等式构造出252x y x y + ++≤,解出即可;(3)因式分解为(3)(1)0ax x −−<,再对a 进行分类讨论即可.【详解】(1)()229922x x y +−=≤=,当且仅当229x x =−,即229x x =−,即x =时等号成立.则y =的最大值为92. (2)因为 0,0x y >>, 且 5x y xy ++=, 则252x y x y xy + ++≤,解得2x y +≥ 或 2x y +≤−(舍去),当且仅当1x y ==时等号成立,则x y +的最小值为2+.(3)不等式()2330ax a x −++<化为(3)(1)0ax x −−<,(其中0a ≥), 当0a =时,解得1x >;当0a >时,不等式化为3()(1)0x x a−−<,若0<<3a ,即31a>,解得31x a <<;若3a =,x 无实数解; 若3a >,即31a <,解得31x a<<, 所以当0a =时,原不等式的解集为{|1}x x >; 当0<<3a 时,原不等式的解集为3{|1}x x a<<; 当3a =时,原不等式的解集为∅; 当3a >时,原不等式的解集为3{|1}x x a<<. 17. 已知方程()220,x mx n m n −+−=∈R(1)若1m =,0n =,求方程220x mx n −+−=的解;(2)若对任意实数m ,方程22x mx n x −+−=恒有两个不相等的实数解,求实数n 的取值范围;(3)若方程()2203x mx n m −+−=≥有两个不相等的实数解12,x x ,且()2121248x x x x +−=,求221221128x x x x x x +−+的最小值. 【答案】(1)2x =或1−;(2)2n <(3)【解析】【分析】(1)由题意得到220x x −−=,求出方程的根;(2)由根的判别式大于0得到()21124n m <++,求出()211224m ++≥,从而得到2n <; (3)由韦达定理得到1212,2x x m x x n +==−,代入()2121248x x x x +−=中得到24m n =,结合立方和公式化简得到2212211288328x x m x x x x m m m+−=−++−,令8t m m =−,由单调性得到81333t −=≥,结合基本不等式求出22122112832x x t x x x x t +−=+≥+,得到答案. 【小问1详解】1m =,0n =时,220x x −−=,解得2x =或1−;【小问2详解】()222120x mx n x x m x n −+−=⇒−++−=,故()()2Δ1420m n =+−−>,所以()21124n m <++, 其中()211224m ++≥,当且仅当1m =−时,等号成立, 故2n <;【小问3详解】()2203x mx n m −+−=≥有两个不相等的实数解12,x x ,()2Δ420m n =−−>,由韦达定理得1212,2x x m x x n +==−,故()2212124488x x x x m n +−=−+=,所以24m n =,此时80∆=>, 所以()()2222331211221212211212121212888x x x x x x x x x x x x x x x x x x x x x x +−+++−=−=−+++ ()()()221212121212336882x x x x x x m m n x x x x n m ++−−+ −=−+−,因为24m n =, 所以2222122221126284488883282244m m m m x x m m m x x x x m m m m m +−+ +−=−=−=−++−−−, 令8t m m =−,其在3m ≥上单调递增,故81333t −=≥,故22122112832x x t x x x x t +−=+≥+ 当且仅当32t t=,即=t 时,等号成立, 故221221128x x x x x x +−+的最小值为【点睛】关键点点睛:变形得到2212211288328x x m x x x x m m m+−=−++−,换元后,由函数单调性和基本不等式求最值.。
高一数学考试试题及答案

