湘教版数学八年级上册期中测试卷(A,B,答案)

合集下载

湘教版八年级数学上册期中试卷及完整答案

湘教版八年级数学上册期中试卷及完整答案

湘教版八年级数学上册期中试卷及完整答案 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.若2n +2n +2n +2n =2,则n=( )A .﹣1B .﹣2C .0D .142.若正多边形的内角和是540︒,则该正多边形的一个外角为( )A .45︒B .60︒C .72︒D .90︒ 3.已知23a b =(a ≠0,b ≠0),下列变形错误的是( ) A .23a b = B .2a=3b C .32b a = D .3a=2b 4.如图,在四边形ABCD 中,∠A=140°,∠D=90°,OB 平分∠ABC ,OC 平分∠BCD ,则∠BOC=( )A .105°B .115°C .125°D .135°5.已知a 与b 互为相反数且都不为零,n 为正整数,则下列两数互为相反数的是( )A .a 2n -1与-b 2n -1B .a 2n -1与b 2n -1C .a 2n 与b 2nD .a n 与b n6.如图,有一块直角三角形纸片,两直角边6cm AC =,8cm BC =.现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( )A .2cmB .3cmC .4cmD .5cm7.在平面直角坐标中,点M(-2,3)在( )A .第一象限B .第二象限C .第三象限D .第四象限8.如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是( )A .乙前4秒行驶的路程为48米B .在0到8秒内甲的速度每秒增加4米/秒C .两车到第3秒时行驶的路程相等D .在4至8秒内甲的速度都大于乙的速度9.如图,在正方形ABCD 中,AB =9,点E 在CD 边上,且DE =2CE ,点P 是对角线AC 上的一个动点,则PE +PD 的最小值是( )A .310B .103C .9D .9210.如图,已知BD 是ABC 的角平分线,ED 是BC 的垂直平分线,90BAC ∠=︒,3AD =,则CE 的长为( )A .6B .5C .4D .33二、填空题(本大题共6小题,每小题3分,共18分)1.已知2320x y --=,则23(10)(10)x y ÷=_______.2.如果关于x 的不等式组232x a x a >+⎧⎨<-⎩无解,则a 的取值范围是__________. 3.在数轴上表示实数a 的点如图所示,化简2(5)a -+|a -2|的结果为____________.4.通过计算几何图形的面积,可表示一些代数恒等式,如图所示,我们可以得到恒等式:2232a ab b ++=________.5.如图,四边形ABCD 中,点M ,N 分别在AB ,BC 上, 将BMN △沿MN 翻折,得△FMN ,若MF ∥AD ,FN ∥DC ,则∠B =________°.6.如图1,点P 从△ABC 的顶点B 出发,沿B →C →A 匀速运动到点A ,图2是点P 运动时,线段BP 的长度y 随时间x 变化的关系图象,其中M 为曲线部分的最低点,则△ABC 的面积是________.三、解答题(本大题共6小题,共72分)1.解下列不等式,并把解集在数轴上表示出来(1)2562x x -≥- (2)532122x x ++-<2.先化简,再求值:233()111a a a a a -+÷--+,其中2+1.3.已知,a 、b 互为倒数,c 、d 互为相反数,求31ab c d +的值.4.如图,直线y=kx+6分别与x 轴、y 轴交于点E ,F ,已知点E 的坐标为(﹣8,0),点A 的坐标为(﹣6,0).(1)求k的值;(2)若点P(x,y)是该直线上的一个动点,且在第二象限内运动,试写出△OPA的面积S关于x的函数解析式,并写出自变量x的取值范围.(3)探究:当点P运动到什么位置时,△OPA的面积为,并说明理由.5.如图,在长方形OABC中,O为平面直角坐标系的原点,点A坐标为(a,0),点C的坐标为(0,b),且a、b满足4a +|b﹣6|=0,点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O﹣C﹣B﹣A﹣O的线路移动.(1)a= ,b= ,点B的坐标为;(2)当点P移动4秒时,请指出点P的位置,并求出点P的坐标;(3)在移动过程中,当点P到x轴的距离为5个单位长度时,求点P移动的时间.6.文美书店决定用不多于20000元购进甲乙两种图书共1200本进行销售.甲、乙两种图书的进价分别为每本20元、14元,甲种图书每本的售价是乙种图书每本售价的1.4倍,若用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本.(1)甲乙两种图书的售价分别为每本多少元?(2)书店为了让利读者,决定甲种图书售价每本降低3元,乙种图书售价每本降低2元,问书店应如何进货才能获得最大利润?(购进的两种图书全部销售完.)参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、B4、B5、B6、B7、B8、C9、A10、D二、填空题(本大题共6小题,每小题3分,共18分)1、1002、a≤2.3、3.4、()()2a b a b++.5、956、12三、解答题(本大题共6小题,共72分)1、(1)43x≤-,数轴表示见解析;(2)12x>,数轴表示见解析.2、223、0.4、(1)k=;(2)△OPA的面积S=x+18 (﹣8<x<0);(3)点P坐标为(,)或(,)时,三角形OPA的面积为.5、(1)4,6,(4,6);(2)点P在线段CB上,点P的坐标是(2,6);(3)点P移动的时间是2.5秒或5.5秒.6、(1)甲种图书售价每本28元,乙种图书售价每本20元;(2)甲种图书进货533本,乙种图书进货667本时利润最大.。

湘教版八年级数学上册期中测试卷及答案【完美版】

湘教版八年级数学上册期中测试卷及答案【完美版】

湘教版八年级数学上册期中测试卷及答案【完美版】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若m >n ,则下列不等式正确的是( )A .m ﹣2<n ﹣2B .44m n >C .6m <6nD .﹣8m >﹣8n2.已知a 、b 、c 是△ABC 的三条边长,化简|a +b -c|-|c -a -b|的结果为( )A .2a +2b -2cB .2a +2bC .2cD .03.已知点()()121,,2,A y B y 在抛物线2(1)2y x =-++上,则下列结论正确的是( )A .122y y >>B .212y y >>C .122y y >>D .212y y >>4.化简 )A B C D5.一次函数y=kx ﹣1的图象经过点P ,且y 的值随x 值的增大而增大,则点P 的坐标可以为( )A .(﹣5,3)B .(1,﹣3)C .(2,2)D .(5,﹣1)6.已知a=2012x+2011,b=2012x+2012,c=2012x+2013,那么a 2+b 2+c 2—ab -bc -ca 的值等于( )A .0B .1C .2D .37.已知正多边形的一个外角为36°,则该正多边形的边数为( ).A .12B .10C .8D .68.如图,在△ABC 中,CD 平分∠ACB 交AB 于点D ,过点D 作DE ∥BC 交AC 于点E,若∠A=54°,∠B=48°,则∠CDE 的大小为( )A .44°B .40°C .39°D .38°9.如图在正方形网格中,若A (1,1),B (2,0),则C 点的坐标为( )A .(-3,-2)B .(3,-2)C .(-2,-3)D .(2,-3)10.下列选项中,不能判定四边形ABCD 是平行四边形的是( )A .AD//BC ,AB//CDB .AB//CD ,AB CD =C .AD//BC ,AB DC =D .AB DC =,AD BC =二、填空题(本大题共6小题,每小题3分,共18分)1.81的平方根是________.2.已知222246140x y z x y z ++-+-+=, 则()2002x y z --=_______.3.如果实数a ,b 满足a+b =6,ab =8,那么a 2+b 2=________.4.如图,已知∠1=75°,将直线m 平行移动到直线n 的位置,则∠2﹣∠3=________°.5.如图,直线y =x +2与直线y =ax +c 相交于点P (m ,3),则关于x 的不等式x +2≤ax +c 的解为__________.6.如图,四边形ABCD 中,∠A=90°,AB=33,AD=3,点M ,N 分别为线段BC ,AB 上的动点(含端点,但点M 不与点B 重合),点E ,F 分别为DM ,MN 的中点,则EF 长度的最大值为 . 三、解答题(本大题共6小题,共72分)1.解方程23111x x x -=--.2.先化简再求值:(a ﹣22ab b a -)÷22a b a -,其中2,b=12.3.已知方程组713x y m x y m+=--⎧⎨-=+⎩的解满足x 为非正数, y 为负数. (1)求m 的取值范围;(2)化简:||32m m --+;(3)在m 的取值范围内,当m 为何整数时,不等式221mx x m +<+的解为1x >.4.已知:如图所示△ACB 和△DCE 都是等腰直角三角形,∠ACB=∠DCE=90°,连接AE,BD.求证:AE=BD.5.如图,▱ABCD的对角线AC,BD相交于点O,点E、F在AC上,且AF=CE.求证:BE=DF.6.某商场一种商品的进价为每件30元,售价为每件40元.每天可以销售48件,为尽快减少库存,商场决定降价促销.(1)若该商品连续两次下调相同的百分率后售价降至每件32.4元,求两次下降的百分率;(2)经调查,若该商品每降价0.5元,每天可多销售4件,那么每天要想获得510元的利润,每件应降价多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、D3、A4、C5、C6、D7、B8、C9、B10、C二、填空题(本大题共6小题,每小题3分,共18分)1、±32、03、204、1055、x ≤1.6、3三、解答题(本大题共6小题,共72分)1、2x =2、原式=a b a b -=+3、(1)23m -<≤;(2)12m -;(3)1m =-4、略.5、略.6、(1)两次下降的百分率为10%;(2)要使每月销售这种商品的利润达到510元,且更有利于减少库存,则商品应降价2.5元.。

