2017—2018学年度第一学期期中测试(试题)九年级数学

合集下载

2017-2018上学期九年级期中数学试题及答案

2017-2018上学期九年级期中数学试题及答案
线 的解析式 为
16.如 图 ,△ ABC是 等边 二 角形 ,D是 BC上 一 点 ,△ ABD经 过旋转后 到达 △农名 的位置
则旋转 中心是 `茕
,
,逆
时针旋转 了
(第 【 6题 图
)
(第 17题 图 )
17.如 图所示 ,AB是 ⊙@的 一 条弦 ,∠ ⒕ GB=30° ,犭 B=6,则 ⊙@的 直径为
茄 1=-1冖
△ }阿|
图1
・ ……・ ・ ・ ・ ・ …・ ・ ・ ・ ・ ・ ・ … …・ … ・ … ・ ・ ・ ・ …・ ・ … ……・ ・ ・ 3分
(2)如 图 2,C2(丬
… ・ … 4分 ………。 ,1);… …………………………………∴,… …。
九年级数学试题参考答案 第 1页 (共 3页 )
A.50(1+窝 )2=182
C.50(1 +2“ ) =182
B.50+50(1+x) +50(1+“ )2=182 D.50+50(1 +J) +50(1 +2x) =182
,若
7.二 次函数 y=t2+fr x+b中
A。
σ+乙 =0,则 它的图象必经过点
(-1,-1)
B(1,-1)
D。
C.(1,l)
(“ -1)=0的 解是 2.一 元二次方程 夂
A,x=O
Ct=0或 t=1
D.× B・ D(凭
B.订 D.舟
BI=2x2
茁 =0再戈 =-1
(吖
3.用 配方法解方程 ′ -2x-5=o时 ,原 方程应变形 为
-1)2=6 C(“ +1)2=6

2017——2018学年九年级上期中考试数学试题

2017——2018学年九年级上期中考试数学试题

2017——2018学年九年级上期中考试数学试题一、填空题(每小题2分,共12分)1.下列方程是一元二次方程的是( )A .322-+x xB .032=+xC .9)3(22=+xD .4122=+xx 2.下列四个图形分别是节能、节水、低碳和绿色食品标志,是轴对称图形的是( )A .B .C .D . 3.对于二次函数2)1(2+-=x y 的图象,下列说法正确的是( )A .开口向下B .对称轴是x=﹣1C .顶点坐标是(1,2)D .与x 轴有两个交点4.如图,点A 、B 、C 、D 、O 都在方格纸的格点上,若△COD 是由△AOB 绕点O 按逆时针方向旋转而得,则旋转的角度为( )A .30°B .45°C .90°D .135°5.小红不小心把家里的一块圆形玻璃打碎了,需要配制一块同样大小的玻璃镜,工人师傅在一块如图所示的玻璃镜残片的边缘描出了点A ,B ,C ,给出三角形ABC ,则这块玻璃镜的圆心是( )A .AB ,AC 边上的中线的交点 B .AB ,AC 边上的垂直平分线的交点 C .AB ,AC 边上的高所在直线的交点D .∠BAC 与∠ABC 的角平分线的交点6.已知抛物线y=x 2+1具有如下性质:该抛物线上任意一点到定点F (0,2)的距离与到x 轴的距离始终相等,如图,点M 的坐标为(3,3),P 是抛物线1412+=x y 上一个动点,则△PMF 周长的最小值是( )A .3B .4C .5D .6二、选择题(每小题3分,共24分)7.在平面直角坐标系中,点P (2,4)关于原点对称点的坐标是 . 8.已知m 是关于x 的方程0322=--x x 的一个根,则=-m m 422 .9.若关于x 的一元二次方程014)1(2=++-x x k 有实数根,则k 的取值范围是 . 10.如图,在△ABC 中,AB =AC ,∠ABC =45°,以AB 为直径的⊙O 交BC 于点D ,若BC =24,则图中阴影部分的面积为( )11.如图,AB 是⊙O 的直径,PA 切⊙O 于点A ,PO 交⊙O 于点C ;连接BC ,若∠P=40°,则∠B 等于 度12.已知矩形ABCD 的长AB =4,宽AD =3,按如图放置在直线AP 上,然后只转动不滑动,当它旋转一周时,顶点A 经过的路线长是_____________PDCBA13.二次函数)0(2≠++=a c bx ax y 的图象与y 轴相交于负半轴,则关于x的不等式密 封 线内 不 得 答 题c cx >的解集是__________.14.已知抛物线)0(2≠++=a c bx ax y 的对称轴为直线x =2,与x 轴的一个交点坐标为(4,0),其部分图象如图所示,下列结论:①抛物线过原点;②04=++c b a ;③0<+-c b a ;④抛物线的顶点坐标为(2,b );⑤当x <2时,y 随x 增大而增大.其中结论正确的是有 _____.三、解答题(每题5分,共20分)15.解方程:x x x 21)12(4-=-.16.某种药品原来售价100元,连续两次降价后售价为81元,若每次下降的百分率相同,求这个百分率是多少?17.我区儿童公园北门处有一座石拱桥,如图,石拱桥的桥顶到水面的距离CD 为8cm ,拱桥半径OC 为5cm ,求水面宽AB 为多少米?18.已知A (0,3),B (2,3)是抛物线y=﹣x 2+bx+c x 上两点,求该抛物线的解析式并写出顶点坐标.四、解答题(每题7分,共28分)19.关于x 的一元二次方程022)3(2=+++-k x k x .(1)求证:方程总有两个实数根;(2)若方程有一根小于1,求k 的取值范围.20.已知如图,在直角坐标平面内,△ABC 的三个顶点的坐标分别为A (﹣1,2),B (﹣2,1)(正方形网格中每个小正方形的边长是1个单位长度).(1)△A 1B 1C 1是△ABC 绕点 逆时针旋转 度得到的,B 1的坐标是 ; (2)求出线段AC 旋转过程中所扫过的面积(结果保留π).21. 如图,在平面直角坐标系中,正方形OABC 的边长为4,顶点A 、C 分别在x 轴、y 轴的正半轴,抛物线212y x bx c =-++经过B 、C 两点,点D 为抛物线的顶点,连接AC 、BD 、CD . (1)求此抛物线的解析式.(2)求此抛物线顶点D 的坐标和四边形ABCD 的面积.22.某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边周长为30米的篱笆围成.已知墙长为18米(如图所示).回答下列问题: (1)设这个苗圃园垂直于墙的一边的长为x 米,则平行于墙的一边长为 ;(用含x 的代数式表示) (2)若平行于墙的一边长不小于8米,这个苗圃园的面积有最大值和最小值吗?如果有,求出最大值和最小值;如果没有,请说明理由.五、解答题(每小题8分,共16分)23. 如图,在△ABC 中,∠C =90°,∠BAC 的平分线交BC 于点D ,点O 在AB 上,以点O 为圆心,OA 为半径的圆恰好经过点D ,分别交AC ,AB 于点E ,F . (1)试判断直线BC 与⊙O 的位置关系,并说明理由; (2)若BD=BF =2,求阴影部分的面积(结果保留π).24. 如图,△ABC 中,AB =AC =1,∠BAC =45°,△AEF 是由△ABC 绕点A 按顺时针方向旋转得到的,连接BE ,CF 相交于点D . (1)求证:BE =CF ;(2)当四边形ACDE 为菱形时,求BD 的长.45°FED CBA六、解答题(每题10分,共20分)25.为满足市场需求,某超市在五月初五“端午节”来领前夕,购进一种品牌粽子,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.(1)试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;(2)当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?(3)为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元.如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售粽子多少盒?26. 如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=-1,且抛物线经过A(1,0),C(0,3)两点,与x轴交于点B.(1)若直线y=mx+n经过B,C两点,求直线BC和抛物线的解析式;(2)在抛物线的对称轴x=-1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;(3)设点Q为直线BC上方抛物线上的一个动点,求使△B QC面积最大时的点Q的坐标.(4)设点P为抛物线的对称轴x=-1上的一个动点,直接写出使△BPC为直角三角形的点P的坐标.。