高一数学考试试题及答案一、选择题(每题3分,共30分)1. 若函数f(x)=2x+1,则f(-1)的值为:A. -1B. 1C. 3D. -3答案:A2. 已知集合A={1,2,3},B={2,3,4},则A∩B的元素个数为:A. 1B. 2C. 3D. 4答案:B3. 函数y=x^2-4x+3的顶点坐标为:A. (2,-1)B. (2,1)C. (-2,1)D. (-2,-1)答案:A4. 圆的方程为(x-2)^2+(y-3)^2=25,则圆心坐标为:A. (2,3)B. (-2,-3)C. (-2,3)D. (2,-3)答案:A5. 直线y=2x+3与x轴的交点坐标为:A. (-3/2, 0)B. (3/2, 0)C. (0, -3/2)D. (0, 3/2)答案:B6. 函数y=|x|的图像是:A. 一条直线B. 两条直线C. 一条曲线D. 两条曲线答案:B7. 已知等差数列{an}的前三项分别为2, 5, 8,则该数列的公差为:A. 1B. 2C. 3D. 4答案:B8. 函数y=sin(x)的周期为:B. 2πC. π/2D. 4π答案:B9. 已知向量a=(3, -4),b=(2, 5),则a·b的值为:A. -1B. 11C. -11D. 1答案:C10. 圆的方程为x^2+y^2-6x+8y-24=0,则该圆的半径为:A. 2B. 4C. 6D. 8答案:C二、填空题(每题4分,共20分)11. 函数y=3x-2的反函数为______。
答案:y=(1/3)x+2/312. 已知等比数列{bn}的前三项分别为3, 6, 12,则该数列的公比为______。
13. 若a, b, c是三角形的三边长,且满足a^2+b^2=c^2,则该三角形为______三角形。
答案:直角14. 函数y=1/x的图像在第二象限内是______的。
答案:递减15. 已知向量a=(4, 1),b=(2, -3),则|a+b|的值为______。
高一第一学期第一阶段数学考试试题含答案

高一第一学期第一阶段数学考试(考试总分:150 分)一、单选题(本题共计8小题,总分40分)1.(5分)1. 若集合,则下列关系中成立的为( )A. B. C. D.2.(5分)2. 下列说法: ①很小的实数可以构成集合;②若集合,满足,则;③空集是任何集合的真子集;④集合,,则.其中正确的个数为( )A. B. C. D.3.(5分)3. 命题,,则为( )A. ,B. ,C. ,D. ,4.(5分)4. 下列命题中,正确的是( )A. 若,则B. 若,,则C. 若,,则D. 若,则5.(5分)5. “,”是“”的( )条件A. 充分而不必要B. 必要而不充分C. 充分必要D. 既不充分也不必要6.(5分)6. 不等式的解集是( )A. B. C. D.7.(5分)7. 若正实数,满足,则的最小值为( )A. B. C. D.8.(5分)8. 若函数是上的单调递增函数,则实数的取值范围是( )A. B. C. D.二、多选题(本题共计4小题,总分20分)9.(5分)9. 下列每组对象,能构成集合的是( )A. 中国各地最美的乡村B. 直角坐标系中横、纵坐标相等的点C. 一切很大的数D. 清华大学2020年入学的全体学生10.(5分)10. 使成立的充分条件是( )A. ,B.C. ,D. ,11.(5分)11. 下列各小题中,最大值是的是( )A. B.C. D.12.(5分)12. 关于函数的性质描述,正确的是( )A. 的定义域为B. 的值域为C. 在定义域上是增函数D. 的图象关于轴对称三、 填空题 (本题共计4小题,总分20分) 13.(5分)13. 给定集合,定义一种新运算:,使用列举法写出__________.14.(5分)14. 一元二次不等式的解集是,则的值是__________ 15.(5分)15. 已知命题,,若为假命题,则的取值范围为__________. 16.(5分)16. 若,则下列不等式:①;②;③;④,其中成立的是__________(写出所有正确命题的序号)四、 解答题 (本题共计6小题,总分70分) 17.(10分)17. 已知集合,且. (1)求. (2)写出集合的所有子集.18.(12分)18. 已知集合,. (1)时,求; (2)若是的充分条件,求实数的取值范围.19.(12分)19. 设122+-=ax x y ,. (1)若,解关于的不等式:132+<a y ;(2)若,都有0≥y 恒成立,求实数的取值范围.20.(12分)20. 已知关于的不等式的解集为. (1)求实数的值; (2)解关于的不等式.(为常数)21.(12分)21. 某连锁分店销售某种商品,该商品每件的进价为元,预计当每件商品售价为元时,一年的销售量(单位:万件)该分店全年需向总店缴纳宣传费、保管费共计万元. (1)求该连锁分店一年的利润y与每件商品售价的函数关系式; (2)求当每件商品售价为多少元时,该连锁店一年的利润最大,并求其最大值.22.