湘教版八年级数学上册期中考试卷(及参考答案)

湘教版八年级数学上册期中考试卷(及参考答案)

湘教版八年级数学上册期中考试卷(及参考答案) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.-2的倒数是( )A .-2B .12-C .12D .22.一次函数24y x =+的图像与y 轴交点的坐标是( )A .(0,-4)B .(0,4)C .(2,0)D .(-2,0)3.如果线段AB =3cm ,BC =1cm ,那么A 、C 两点的距离d 的长度为( )A .4cmB .2cmC .4cm 或2cmD .小于或等于4cm ,且大于或等于2cm4.已知a b 3132==,,则a b 3+的值为( ) A .1 B .2 C .3 D .275.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .6.如图,菱形ABCD 的对角线AC 、BD 的长分别为6和8,则这个菱形的周长是( )A .20B .24C .40D .487.如图,∠B=∠C=90°,M 是BC 的中点,DM 平分∠ADC ,且∠ADC=110°,则∠MAB=()A.30°B.35°C.45°D.60°8.甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是()A.B.C.D.8.如图,在矩形AOBC中,A(–2,0),B(0,1).若正比例函数y=kx的图象经过点C,则k的值为()A.–12B.12C.–2 D.210.若关于x的一元二次方程2210x x kb-++=有两个不相等的实数根,则一次函数y kx b=+的图象可能是:()A. B.B.C. D.二、填空题(本大题共6小题,每小题3分,共18分)1.三角形三边长分别为3,2a 1-,4.则a 的取值范围是________.2.分解因式:22a 4a 2-+=__________.3.计算22111m m m---的结果是________. 4.含45°角的直角三角板如图放置在平面直角坐标系中,其中A(-2,0),B(0,1),则直线BC 的解析式为________.5.如图,O 为数轴原点,A ,B 两点分别对应-3,3,作腰长为4的等腰△ABC ,连接OC ,以O 为圆心,CO 长为半径画弧交数轴于点M ,则点M 对应的实数为__________ .6.如图,在Rt △ABC 中,∠ACB=90°,AC=5cm ,BC=12cm ,将△ABC 绕点B 顺时针旋转60°,得到△BDE ,连接DC 交AB 于点F ,则△ACF 与△BDF 的周长之和为_______cm .三、解答题(本大题共6小题,共72分)1.解下列分式方程:(1)32111x x =+-- (2)2531242x x x-=---2.先化简,再从﹣1、2、3、4中选一个合适的数作为x 的值代入求值.2222444424x x x x x x x ⎛⎫---÷ ⎪-+--⎝⎭.3.已知22a b -=,且1a ≥,0b ≤.(1)求b 的取值范围(2)设2m a b =+,求m 的最大值.4.已知:在ABC ∆中,AB AC = ,D 为AC 的中点,DE AB ⊥ ,DF BC ⊥ ,垂足分别为点,E F ,且DE DF =.求证:ABC ∆是等边三角形.5.已知平行四边形ABCD ,对角线AC 、BD 交于点O ,线段EF 过点O 交AD 于点E ,交BC 于点F .求证:OE=OF .6.某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批饮料进货单价多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、D4、B5、B6、A7、B8、D9、A10、B二、填空题(本大题共6小题,每小题3分,共18分)1、1a4<<2、()2 2a1-3、11 m-4、113y x=-+56、42.三、解答题(本大题共6小题,共72分)1、(1)x=2;(2)32 x=-2、x+2;当1x=-时,原式=1.3、(1)12b-≤≤;(2)24、略.5、略.6、(1)第一批饮料进货单价为8元.(2) 销售单价至少为11元.。

湘教版八年级数学上册期中试卷及答案【完整】

湘教版八年级数学上册期中试卷及答案【完整】

湘教版八年级数学上册期中试卷及答案【完整】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若2n +2n +2n +2n =2,则n=( ) A .﹣1B .﹣2C .0D .142.将抛物线23y x =-平移,得到抛物线23(1)2y x =---,下列平移方式中,正确的是( )A .先向左平移1个单位,再向上平移2个单位B .先向左平移1个单位,再向下平移2个单位C .先向右平移1个单位,再向上平移2个单位D .先向右平移1个单位,再向下平移2个单位3n ( ) A .2B .3C .4D .54.已知关于x 的分式方程21m x -+=1的解是负数,则m 的取值范围是( ) A .m ≤3B .m ≤3且m ≠2C .m <3D .m <3且m ≠25.已知4821-可以被在0~10之间的两个整数整除,则这两个数是( ) A .1、3B .3、5C .6、8D .7、96.某市从2017年开始大力发展“竹文化”旅游产业.据统计,该市2017年“竹文化”旅游收入约为2亿元.预计2019“竹文化”旅游收入达到2.88亿元,据此估计该市2018年、2019年“竹文化”旅游收入的年平均增长率约为( ) A .2%B .4.4%C .20%D .44%7.如图,函数y=2x 和y=ax+4的图象相交于A(m ,3),则不等式2x ax+4<的解集为()A.3x2>B.x3>C.3x2<D.x3<8.已知直线a∥b,将一块含45°角的直角三角板(∠C=90°)按如图所示的位置摆放,若∠1=55°,则∠2的度数为()A.80°B.70°C.85°D.75°9.如图,菱形ABCD的周长为28,对角线AC,BD交于点O,E为AD的中点,则OE的长等于()A.2 B.3.5 C.7 D.1410.如图是由4个相同的小正方形组成的网格图,其中∠1+∠2等于()A.150°B.180°C.210°D.225°二、填空题(本大题共6小题,每小题3分,共18分)1.若a-b=1,则222a b b--的值为____________.2.如果关于x的不等式组232x ax a>+⎧⎨<-⎩无解,则a的取值范围是__________.3.分解因式6xy2-9x2y-y3 = _____________.4.如图,AB ∥CD ,则∠1+∠3—∠2的度数等于 _________.5.如图,E 、F 分别是平行四边形ABCD 的边AB 、CD 上的点,AF 与DE 相交于点P,BF 与CE 相交于点Q,若215APD S cm ∆=,225BQC S cm ∆=,则阴影部分的面积为__________2cm .6.如图,∠AOB=60°,OC 平分∠AOB ,如果射线OA 上的点E 满足△OCE 是等腰三角形,那么∠OEC 的度数为________。