2017-2018第一学期九年级数学期中试卷

2017-2018第一学期九年级数学期中试卷

2017-2018学年度第一学期期中检测九年级数学试题(全卷共120分,考试时间90分钟)一、选择题(本题共8题,每题3分,共24分. 在每题给出的四个选项中,有且只有一项是正确的,请将正确选项前的字母代号填涂在答题卡相应位置上) 1. 如图,点A ,B ,C 在⊙O 上,∠AOB =72°,则∠ACB =A .28ºB .54ºC .18ºD .36º2. 一元二次方程041242=+-x x 的根的情况是A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .无法判断3.用配方法解方程x 2-6x -6=0时,配方后得到的方程是A .(x +3)2=15 B .( x +3)2 = 3 C .(x -3)2 = 15 D .( x -3)2 = 3 4.若x 1,x 2是一元二次方程x 2﹣2x ﹣3=0的两个根,则x 1•x 2的值是A .2B .﹣2C .4D .﹣35.将抛物线y =2x 2向右平移3个单位,再向下平移5个单位,得到的抛物线的表达式为 A .y =2(x -3)2+5 B .y =2(x +3)2+5 C .y =2(x -3)2-5 D .y =2(x +3)2-56.下列命题:①三角形的外心是三边垂直平分线的交点;②经过三个点一定可以作圆; ③三角形的内心到三角形各顶点的距离都相等;④长度相等的弧是等弧; 其中正确结论的个数有A .1个B .2个C .3.4个7.关于二次函数y =x 2-2x -3的图象,下列说法中错误的是A .函数图像的开口方向向上B .函数图像的顶点坐标是(1,-2)C .当x <0时,y 随x 的增大而减小D .函数图象与y 轴的交点坐标是(0,-3) 8.运用图形变化的方法研究下列问题:如图,AB 是⊙O 的直径,CD 、EF 是⊙O 的弦, 且AB ∥CD ∥EF ,AB =10,CD =6,EF =8,则图中阴影部分的面积是A .252π B .10π C .24+4π D .24+5π( 第1题 ) (第10题)B( 第8题 )二、填空题(每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上) 9. 方程x 2-2x =0的解是_______▲________.10.四边形ABCD 内接于圆,若∠A =110°,则∠C = ▲ 度.11.已知圆弧所在圆的半径为24,所对的圆心角为60°,这条弧的长是 ▲ . 12.如图,P 是⊙O 外的一点,P A 、PB 分别与⊙O 相切于点A 、B ,C 是劣弧AB 上的任 意一点,过点C 的切线分别交P A 、PB 于点D 、E .若P A =4,则△PED 的周长为 ▲ . 13.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,若AB =8,AE =1,则弦CD 的长是 ▲ .14.若点M (-2,1y ),N (8,2y )在抛物线x x y 2212+-=的图象上,则1y ▲ 2y (填“>”或“<”).15.关于x 的一元二次方程02=-+k x x 有两个不相等的实数根,则k 的取值范围是▲ . 16.中国“一带一路”战略给沿线国家和地区带来很大的经济效益,沿线某地区居民2015年年收入200美元,预计2017年年收入将达到1000美元,设2015年到2017年该地区居民年人均收入平均增长率为x ,可列方程为 ▲ .17.如图,圆锥的侧面展开图是一个圆心角为120°的扇形,若圆锥的底面圆半径是2,则 圆锥的母线l = ▲ . 18. 如图,直线y =mx +n 与抛物线c bx ax y ++=2交于A (-1,p ), B (4,q )两点,则关于x 的不等式c bx ax n mx ++>+2的解集 是 ▲ .三、解答题(本大题共有7小题,共66分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤) 19. 解方程 (每题5分,共10分)(1) 2x 2 + 3x -1 = 0; (2) (x -3)(x -1)=3.( 第12题 )( 第13题 )( 第18题 )( 第17题 )20. (8分)已知⊙O 的直径AB 的长为4 cm ,C 是⊙O 上一点,∠BAC =30°,过点C 作 ⊙O 的切线交AB 的延长线于点P ,求BP 的长.21. (8分) 二次函数c bx x y ++=2的图象经过点(2,-3)、(0,5).(1) 求b 、c 的值;(2) 在所给坐标系中画c bx x y ++=2的图象; (3) 指出当x 满足什么条件时,函数值小于0?22. (8分) 如图,在宽为20m 、长为30m 的矩形地面上,修建两条同样宽且互相垂直的道路,余下部分作为耕地.要使耕地面积达到551m 2,道路的宽应为多少?23. (10分)实践操作:如图,△ABC 是直角三角形,90∠=︒ABC ,利用直尺和圆规按下列要求作图,并在图中标明相应的字母(保留痕迹,不写作法).(1)作∠BCA 的平分线,交AB 于点O ; (2)以O 为圆心,OB 为半径作圆. 综合运用:在你所作的图中,(1)AC 与⊙O 的位置关系是 ▲ (直接写出答案); (2)若BC =6,AB =8,求⊙O 的半径.(第23题)( 第20题 )( 第21题 ) ( 第22题 )24. (12分) 某商店经销《超能陆战队》超萌“小白”玩具,“小白”玩具每个进价60元,每个玩具不得低于80元出售.销售“小白”玩具的单价m(元/个)与销售数量n (个)之间的函数关系如图所示.(1)线段AB所表示的实际优惠销售政策是▲;(2)写出该店当一次销售n(10<n<30)个时,所获利润w(元)与n(个)之间的函数关系式;(3)经过一段时间的销售,店长发现:当一次销售数量小于30个时,一次销售数量越多,所获利润不一定越多,你能用数学知识解释这一现象吗?并求出一次销售多少个时,所获利润最大,最大利润是多少元?25. (10分) 在一次数学兴趣小组活动中,小明利用同弧所对的圆周角及圆心角的性质探索了一些问题,下面请你和小明一起进入探索之旅.问题情境:(1)如图1,在△ABC中,∠A=30°,BC=2,则△操作实践:(2)如图2,在矩形ABCD中,请利用以上操作所获得的经验,在矩形ABCD内部用直尺与圆规作出一点P.点P满足:∠BPC=∠BEC,且PB=PC.(要求:用直尺与圆规作出点P,保留作图痕迹.)迁移应用:(3)如图3,在平面直角坐标系的第一象限内有一点B,坐标为(2,m).过点B作AB⊥y轴,BC⊥x轴,垂足分别为A、C,若点P在线段AB上滑动(点P可以与点A、B重合),发现使得∠OPC=45°的位置有两个,则m的取值范围为▲.( 第24题)( 第25题)。

(答案)2017-2018学年度第一学期九年级期中联考数学科试卷

(答案)2017-2018学年度第一学期九年级期中联考数学科试卷

2017-2018学年度第一学期九年级期中联考数学科试卷(答案)13、-3 14、2400 15、6 16、三、解答题:17、解:(1)x2+4x+2=0移项,得:x2+4x=﹣2,配方,得:x2+4x+4=﹣2+4,……………………1分即(x+2)2=2,………………………………………..2分解这个方程,得:x+2=±;即x1=-2+,x2=-2﹣.………….……………3分(2)3x2+2x﹣1=0;这里a=3,b=2,c=﹣1,∵△=4+12=16,……………………1分∴x=,……………………2分∴x1=,x2=﹣1.……………………3分(3)(2x+1)2=﹣3(2x+1)(2x+1)2+3(2x+1)=0,(2x+1)[(2x+1)+3]=0,……………………1分(2x+1)(2x+4)=0,……………………2分解得:x1=﹣,x2=﹣2.……………………3分(其它方法参考给分)18、(1)10 ,80 ……………………2分(2)列表得:∵两次摸球可能出现的结果共有12种,每种结果出现的可能性相同,而所获购物券的金额不低于50元的结果共有6种.……………………5分∴该顾客所获购物券的金额不低于50元的概率是:.……………………6分19、解:(1) 如图,AC,BD即为所求。

…………………2分(2)如图,∵AE∥PO∥BF,∴△AEC∽△POC,△BFD∽△OPD,…………………3分∴,,PA BOC DE F即,,解得:PO=3.3m.…………………5分答:路灯的高为3.3m.…………………6分20、证明:∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,∴∠B+∠C=180°,∠ADF=∠DEC.…………………1分∵∠AFD+∠AFE=180°,∠AFE=∠B∴∠AFD=∠C…………………2分∴△ADF∽△DEC;…………………3分(2)解:∵四边形ABCD是平行四边形,∴CD=AB=4,由(1)知△ADF∽△DEC,∴,…………………4分∴DE=12…………………6分在Rt△ADE中,由勾股定理得:==6.…………7分21、解:(1)200+400x…………………1分(2)设应将每千克小型西瓜的售价降低x元,根据题意,得[(3-2)-x](200+-24=200可化为:50x2-25x+3=0,…………………4分解这个方程,得x1=0.2,x2=0.3.…………………6分为使每天的销量较大,应降价0.3元,即定价3-0.3=2.7元/千克.答:应将每千克小型西瓜的售价定为2.7元/千克.…………………7分22、解:(1)2t,10﹣4t…………………2分(2)设运动的时间为t秒,由勾股定理得,OC==10,1)当CQ=CP时,2t=10﹣4t,解得,t=,此时CP=2×=,∴AP=8﹣=,P 点坐标为(,6)…………………3分2)当PC=PQ 时,如图①,过点p 作OC 的垂线交OC 于点E ,CQ=10﹣4t ,CP=2t . CE==5-2t 易证△CEP ∽△CAO , ∴,即:解得 t=∴P 点坐标为(,6),…………………4分3)当QC=PQ 时,如图②,过点Q 作AC 的垂线交AC 于点F , CQ=10﹣4t ,CP=2t ,CF=t ∵△CFQ ∽△CAO , ∴,即:∴t=则P 点坐标为(,6),综上所述,P 点坐标为(,6),(,6),(,6);…………………5分(3)如图③,连接EG ,由题意得:△AOE ≌△AFE , ∴∠EFG=∠OBC=90°,∵E 是OB 的中点,∴EG=EG ,EF=EB=4, 在Rt △EFG 和Rt △EBG 中,,∴Rt △EFG ≌Rt △EBG (HL )……………6分 ∴∠3=∠4∵∠1+∠2+∠3+∠4=180°,∠1=∠2 ∴∠2+∠3=90°,可证△AOE ∽△EBG 。

2017-2018学年第一学期期中九年级数学试题

2017-2018学年第一学期期中九年级数学试题

2017 2018学年度第一学期济南汇才学校九年级数学期中考试试题一、选择题:(每题4分,共48分)1.反比例函数y=x6的图象位于( )A .第一、二象限B .第一、三象限C.第二、三象限 D .第二、四象限 2. 下列四幅图形中,能表示两棵树在同一时刻阳光下的影子的是( )A. B. C. D.3.如图,在8×4的矩形网格中,小正方形的边长都是1,若△ABC 的三个顶点在图中相应格点上,则tan ∠ACB 的值为 A .1B.13C .12D . 24.如图,点A 是反比例函数2y x=(0>x )图象上任意一点, AB ⊥y 轴于B ,点C 是x 轴上的动点,则△ABC 的面积为 A . 1 B . 2 C . 4 D . 不能确定5. 如图,几何体是由底面圆心在同一条直线上的三个圆柱构成的,其俯视图是( )A .B .C .D .6. .如图,在ABC △中,点D 、E 分别是AB 、AC 的中点, 则下列结论不正确的是( )(A )2BC DE = (B )ADE ABC △∽△(C )AD AE AB AC=(D )3ABC ADE S S =△△ 7. 在△ABC 中,若21sin tan 02A B ⎫-+-=⎪⎪⎝⎭,则∠C 的度数为( ) A.30° B.60° C.90° D.120°8. 若三角形的面积一定,则它底边x 上的高y 与底边x 之间的函数关系的图象大致是( )9.如图,小正方形的边长均为1,则图中三角形(阴影部分)与△ABC 相似的是( )9.如图,小正方形的边长均为1,则图中三角形(阴影部分)与△ABC 相似的是( )10. 甲、乙、丙三人站成一排拍照,则甲站在中间的概率是( )A.61 B. 31 C. 21 D. 3211. 在平面直角坐标系中,已知点A (﹣4,2),B (﹣6,﹣4),以原点O为位似中心,相似比为2,把△ABO 扩大,则点A 的对应点A ′的坐标是( ) A .(﹣2,1) B .(﹣8,4)C .(﹣2,1)或(2,﹣1)D .(﹣8,4)或(8,﹣4)12.一个几何体的三视图如图所示,那么这个几何体的侧面积是( ) A .4π B .6πC .8πD .12π13 .已知:点11()A x y ,、22()B x y ,、33()C x y ,是函数3y x=-图象上的三点,且1230x x x <<<,则1y 、2y 、3y 的大小关系是( )A .123y y y <<B .231y y y <<C .321y y y << D.无法确定第3题图第4题图A B C Dy14·如图,在△ABC 中,AB=AC=5,BC=6,点M 为BC 的中点,MN⊥AC 于点N ,则MN 等于( ) A. 65B. 95C. 125D. 16515.如图,矩形ABCD 的对角线BD 经过坐标原点,矩形的边分别平行于坐标轴,点C 在反比例函数221k k y x++=的 图象上.若点A 的坐标为(-2,-2),则k 的值为( ) A .1 B .-1或3 C .4 D .1或-3 二、填空题:(每题4分,共24分)16.一个暗箱里放有a 个除颜色外完全相同的球,这a 个球中红球只有3个.若每次将球搅匀后,任意摸出1个球记下颜色再放回暗箱.通过大量重复摸球试验后发现,摸到红球的频率稳定在20%附近,那么可以推算出a 的值大约是 .17.已知反比例函数1m y x -=的图象如图所示,则实数m 的取值范围是______________.18. 如图所示,在顶角为 30°的等腰三角形△ABC 中,AB=AC ,若过点 C 作 CD ⊥AB 于点D , 则∠BCD=15°,根据图形计算 tan15°= 。