(12分)22. 已知函数是定义域上的奇函数. (1)确定的解析式; (2)用定义证明:在区间上是减函数; (3)解不等式.答案一、单选题(本题共计8小题,总分40分)1.(5分)D2.(5分)A3.(5分)B4.(5分)B5.(5分)A6.(5分)D7.(5分)A8.(5分)A二、多选题(本题共计4小题,总分20分)9.(5分)BD10.(5分)ACD11.(5分)BC12.(5分)AB三、填空题(本题共计4小题,总分20分)13.(5分) 13 .14.(5分) 14 .15.(5分)15.16.(5分)16. ①③④四、解答题(本题共计6小题,总分70分)17.17.(10分)解(1)∵,则或. ∴或.当时,,集合不满足互异性,∴(舍去),当时,经检验,符合题意,故; (5分)(2)由(1)知∴的子集为:,,,,,,,. (10分)18.(12分)18.解:(1)时,,,.(6分)(2)因为是的充分条件,所以.①,即时满足题意;②,则,解得. 综上所述,或. (12分)19.(12分)19.解(1)∵,∴,解得,或∴不等式的解集为. (4分)(2)当时,在上单调递增, 若恒成立,∴,解得:,∴;当时,,恒成立,∴;当时,在上单调递减,若恒成立,∴, 解得: ,∴; 综上:. (12分)20.(12分)解:(1)由解集为得仅有一解,由得,, 从而. (4分)(2)原不等式可以变形为,所以 (ⅰ)当时,原不等式的解集为;(ⅱ)当时,原不等式的解集为或;(ⅲ)当时,原不等式的解集为或.(12分)21.(12分)21.解:(1)①当时,;②当时,, 所以. (5分)(2)①当时,,其对称轴为,所以当时,有最大值.②,,令,当且仅当,即时取等号.因为.答:每件商品售价为元时,该连锁店一年利润最大,最大利润为万元. (12分)22.(12分)22.解:(1)由于函数是定义域上的奇函数, 则,即, 化简得,因此,; (4分)(2)任取、,且,即, 则, ∵, ∴,, ,,,∴,∴, 因此,函数在区间上是减函数; (8分)(3分)由(2)可知,函数是定义域为的减函数,且为奇函数, 出得, 所以,, 解得,因此,不等式的解集为. (12分)。
高一数学试题及答案(8页)

高一数学试题及答案第一部分:选择题1. 设函数f(x) = x^2 4x + 3,求f(2)的值。
A. 1B. 0C. 1D. 22. 已知等差数列{an}的公差为2,且a1 = 3,求a5的值。
A. 7B. 9C. 11D. 133. 设集合A = {x | x > 0},B = {x | x < 5},求A∩B的值。
A. {x | x > 0, x < 5}B. {x | x > 5}C. {x | x < 0}D. {x | x < 5, x > 0}4. 若直线y = kx + 2与圆x^2 + (y 1)^2 = 4相切,求k的值。
A. 1B. 1C. 2D. 25. 设函数g(x) = |x 1| + |x + 1|,求g(x)的最小值。
A. 0B. 1C. 2D. 36. 若等比数列{bn}的首项为2,公比为3,求bn的第5项。
A. 162B. 243C. 4D. 7297. 已知函数h(x) = x^3 3x^2 + 2x,求h(x)的导数。
A. 3x^2 6x + 2B. 3x^2 6x 2C. 3x^2 + 6x + 2D. 3x^2 + 6x 28. 若直线y = mx + 1与直线y = 2x + 4平行,求m的值。
A. 2B. 2C. 1D. 19. 设集合C = {x | x^2 5x + 6 = 0},求C的值。
A. {2, 3}B. {1, 4}C. {2, 4}D. {1, 3}10. 若函数f(x) = ax^2 + bx + c(a ≠ 0)的顶点坐标为(2,3),求b的值。
A. 12B. 12C. 6D. 6答案:1. A2. C3. A4. B5. B6. D7. A8. D9. C10. B第一部分:选择题答案解析1. 解析:将x = 2代入f(x) = x^2 4x + 3中,得到f(2) =2^2 42 + 3 = 1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
桂林十八中10级高一上学期期中考试试卷数 学命题人:霍荣友 审题人:常路注意:1、本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150 分。
考试时间: 120 分钟 。