湘教版八年级上册数学期中考试试卷含答案

湘教版八年级上册数学期中考试试卷含答案

湘教版八年级上册数学期中考试试题一、选择题。

(每小题只有一个正确答案)1.下列式子中是分式的是( )A.1πB.3xC.11x-D.252.下列分式中属于最简分式的是()A.42xB.11xx--C.211xx--D.221xx+3.长度分别为2,7,x的三条线段能组成一个三角形,的值可以是()A.4B.5C.6D.94.化简2111xx x+--的结果是A.x+1 B.x-1 C.x2− 1 D.211 + -xx5.如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A.B.C.D.6.有下列命题:①两点之间,线段最短;②相等的角是对顶角;③当a>0时,|a|=a;④内错角互补,两直线平行.其中真命题的有()A.1个B.2个C.3个D.4个7.如图,小强利用全等三角形的知识测量池塘两端M、N的距离,如果△PQO≌△NMO,则只需测出其长度的线段是()A.PO B.PQ C.MO D.MQ8.为了帮助遭受自然灾害的地区重建家园,某学校号召同学们自愿捐款.已知第一次捐款总额为4 800元,第二次捐款总额为5 000元,第二次捐款人数比第一次多20人,而且两次人均捐款额恰好相等.如果设第一次捐款人数为x 人,那么x 满足的方程是( ) A .4800500020x x =- B .48005000+20x x = C .4800500020x x =- D .48005000+20x x = 9.如图,ABC EFD ≌△△且AB EF =,4CE =,5CD =,则AC =( )A .4B .5C .9D .1010.关于分式32x a x +-,当x=﹣a 时,( ) A .分式的值为零 B .当a≠23-时,分式的值为零 C .分式无意义 D .当a=23时,分式无意义二、填空题11.要使分式21x -有意义,则x 的取值范围是_______. 12.肥皂泡的泡壁厚度大约是0.0007毫米,换算成以米为单位,用科学记数法应表示为_____米.13.命题“两直线平行,同位角相等”的题设是_________;结论是_____________.14.化简:21x x-÷1x x +=_____. 15.如图,∠1=∠2,请添加一个条件使△ABC ≌△ABD :_____.16.若关于x 的分式方程122m x x x-=--﹣3有增根,则实数m 的值是_____. 17.如图,在△ABC 中,DE 是BC 的垂直平分线,垂足为E,交AC 于点D,若AB=6,AC=9,则△ABD 的周长是__.三、解答题18.计算:|﹣1|+(3﹣π)0﹣(12)﹣1.19.解方程:22xx-=1﹣12x-.20.先化简,再求值:211122aa a-⎛⎫-÷⎪++⎝⎭,其中,3.21.如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C.求证:∠A=∠D.22.如图∠B=∠C,AB//DE,EC=ED,求证:△DEC为等边三角形.23.如图,△ABC中,AB=AC,∠A=36°,AC的垂直平分线交AB于E,D为垂足,连接EC.(1)求∠ECD的度数;(2)若CE=5,求BC长.24.徐州至北京的高铁里程约为700km,甲、乙两人从徐州出发,分别乘坐“徐州号”高铁A 与“复兴号”高铁B前往北京.已知A车的平均速度比B车的平均速度慢80km/h,A车的行驶时间比B车的行驶时间多40%,两车的行驶时间分别为多少?25.(1)如图(1)在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.求证:DE=BD+CE;(2)如图(2)将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m 上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE 是否成立?如成立,请给出证明;若不成立,请说明理由.参考答案1.C【详解】1π、3x、25的分母中不含有字母,属于整式,11x-的分母中含有字母,属于分式.故选C.2.D【分析】根据最简分式的概念:分子、分母没有公因式的分式叫做最简分式,据此逐项判断即可.【详解】解:A、42=2x x,不是最简分式,故此选项不符合题意;B、111xx-=--,不是最简分式,故此选项不符合题意;C 、211x x --=11(1)(1)1x x x x -=+-+,不是最简分式,故此选项不符合题意; D 、221x x +是最简分式,故此选项符合题意, 故选:D .【点睛】本题考查最简分式的概念,涉及分式的基本性质、平方差公式,理解最简分式的概念是解答的关键.3.C【分析】根据三角形的三边关系可判断x 的取值范围,进而可得答案.【详解】解:由三角形三边关系定理得7-2<x <7+2,即5<x <9.因此,本题的第三边应满足5<x <9,把各项代入不等式符合的即为答案.4,5,9都不符合不等式5<x <9,只有6符合不等式,故选C .【点睛】本题考查的是三角形的三边关系,属于基础题型,掌握三角形的三边关系是解题的关键. 4.A【分析】先把分式化简,再求值.【详解】解:原式=()()2111 1.111x x x x x x x +--==+--- 故选A.【点睛】此题重点考察学生对分式的化简求值的应用,熟练掌握分式化简求值方法是解题的关键. 5.A【分析】经过一个顶点作对边所在的直线的垂线段,叫做三角形的高,根据概念即可得出.【详解】根据定义可得A 是作BC 边上的高,C 是作AB 边上的高,D 是作AC 边上的高.故选A.考点:三角形高线的作法6.B【分析】根据线段公理、对顶角、绝对值运算、平行线的判定逐个判断即可得.【详解】解:两点之间,线段最短,所以①正确;相等的角不一定是对顶角,所以②错误;当a>0时,|a|=a,所以③正确;内错角相等,两直线平行,所以④错误.则真命题有2个故选:B.【点睛】本题考查了线段公理、对顶角、绝对值运算、平行线的判定,熟练掌握各判定定理与性质是解题关键.7.B【详解】解:要想利用△PQO≌△NMO求得MN的长,只需求得线段PQ的长,故选B.8.B【解析】如果设第一次有x人捐款,那么第二次有(x+20)人捐款,根据两次人均捐款额相等,可得等量关系为:第一次人均捐款额=第二次人均捐款额,据此列出方程即可.解:设第一次有x人捐款,那么第二次有(x+20)人捐款,由题意,有4800 x =500020x,故选B.9.C【分析】根据三角形全等的性质可以得到解答.【详解】解:∵△ABC≌△EFD,∴AC=DE=CD+CE=5+4=9,故选C.【点睛】本题考查三角形全等的应用,熟练掌握三角形全等的性质是解题关键.10.B【解析】【分析】根据分式有意义的条件是分母不等于零;分式无意义的条件是分母等于零;分式值为零的条件是分子等于零且分母不等于零即可判断.【详解】A. 当x=−a=23时,分式x a3x2+-无意义,故本选项错误;B. 当x+a=0且x≠23时,即当a≠−23时,分式的值为零,故本选项正确;C. 当x=−a≠23时,分式x a3x2+-有意义,故本选项错误;D. 当a=23时,分式x a3x2+-有意义,故本选项错误;故选B.【点睛】本题主要考查了分式有意义的条件,牢牢掌握分式有意义的条件是解答本题的重难点. 11.x≠1【分析】分式有意义的条件:分母不等于零,依此列不等式解答.【详解】∵分式21x-有意义,∴10x-≠,解得x≠1故答案为:x≠1.【点睛】此题考查分式有意义的条件,正确掌握分式有意义的条件列不等式是解题的关键.12.7×10﹣7.【分析】先换算单位,绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.0007毫米=0.0000007米=7×10﹣7.故答案为7×10﹣7.【点睛】本题考查用科学记数法表示较小的数,与较大数的科学记数法不同的是其所使用的是负指数幂,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.13.如果两条平行线被第三条直线所截,那么同位角相等【分析】由命题的题设和结论的定义进行解答.【详解】命题“两直线平行,同位角相等”改写为“如果两条平行线被第三条直线所截,那么同位角相等.”所以“如果两条平行线被第三条直线所截”是命题的题设部分,“那么同位角相等”是命题的结论部分.故答案为:如果两条平行线被第三条直线所截;那么同位角相等【点睛】考查了命题的题设和结论,先把命题写出“如果...那么…”的形式,找出题设和结论即可. 14.x﹣1【分析】先利用平方差公式对第一项分子进行分解因式,然后将除法转化为乘法,继而约分即可求解.【详解】解:原式=()()111 x x xx x+-⨯+=x﹣1故答案为:x﹣1.【点睛】本题考查了分式的混合运算,熟记法则和运算顺序是解决此题的关键.15.AD=AC【分析】由题意可知:AB=AB,∠1=∠2,证明△ABC≌△ABD,根据全等三角形的判定方法,再添加一个条件证得两个三角形全等,从而可得答案.【详解】解:∵∠1=∠2,AB=AB,∴若添加条件AD=AC,则△ABC≌△ABD(SAS),若添加条件∠D=∠C,则△ABC≌△ABD(AAS),若添加条件∠ABD=∠ABC,则△ABC≌△ABD(ASA),故答案为:AD=AC(答案不唯一).【点睛】本题考查的是全等三角形的判定方法,掌握全等三角形的判定方法是解题的关键.16.1【详解】解:去分母,得:m=x﹣1﹣3(x﹣2),由分式方程有增根,得到x﹣2=0,即x=2,把x=2代入整式方程可得:m=1,故答案为1.【点睛】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.17.15【分析】根据线段的垂直平分线的性质得到DB=DC,根据三角形的周长公式计算即可.【详解】解:∵DE是BC的垂直平分线,∴DB=DC,∴△ABD的周长=AB+AD+BD=AB+AD+DC=AB+AC=15,故答案为15.【点睛】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.18.0【分析】先根据绝对值、零指数幂、负整数指数幂分别求值,再将各项相加减即可.【详解】解:原式=1+1﹣2=0.故答案为0.【点睛】本题主要考查绝对值、零指数幂、负整数指数幂等考点的运算,属于基础题型.19.x=﹣1【分析】根据解分式方程的步骤求出方程的解,再进行检验即可得出答案【详解】解:22xx-=1﹣12x-去分母得:2x=x﹣2+1,移项合并得:x=﹣1,经检验x=﹣1是分式方程的解,∴方程的解为:x=﹣1.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.20.化简结果为,值为.【分析】先把括号里的式子通分相减,然后把除数的分子分解因式,再把除数分子分母颠倒后与前面的结果相乘,最后约成最简分式或整式;求值时把a值代入化简的式子算出结果.【详解】原式=212aa+-+×2(1)(1)aa a++-= 1(1)(1)a a a ++- =11a - ; 当a=3时,11a - = 131- =12. 考点:分式的混合计算及求值.21.答案见解析【分析】由BE =CF 可得BF =CE ,再结合AB =DC ,∠B =∠C 可证得△ABF ≌△DCE ,问题得证.【详解】解∵BE =CF ,∴BE+EF =CF+EF ,即BF =CE .在△ABF 和△DCE 中,AB DC B C BF CE =⎧⎪∠=∠⎨⎪=⎩∴△ABF ≌△DCE ,∴∠A =∠D .【点睛】本题考查了全等三角形的判定和性质,是中考中比较常见的知识点,一般难度不大,需熟练掌握全等三角形的判定和性质.22.证明见解析.【详解】试题分析:利用等腰梯形的性质,证明边相等,易得三角是全等三角形.试题解析:∵AB //DE ,∴∠B =∠DEC,又∵∠B =∠C, ∴∠C =∠DEC,∴DE=DC,又∵EC=ED,∴EC=ED=DC,∴△DEC 为等边三角形.23.(1)∠ECD=36°;(2)BC 长是5.【分析】(1)根据线段垂直平分线上的点到线段两端点的距离相等可得AE=CE ,然后根据等边对等角可得∠ECD=∠A ;(2)根据等腰三角形性质和三角形内角和定理求出∠B=∠ACB=72°,由外角和定理求出∠BEC =∠A+∠ECD =72°,继而得∠BEC=∠B ,推出BC=CE 即可.【详解】解:(1)∵DE 垂直平分AC ,∴CE =AE ,∴∠ECD =∠A =36°;(2)∵AB =AC ,∠A =36°,∴∠B =∠ACB =72°,∴∠BEC =∠A+∠ECD =72°,∴∠BEC =∠B ,∴BC =EC =5.【点睛】本题考查了线段垂直平分线定理,等腰三角形的性质,三角形的内角和定理的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等.24.A 车行驶的时间为3.5小时,B 车行驶的时间为2.5小时.【分析】设B 车行驶的时间为t 小时,则A 车行驶的时间为1.4t 小时,根据题意得:700t ﹣7001.4t=80,解分式方程即可,注意验根.【详解】解:设B 车行驶的时间为t 小时,则A 车行驶的时间为1.4t 小时, 根据题意得:700t ﹣7001.4t=80, 解得:t=2.5,经检验,t=2.5是原分式方程的解,且符合题意,∴1.4t=3.5.答:A 车行驶的时间为3.5小时,B 车行驶的时间为2.5小时.【点睛】本题考核知识点:列分式方程解应用题.解题关键点:根据题意找出数量关系,列出方程. 25.(1)见解析;(2)成立,理由见解析【分析】(1)根据AAS 证明△ADB ≌△CEA ,得到AE =BD ,AD =CE ,即可证明;(2)同理证明△ADB ≌△CEA ,得到AE =BD ,AD =CE ,即可证明;【详解】证明:(1)∵BD ⊥直线m ,CE ⊥直线m ,∴∠BDA =∠CEA =90°,∵∠BAC =90°,∴∠BAD +∠CAE =90°,∵∠BAD +∠ABD =90°,∴∠CAE =∠ABD ,∵在△ADB 和△CEA 中,ABD CAEBDA CEA AB AC∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADB ≌△CEA (AAS ),∴AE =BD ,AD =CE ,∴DE =AE +AD =BD +CE ;(2)∵∠BDA =∠BAC =α,∴∠DBA +∠BAD =∠BAD +∠CAE =180°﹣α,∴∠CAE =∠ABD ,∵在△ADB 和△CEA 中,ABD CAEBDA CEA AB AC∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADB ≌△CEA (AAS ),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE.【点睛】此题主要考查全等三角形的判定与性质,解题的关键是熟知全等三角形的判定定理.。