2017-2018学年新人教版九年级上期中数学试卷含答案解析

2017-2018学年新人教版九年级上期中数学试卷含答案解析

九年级(上)期中数学试卷一、选择题:1-10每小题3分,11-16每小题3分1.方程3x2﹣4x﹣1=0的二次项系数和一次项系数分别为()A.3和4 B.3和﹣4 C.3和﹣1 D.3和12.二次函数y=x2﹣2x+2的顶点坐标是()A.(1,1) B.(2,2) C.(1,2) D.(1,3)3.将△ABC绕O点顺时针旋转50°得△A1B1C1(A、B分别对应A1、B1),则直线AB与直线A1B1的夹角(锐角)为()A.130°B.50°C.40°D.60°4.用配方法解方程x2+6x+4=0,下列变形正确的是()A.(x+3)2=﹣4 B.(x﹣3)2=4 C.(x+3)2=5 D.(x+3)2=±5.下列方程中没有实数根的是()A.x2﹣x﹣1=0 B.x2+3x+2=0C.2015x2+11x﹣20=0 D.x2+x+2=06.平面直角坐标系内与点P(﹣2,3)关于原点对称的点的坐标是()A.(3,﹣2)B.(2,3) C.(2,﹣3)D.(﹣3,﹣3)7.对于抛物线y=﹣(x+1)2+3,下列结论:①抛物线的开口向下;②对称轴为直线x=1;③顶点坐标为(﹣1,3);④x>﹣1时,y随x的增大而减小,其中正确结论的个数为()A.1 B.2 C.3 D.48.如图所示,△ABC绕点A旋转至△AEF,其旋转角是()A.∠BAE B.∠CAE C.∠EAF D.∠BAF9.下列说法正确的是()A.旋转改变图形的大小和形状B.旋转中,图形的每个点移动的距离相同C.经过旋转,图形的对应线段、对应角分别相等D.经过旋转,图形的对应点的连线平行且相等10.如图,在平面直角坐标系xOy中,△ABC顶点的横、纵坐标都是整数.若将△ABC以某点为旋转中心,顺时针旋转90°得到△DEF,则旋转中心的坐标是()A.(0,0) B.(1,0) C.(1,﹣1)D.(2.5,0.5)11.如图,将矩形ABCD绕点A顺时针旋转得到矩形AB′C′D′的位置,旋转角为α(0<α<90°),若∠1=110°,则∠α=()A.10°B.20°C.25°D.30°12.如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,x=﹣1是对称轴,有下列判断:①b﹣2a=0;②4a﹣2b+c<0;③a﹣b+c=﹣9a;④若(﹣3,y1),(,y2)是抛物线上两点,则y1>y2,其中正确的是()A.①②③B.①③④C.①②④D.②③④13.二次函数y=ax2+bx的图象如图所示,若一元二次方程ax2+bx+m=0有实数根,则m的最小值为()A.﹣3 B.3 C.﹣6 D.914.下列图形绕某点旋转180°后,不能与原来图形重合的是()A.B.C.D.15.若二次函数y=ax2+bx+a2﹣2(a、b为常数)的图象如图,则a的值为()A.1 B.C. D.﹣216.若b<0,则二次函数y=x2﹣bx﹣1的图象的顶点在()A.第一象限B.第二象限C.第三象限D.第四象限二、填空题:每小题3分,共10分17.在平面直角坐标系中,点(﹣3,2)关于原点对称的点的坐标是.18.若一元二次方程(m﹣2)x2+3(m2+15)x+m2﹣4=0的常数项是0,则m的值是.19.已知抛物线y=﹣x2+2x+2,该抛物线的对称轴是,顶点坐标.三、解答题20.解方程:x2﹣2x=x﹣2.21.已知函数y=x2﹣mx+m﹣2.(1)求证:不论m为何实数,此二次函数的图象与x轴都有两个不同交点;(2)若函数y有最小值﹣,求函数表达式.22.如图所示,正方形ABCD的边长等于2,它绕顶点B按顺时针方向旋转得到正方形A′BC′D′.在这个旋转过程中:①旋转中心是什么?②若旋转角为45°,边CD与A′D′交于F,求DF的长度.23.已知二次函数y=﹣0.5x2+4x﹣3.5(1)用配方法把该函数化为y=a(x﹣h)2+k的形式,并指出函数图象的对称轴和顶点坐标;(2)求函数图象与x轴的交点坐标.24.某商店购进一批单价为8元的商品,如果按每件10元出,那么每天可销售100件,经调查发现,这种商品的销售单价每提高1元,其销售量相应减少10件.将销售价定为多少,才能使每天所获销售利润最大?最大利润是多少?25.已知:关于x的方程2x2+kx﹣1=0.(1)求证:方程有两个不相等的实数根;(2)若方程的一个根是﹣1,求另一个根及k值.26.根据下列条件求m的取值范围.(1)函数y=(m+3)x2,当x>0时,y随x的增大而减小,当x<0时,y随x 的增大而增大;(2)函数y=(2m﹣1)x2有最小值;(3)抛物线y=(m+2)x2与抛物线y=﹣x2的形状相同.九年级(上)期中数学试卷参考答案与试题解析一、选择题:1-10每小题3分,11-16每小题3分1.方程3x2﹣4x﹣1=0的二次项系数和一次项系数分别为()A.3和4 B.3和﹣4 C.3和﹣1 D.3和1【考点】一元二次方程的一般形式.【分析】根据方程的一般形式和二次项系数以及一次项系数的定义即可直接得出答案.【解答】解:∵3x2﹣4x﹣1=0,∴方程3x2﹣4x﹣1=0的二次项系数是3,一次项系数是﹣4;故选B.2.二次函数y=x2﹣2x+2的顶点坐标是()A.(1,1) B.(2,2) C.(1,2) D.(1,3)【考点】二次函数的性质.【分析】根据顶点坐标公式,可得答案.【解答】解:y=x2﹣2x+2的顶点横坐标是﹣=1,纵坐标是=1,y=x2﹣2x+2的顶点坐标是(1,1).故选:A.3.将△ABC绕O点顺时针旋转50°得△A1B1C1(A、B分别对应A1、B1),则直线AB与直线A1B1的夹角(锐角)为()A.130°B.50°C.40°D.60°【考点】旋转的性质.【分析】先根据题意画出图形,利用旋转的性质得出OA=OA1,OB=OB1,AB=A1B1,那么根据SSS证明长△OAB≌△OA1B1,得到∠OAB=∠OA1B1,由等角的补角相等得出∠OAM=∠OA1M.设A1M与OA交于点D,在△OA1D与△MAD中,根据三角形内角和定理即可求出∠M=∠A1OD=50°.【解答】解:如图,△ABC绕O点顺时针旋转50°得△A1B1C1(A、B分别对应A1、B1),则∠A1OA=50°,OA=OA1,OB=OB1,AB=A1B1.设直线AB与直线A1B1交于点M.由SSS易得△OAB≌△OA1B1,∴∠OAB=∠OA1B1,∴∠OAM=∠OA1M,设A1M与OA交于点D,在△OA1D与△MAD中,∵∠DAM=∠DA1O,∠ODA1=∠MDA,∴∠M=∠A1OD=50°.故选B.4.用配方法解方程x2+6x+4=0,下列变形正确的是()A.(x+3)2=﹣4 B.(x﹣3)2=4 C.(x+3)2=5 D.(x+3)2=±【考点】解一元二次方程﹣配方法.【分析】把常数项4移到等号的右边,再在等式的两边同时加上一次项系数6的一半的平方,配成完全平方的形式,从而得出答案.【解答】解:∵x2+6x+4=0,∴x2+6x=﹣4,∴x2+6x+9=5,即(x+3)2=5.故选:C.5.下列方程中没有实数根的是()A.x2﹣x﹣1=0 B.x2+3x+2=0C.2015x2+11x﹣20=0 D.x2+x+2=0【考点】根的判别式.【分析】分别求出各个选项中一元二次方程根的判别式,进而作出判断.【解答】解:A、x2﹣x﹣1=0,△=(﹣1)2﹣4×(﹣1)=9>0,方程有两个不相等的根,此选项错误;B、x2+3x+2=0,△=32﹣4×2=1>0,方程有两个不相等的根,此选项错误;C、2015x2+11x﹣20=0,△=112﹣4×2015×(﹣20)>0,方程有两个不相等的根,此选项错误;D、x2+x+2=0,△=12﹣4×2=﹣7<0,方程没有实数根,此选项正确;故选D.6.平面直角坐标系内与点P(﹣2,3)关于原点对称的点的坐标是()A.(3,﹣2)B.(2,3) C.(2,﹣3)D.(﹣3,﹣3)【考点】关于原点对称的点的坐标.【分析】关于原点对称的点,横坐标与纵坐标都互为相反数.【解答】解:由题意,得点P(﹣2,3)关于原点对称的点的坐标是(2,﹣3),故选:C.7.对于抛物线y=﹣(x+1)2+3,下列结论:①抛物线的开口向下;②对称轴为直线x=1;③顶点坐标为(﹣1,3);④x>﹣1时,y随x的增大而减小,其中正确结论的个数为()A.1 B.2 C.3 D.4【考点】二次函数的性质.【分析】根据二次函数的性质对各小题分析判断即可得解.【解答】解:①∵a=﹣<0,∴抛物线的开口向下,正确;②对称轴为直线x=﹣1,故本小题错误;③顶点坐标为(﹣1,3),正确;④∵x>﹣1时,y随x的增大而减小,∴x>1时,y随x的增大而减小一定正确;综上所述,结论正确的个数是①③④共3个.故选C.8.如图所示,△ABC绕点A旋转至△AEF,其旋转角是()A.∠BAE B.∠CAE C.∠EAF D.∠BAF【考点】旋转的性质.【分析】旋转后任意一对对应点与旋转中心的连线所成的角都是旋转角.【解答】解:∵点B与点E是一对对应点,点C与点F是一对对应点.∴旋转角为∠BAE或∠CAF.故选:A.9.下列说法正确的是()A.旋转改变图形的大小和形状B.旋转中,图形的每个点移动的距离相同C.经过旋转,图形的对应线段、对应角分别相等D.经过旋转,图形的对应点的连线平行且相等【考点】旋转的性质.【分析】根据旋转的性质对各选项进行判断.【解答】解:A、旋转不改变图形的大小和形状,所以A选项错误;B、旋转中,图形的每个点移动的距离不一定相同,所以B选项错误;C、经过旋转,图形的对应线段、对应角分别相等,所以C选项正确;D、经过旋转,图形的对应点的连线不一定平行或相等,所以D选项错误.故选C.10.如图,在平面直角坐标系xOy中,△ABC顶点的横、纵坐标都是整数.若将△ABC以某点为旋转中心,顺时针旋转90°得到△DEF,则旋转中心的坐标是()A.(0,0) B.(1,0) C.(1,﹣1)D.(2.5,0.5)【考点】坐标与图形变化﹣旋转.【分析】先根据旋转的性质得到点A的对应点为点D,点B的对应点为点E,再根据旋转的性质得到旋转中心在线段AD的垂直平分线,也在线段BE的垂直平分线,即两垂直平分线的交点为旋转中心,而易得线段BE的垂直平分线为直线x=1,线段AD的垂直平分线为以AD为对角线的正方形的另一条对角线所在的直线.【解答】解:∵将△ABC以某点为旋转中心,顺时针旋转90°得到△DEF,∴点A的对应点为点D,点B的对应点为点E,作线段AD和BE的垂直平分线,它们的交点为P(1,﹣1),∴旋转中心的坐标为(1,﹣1).