答卷前,考生务必将自己的姓名和考号填写或填涂在答题卷指定的位置。
2、选择题答案用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案;不能答在试题卷上。
3、主观题必须用黑色字迹的钢笔或签字笔在答题卷上作答,答案必须写在答题卷各题目指定区域内的相应位置上,超出指定区域的答案无效;如需改动,先划掉原来的答案,然后再写上新的答案。
第I 卷(选择题,共60分)一、选择题(本题包括12小题,每小题5分,共60分,每小题只有一个正确答案) 1.设全集U={1, 2, 3, 4, 5},集合A={1, 2}, B={2, 3},则A∩C U B=A .{4,5}B .{2,3}C .{1}D .{2}2.下列函数中,在区间(0,)+∞上是增函数的是A .42+-=x yB .x y -=3C .xy 1=D .x y =3. 函数()f x =A .(,1)(1,)-∞-∞B . [1,1)-C .[1,1]-D .[1,)∞4.用反证法证明命题:对于实数,,a b c ,若0a >,且0a b +>,那么c b a ,,都是正数,下列假设中正确的是A .假设c b a ,,都是正数B .假设c b a ,,都不是正数C .假设c b a ,,至多有一个是正数D .假设c b a ,,至多有两个是正数 5.若不等式022>++bx ax 的解集为{ x|-2<x<3},则b a +的值为A .0B .-3C . 2D .36.函数f (x )=1-x +2 (x ≥1)的反函数是A .y =(x -2)2+1 (x ∈R)B .x =(y -2)2+1 (x ∈R)C .y =(x -2)2+1 (x ≥2)D .y =(x -2)2+1 (x ≥1) 7.点(x,y )在映射f 作用下的象是(x-y , x+y ),点(4,2)在映射f 作用下的原象为A .(6,2)B .(4,2)C .(3,1)-D .(1,3)-8. 设p :26510x x -+>,q :10||2x x ->-,则p 是q 的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件9.计算102(2 2.25-⨯+ 的值为A .πB .π-1C .43π- D .43π- 10.命题p :若2x >,则3x ≥;命题q :函数2|1|--=x y 定义域是(-∞,][31 -,+∞). 则A .“p 或q ”为假 B .“p 且q ”为真 C .p 真q ⌝真 D .p 假q 真11.已知函数()23f x ax ax =+-的定义域是R ,则实数a 的取值范围是A .13a >B . 120a -<≤C .120a -<<D .13a ≤ 12.设函数()y f x =的反函数为1()y f x -=,且(21)y f x =-+2的图像过点(1,5),则1()y f x -=的图像必过点A .(1,3) B. (3,1)C. 1(,1)3D. 1(1,)3第II 卷(非选择题,共90分)二、填空题(本题共4小题,每小题5分,共20分)13.已知函数()31f x x =- ,且()y f x =的反函数为1()y f x -=,则1(2)f -= .14.函数]3,1[,54)(2-∈+-=x x x x f 的值域 .15.小强同学参加了市数学奥林匹克竞赛,班内有三位同学对他作了如下猜测:甲:小强非第一名,也非第二名; 乙:小强非第一名,而是第三名; 丙:小强非第三名,而是第一名。
竞赛结束后发现,一人全猜对,一人猜对一半,一人全猜错,则小强得了第______名.16.已知f (x )=1,0,1,0,x x ≥⎧⎨-<⎩,则不等式x +(x +2)·f (x +2)≤5的解集是__________.三、解答题(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤)17. (本题满分10分)求不等式 231080x x -+≥的解集.18.(本题满分12分)已知函数()23(,1)1x f x x R x x +=∈≠-且 ⑴求函数()f x 的反函数; ⑵解关于x 的不等式()1f x ≥.19. (本题满分12分)已知集合A={}2430,0,1x x x x B xx ⎧⎫-+-≥=≥⎨⎬-⎩⎭{}20C x ax x b =-+>,且(),()A B C A B C R =∅= ,求a 、b 的值.20. (本题满分12分)已知2233(22)20 p x q a x a a -≤-+++≤:, :x ,若p ⌝是q ⌝充分而不必要条件,求实数a 的取值范围.21.