湘教版八年级上册数学期中考试试卷含答案

湘教版八年级上册数学期中考试试卷含答案

湘教版八年级上册数学期中考试试题一、单选题1.下列各式:2a b -,3x x -,5y π+,a b a b+-,1m (x -y)中,是分式的共()A .1个B .2个C .3个D .4个2.若分式293x x -+的值为0,则x 的值为()A .0B .3C .3-D .3或3-3.如果把分式2xx y-中的x 和y 都扩大5倍,那么分式的值是()A .扩大5倍B .扩大10倍C .不变D .缩小5倍4.分式﹣11x-可变形为()A .﹣11x -B .﹣11x+C .11x+D .11x -5.A ,B 两地相距48千米,一艘轮船从A 地顺流航行至B 地,又立即从B 地逆流返回A 地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x 千米/时,则可列方程()A .4848944x x +=+-B .4848944+=+-x x C .48x+4=9D .9696944+=+-x x 6.已知ABC ∆中,6AB =,4BC =,那么边AC 的长可能是下列哪个值()A .2B .5C .10D .117.如图,将三角形纸板的直角顶点放在直尺的一边上,∠1=20°,∠2=40°,则∠3等于()A .50°B .30°C .20°D .15°8.如图,在△ABC 中,AB=AD=DC ,∠B=70°,则∠C 的度数为()A .35°B .40°C .45°D .50°9.如图,已知在△ABC 中,CD 是AB 边上的高线,BE 平分∠ABC ,交CD 于点E ,BC =5,DE =2,则△BCE 的面积等于()A .10B .7C .5D .410.如图,点D ,E 分别在线段AB ,AC 上,CD 与BE 相交于O 点,已知AB=AC ,现添加以下的哪个条件仍不能判定△ABE ≌△ACD()A .∠B=∠CB .AD=AEC .BD=CED .BE=CD二、填空题11.用科学记数法表示:0.00002015=_________.12.计算:211x xx x ---=_____.13.若分式方程144-=--x mx x 无解,则m =__________.14.有下面四根长度为3厘米,4厘米,5厘米,7厘米的木棒,选取其中3根组成三角形,则可以组成三角形共有___________个.15.已知x y xy +=,则代数式()()1111x y x y+---的值为___________.16.如图,点D 在△ABC 边BC 的延长线上,CE 平分∠ACD ,∠A =80°,∠B =40°,则∠ACE 的大小是_________度.17.如图,在ABC ∆中,D 、E 分别是AB ,AC 上面的点,若已知12∠=∠,BE CD =,9AB =,2AE =,则CE =_________.18.如图,△ABC 中,AB=AC ,AB 的垂直平分线交边AB 于D 点,交边AC 于E 点,若△ABC 与△EBC 的周长分别是40cm ,24cm ,则AB=_______cm .三、解答题19.计算:230120.1252004|1|2-⎛⎫--⨯++- ⎪⎝⎭20.先化简,再求值:222111a a a a -+⎛⎫÷- ⎪⎝⎭,其中,2a =.21.解方程:(1)143x x =+;(2)2311x x x+=--.22.如图,点E ,F 在BC 上,BE =CF ,∠A =∠D ,∠B =∠C ,AF 与DE 交于点O .(1)求证:AB =DC ;(2)试判断△OEF 的形状,并说明理由.23.如图,点B 、C 、E 、F 在同一直线上,BC=EF ,AC ⊥BC 于点C ,DF ⊥EF 于点F ,AC=DF .求证:(1)ABC DEF △≌△;(2)AB DE ∥.24.如图,在等边三角形ABC 中,点D ,E 分别在边BC ,AC 上,且DE ∥AB ,过点E 作EF ⊥DE ,交BC 的延长线于点F .(1)求∠F 的度数;(2)若CD=2,求DF 的长.25.某火车站北广场将于2018年底投入使用,计划在广场内种植A 、B 两种花木共6600棵,若A 花木数量是B 花木数量的2倍少600棵.(1)A 、B 两种花木的数量分别是多少棵?(2)如果园林处安排26人同时种植这两种花木,每人每天能种植A 花木60棵或B 花木40棵,应分别安排多少人种植A 花木和B 花木,才能确保同时完成各自的任务?26.如图,已知90ABC ∠=︒,D 是直线AB 上的点,AD BC =.(1)如图1,过点A 作AF AB ⊥,并截取AF BD =,连接DC ,DF ,CF ,判断CDF ∆的形状并证明;(2)如图2,若E 是直线BC 上一点,且CE BD =,直线AE ,CD 相交于点P ,APD ∠的度数是一个固定的值吗?若是,请求出它的度数;若不是,请说明理由.[提示:联想第(1)问的证明过程]参考答案1.C 2.B 3.C 4.D 5.A 6.B 7.C 8.A 9.C 10.D11.2.015×10﹣512.x 13.314.315.016.6017.718.1619.5.【分析】由乘方、零指数幂、绝对值、以及有理数乘法的运算法则进行计算,即可得到答案.【详解】解:230120.1252004|1|2-⎛⎫--⨯++- ⎪⎝⎭=480.12511-⨯++=4111-++=5.【点睛】本题考查了乘方、零指数幂、绝对值、以及有理数乘法的运算法则,解题的关键是熟练掌握运算法则进行解题.20.化简结果为1a a --,值为12-【解析】【分析】先算减法,再计算除法,然后把a 的值代入化简后的式子计算即可.【详解】解:222111a a a a -+⎛⎫÷- ⎪⎝⎭=22211a a a a a-+-÷=22(1)111a a a a a a a a--⋅==---当2a =时,原式=112a a --=-【点睛】本题考查了分式的化简求值是基本题型,熟练掌握分式的混合运算法则是解题的关键.21.(1)1x =;(2)12x =.【解析】【分析】(1)先去分母,然后移项合并,再进行检验,即可得到答案;(2)先把分式方程进行整理,然后去分母,移项合并,再进行检验,即可得到答案.【详解】解:(1)143x x =+,∴34x x +=,∴1x =;检验:当1x =时,30x +≠;∴1x =是原分式方程的解;(2)2311x x x+=--,∴2311x x x -=--,∴231x x -=-,∴233x x -=-,∴12x =;检验:当12x =时,10x -≠,∴12x =是原分式方程的解;【点睛】本题考查了解分式方程,解题的关键是熟练掌握解分式方程的步骤,注意需要检验.22.(1)证明见解析(2)等腰三角形,理由见解析【解析】【详解】证明:(1)∵BE =CF ,∴BE +EF =CF +EF ,即BF =CE .又∵∠A =∠D ,∠B =∠C ,∴△ABF ≌△DCE (AAS ),∴AB =DC .(2)△OEF 为等腰三角形理由如下:∵△ABF ≌△DCE ,∴∠AFB=∠DEC .∴OE=OF .∴△OEF 为等腰三角形.23.(1)见解析;(2)见解析【解析】【分析】(1)根据垂直得出90ACB DFE ∠=∠=︒,结合BC EF =,AC DF =得出三角形全等;(2)根据三角形全等得出B DEF ∠=∠,根据同位角相等,两直线平行得到答案.【详解】解:(1)∵AC BC DF EF ⊥⊥,,90ACB DFE ∴∠=∠=︒,又∵BC EF =,AC DF =,∴ABC DEF △≌△(2)∵ABC DEF △≌△,∴B DEF ∠=∠,∴AB DE ∥(同位角相等,两直线平行)【点睛】本题考查三角形全等的性质与应用,平行线的判定,熟练掌握以上定理是解答本题的关键.24.(1)30°;(2)4.【解析】【分析】(1)根据平行线的性质可得∠EDC=∠B=60°,根据三角形内角和定理即可求解;(2)易证△EDC 是等边三角形,再根据直角三角形的性质即可求解.【详解】(1)∵△ABC是等边三角形,∴∠B=60°,∵DE∥AB,∴∠EDC=∠B=60°,∵EF⊥DE,∴∠DEF=90°,∴∠F=90°﹣∠EDC=30°;(2)∵∠ACB=60°,∠EDC=60°,∴△EDC是等边三角形.∴ED=DC=2,∵∠DEF=90°,∠F=30°,∴DF=2DE=4.【点睛】本题主要考查了运用三角形的内角和算出角度,并能判定等边三角形,会运用含30°角的直角三角形的性质.25.(1)A4200棵,B2400棵;(2)A14人,B12人.【解析】【分析】(1)首先设B花木数量为x棵,则A花木数量是(2x-600)棵,由题意得等量关系:种植A,B两种花木共6600棵,根据等量关系列出方程,再解即可;(2)首先设安排a人种植A花木,由题意得等量关系:a人种植A花木所用时间=(26-a)人种植B花木所用时间,根据等量关系列出方程,再解即可.【详解】(1)设B花木数量为x棵,则A花木数量是(2x-600)棵,由题意得:x+2x-600=6600,解得:x=2400,2x-600=4200,答:B花木数量为2400棵,则A花木数量是4200棵;(2)设安排a人种植A花木,由题意得:420024006040(26)a a =-,解得:a=14,经检验:a=14是原分式方程的解,26-a=26-14=12,答:安排14人种植A 花木,12人种植B 花木.【点睛】此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.注意不要忘记检验.26.(1)△CDF 是等腰直角三角形,见解析;(2)是,45°【解析】【分析】(1)利用SAS 证明△AFD 和△BDC 全等,再利用全等三角形的性质得出FD=DC ,即可判断三角形的形状;(2)作AF ⊥AB 于A ,使AF=BD ,连结DF ,CF ,利用SAS 证明△AFD 和△BDC 全等,再利用全等三角形的性质得出FD=DC ,∠FDC=90°,即可得出∠FCD=∠APD=45°.【详解】解:(1)△CDF 是等腰直角三角形∵AF ⊥AD ,∠ABC=90°,∴∠FAD=∠DBC ,在△FAD 与△DBC 中,AD BC FAD DBC AF BD =⎧⎪∠=∠⎨⎪=⎩,∴△FAD ≌△DBC (SAS ),∴FD=DC ,∴△CDF 是等腰三角形,∵△FAD ≌△DBC ,∴∠FDA=∠DCB ,∵∠BDC+∠DCB=90°,11∴∠BDC+∠FDA=90°,∴△CDF 是等腰直角三角形;(2)∠APD 的度数是一个固定值,等于45°作AF ⊥AB 于A ,使AF=BD ,连结DF ,CF,如图,∵AF ⊥AD ,∠ABC=90°,∴∠FAD=∠DBC ,在△FAD 与△DBC 中,AD BCFAD DBC AF BD=⎧⎪∠=∠⎨⎪=⎩,∴△FAD ≌△DBC (SAS ),∴FD=DC ,∴△CDF 是等腰三角形,∵△FAD ≌△DBC ,∴∠FDA=∠DCB ,∵∠BDC+∠DCB=90°,∴∠BDC+∠FDA=90°,∴△CDF 是等腰直角三角形,∴∠FCD=45°,∵AF ∥CE ,且AF=CE ,∴四边形AFCE 是平行四边形,∴AE ∥CF ,∴∠APD=∠FCD=45°.。