故选C.11.如图,将矩形ABCD绕点A顺时针旋转得到矩形AB′C′D′的位置,旋转角为α(0<α<90°),若∠1=110°,则∠α=()A.10°B.20°C.25°D.30°【考点】旋转的性质.【分析】由∠B=∠D′=90°,可知:∠2+∠D′AB=180°,从而可求得∠D′AB=70°,∠α=∠DAD′=90°﹣∠D′AB.【解答】解:如图所示:∵∠B=∠D′=90°,∴∠2+∠D′AB=180°.∴∠D′AB=180°﹣∠2=180°﹣110°=70°.∵∠α=∠DAD′,∴∠α=90°﹣∠D′AB=90°﹣70°=20°.故选:B.12.如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,x=﹣1是对称轴,有下列判断:①b﹣2a=0;②4a﹣2b+c<0;③a﹣b+c=﹣9a;④若(﹣3,y1),(,y2)是抛物线上两点,则y1>y2,其中正确的是()A.①②③B.①③④C.①②④D.②③④【考点】二次函数图象与系数的关系.【分析】利用二次函数图象的相关知识与函数系数的联系,需要根据图形,逐一判断.【解答】解:∵抛物线的对称轴是直线x=﹣1,∴﹣=﹣1,b=2a,∴b﹣2a=0,故①正确;∵抛物线的对称轴是直线x=﹣1,和x轴的一个交点是(2,0),∴抛物线和x轴的另一个交点是(﹣4,0),∴把x=﹣2代入得:y=4a﹣2b+c>0,故②错误;∵图象过点(2,0),代入抛物线的解析式得:4a+2b+c=0,又∵b=2a,∴c=﹣4a﹣2b=﹣8a,∴a﹣b+c=a﹣2a﹣8a=﹣9a,故③正确;根据图象,可知抛物线对称轴的右边y随x的增大而减小,∵抛物线和x轴的交点坐标是(2,0)和(﹣4,0),抛物线的对称轴是直线x=﹣1,∴点(﹣3,y1)关于对称轴的对称点的坐标是((1,y1),∵(,y2),1<,∴y1>y2,故④正确;即正确的有①③④,故选:B.13.二次函数y=ax2+bx的图象如图所示,若一元二次方程ax2+bx+m=0有实数根,则m的最小值为()A.﹣3 B.3 C.﹣6 D.9【考点】抛物线与x轴的交点.【分析】根据二次函数y=ax2+bx的图象可知,开口向下,a<0,二次函数有最大值y=3,知,一元二次方程ax2+bx+m=0有实数根,知b2﹣4am≥0,从而可以解答本题.【解答】解:∵由二次函数y=ax2+bx的图象可知,二次函数y=ax2+bx的最大值为:y=3,∴.∴.∵一元二次方程ax2+bx+m=0有实数根,∴b2﹣4am≥0.∵二次函数y=ax2+bx的图象开口向下,∴a<0.∴m≥.∴m≥﹣3.即m的最小值为﹣3.故选项A正确,选项B错误,选项C错误,选项D错误.故选A.14.下列图形绕某点旋转180°后,不能与原来图形重合的是()A.B.C.D.【考点】中心对称图形.【分析】根据中心对称图形的概念求解.【解答】解:A、是中心对称图形,能与原来图形重合,故错误;B、不是中心对称图形,不能与原来图形重合,故正确;C、是中心对称图形,能与原来图形重合,故错误;D、是中心对称图形,能与原来图形重合,故错误.故选B.15.若二次函数y=ax2+bx+a2﹣2(a、b为常数)的图象如图,则a的值为()A.1 B.C. D.﹣2【考点】二次函数图象上点的坐标特征.【分析】根据图象开口向下可知a<0,又二次函数图象经过坐标原点,把原点坐标代入函数解析式解关于a的一元二次方程即可.【解答】解:由图可知,函数图象开口向下,∴a<0,又∵函数图象经过坐标原点(0,0),∴a2﹣2=0,解得a1=(舍去),a2=﹣.故选C.16.若b<0,则二次函数y=x2﹣bx﹣1的图象的顶点在()A.第一象限B.第二象限C.第三象限D.第四象限【考点】二次函数图象与系数的关系.【分析】只需运用顶点坐标公式求出顶点坐标,然后根据b<0就可确定顶点所在的象限.【解答】解:二次函数y=x2﹣bx﹣1的图象的顶点为(﹣,),即(,),∵b<0,∴<0,<0,∴(,)在第三象限.故选C.二、填空题:每小题3分,共10分17.在平面直角坐标系中,点(﹣3,2)关于原点对称的点的坐标是(3,﹣2).【考点】关于原点对称的点的坐标.【分析】根据平面直角坐标系内两点关于原点对称横纵坐标互为相反数,即可得出答案.【解答】解:根据平面直角坐标系内两点关于原点对称横纵坐标互为相反数,∴点(﹣3,2)关于原点对称的点的坐标是(3,﹣2),故答案为(3,﹣2).18.若一元二次方程(m﹣2)x2+3(m2+15)x+m2﹣4=0的常数项是0,则m的值是﹣2.【考点】一元二次方程的一般形式.【分析】根据题意可得m2﹣4=0,且m﹣2≠0,再解即可.【解答】解:由题意得:m2﹣4=0,且m﹣2≠0,解得:m=﹣2,故答案为:﹣2.19.已知抛物线y=﹣x2+2x+2,该抛物线的对称轴是直线x=1,顶点坐标(1,3).【考点】二次函数的性质.【分析】把抛物线解析式化为顶点式可求得答案.【解答】解:∵y=﹣x2+2x+2=﹣(x﹣1)2+3,∴抛物线对称轴为x=1,顶点坐标为(1,3),故答案为:直线x=1;(1,3).三、解答题20.解方程:x2﹣2x=x﹣2.【考点】解一元二次方程﹣因式分解法.【分析】移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.【解答】解:x2﹣2x=x﹣2,x(x﹣2)﹣(x﹣2)=0,(x﹣2)(x﹣1)=0,x﹣2=0,x﹣1=0,x1=2,x2=1.21.已知函数y=x2﹣mx+m﹣2.(1)求证:不论m为何实数,此二次函数的图象与x轴都有两个不同交点;(2)若函数y有最小值﹣,求函数表达式.【考点】抛物线与x轴的交点;二次函数的最值.【分析】(1)先计算判别式的值得到△=m2﹣4m+8,然后配方得△=(m﹣2)2+4,利用非负数的性质得△>0,于是根据抛物线与x轴的交点问题即可得到结论;(2)根据二次函数的最值问题得到=﹣,解方程得m1=1,m2=3,然后把m的值分别代入原解析式即可.【解答】(1)证明:y=x2﹣mx+m﹣2,△=(﹣m)2﹣4(m﹣2)=m2﹣4m+8=(m﹣2)2+4,∵(m﹣2)2≥0,∴(m﹣2)2+4>0,即△>0,∴不论m为何实数,此二次函数的图象与x轴都有两个不同交点;(2)=﹣,整理得m2﹣4m+3=0,解得m1=1,m2=3,当m=1时,函数解析式为y=x2﹣x﹣1;当m=3时,函数解析式为y=x2﹣3x+1.22.如图所示,正方形ABCD的边长等于2,它绕顶点B按顺时针方向旋转得到正方形A′BC′D′.在这个旋转过程中:①旋转中心是什么?②若旋转角为45°,边CD与A′D′交于F,求DF的长度.【考点】旋转的性质.【分析】①将正方形绕顶点B旋转,故旋转中心为B点;②由正方形的性质可知∠ABD=45°,由旋转角为45°可知∠ABA′=45°,从而可知点B、A′、D三点在一条直线上,先利用勾股定理求得BD的长,从而可求得A′D的长,在Rt△A′DF中利用勾股定理可求得DF的长度.【解答】解:①旋转中心为B点.②如图所示:∵旋转角为45°,∴∠ABA′=45°.∵四边形ABCD为正方形,∴∠ABD=45°,∠A′DF=45°.∴∠ABA′=∠ABD.∴点B、A′、D三点在一条直线上.在Rt△ABD中,BD===2.∵A′D=BD﹣BA′,∴A′D=2﹣2.在Rt△A′DF中,DF==4﹣2.23.已知二次函数y=﹣0.5x2+4x﹣3.5(1)用配方法把该函数化为y=a(x﹣h)2+k的形式,并指出函数图象的对称轴和顶点坐标;(2)求函数图象与x轴的交点坐标.【考点】二次函数的三种形式.【分析】(1)运用配方法把一般式化为顶点式,根据二次函数的性质求出对称轴和顶点坐标;(2)根据题意得到一元二次方程,解方程得到答案.【解答】解:(1)∵y=﹣0.5x2+4x﹣3.5,∴y=﹣0.5(x﹣4)2+4.5,对称轴是直线x=4,顶点坐标为(4,4.5);(2)﹣0.5x2+4x﹣3.5=0,解得,x1=7,x2=1,则函数图象与x轴的交点坐标是(7,0)、(1,0).24.某商店购进一批单价为8元的商品,如果按每件10元出,那么每天可销售100件,经调查发现,这种商品的销售单价每提高1元,其销售量相应减少10件.将销售价定为多少,才能使每天所获销售利润最大?最大利润是多少?【考点】二次函数的应用.【分析】根据题意列出二次函数,将函数化简为顶点式,便可知当x=14时,所获得的利润最大.【解答】解:设销售单价定为x元(x≥10),每天所获利润为y元,则y=[100﹣10(x﹣10)]•(x﹣8)=﹣10x2+280x﹣1600=﹣10(x﹣14)2+360所以将销售定价定为14元时,每天所获销售利润最大,且最大利润是360元25.已知:关于x的方程2x2+kx﹣1=0.(1)求证:方程有两个不相等的实数根;(2)若方程的一个根是﹣1,求另一个根及k值.【考点】解一元二次方程﹣因式分解法;根与系数的关系.【分析】若方程有两个不相等的实数根,则应有△=b2﹣4ac>0,故计算方程的根的判别式即可证明方程根的情况,第二小题可以直接代入x=﹣1,求得k的值后,解方程即可求得另一个根.【解答】证明:(1)∵a=2,b=k,c=﹣1∴△=k2﹣4×2×(﹣1)=k2+8,∵无论k取何值,k2≥0,∴k2+8>0,即△>0,∴方程2x2+kx﹣1=0有两个不相等的实数根.解:(2)把x=﹣1代入原方程得,2﹣k﹣1=0∴k=1∴原方程化为2x2+x﹣1=0,解得:x1=﹣1,x2=,即另一个根为.26.根据下列条件求m的取值范围.(1)函数y=(m+3)x2,当x>0时,y随x的增大而减小,当x<0时,y随x 的增大而增大;(2)函数y=(2m﹣1)x2有最小值;(3)抛物线y=(m+2)x2与抛物线y=﹣x2的形状相同.【考点】二次函数的性质.【分析】(1)由当x>0时,y随x的增大而减小,当x<0时,y随x的增大而增大,可知m+3<0,进一步求得m的取值范围即可;(2)二次函数有最小值,说明抛物线开口向上,即2m﹣1>0,进一步求得m 的取值范围即可;(3)两个抛物线的形状相同,说明二次项系数相同,即m+2=﹣,求得m的数值即可.【解答】解:(1)∵函数y=(m+3)x2,当x>0时,y随x的增大而减小,当x <0时,y随x的增大而增大,∴m+3<0,解得m<﹣3;(2)∵函数y=(2m﹣1)x2有最小值,∴2m﹣1>0,解得:m>;(3)∵抛物线y=(m+2)x2与抛物线y=﹣x2的形状相同,∴m+2=﹣,解得:m=﹣.2017年3月1日。