(本题满分12分)一动点P 从边长为1的正方形ABCD 的一个顶点A 出发,沿着正方形的边界ABCD 运动一周最后回到点A ,若点P 运动的路程为x ,点P 到点A 的距离为y ,求y 与x 的函数关系式,并指出函数的定义域和值域.22. (本题满分12分)已知函数()f x 满足对一切12,x x R ∈都有1212()()()2f x x f x f x +=+-,且(1)0f =,当1x >时有()0f x <.⑴求(1)f -的值;⑵判断并证明函数()f x 在R 上的单调性;⑶解不等式:23(31)2(2)1002f x f x x ++--+<.桂林十八中10级上学期高一段考数学试卷答案一、选择题答案 C D C D A C C BAD B B 二、填空题答案 13. 1 14. [1,10] 15.一16.3{|}2x x ≤三、解答题17.解:原不等式可化为(34)(2)0x x --≤ 得423x x ≤≥或 ………………………8分 故不式的解集为4{|2}3x x x ≤≥或…………………………………10分 18.(1)由231x y x +=-得32y x y +=-故原函数的反函数为:3(2)2x y x x +=≠- ………………………6分 (2)由题意有2311x x +≥- 得23101x x +-≥-401x x +⇒≥- 得14x x >≤-或所以不等式的解集为{|14}x x x >≤-或………………………12分 19.解:由已知易得A={}13x x ≤≤由B0011xx x≥≤<-即 {|03}A B x x =≤≤ ………4分则由(),()A B C A B C R =∅= 可得C的解必为{|03}x x x <>或 ………………8分故 0与3是方程20ax x b -+=的两根ABCD由韦达定理易得10303aba ⎧+=⎪⎪⎨⎪⨯=⎪⎩故a=31,b=0………………………12分20.解:由题意 p: 333≤-≤-x ∴ 60≤≤x∴p ⌝:60><x x 或q :20)]2()[(+≤≤≤+--a x a a x a x∴q ⌝:2+><a x a x 或………………6分又∵p ⌝是q ⌝充分而不必要条件∴⎩⎨⎧≤+≥620a a ……………….. ……….10分∴40≤≤a 即为a 的取值范围.………………12分)(p q q p ⇒⇔⌝⇒⌝或用21.解:设动点P 按A-B-C-D-A 的顺序沿正方形的边界运动一周,则 当01x ≤<时,y =,x …………..2分 当12x ≤<时, y =…4分当23x ≤<时, y =…………………………6分当34x ≤≤时, y = 4x -。
……………….. ……….8分∴所求函数关系式是,(01)2)3)4,(34)x x x y x x x ⎧≤<≤<=≤<-≤≤⎩, …………..10分函数的定义域为[0,4],值域为……………………………………12分 22.解:⑴令120x x ==,得 (0)(0)(0)2f f f =+-, (0)2f = 再令121,1x x =-=,得 (11)(1)(1)2f f f -+=-+-, 即2(1)2f =--,从而 (1)4f -=.…………………..2分⑵任取121221,,,11x x R x x x x ∈<-+>则 有21(1)0f x x -+< 又 2121(1)()(1)2f x x f x f x -+=+-+-21()()(1)22f x f x f =+-+--21()()4f x f x =+-- ………………………………………………………………①又对任意的()()()2x f x x f x f x -=+--有 得()()4f x f x -=-+代入①式得21()()0f x f x =-<()f x ∴在R 上是减函数. ----------------------------7分⑶由条件知, 223(31)2(2)10(31)(243)122f x f x x f x f x x ++--+=++--+2(22)14f x x =--+2(22)14f x x ∴--<- 又(2)(1)(1)22f f f =+-=- (4)(2)(2)26f f f =+-=-(8)(4)(4)214f f f =+-=-22(22)14(22)(8)f x x f x x f ∴--<---<可化为又()f x 在R 上递减,2228x x ∴--> 得522x ><-或x。