湘教版八年级数学上册期中试卷含答案

湘教版八年级数学上册期中试卷含答案

湘教版八年级数学上册期中试卷含答案 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知31416181279a b c ===,,,则a b c 、、的大小关系是( )A .a b c >>B .a c b >>C .a b c <<D .b c a >>2.若关于x 的不等式组0721x m x -<⎧⎨-≤⎩的整数解共有4个,则m 的取值范围是( )A .6<m <7B .6≤m <7C .6≤m ≤7D .6<m ≤73.等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为( )A .12B .15C .12或15D .184.如图,在四边形ABCD 中,∠A=140°,∠D=90°,OB 平分∠ABC ,OC 平分∠BCD ,则∠BOC=( )A .105°B .115°C .125°D .135°5.若关于x 的一元二次方程(k -1)x 2+4x +1=0有两个不相等的实数根,则k 的取值范围是( )A .k<5B .k<5,且k ≠1C .k ≤5,且k ≠1D .k>56.如图,直线y=ax+b 过点A (0,2)和点B (﹣3,0),则方程ax+b=0的解是( )A .x=2B .x=0C .x=﹣1D .x=﹣37.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A.30°B.25°C.20°D.15°8.如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为()A.90°B.60°C.45°D.30°9.如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P 3,P4四个点中找出符合条件的点P,则点P有()A.1个B.2个C.3个D.4个10.若b>0,则一次函数y=﹣x+b的图象大致是()A.B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)1.如图,数轴上点A表示的数为a,化简:a244a a+-+=________.2.若(x+p)与(x+5)的乘积中不含x的一次项,则p=__________.3.若关于x 的分式方程2222x m m x x+=--有增根,则m 的值为_______. 4.如图,点A 在双曲线1y=x 上,点B 在双曲线3y=x 上,且AB ∥x 轴,C 、D 在x 轴上,若四边形ABCD 为矩形,则它的面积为________.5.如图,四边形ABCD 中,点M ,N 分别在AB ,BC 上, 将BMN △沿MN 翻折,得△FMN ,若MF ∥AD ,FN ∥DC ,则∠B =________°.6.如图,在平面直角坐标系中,将矩形AOCD 沿直线AE 折叠(点E 在边DC 上),折叠后顶点D 恰好落在边OC 上的点F 处.若点D 的坐标为(10,8),则点E 的坐标为 .三、解答题(本大题共6小题,共72分)1.解下列不等式,并把解集在数轴上表示出来(1)2562x x -≥- (2)532122x x ++-<2.先化简,再求值:2222222a ab b a ab a b a a b-+-÷--+,其中a ,b 满足2(2)10a b -+=.3.已知5a+2的立方根是3,3a+b-1的算术平方根是4,c是13的整数部分,求3a-b+c的平方根.4.如图,OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x 轴的正半轴上,点C在y轴的正半轴上,OA=10,OC=8.在OC边上取一点D,将纸片沿AD翻折,使点O落在BC边上的点E处,求D,E两点的坐标.5.如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于F(1)证明:PC=PE;(2)求∠CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.6.因魔幻等与众不同的城市特质,以及抖音等新媒体的传播,重庆已成为国内外游客最喜欢的旅游目的地城市之一.著名“网红打卡地”磁器口在2018年五一长假期间,接待游客达20万人次,预计在2020年五一长假期间,接待游客将达28.8万人次.在磁器口老街,美食无数,一家特色小面店希望在五一长假期间获得好的收益,经测算知,该小面成本价为每碗6元,借鉴以往经验:若每碗卖25元,平均每天将销售300碗,若价格每降低1元,则平均每天多销售30碗.(1)求出2018至2020年五一长假期间游客人次的年平均增长率;(2)为了更好地维护重庆城市形象,店家规定每碗售价不得超过20元,则当每碗售价定为多少元时,店家才能实现每天利润6300元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、D3、B4、B5、B6、D7、B8、C9、C10、C二、填空题(本大题共6小题,每小题3分,共18分)1、2.2、-53、14、25、956、(10,3)三、解答题(本大题共6小题,共72分)1、(1)43x≤-,数轴表示见解析;(2)12x>,数轴表示见解析.2、1a b-+,-13、3a-b+c的平方根是±4.4、E(4,8) D(0,5)5、(1)略(2)90°(3)AP=CE6、(1)年平均增长率为20%;(2)每碗售价定为20元时,每天利润为6300元.。