2017——2018年度第一学期九年级数学期中测试题

2017——2018年度第一学期九年级数学期中测试题

2017——2018年度第一学期九年级数学期中测试题一、选择题(本大题共12小题,共36.0分)1.如图所示的几何体的俯视图为()A.B.C.D.2.对于反比例函数y =,下列说法正确的是()A. 图象经过(1,-1)B. 图象位于二、四象限C. 图象是中心对称图形D. y随x的增大而减小3.共甲、乙、丙、丁4名三好学生中随机抽取2名学生担任升旗手,则抽取的2名学生是甲和乙的概率为()A.B.C.D.4.下列命题正确的是()A. 邻角相等的四边形是菱形B. 有一组邻边相等的四边形是菱形C. 对角线互相垂直的四边形是菱形D. 对角线互相垂直平分的四边形是菱形5.如图是小莹设计用手电来测量某古城墙高度的示意图.在点P处放一水平的平面镜,光线从点A出发经平面镜反射后,刚好射到古城墙CD的顶端C处.已知AB⊥BD,CD⊥BD.且测得AB=1.4米,BP=2.1米,PD=12米.那么该古城墙CD的高度是()A. 6米B. 8米C. 10米D. 12米6.若1-是方程x2-2x+c=0的一个根,则c的值为()A. -2B. 4-2C. 3-D. 1+7.如图,已知P是正方形ABCD对角线BD上一点,且BP=BC,则∠DCP的度数是()A. 45°B. 22.5°C. 67.5°D. 75°8.用16米长的铝制材料制成一个矩形窗框,使它的面积为9平方米,若设它的一边长为x,根据题意可列出关于x的方程为()A. x(x+8)=9B. x(8-x)=9C. x(16-x)=9D. x(16-2x)=99.关于x的一元二次方程(a-1)x2+3x-2=0有实数根,则a的取值范围是()A.B.C. 且a≠1D. 且a≠110.折叠矩形ABCD,使点D落在BC边上的点F处,已知AB=8,BC=10,则CF等于()A. 4B. 3C. 2D. 111.如图,点D,E分别在△ABC的AB,AC边上,增加下列条件中的一个:①∠AED=∠B,②∠ADE=∠C ,③,④,⑤AC2=AD•AE,使△ADE与△ACB一定相似的有()A. ①②④B. ②④⑤C. ①②③④D. ①②③⑤12.如图,P是边长为1的正方形ABCD的对角线BD上的一点,点E是AB的中点,则PA+PE的最小值是()A.B.C.D.二、填空题(本大题共8小题,共24.0分)13.方程x(x-2)+2x-4=0的解是______ .14.在平面直角坐标系中,△ABC顶点A的坐标为(2,3),若以原点O为位似中心,画△ABC的位似图形△A′B′C′,使△ABC与△A′B′C′的相似比等于2:1,则点A′的坐标______ .15.已知=,则= ______ .16.从三个不同方向看一个几何体,得到的平面图形如图所示,则这个几何体是______ .17.如图,P是菱形ABCD对角线BD上的一点,PE⊥BC于点E,PE=4cm,则点P到直线AB的距离等于______ cm.18.关于x的一元二次方程x2+2x+k+1=0的实数解是x1和x2,如果x1+x2-x1x2<-1,且k为整数,则k的值为______ .19.如图,直线y=x+2与反比例函数y =的图象在第一象限交于点P,若OP =,则k的值为______ .20.从2,3,4这三个数字中,任意抽取两个不同数字组成一个两位数,则这个两位数能被4整除的概率是______ .三、计算题(本大题共2小题,共8.0分)21.(1)3x(x-3)=2(x-3)(2)(2-x)2+x2=4.四、解答题(本大题共5小题,共40.0分)22.(8分)为了增强中学生的体质,某校食堂每天都为学生提供一定数量的水果,学校李老师为了了解学生喜欢吃哪种水果,进行了抽样调查,调查分为五种类型:A喜欢吃苹果的学生;B喜欢吃桔子的学生;C.喜欢吃梨的学生;D.喜欢吃香蕉的学生;E喜欢吃西瓜的学生,并将调查结果绘制成图1和图2 的统计图(不完整).请根据图中提供的数据解答下列问题:(1)求此次抽查的学生人数;(2)将图2补充完整,并求图1中的x;(3)现有5名学生,其中A类型3名,B类型2名,从中任选2名学生参加体能测试,求这两名学生为同一类型的概率(用列表法或树状图法)23.(8分)某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出600千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销量减少15千克,现该商场要保证每天盈利9000元,同时又要使顾客得到实惠,那么每千克应涨价多少元?24.(12分)如图,△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC,交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.(1)判断OE与OF的大小关系?并说明理由;(2)当点O运动到何处时,四边形AECF是矩形?并说出你的理由;(3)在(2)的条件下,当△ABC满足什么条件时,四边形AECF是正方形.直接写出答案,不需说明理由.25.(12分)如图,四边形ABCD中,AD⊥DC,AC⊥CB,AC平分∠DAB,E为AB的中点.(1)求证:AC2=AB•AD;(2)求证:CE∥AD;(3)若AD=4,AB=6,求的值.26.(12分)如图,在平面直角坐标系中,一次函数y=mx+n(m≠0)的图象与反比例函数y =(k≠0)的图象交于第一、三象限内的A、B两点,与y轴交于点C,过点B作BM⊥x轴,垂足为M,BM=OM,OB =2,点A的纵坐标为4.(1)求该反比例函数和一次函数的解析式;(2)连接MC,求四边形MBOC的面积.。

2017-2018年度第一学期九年级数学期中考试卷(一)

2017-2018年度第一学期九年级数学期中考试卷(一)

密班级姓名 考号密 封 线 内 不 得 答题人教 2017-2018年度第一学期九年级数学期中考试卷(一)(全卷总分120分) 姓名 得分一、选择题(每小题3分,共30分)1.一元二次方程x (x ﹣2)=2﹣x 的根是( ) A .﹣1 B .2 C .1和2 D .﹣1和2 2.下列图形中,中心对称图形有( )A .4个B .3个C .2个D .1个3.关于x 的方程x 2+2kx ﹣1=0的根的情况描述正确的是( ) A .k 为任何实数,方程都没有实数根B .k 为任何实数,方程都有两个不相等的实数根C .k 为任何实数,方程都有两个相等的实数根D .k 取值不同实数,方程实数根的情况有三种可能4.关于x 的方程ax 2﹣(3a+1)x+2(a+1)=0有两个不相等的实根x 1、x2,且有x 1﹣x 1x 2+x 2=1﹣a ,则a 的值是( ) A .1 B .﹣1 C .1或﹣1 D .2 5.如图,将Rt △ABC (其中∠B=30°,∠C=90°)绕点A 按顺时针方向旋转到△AB 1C 1的位置,使得点C 、A 、B 1在同一条直线上,那么旋转角等于( )A .115°B .120°C .125°D .145°6.2015年向阳村农民人均收入为7200元,到2017年增长至8712元.这两年中,该村农民人均收入平均每年的增长率为( )A .10%B .15%C .20%D .25%7.抛物线y=ax 2+bx+c 与x 轴的两个交点为(﹣1,0),(3,0),其形状与抛物线y=﹣2x 2相同,则y=ax 2+bx+c 的函数关系式为( )A .y=﹣2x 2﹣x+3B .y=﹣2x 2+4x+5C .y=﹣2x 2+4x+8D .y=﹣2x 2+4x+68.如图,线段AB 是⊙O 的直径,弦CD 丄AB ,∠CAB=20°,则∠AOD 等于( ) A .160° B .150° C .140° D .120°9.如图,△ABC 的边AC 与⊙O 相交于C 、D 两点,且经过圆心O ,边AB 与⊙O 相切,切点为B .已知∠A=30°,则∠C 的大小是( )A .30°B .45°C .60°D .40°2与y 的部分对应值如下表: (1)ac <0;(2)当x >1时,y 的值随x 值的增大而减小.(3)3是方程ax 2+(b ﹣1)x+c=0的一个根;(4)当﹣1<x <3时,ax 2+(b ﹣1)x+c >0. 其中正确的个数为( )A .4个B .3个C .2个D .1个二、填空题(每小题3分,共18分)11.若关于x 的一元二次方程x 2﹣2x ﹣k=0没有实数根,则k 的取值范围是__________. 12.已知一元二次方程x 2﹣3x ﹣3=0的两根为a 与b ,则的值是__________.13.如图,AB 是⊙O 的一条弦,OD ⊥AB ,垂足为C ,交⊙O 于点D ,点E 在⊙O 上.若OC =3,OA =5,AB 的长为 ..14.如图所示,在△ABC 中,∠B=40°,将△ABC 绕点A 逆时针旋转至△ADE 处,使点B 落在BC 延长线上的D 点处,∠BDA=45°,则∠BDE=__________.15.如图,点A 、B 、P 在⊙O 上,∠APB=50°,若M 是⊙O 上的动点,则等腰△ABM 顶角的度数为__________.16.已知二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,给出以下结论:①b 2>4ac ;②abc >0;③2a ﹣b=0;④8a+c <0;⑤9a+3b+c <0. 其中结论正确的是__________.(填正确结论的序号)三、解答题(共72分)17.解方程(1)x 2﹣2x ﹣1=0.(2)(x ﹣1)2+2x (x ﹣1)=0.18试说明不论x ,y 取何值,代数式x 2+y 2+6x ﹣4y +15的值总是正数 19.如图,四边形ABCD 是正方形,△ADF 按顺时针方向旋转一定角度后得到△ABE ,若AF=4.AB=7. (1)旋转中心为__________;旋转角度为__________; (2)求DE 的长度;(3)指出BE 与DF 的关系如何?并说明理由.20某校团委准备举办学生绘画展览,为了美化画面,在长30cm 、宽20cm 的矩形画面四周镶上宽度相等的彩纸,并使彩纸和画的面积和恰好是原画的面积的2倍,求彩纸的宽度.21如图,四边形ABCD 内接于⊙O ,点E 在对角线AC 上,EC=BC=DC . (1)若∠CBD=39°,求∠BAD 的度数; (2)求证:∠1=∠2.22在体育测试时,初三的一名高个子男同学推铅球,已知铅球所经过的路线是某个二次函数图象的一部分,如图所示,如果这个男同学的出手处A 点的坐标(0,2),铅球路线的最高处B 点的坐标为(6,5).(1)求这个二次函数的解析式;(2)该男同学把铅球推出去多远?(精确到0.01米,=3.873)23某企业设计了一款工艺品,每件的成本是50销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5销售单价不得低于成本(1)求每天的销售利润y (元)与销售单价x (元)之间的函数关系式; (2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?24.如图,AD 为△ABC 外接圆的直径,AD ⊥BC ,垂足为点F ,∠ABC 的平分线交AD 于点BD ,CD .(1)求证:BD=CD ;(2)请判断B ,E ,C 三点是否在以D 为圆心,以DB 为半径的圆上?并说明理由.25.如图,抛物线y=x 2+bx+c 经过点(1,﹣4)和(﹣2,5),请解答下列问题:(1)求抛物线的解析式; (2)若与x 轴的两个交点为A ,B ,与y 轴交于点C .在该抛物线上是否存在点D ,使得△ABC 全等?若存在,求出D 点的坐标;若不存在,请说明理由密班级姓名 考号密 封 线 内 不 得 答 题期中数学试卷解析一、选择题:(每小题3分,本题满分共36分,)下列每小题中有四个备选答案,其中只有一个是符合题意的,把正确答案前字母序号填在下面表格相应的题号下. 1.一元二次方程x (x ﹣2)=2﹣x 的根是( ) A .﹣1 B .2 C .1和2 D .﹣1和2 【考点】解一元二次方程-因式分解法. 【专题】计算题.【分析】先移项得到x (x ﹣2)+(x ﹣2)=0,然后利用提公因式因式分解,最后转化为两个一元一次方程,解方程即可.【解答】解:x (x ﹣2)+(x ﹣2)=0, ∴(x ﹣2)(x+1)=0, ∴x ﹣2=0或x+1=0, ∴x 1=2,x 2=﹣1. 故选D .【点评】本题考查了运用因式分解法解一元二次方程的方法:利用因式分解把一个一元二次方程化为两个一元一次方程.2.下列图形中,中心对称图形有( )A .4个B .3个C .2个D .1个 【考点】中心对称图形.【分析】根据中心对称图形的定义和各图的特点即可求解.【解答】解:第四个图只是轴对称图形,第1、第2和第3个是中心对称图形. 中心对称图形有3个. 故选:B .【点评】本题考查中心对称图形的概念:绕对称中心旋转180度后所得的图形与原图形完全重合.3.关于x 的方程x 2+2kx ﹣1=0的根的情况描述正确的是( ) A .k 为任何实数,方程都没有实数根B .k 为任何实数,方程都有两个不相等的实数根C .k 为任何实数,方程都有两个相等的实数根D .k 取值不同实数,方程实数根的情况有三种可能 【考点】根的判别式.【分析】先计算判别式的值得到△=4k 2+4,根据非负数的性质得△>0,然后根据判别式的意义进行判断.【解答】解:△=4k 2﹣4×(﹣1)=4k 2+4,∵4k 2≥0,∴4k 2+4>0∴方程有两个不相等的实数根. 故选B .【点评】本题考查了一元二次方程ax 2+bx+c=0(a ≠0)的根的判别式△=b 2﹣4ac :当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.4.关于x 的方程ax 2﹣(3a+1)x+2(a+1)=0有两个不相等的实根x 1、x 2,且有x 1﹣x 1x 2+x 2=1﹣a ,则a 的值是( ) A .1 B .﹣1 C .1或﹣1 D .2 【考点】根与系数的关系;根的判别式. 【专题】计算题;压轴题.【分析】根据根与系数的关系得出x 1+x 2=﹣,x 1x 2=,整理原式即可得出关于a 的方程求出即可. 【解答】解:依题意△>0,即(3a+1)2﹣8a (a+1)>0,即a 2﹣2a+1>0,(a ﹣1)2>0,a ≠1,∵关于x 的方程ax 2﹣(3a+1)x+2(a+1)=0有两个不相等的实根x 1、x 2,且有x 1﹣x 1x 2+x 2=1﹣a , ∴x 1﹣x 1x 2+x 2=1﹣a , ∴x 1+x 2﹣x 1x 2=1﹣a , ∴﹣=1﹣a , 解得:a=±1,又a ≠1,∴a=﹣1. 故选:B .【点评】此题主要考查了根与系数的关系,由x 1﹣x 1x 2+x 2=1﹣a ,得出x 1+x 2﹣x 1x 2=1﹣a 是解决问题的关键.5.如图,将Rt △ABC (其中∠B=30°,∠C=90°)绕点A 按顺时针方向旋转到△AB 1C 1的位置,使得点C 、A 、B 1在同一条直线上,那么旋转角等于( )A .115°B .120°C .125°D .145°【考点】旋转的性质.【专题】计算题.【分析】先利用互余计算出∠BAC=60°,再根据旋转的性质得到∠BAB′等于旋转角,然后利用邻补角计算∠BAB′的度数即可.【解答】解:∵∠B=30°,∠C=90°,∴∠BAC=60°,∵Rt△ABC绕点A按顺时针方向旋转到△AB1C1的位置,使得点C、A、B1在同一条直线上,∴∠BAB′等于旋转角,且∠BAB′=180°﹣∠BAC=120°,∴旋转角等于120°.故选B.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.6.2015年向阳村农民人均收入为7200元,到2017年增长至8712元.这两年中,该村农民人均收入平均每年的增长率为( )A.10% B.15% C.20% D.25%【考点】一元二次方程的应用.【专题】增长率问题.【分析】设该村人均收入的年平均增长率为x,2011年的人均收入×(1+平均增长率)2=2013年人均收入,把相关数值代入求得年平均增长率.【解答】解:设该村人均收入的年平均增长率为x,由题意得:7200(1+x)2=8712,解得:x1=﹣2.1(不合题意舍去),x2=0.1=10%.答:该村人均收入的年平均增长率为10%.故选A.【点评】本题考查了一元二次方程的运用,应明确增长的基数,增长的次数,根据公式增长后的人均收入=增长前的人均收入×(1+增长率).7.抛物线y=ax2+bx+c与x轴的两个交点为(﹣1,0),(3,0),其形状与抛物线y=﹣2x2相同,则y=ax2+bx+c的函数关系式为( )A.y=﹣2x2﹣x+3 B.y=﹣2x2+4x+5 C.y=﹣2x2+4x+8 D.y=﹣2x2+4x+6【考点】待定系数法求二次函数解析式.【专题】压轴题.【分析】抛物线y=ax2+bx+c的形状与抛物线y=﹣2x2相同,a=﹣2.y=ax2+bx+c与x轴的两个交点为(﹣1,0),(3,0),利用交点式求表达式即可.【解答】解:根据题意a=﹣2,所以设y=﹣2(x﹣x1)(x﹣x2),求出解析式y=﹣2(x+1)(x﹣3),即是y=﹣2x2+4x+6.故选D.【点评】本题考查了抛物线的形状系数的关系,本题用交点式比较容易解.8.如图,线段AB是⊙O的直径,弦CD丄AB,∠CAB=20°,则∠AOD等于( )A.160°B.150°C.140°D.120°【考点】圆周角定理;垂径定理.【专题】压轴题.【分析】利用垂径定理得出=,进而求出∠BOD=40°,再利用邻补角的性质得出答案.【解答】解:∵线段AB是⊙O的直径,弦CD丄AB,∴=,∵∠CAB=20°,∴∠BOD=40°,∴∠AOD=140°.故选:C.【点评】此题主要考查了圆周角定理以及垂径定理等知识,得出∠BOD的度数是解题关键.9.对于二次函数y=(x﹣1)2+2的图象,下列说法正确的是( )A.开口向下 B.对称轴是x=﹣1C.顶点坐标是(1,2)D.与x轴有两个交点【考点】二次函数的性质.【专题】常规题型.【分析】根据抛物线的性质由a=1得到图象开口向上,根据顶点式得到顶点坐标为(1,2为直线x=1,从而可判断抛物线与x轴没有公共点.【解答】解:二次函数y=(x﹣1)2+2的图象开口向上,顶点坐标为(1,2抛物线与x轴没有公共点.故选:C.密班级姓名 考号密 封 线 内 不 得 答 题【点评】本题考查了二次函数的性质:二次函数y=ax 2+bx+c (a ≠0)的顶点式为y=a (x ﹣)2+,的顶点坐标是(﹣,),对称轴直线x=﹣b2a ,当a >0时,抛物线y=ax 2+bx+c (a ≠0)的开口向上,当a <0时,抛物线y=ax 2+bx+c (a ≠0)的开口向下.2与y 的部分对应值如下表: (1)ac <0;(2)当x >1时,y 的值随x 值的增大而减小.(3)3是方程ax 2+(b ﹣1)x+c=0的一个根;(4)当﹣1<x <3时,ax 2+(b ﹣1)x+c >0. 其中正确的个数为( )A .4个B .3个C .2个D .1个 【考点】二次函数的性质;二次函数图象与系数的关系;抛物线与x 轴的交点;二次函数与不等式(组). 【专题】压轴题;图表型.【分析】根据表格数据求出二次函数的对称轴为直线x=1.5,然后根据二次函数的性质对各小题分析判断即可得解.【解答】解:(1)由图表中数据可得出:x=1时,y=5,所以二次函数y=ax 2+bx+c 开口向下,a <0;又x=0时,y=3,所以c=3>0,所以ac <0,故(1)正确;(2)∵二次函数y=ax 2+bx+c 开口向下,且对称轴为x==1.5,∴当x ≥1.5时,y 的值随x 值的增大而减小,故(2)错误;(3)∵x=3时,y=3,∴9a+3b+c=3,∵c=3,∴9a+3b+3=3,∴9a+3b=0,∴3是方程ax 2+(b ﹣1)x+c=0的一个根,故(3)正确;(4)∵x=﹣1时,ax 2+bx+c=﹣1,∴x=﹣1时,ax 2+(b ﹣1)x+c=0,∵x=3时,ax 2+(b ﹣1)x+c=0,且函数有最大值,∴当﹣1<x <3时,ax 2+(b ﹣1)x+c >0,故(4)正确. 故选:B .【点评】本题考查了二次函数的性质,二次函数图象与系数的关系,抛物线与x 轴的交点,二次函数与不等式,有一定难度.熟练掌握二次函数图象的性质是解题的关键.二、填空题:(每题4分,共24分)11.若关于x 的一元二次方程x 2﹣2x ﹣k=0没有实数根,则k 的取值范围是k <﹣1. 【考点】根的判别式.【分析】根据关于x 的一元二次方程x 2﹣2x ﹣k=0没有实数根,得出△=4+4k <0,再进行计算即可.【解答】解:∵一元二次方程x 2﹣2x ﹣k=0没有实数根,∴△=(﹣2)2﹣4×1×(﹣k )=4+4k <0, ∴k 的取值范围是k <﹣1; 故答案为:k <﹣1.【点评】本题考查了一元二次方程ax 2+bx+c=0(a ≠0)的根的判别式△=b 2﹣4ac :当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.12.已知一元二次方程x 2﹣3x ﹣3=0的两根为a 与b ,则的值是﹣1.【考点】根与系数的关系. 【专题】计算题.【分析】根据根与系数的关系得到a+b=3,ab=﹣3,再把原式变形得到,然后利用整体代入的方法进行计算.【解答】解:根据题意得a+b=3,ab=﹣3,所以原式===﹣1.故答案为﹣1.【点评】本题考查了一元二次方程ax 2+bx+c=0(a ≠0)的根与系数的关系:若方程的两根为x 1,x 2,则x 1+x 2=﹣,x 1•x 2=.13.