湘教版八年级上册数学期中考试试卷附答案

湘教版八年级上册数学期中考试试卷附答案

湘教版八年级上册数学期中考试试题一、单选题1.计算:03-=()A.-3B.-1C.1D.32.用科学记数法表示0.0000000314为()A.90.31410-⨯B.93.1410-⨯C.83.1410-⨯D.73.1410-⨯3.若分式293x x --的值为零,则x 的值为()A.-3B.-1C.3D.3±4.下列运算正确的是()A.55835a b a b -=B.1262t t t ÷=C.()222a b a b +=+D.()428216t t -=5.已知命题“能被2整除的数是偶数”,则其逆命题为()A.能被2整除的数不是偶数B.不能被2整除的数是偶数C.偶数是能被2整除的数D.偶数不是能被2整除的数6.化简2221211x x x x x x ---++g 的结果是()A.1xB.x C.11x x +-D.11x x -+7.甲车行驶30千米与乙车行驶40千米所用时间相同,已知乙车每小时比甲车多行驶15千米,设甲车的速度为x 千米/小时,依据题意列方程正确的是()A.304015x x =-B.304015x x=-C.304015x x =+D.304015x x=+8.如图,AE、AD 分别是ABC 的高和角平分线,且28B ∠=︒,72C ∠=︒,则DAE ∠的度数为()A.18°B.22°C.30°D.38°9.已知三角形的两边长分别为4cm 和9cm,则下列长度的线段能作为第三边的是()A.13cm B.6cm C.5cm D.4m10.三角形一个外角小于与它相邻的内角,这个三角形()A.是钝角三角形B.是锐角三角形C.是直角三角形D.属于哪一类不能确定.二、填空题11.计算:()()2112x x ---=______.12.如图,在长方形ABCD 中,对角线AC,BD 交于点O,若120AOD ∠=︒,2AB =,则CO 的长为________.13.如图,AC=BD,AC,BD 交于点O,要使△ABC≌△DCB,只需添加一个条件,这个条件可以是______.14.计算:2222342•()()a b a b a ----÷=______________.15.如图,若△OAD≌△OBC,且∠O=65°,∠C=20°,则∠OAD=__度.16.已知23,25xy ==,则212x y --的值为____________.17.如图所示,每个小正方形的边长为1,A、B、C 是小正方形的顶点,则∠ABC 的度数为_____.18.如图,ACD ∠是ABC 的外角,ABC ∠的平分线与ACD ∠的平分线交于点1A ,1A BC ∠的平分线与1A CD ∠的平分线交于点2A ,…,1n A BC -∠的平分线与1n A CD -∠的平分线交于点n A ,设=A θ∠,则2=A ∠___________,=n A ∠___________.19.已知D、E 分别是△ABC 的边BC 和AC 的中点,若△ABC 的面积=36cm ,则△DEC 的面积为__________.三、解答题20.解方程:23193xx x +=--21.计算:21211x xx x x-+-+-22.如图,在四边形ABCD中,AB=CB,AD=CD.求证∠C=∠A.23.化简,再求值:22112x xx x x--÷+,其中x=224.如图,在四边形ABCD中,//AD BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE 交BC的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD.25.已知:如图,∠ABC=50°,∠ACB=80°,点D、B、C、E四点共线,DB=AB,CE=CA,求∠D、∠E、∠DAE的度数.26.如图,点D,E在线段BC上,BD=CE,∠ADE=∠AED,证明△ABC是等腰三角形.27.如图1,点P、Q 分别是等边△ABC 边AB、BC 上的动点(端点除外),点P 从顶点A、点Q 从顶点B 同时出发,且它们的运动速度相同,连接AQ、CP 交于点M.(1)求证:ABQ CAP ≌△△:(2)当点P、Q 分别在AB、BC 边上运动时,∠QMC 的大小变化吗?若变化,请说明理由:若不变,求出它的度数.(3)如图2,若点P、Q 在运动到终点后继续在射线AB、BC 上运动,直线AQ、CP 相交于点M,则∠QMC 的大小变化吗?若变化,请说明理由:若不变,则求出它的度数.参考答案1.B 【解析】【分析】依题意,依据零指数幂定义及性质进行求解即可;【详解】由题知,零指数幂为:01a =(0)a ≠;可得:031=,∴03(1)1-=-=-;故选:B;【点睛】本题考查零指数幂的定义和性质,关键在负号“-”的理解;2.C 【解析】【分析】依题意,依据科学记数法的基本形式转换即可;【详解】由题知,科学记数法的基本形式为:10n a ⨯(110,)a n ≤<为正整数或负整数;∴80.0000000314 3.1410-=⨯;故选:C 【点睛】本题考查科学记数法,关键在熟练科学记数法的基本形式及要求;3.A 【解析】【分析】根据分式的值为零的条件即可求出答案.【详解】解:由题意可知:29030x x ⎧-=⎨-≠⎩解得:x=-3,故选:A.【点睛】本题考查分式的值,解题的关键是熟练运用分式的值为零的条件.4.D 【解析】【分析】直接利用合并同类项、同底数幂的乘法、幂的乘方、完全平方公式进行进行判断即可;【详解】A、555835a b a b a b -=,故A 错误;B、1266t t t ÷=,故B 错误;C、()2222a b a ab b +=++,故C 错误;D、()428216t t -=,故D 正确;故选:D.【点睛】本题考查了合并同类项、同底数幂的乘法、幂的乘方、完全平方公式,正确掌握计算方法是解题的关键.5.C 【解析】【分析】依题意,写出原命题中的条件和结论,然后按照逆命题的要求,交换结论和条件即可;【详解】由题知,原命题为:能被2整除的数是偶数;原命题的条件为:一个数能被2整数;原命题的结论为:这个数则为偶数;逆命题:一个数是偶数,则这个数能被2整除;故选:C 【点睛】本题考查命题及其四种命题的转换,关键在写出原命题的条件和结论;6.B 【解析】【分析】先把分式的分子和分母因式分解,再约分即可求解.【详解】原式()()()()211111x x x x x x --=++-g x=故选:B.【点睛】本题考查分式的乘法,解题的关键是熟练掌握分子和分母的因式分解,利用到的知识点是分式的基本性质和约分.7.C 【解析】【分析】题中等量关系:甲车行驶30千米与乙车行驶40千米所用时间相同,据此列出关系式.【详解】∵甲车的速度为x 千米/小时,则乙车的速度为(x+15)千米/小时∴甲车行驶30千米的时间为30x ,乙车行驶40千米的时间为4015x +,∴根据甲车行驶30千米与乙车行驶40千米所用时间相同得304015x x =+.故选C.8.B 【解析】【分析】根据角平分线性质和三角形内角和定理求解即可;【详解】∵AE 是ABC 的高,∴90AEB AEC ∠=∠=︒,又∵AD 是ABC 的角平分线,∴BAD CAD ∠=∠,∵28B ∠=︒,72C ∠=︒,∴40BAD CAD ∠=∠=︒,∴180407268ADC ∠=︒-︒-︒=︒,∴906822DAE ∠=︒-︒=︒;故答案选B.【点睛】本题主要考查了角平分线的性质和三角形内角和定义,准确分析计算是解题的关键.9.B 【解析】【分析】根据三角形的三边关系,两边之和大于第三边,两边之差小于第三边可求得第三边取值范围.【详解】设第三边长度为a,根据三角形三边关系9494a -<<+解得513a <<.只有B 符合题意故选B.【点睛】本题考查三角形三边关系,能根据关系求得第三边的取值范围是解决此题的关键.10.A 【解析】【分析】由三角形的外角与它相邻的内角互为邻补角,且根据此外角小于与它相邻的内角,可得此外角为锐角,与它相邻的角为钝角,可得这个三角形为钝角三角形.【详解】∵三角形的外角与它相邻的内角互补,且此外角小于与它相邻的内角,∴此外角为锐角,与它相邻的角为钝角,则这个三角形为钝角三角形.故选:A.【点睛】此题考查了三角形的外角性质,其中得出三角形的外角与它相邻的内角互补是解本题的关键.11.214x -【解析】【分析】原式利用平方差公式计算即可得到答案;【详解】原式=()()2121214x x x -+--=-,故答案为:214x -.【点睛】本题考查了平方差公式,熟练掌握平方差公式是解题的关键;12.2【解析】【分析】根据题意120AOD ∠= ,得到60AOB ∠= ,再根据OA OB =可以得到AOB 为等边三角形,再根据矩形的对角线互相平分,得到OA OC AB ==,即可得到答案.