如图,AB 是⊙O 的一条弦,OD ⊥AB ,垂足为C ,交⊙O 于点D ,点E 在⊙O 上.若OC =3,OA =5,AB 的长为 ..在Rt △ACO 中,∵OC =3,OA =5,∴AC =OA 2-OC 2=4.又∵AC =BC =12AB ,∴AB =2AC =2×4=8.14.如图所示,在△ABC 中,∠B=40°,将△ABC 绕点A 逆时针旋转至△ADE 处,使点B 落在BC 延长线上的D 点处,∠BDA=45°,则∠BDE=85°.【考点】旋转的性质. 【专题】计算题.【分析】根据旋转的性质得∠ADE=∠B=40°,然后计算∠BDA+∠ADE 即可.【解答】解:∵△ABC 绕点A 逆时针旋转至△ADE 处,使点B 落在BC 延长线上的D 点处, ∴∠ADE=∠B=40°,∴∠BDE=∠BDA+∠ADE=45°+40°=85°. 故答案为85°.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.15.如图,点A 、B 、P 在⊙O 上,∠APB=50°,若M 是⊙O 上的动点,则等腰△ABM 顶角的度数为50°或80°或130°.【考点】圆周角定理;等腰三角形的性质.【分析】首先连接AM ,BM ,分别从若点M 在优弧APB 上与若点M 在劣弧AB 上,根据圆周角定理与等腰三角形的性质,即可求得等腰△ABM 顶角的度数. 【解答】解:连接AM ,BM , ①若点M 在优弧APB 上, ∴∠M=∠APB=50°,若AM=BM ,则等腰△ABM 顶角的度数为50°;若AM=AB 或BM=AB ,则等腰△ABM 顶角的度数为:180°﹣2∠M=80°; ②若点M 在劣弧AB 上,则∠M=180°﹣∠APB=130°, 此时∠M 是顶角.∴等腰△ABM 顶角的度数为:50°或80°或130°. 故答案为:50°或80°或130°.【点评】意掌握辅助线的作法,注意数形结合思想与分类讨论思想的应用.16.已知二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,给出以下结论:①b 2>4ac ; ②abc >0; ③2a ﹣b=0; ④8a+c <0; ⑤9a+3b+c <0.其中结论正确的是①②⑤.(填正确结论的序号)【考点】二次函数图象与系数的关系. 【专题】压轴题.【分析】由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断.【解答】解:①由图知:抛物线与x 轴有两个不同的交点,则△=b 2﹣4ac >0,∴b 2>4ac ,故②抛物线开口向上,得:a >0;抛物线的对称轴为x=﹣=1,b=﹣2a ,故b <0; 抛物线交y 轴于负半轴,得:c <0; 所以abc >0; 故②正确;③∵抛物线的对称轴为x=﹣=1,b=﹣2a , ∴2a+b=0,故2a ﹣b=0错误;④根据②可将抛物线的解析式化为:y=ax 2﹣2ax+c (a ≠0);由函数的图象知:当x=﹣2时,y >0;即4a ﹣(﹣4a )+c=8a+c >0,故④错误; ⑤根据抛物线的对称轴方程可知:(﹣1,0)关于对称轴的对称点是(3,0); 当x=﹣1时,y <0,所以当x=3时,也有y <0,即9a+3b+c <0;故⑤正确; 所以这结论正确的有①②⑤. 故答案为:①②⑤.密班级姓名 考号密 封 线 内 不 得 答 题【点评】此题主要考查了图象与二次函数系数之间的关系,会利用对称轴的范围求2a 与b 的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.三、解答下列各题(共72分) 17.解方程(1)x 2﹣2x ﹣1=0.(2)(x ﹣1)2+2x (x ﹣1)=0.【考点】解一元二次方程-因式分解法;解一元二次方程-配方法.【分析】(1)方程常数项移到右边,两边加上1变形后,开方即可求出解;(2)方程左边分解因式后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.【解答】解:(1)方程移项得:x 2﹣2x=1,配方得:x 2﹣2x+1=2,即(x ﹣1)2=2, 开方得:x ﹣1=±,则x 1=1+,x 2=1﹣;(2)分解因式得:(x ﹣1)[(x ﹣1)+2x ]=0, 可得x ﹣1=0或3x ﹣1=0,解得:x 1=1,x 2=.【点评】此题考查了解一元二次方程﹣因式分解法,以及配方法,熟练掌握各种解法是解本题的关键. 18试说明不论x ,y 取何值,代数式x 2+y 2+6x ﹣4y +15的值总是正数. 【考点】配方法的应用;非负数的性质:偶次方.【分析】此题考查了配方法求最值,此题可化为2个完全平方式与一个常数的和的形式. 【解答】解:将原式配方得, (x ﹣2)2+(y +3)2+2, ∵它的值总不小于2;∴代数式x 2+y 2+6x ﹣4y +15的值总是正数.【点评】此题考查了配方法的应用,解题的关键是认真审题,准确配方.19.如图,四边形ABCD 是正方形,△ADF 按顺时针方向旋转一定角度后得到△ABE ,若AF=4.AB=7. (1)旋转中心为点A ;旋转角度为90°;(2)求DE 的长度;(3)指出BE 与DF 的关系如何?并说明理由.【考点】旋转的性质;正方形的性质.【分析】(1)根据旋转的性质,点A 为旋转中心,对应边AB 、AD 的夹角为旋转角; (2)根据旋转的性质可得AE=AF ,AD=AB ,然后根据DE=AD ﹣AE 计算即可得解;(3)根据旋转可得△ABE 和△ADF 全等,根据全等三角形对应边相等可得BE=DF ,全等三角形对应角相等可得∠ABE=∠ADF ,然后求出∠ABE+∠F=90°,判断出BE ⊥DF . 【解答】解:(1)旋转中心为点A ,旋转角为∠BAD=90°;(2)∵△ADF 按顺时针方向旋转一定角度后得到△ABE , ∴AE=AF=4,AD=AB=7, ∴DE=AD ﹣AE=7﹣4=3;(3)BE 、DF 的关系为:BE=DF ,BE ⊥DF .理由如下: ∵△ADF 按顺时针方向旋转一定角度后得到△ABE , ∴△ABE ≌△ADF ,∴BE=DF ,∠ABE=∠ADF , ∵∠ADF+∠F=180°﹣90°=90°, ∴∠ABE+∠F=90°, ∴BE ⊥DF ,∴BE 、DF 的关系为:BE=DF ,BE ⊥DF .【点评】本题考查了旋转的性质,正方形的性质,是基础题,熟记旋转变换只改变图形的位置不改变图形的形状与大小是解题的关键.20.某校团委准备举办学生绘画展览,为了美化画面,在长30cm 、宽20cm 的矩形画面四周镶上宽度相等的彩纸,并使彩纸和画的面积和恰好是原画的面积的2倍,求彩纸的宽度.考点: 一元二次方程的应用. 专题: 几何图形问题.分析:设彩纸的宽度为xcm,镶上彩纸过后的长为(30+2x)cm,宽为(20+2x)cm,根据彩纸和画的面积和恰好是原画的面积的2倍建立方程求出其解即可.解答:解:设彩纸的宽度为xcm,镶上彩纸过后的长为(30+2x)cm,宽为(20+2x)cm,由题意,得(30+2x)(20+2x)=2×30×20,解得:x1=﹣30(舍去),x2=5.答:彩纸的宽度为5cm.点评:本题考查了矩形的面积公式的运用,列一元二次方程解实际问题的运用,一元二次方程的解法的运用,解答时根据彩纸和画的面积和恰好是原画的面积的2倍建立方程是关键.21如图,四边形ABCD内接于⊙O,点E在对角线AC上,EC=BC=DC.(1)若∠CBD=39°,求∠BAD的度数;(2)求证:∠1=∠2.【考点】圆周角定理;圆心角、弧、弦的关系.【专题】计算题.【分析】(1)根据等腰三角形的性质由BC=DC得到∠CBD=∠CDB=39°,再根据圆周角定理得∠BAC=∠CDB=39°,∠CAD=∠CBD=39°,所以∠BAD=∠BAC+∠CAD=78°;(2)根据等腰三角形的性质由EC=BC得∠CEB=∠CBE,再利用三角形外角性质得∠CEB=∠2+∠BAE,则∠2+∠BAE=∠1+∠CBD,加上∠BAE=∠CBD,所以∠1=∠2.【解答】(1)解:∵BC=DC,∴∠CBD=∠CDB=39°,∵∠BAC=∠CDB=39°,∠CAD=∠CBD=39°,∴∠BAD=∠BAC+∠CAD=39°+39°=78°;(2)证明:∵EC=BC,∴∠CEB=∠CBE,而∠CEB=∠2+∠BAE,∠CBE=∠1+∠CBD,∴∠2+∠BAE=∠1+∠CBD,∵∠BAE=∠BDC=∠CBD,∴∠1=∠2.于这条弧所对的圆心角的一半.也考查了等腰三角形的性质.22一部分,如图所示,如果这个男同学的出手处A点的坐标(0,2),铅球路线的最高处B (6,5).(1)求这个二次函数的解析式;(2)该男同学把铅球推出去多远?(精确到0.01米,=3.873)考点:二次函数的应用.分析:(1)由最高点的坐标可以设得二次函数的顶点坐标式,再将(0,2(2)由(1)求得的函数解析式,令y=0,求得的x的正值即为铅球推出的距离.解答:解:(1)设二次函数的解析式为y=a(x﹣h)2+k,由于顶点坐标为(6,5),∴y=a (x﹣6)2+5.又A(0,2)在抛物线上,∴2=62•a+5,解得:a=﹣.∴二次函数的解析式为y=﹣(x﹣6)2+5,整理得:y=﹣x2+x+2.(2)当y=0时,﹣x2+x+2=0.x=6+2,x=6﹣2(不合题意,舍去).密班级姓名 考号密 封 线 内 不 得 答 题∴x=6+2≈13.75(米). 答:该同学把铅球抛出13.75米.点评: 本题考查了二次函数在实际生活中的应用,重点是函数解析式的求法.23.某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本(1)求每天的销售利润y (元)与销售单价x (元)之间的函数关系式; (2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?考点: 二次函数的应用. 专题: 销售问题.分析: (1)根据“利润=(售价﹣成本)×销售量”列出方程;(2)把(1)中的二次函数解析式转化为顶点式方程,利用二次函数图象的性质进行解答. 解答: 解:(1)y=(x ﹣50)[50+5(100﹣x )] =(x ﹣50)(﹣5x+550)=﹣5x 2+800x ﹣27500所以y=﹣5x 2+800x ﹣27500(50≤x ≤100);(2)y=﹣5x 2+800x ﹣27500=﹣5(x ﹣80)2+4500 ∵a=﹣5<0,∴抛物线开口向下.∵50≤x ≤100,对称轴是直线x=80,∴当x=80时,y 最大值=4500;即销售单价为80元时,每天的销售利润最大,最大利润是4500元.点评: 此题题考查二次函数的实际应用.为数学建模题,借助二次函数解决实际问题.24.如图,AD 为△ABC 外接圆的直径,AD ⊥BC ,垂足为点F ,∠ABC 的平分线交AD 于点E ,连接BD ,CD .(1)求证:BD=CD ;(2)请判断B ,E ,C 三点是否在以D 为圆心,以DB 为半径的圆上?并说明理由.【考点】确定圆的条件;圆心角、弧、弦的关系.【专题】证明题;探究型.【分析】(1)利用等弧对等弦即可证明.(2)利用等弧所对的圆周角相等,∠BAD=∠CBD 再等量代换得出∠DBE=∠DEB ,从而证明DB=DE=DC ,所以B ,E ,C 三点在以D 为圆心,以DB 为半径的圆上. 【解答】(1)证明:∵AD 为直径,AD ⊥BC , ∴由垂径定理得:∴根据圆心角、弧、弦之间的关系得:BD=CD .(2)解:B ,E ,C 三点在以D 为圆心,以DB 为半径的圆上. 理由:由(1)知:,∴∠1=∠2, 又∵∠2=∠3, ∴∠1=∠3,∴∠DBE=∠3+∠4,∠DEB=∠1+∠5, ∵BE 是∠ABC 的平分线, ∴∠4=∠5,∴∠DBE=∠DEB , ∴DB=DE .由(1)知:BD=CD ∴DB=DE=DC .∴B ,E ,C 三点在以D 为圆心,以DB 为半径的圆上.【点评】本题主要考查等弧对等弦,及确定一个圆的条件.25.如图,抛物线y=x 2+bx+c 经过点(1,﹣4)和(﹣2,5),请解答下列问题: (1)求抛物线的解析式; (2)若与x 轴的两个交点为A ,B ,与y 轴交于点C .在该抛物线上是否存在点D ,使得△ABC 与△ABD 全等?若存在,求出D 点的坐标;若不存在,请说明理由注:抛物线y=ax2+bx+c的对称轴是x=﹣.【考点】二次函数综合题.【分析】(1)由抛物线y=x2+bx+c经过点(1,﹣4)和(﹣2,5),利用待定系数法即可求得此抛物线的解析式;(2)首先由抛物线y=ax2+bx+c的对称轴是x=﹣,即可求得此抛物线的对称轴,根据轴对称的性质,点C关于x=1的对称点D即为所求,利用SSS即可判定△ABC≌△BAD,又由抛物线的与y轴交于点C,即可求得点C的坐标,由对称性可求得D点的坐标.【解答】解:(1)∵抛物线y=x2+bx+c经过点(1,﹣4)和(﹣2,5),∴,解得:.故抛物线的解析式为:y=x2﹣2x﹣3.(2)存在.∵抛物线y=x2﹣2x ﹣3的对称轴为:x=﹣=1,∴根据轴对称的性质,点C关于x=1的对称点D即为所求,此时,AC=BD,BC=AD,在△ABC和△BAD中,∵,∴△ABC≌△BAD(SSS).在y=x2﹣2x﹣3中,令x=0,得y=﹣3,则C(0,﹣3),D(2,﹣3).【点评】数的对称性.此题难度适中,注意掌握数形结合思想与方程思想的应用.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(图1)
2017—2018学年度第一学期期中测试(试题)
九年级 数学
本试卷共4页,25小题,满分120分,考试时间100分钟.
一、选择题(本大题10小题,每小题3分,共30分) 1.以-3和2为根的一元二次方程是( )
A.x 2-x -6=0
B. x 2+x +6=0
C. x 2+x -6=0
D. x 2-x +6=0 2.用配方法解下列方程时,配方错误的是( ) A.x 2+2x -99=0化为(x +1)2=100 B.2x 2-7x -4=0化为(x -74)2=8116 C.x 2+8x +9=0化为(x +4)2=25 D.3x 2-4x -2=0化为(x -23)2=109
3.关于x 的一元二次方程x 2-3x +m=0有实数根,则实数m 的取值范围为( )
A.m ≥94
B.m ≤94
C.m=94
D.m <-9
4
4.抛物线的y=x 2-8x-20的顶点坐标是( )
A .(-20,-8)
B . (-8,-20)
C . (4,36)
D .(36,4) 5.方程x 2=6x 的解是( )
A .x=6
B .x=0
C .x 1=-6,x 2=0
D .x 1=6,x 2=0 6.抛物线y=x 2
-8x+c 的最小值是0,那么c 的值是 ( ) A .4 B .-4 C . 16 D .-16
7.对于抛物线22(1)y x =---10下列说法正确的是( ) A .开口向上 B .对称轴是直线 x=1 C .顶点坐标是 (-1,0) D .当x =1时,0y 最大= 8.已知函数223y x x =+-的图象如图1所示,根据图中提供的信息,可求得使y ≤0成立的x 的取值范围是( ) A .3x ≤- B . 1x ≥ C .31x -≤≤ D .3x ≤或1x ≥
9.在下列图形中,既是轴对称图形,又是中心对称图形的是( )
10. 已知某大学的校门是一抛物线形水泥建筑物,大门的地面宽度为8m ,两侧距地面4m 高处各有一个挂校名横匾用的铁环,两铁环的水平距离为6m ,则校门的高为(精确到0.1m ,水泥建筑物厚度忽略不计)( )
A.9.2m
B.9.1m
C.9m
D.5.1m
二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上。

11.如果把钟表的指针看做三角形OAB ,它绕O 点按顺时针方向旋转得到△OEF(右图),在这个旋转过程中,旋转中心是 ,旋转角是 。

12.将抛物线y=(x -3)2
+1先向右平移2个单位,再向下平移5个单位后,得到的抛物线解析式为
13. 抛物线y=x 2-3x+2与y 轴的交点坐标是 ,对称轴是 。

14.对于抛物线y=x 2+2x-1,当x 时,y 随x 的增大而减小。

15.已知抛物线y=a x 2+b x +c(a ≠0)与x 轴交于A ,B 两点,若点A 的坐标为(-2,0),抛物线的对称轴为直线x =2,则线段AB 的长为 . 16.已知x 1、x 2是方程x 2+3x-2=0的两个根,则
2
11
1x x += 。

三、解答题(一)(本大题3小题,每小题6分,共18分)。

17.解方程:x 2-6x -18=0; 18.解方程:3x 2-5(2x +1)=0 19.关于x 的方程0)1()1()3(1
22
=+--+---m x m x m m m 是一元二次方程,
求m 的值。

四、解答题(二)(本大题3小题,每小题7分,共21分)
20.四边形ABCD 是正方形,△ADF 顺时针旋转一定角度后得到△ABE ,如图所示,如果AF=4,AB=7,求:
(1)指出旋转中心和旋转角度;(2)求DE 的长度; (3)BE 与DF 的关系如何?请加以证明。

21.若一个二次函数图象的对称轴为直线x=-3,y
最值
=6,
且经过点(﹣2,4),⑴求该二次函数的解析式。

⑵求该抛物线与x 轴的交点坐标。

22.水果店张阿姨以每斤2元的价格购进某种水果若干斤, 然后以每斤4元的价格出售,每天可售出100斤.通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出20斤.为了保证每天至少售出260斤,张阿姨决定降价销售. (1)若将这种水果每斤的售价降低x 元,则每天的销售量是 斤(用含x 的代数式表示);
(2)销售这种水果要想每天盈利300元,张阿姨需将每斤降至多少元? 五、解答题(三)(本大题3小题,每小题9分,共27分) 23.已知关于x 的一元二次方程x 2-(2m+3)x+m 2+2=0.
(1)若方程有实数根,求实数m 的取值范围;(2)若1x ,2x 为方程的两个实数根,且满足x 12+x 22=31+|x 1x 2|,求实数m 的值.
24.如图隧道的截面由抛物线和长方形构成,长方形的长是12m ,宽是4m .按照图
中所示的直角坐标系,抛物线可以用c bx x y ++-=26
1
表示,且抛物线上的点C 到
OB 的水平距离为3m ,到地面OA 的距离为
2
17
m 。

(1)求抛物线的函数关系式,并计算出拱顶D 到地面OA 的距离;(2)一辆货运
汽车载一长方体集装箱后高为6m ,宽为4m ,如果隧道内设双向车道,那么这辆货车能否安全通过?(3)在抛物线型拱璧上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m ,那么两排灯的水平距离最小是多少米?
25. 如图,抛物线25y ax bx =+-(0a ≠)经过点(4,5)A -,与
x 轴的负半轴交于点B ,与y 轴交于点C ,且5OC OB =,抛物线的顶点为D .
(1)求这条抛物线的表达式;(2)连结AB 、BC 、CD 、DA ,求四边形ABCD 的面积;(3)在抛物线上是否存在点E ,并且使三角形OCE 的面积为10,如果存在,求E 点的坐标,如果不存在,说明理由。

第24图。

相关文档
最新文档