【详解】解:∵120AOD ∠= ∴60AOB ∠=又∵长方形ABCD 中,对角线AC,BD 交于点O,∴O 为AC,BD 的中点,且AC=BD,∴OA OB=∴AOB 为等边三角形∴2OA AB ==∵四边形ABCD 是长方形∴AC 、BD 相等且互相平分∴2OC OA AB ===故答案为:2.【点睛】本题主要考查矩形的性质和等边三角形的判定,解题的关键在于判断AOB 为等边三角形.13.AB=DC 【解析】根据全等三角形的判定,可以用SSS解题.【详解】解:∵AC=BD,BC=BC当添加条件为AB=DC时,即可判定△ABC≌△DCB,故答案为AB=DC(答案不唯一)【点睛】本题考查了全等三角形的判定,属于简答题,掌握证明全等的方法是解题关键.14.8b【解析】【分析】幂的乘方,法则为:底数不变,指数相乘;同底数幂相乘,法则为:底数不变,指数相加,积的乘方等于先把每个因数乘方,再把所得的幂相乘,此题先算乘方,再算乘除即可.【详解】原式=a−2b2⋅a−6b6÷a−8=a−8b8÷a−8=b8,故答案为b8【点睛】本题考查整式的混合运算,负整数指数幂,同底数幂的乘法,幂的乘方与积的乘方,解题关键是熟练掌握幂的有关运算法则.15.95【解析】【详解】根据三角形内角和定理可得:∠OBC=180°-20°-65°=95°,根据三角形全等的性质可得:∠OAD=∠OBC=95°.故答案为:9516.9 10【解析】根据同底数幂的除法底数不变指数相减,幂的乘方,可得答案.【详解】解:212x y --=22x ÷2y÷2=(2x )2÷2y ÷2=9÷5÷2=910故答案为910.【点睛】本题考查同底数幂的除法、幂的乘方,熟记法则并根据法则计算是解题关键.17.45︒【解析】【分析】如图,连接AC,根据勾股定理即可得到AB,BC,AC 的长度,勾股定理的逆定理判断ABC 的形状,进而可得出∠ABC 的度数.【详解】解:如图,连接AC,由勾股定理得:AC BC ==,AB =∵222+=,∴222AC BC AB +=,∴△ABC 是等腰直角三角形,∴∠ABC=45°,故答案为:45°.【点睛】本题考查了勾股定理,勾股定理的逆定理,等腰三角形的判定与性质.解题的关键在于判断ABC 的形状.18.4θ2nθ【解析】【分析】根据三角形的外角性质可得∠ACD=∠A+∠ABC,∠A 1CD=∠A 1+∠A 1BC,根据角平分线的定义可得∠A 1BC=12∠ABC,∠A 1CD=12∠ACD,整理得到∠A 1=12∠A,同理可得∠A 2=12∠A 1,从而判断出后一个角是前一个角的12,然后表示出∠A n 即可得答案.【详解】∵ACD ∠是ABC 的外角,∠A 1CD 是△A 1BC 的外角,∴∠ACD=∠A+∠ABC,∠A 1CD=∠A 1+∠A 1BC,∵ABC ∠的平分线与ACD ∠的平分线交于点1A ,∴∠A 1BC=12∠ABC,∠A 1CD=12∠ACD,∴∠A 1=12∠A,同理可得∠A 2=12∠A 1=14∠A,∵∠A=θ,∴∠A 2=4θ,同理:∠A 3=12∠A 2=382θθ=,∠A 4=12∠A 3=4162θθ=……∴∠A n =2nθ.故答案为:4θ,2nθ【点睛】本题考查了三角形的外角性质及角平分线的定义,三角形的一个外角等于与它不相邻的两个内角的和;熟记性质并准确识图,求出后一个角是前一个角的12是解题的关键.19.9cm .【解析】【详解】试题分析:∵D 是△ABC 的边BC 的中点,∴S △ACD =36÷2=18(cm 2);又∵E 是AC 的中点,∴S △DEC =18÷2=9(cm 2).故答案为9cm .考点:三角形的面积.20.4x =-【解析】【分析】根据解分式方程的基本步骤解方程即可.【详解】解:23193xx x +=--方程两边同时乘(3)(3)x x -+可得:3+(3)x x +=(3)(3)x x -+,去括号可得:22339x x x ++=-,移项合并同类项可得:312x =-,解得:4x =-,将4x =-代入(3)(3)x x -+可得:(3)(3)x x -+=7≠0,∴原方程的解为:4x =-【点睛】本题主要考查分式方程,注意解方程最后要检验,防止无解的情况出现.21.-1【解析】【分析】根据分式的性质计算即可;【详解】原式()()()221111x x x x x--=---,()2211x x xx --+=-,()()2211x x --=-,1=-.【点睛】本题主要考查了分式的加减运算,准确计算是解题的关键.22.见解析【解析】【分析】先连接BD,由AB=CB、AD=CD、BD=BD 可证△ABD≌△CBD,即可证得结论.【详解】证明:如图:连接BD,∵在△ABD 和△CBD 中,AB BC AD CD BD BD =⎧⎪=⎨⎪=⎩∴△ABD≌△CBD,∴∠C=∠A.【点睛】本题主要考查了全等三角形的判定与性质,正确作出辅助线、灵活运用SSS 证明三角形全等是解答本题的关键.23.12x x ++;34.【解析】【分析】先化除法为乘法进行化简,然后代入求值.【详解】解:原式=()(1)(1)21x x xx x x +-⋅+-=12x x ++,将x=2代入,原式=213224+=+.【点睛】本题考查了分式的化简求值,不应考虑把x 的值直接代入,通常做法是先把分式化简,然后再代入求值.24.(1)证明见解析;(2)证明见解析.【解析】【分析】(1)先根据平行线的性质可得,F DAE ECF D ∠=∠∠=∠,再根据线段中点的定义可得CE DE =,然后根据三角形全等的判定定理与性质即可得证;(2)先根据三角形全等的性质可得FE AE =,再根据线段垂直平分线的判定与性质可得AB FB =,然后根据线段的和差、等量代换即可得证.【详解】(1)//AD BC ,,F DAE ECF D ∴∠=∠∠=∠,点E 是CD 的中点,CE DE ∴=,在CEF △和DEA △中,F DAEECF D CE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩,()CEF DEA AAS ∴≅ ,FC AD ∴=;(2)由(1)已证:CEF DEA ≅ ,FE AE ∴=,又BE AE⊥,BE∴是线段AF的垂直平分线,AB FB BC FC∴==+,由(1)可知,FC AD=,AB BC AD∴=+.【点睛】本题考查了平行线的性质、三角形全等的判定定理与性质、线段垂直平分线的判定与性质等知识点,熟练掌握三角形全等的判定定理与性质是解题关键.25.∠D=25°,∠E=40°,∠DAE=115°.【解析】【详解】试题分析:由∠ABC=50°,DB=BA,据三角形外角性质可得∠D=∠DAB=12∠ABC=25°;同理可得∠E=40°;由三角形内角和定理可得∠BAC=50°,即可得∠DAE的度数.试题解析:解:∵∠ABC=50°,DB=BA,∴∠D=∠DAB=12∠ABC=25°;同理可得∠E=∠CAE=12∠ACB=40°;∵在△ABC中,∠ABC=50°,∠ACB=80°,∴∠BAC=50°,∴∠DAE=∠DAB+∠BAC+∠CAE=115°.考点:1.三角形内角和定理;2.三角形的外角性质.26.证明见试题解析.【解析】【详解】试题分析:先证△ABD≌△AEC,进而证出结论.试题解析:证明:∵∠ADE=∠AED,∴AD=AE,∠BDA=∠CEA,∵BD=CE,∴△ABD≌△AEC,∴AB=AC,∴△ABC是等腰三角形.考点:1.等腰三角形的判定;2.全等三角形的性质和判定.27.(1)证明见解析(2)∠QMC的大小不变,∠QMC=60°(3)∠QMC的大小不变,∠QMC=120°【解析】【分析】(1)根据等边三角形的性质,利用SAS 证明△ABQ≌△CAP;(2)由△ABQ≌△CAP 根据全等三角形的性质可得∠BAQ=∠ACP,从而得到∠QMC=60°;(3)由△ABQ≌△CAP 根据全等三角形的性质可得∠BAQ=∠ACP,从而得到∠QMC=120°.(1)证明:∵△ABC 是等边三角形∴∠ABQ=∠CAP=60°,AB=CA,又∵点P、Q 运动速度相同,∴AP=BQ,在△ABQ 与△CAP 中,∵AB CA ABQ CAP BQ AP =⎧⎪∠=∠⎨⎪=⎩,∴ABQ CAP ≌△△(SAS);(2)解:点P、Q 分别在AB、BC 边上运动时,∠QMC 的大小不变,∠QMC=60°.理由:∵ABQ CAP ≌△△,∴∠BAQ=∠ACP,∵∠QMC=∠ACP+∠MAC,∴∠QMC=∠BAQ+∠MAC=∠BAC=60°(3)解:点P、Q 在运动到终点后继续在射线AB、BC 上运动时,∠QMC 的大小不变.理由:同理可得ABQ CAP ≌△△,∴∠BAQ=∠ACP,∵∠QMC=∠BAQ+∠APM,∴∠QMC=∠ACP+∠APM=180°-∠PAC=180°-60°=120°.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

湘教版数学八年级上册期中测试A 卷
梅仙中学 姓名 班级
(4×9=36分)
………( ) 第一象限 B. 第二象限 C. 第三象限 D.第四象限 9,422==b a ,且0>ab ,则b a -的值为 ( )
A .5±
B . 1±
C . 5
D . 1-
下列说法不正确的是 ( )
A .
5
1251±的平方根是; B .3273
-=-
C .()2
1.0-的平方根是±0.1 ; D .
的算术平方根是819-
.将点A(5,-2)按如下方式进行平移:先向上平移2个单位,再向左平移4个单位,…………………………………………………………( ) (7,-6) B. (9,0) C. (1,-4) D.(1,0) 函数x
x y -=
1 自变量x的取值范围是………………….…………….….…( )
全体实数 B. x>0 C. x≥0且x≠1 D.x>1 若m+n <0,mn >0。

则一次函数y=mx+n 的图像不经过…………….….…( ) 第一象限 B. 第二象限 C. 第三象限 D.第四象限 一次函数y=mx+n 与y=mnx (mn ≠0),在同一平面直角坐标系的图像是……( ) A. C. D.
8.某游泳池分为深水区和浅水区,每次消毒后要重新注满水,假定进水管的速度是均匀的,那么游泳池内水的高度h随时间t变化的图像是………………..………….….…( )
9.下列各曲线中,不能表示y是x的函数的是
…………….…………….…( )
二、填空题(4×6=24分)
10. 16的算术平方根是 ;=-32 , 25-11. 12. 函数y=-2x+3的图像是由直线y=-2x向 平移 个单位得到的。

13. 已知031a 2=++-b , 则b a += .
14. 点(
21,y1 ),(2,y2 )是一次函数y=-2
1x-3图像上的两点, 则y1 y2 。

(填“>”、“=”或“<”) 15. 一次函数y=-
2
1
x+3的图像与坐标轴围成三角形的面积是 。

三、解答题(6+8+10=24分)
16. 用图像法解二元一次方程组
{
152=-=+y x y x
17.已知函数y=(8—2m)x+m -2
(1)若函数图象经过原点,求m的值
(2)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围.
(3)若这个函数是一次函数,且图象经过一、二、三象限, 求m的取值范围.
18.正比例函数y=2x的图像与一次函数y=-3x+k的图像交于点P(1,m),
求:(1)k的值。

(2)两条直线与x轴围成的三角形的面积。

四、综合运用(6+10=16分)
19.某汽车加油站储油45000升,每天给汽车加油1500升,那么储油量y(升)与加油x(天)之间的关系式是什么?并指出自变量的取值范围。

20. 有一天,龟、兔进行了600m赛跑。

如图
表示龟兔赛跑的路程S(m)与时间t(min)的关系,
根据图像回答以下问题:
(1)赛跑中,兔子共睡了多长时间?
( 2 ) 写出乌龟跑的路程S(m)与
时间t(min)的函数关系式。

(3)赛跑开始后,乌龟在第几分钟
时从睡觉的兔子旁经过?
湘教版数学八年级上册期中测试B 卷
梅仙中学 姓名 班级
一.选择题(每题3分,共30分)
1. 在3125,0,5
2.3,3
,311,
414.1,2,25 π-中,无理数有 ( ) A .1个 B .2个 C .3个 D .4个 2. 下列说法不正确的是 ( )
A .5
1
251的平方根是; B .3273-=- C .()21.0-的平方根是±0.1 ; D . 的算术平方根是819
3. 一个正数的平方根为m -2与12+m ,则m 的值为 ( )
A .
31 B . 3
1
或3- C . 3- D . 3 4. 若9,422==b a ,且0 ab ,则b a -的值为 ( )
A .5±
B . 1±
C . 5
D . 1-
5. 已知点P(3,-2)与点Q 关于y 轴反射,则点Q 的坐标为( )
A.(-3,2)
B.(-3,-2)
C.(3,2)
D.(3,-2)
李老师骑自行车上班,最初以某一速度匀速行进,•中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,如果准时到校.在课堂上,李老师请学生画出他行进的路程y•(千米)与行进时间t (小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是( )
.点A (2,m)和点B (-4,n)都在直线y =32
1
+-
x 上,则m 与n 的大小关系应是( )
x
第8题图
A .m > n B.m < n C.m = n D.条件不够,无法确定 8.已知一次函数y=kx+b(k ≠0)的草图如右所示,则下列结论正确的是( )
A .k>0,b>0
B .k>0,b<0
C .k<0,b>0
D .k<0,b<0
二、填空题(每题3分,共24分)
9. 16的算术平方根是 ;25-的相反数 ;=-32 . 10. 比较大小,填>或<号:
32;
11. 函数x
x y -=
2 自变量x的取值范围是 .
12.已知y与x-3成正比例,当x=4时,y=—3。

y与x之间的
函数关系式为 。

13.点(21,y1 ),(2,y2 )是一次函数y=2
1
x-3图像上的两点,
则y1 y2 。

(填“>”、“=”或“<”)
14. 已知函数y=1-3x ,则函数y 随x 的增大而 . 15. 一次函数y= -2x+4的图象与x 轴交点坐标是 .
16、设a 是倒数等于本身的数,b 是最大的负整数,c 是平方根等于本身的数,则
=++c b a .
三. 计算(每题6分,共36分) 17.(1). 44.18
1
25+- (2).已知010222=-++b b a ,求b a +.
18. 正比例函数y=2x的图像与一次函数y=-3x+k的图像交于点P(1,m),
求:(1)k的值。

(2)两条直线与y 轴围成的三角形的面积。

19. 求下列各式中的x .
(1) 02783=+x (2)
()333
1
2=-x
(1)观察表中数据,你能求出y 与x 的函数表达式吗?,若能并确定自变量的取值范围。

(2)这根蜡烛原来多长?,全部点燃需多少分钟?
四.综合题
21. (10分) 王勤准备租用一辆出租车搞个体营运,现有甲乙两家出租车公司可以和他签订
合同,设汽车每月行驶x 千米,应付给甲公司的月租费1y 元,应付给乙公司的月租费是2y 元, 1y 、2y 与x 之间的函数关系的图象如图所示,请根据图象回答下列问题: (1)分别求出1y 、2y 与x 之间的函数关系式
(2)若王勤估计每月行驶的路程为2300千米/时,租哪家合算?
22. 已知羊角塘服装厂有A 种布料70m ,B 种布料52m ,现计划用这两种布料生产甲、乙两种型号的时装共80套,已知做一套甲型号的时装需用A 种布料0.6m ,B 种布料0.9m ,可获利润45元;做一套乙型号的时装需用A 种布料1.1m ,B 种布料0.4m ,可获利润50元,若生产乙型号的时装x 套,用这批布料生产这两种型号的时装所获的总利润为y 元。

(1)求y(元)与x(套)之间的函数关系式,并求自变量x 的取值范围;
(2) 羊角塘服装厂在生产这批时装时,当乙型号的时装为多少套时,所获总利润最大?最大总利润是多少?
答案
A 卷
1.D
2.B
3.D
4.D
5.C
6.A
7.C
8.B
9.D 10. 4,-5,3-2,52-.
11. y=2x-2. 12. 上, 3. 13.
212
-
14. 15. 9. 16. X=2, y=1. 17. (1) m=2 (2) 4m (3) 42 m
18. (1) k=5 (2) 35
. 19.y=1500x (30x 0≤≤)
20. (1) 40min (2) y=10x (600≤≤x ) (3) 10x=200,x=20min. B 卷
1.B
2.A
3.D
4.A
5.B
6.C
7.B
8.C
9. 23,52,2-- 10. 11. 40x ≠≥x 且 12. Y=-3x+9 13. 14. 减小 15. (2,0) 16. 0或-2
17.(1)5.7 (2) 105105--+-或 18. (1) k=5 (2) 2.5 19. (1)x=-1.5 (2) x=6或x=0
20. y=-2.2x+30.6 (2) 30.6cm, 约13.9min
21.
12505.0,34
y 121+==
x y x )( (2) 租用乙公司的车合算。

22. (1)y=45(80-x)+50x 即y=5x+3600
(2) 0.6(80-x)+1.1x ≤70○1 0.9(80-x)+0.4x ≤52○2由○1得x ≤44,由○2得x ≥40.
所以44x 40≤≤ ,取x=44(套) . 所以 (元)
38203600445)44(=+⨯==f y。

相关文档
最新文档