2.1.3 第1课时 函数的综合练习题和答案案
苏教版必修一第2章函数作业题及答案解析2.1.3第1课时

2.1.3 函数的简单性质第1课时 函数的单调性 课时目标 1.理解函数单调性的性质.2.掌握判断函数单调性的一般方法.1.单调性设函数y =f (x )的定义域为A ,区间I ⊆A .如果对于区间I 内的任意两个值x 1,x 2当x 1<x 2时,都有__________,那么就说y =f (x )在区间I 上是单调______,I 称为y =f (x )的单调________.如果对于区间I 内的任意两个值x 1,x 2,当x 1<x 2时,都有f (x 1)>f (x 2),那么就说y =f (x )在区间I 上是单调________,I 称为y =f (x )的单调________.2.a >0时,二次函数y =ax 2的单调增区间为________.3.k >0时,y =kx +b 在R 上是____函数.4.函数y =1x的单调递减区间为__________. 一、填空题1.定义在R 上的函数y =f (x +1)的图象如右图所示.给出如下命题:①f (0)=1;②f (-1)=1;③若x >0,则f (x )<0;④若x <0,则f (x )>0,其中正确的是________.(填序号)2.若(a ,b )是函数y =f (x )的单调增区间,x 1,x 2∈(a ,b ),且x 1<x 2,则f (x 1)________f (x 2).(填“>”、“<”或“=”)3.f (x )在区间[a ,b ]上单调,且f (a )·f (b )<0,则方程f (x )=0在区间[a ,b ]上________.(填序号)①至少有一个根;②至多有一个根;③无实根;④必有唯一的实根.4.函数y =x 2-6x +10的单调增区间是________.5.如果函数f (x )在[a ,b ]上是增函数,对于任意的x 1,x 2∈[a ,b ](x 1≠x 2),则下列结论中正确的是______________________________________.①f (x 1)-f (x 2)x 1-x 2>0; ②(x 1-x 2)[f (x 1)-f (x 2)]>0;③f (a )<f (x 1)<f (x 2)<f (b );④x 1-x 2f (x 1)-f (x 2)>0. 6.函数y =x 2+2x -3的单调递减区间为________.7.设函数f (x )是R 上的减函数,若f (m -1)>f (2m -1),则实数m 的取值范围是________.8.函数f (x )=2x 2-mx +3,当x ∈[2,+∞)时是增函数,当x ∈(-∞,2]时是减函数,则f (1)=________.二、解答题9.画出函数y =-x 2+2|x |+3的图象,并指出函数的单调区间.10.已知f(x),g(x)在(a,b)上是增函数,且a<g(x)<b,求证:f(g(x))在(a,b)上也是增函数.11.已知f(x)=x2-1,试判断f(x)在[1,+∞)上的单调性,并证明.能力提升12.定义在R上的函数f(x)满足:对任意实数m,n总有f(m+n)=f(m)·f(n),且当x>0时,0<f(x)<1.(1)试求f(0)的值;(2)判断f(x)的单调性并证明你的结论.13.函数f(x)是定义在(0,+∞)上的减函数,对任意的x,y∈(0,+∞),都有f(x+y)=f(x)+f(y)-1,且f(4)=5.(1)求f(2)的值;(2)解不等式f(m-2)≤3.1.函数的单调区间必须是定义域的子集.因此讨论函数的单调性时,必须先确定函数的定义域.2.研究函数的单调性,必须注意无意义的特殊点,如函数f (x )=1x在(-∞,0)和(0, +∞)上都是减函数,但不能说函数f (x )=1x在定义域上是减函数. 3.求单调区间的方法:(1)图象法;(2)定义法;(3)利用已知函数的单调性.4.用单调性的定义证明函数的单调性分四个主要步骤:即“取值——作差变形——定号——判断”这四个步骤.若f (x )>0,则判断f (x )的单调性可以通过作比的方法去解决,即“取值——作比变形——与1比较——判断”.2.1.3 函数的简单性质第1课时 函数的单调性知识梳理1.f (x 1)<f (x 2) 增函数 增区间 减函数 减区间 2.[0,+∞)3.增 4.(-∞,0)和(0,+∞)作业设计1.①④2.<解析 由题意知y =f (x )在区间(a ,b )上是增函数,因为x 2>x 1,所以f (x 2)>f (x 1).3.④解析 ∵f (x )在[a ,b ]上单调,且f (a )·f (b )<0,∴当f (x )在[a ,b ]上单调递增,则f (a )<0,f (b )>0,当f (x )在[a ,b ]上单调递减,则f (a )>0,f (b )<0,故f (x )在区间[a ,b ]上必有x 0使f (x 0)=0且x 0是唯一的.4.[3,+∞)解析 如图所示,该函数的对称轴为x =3,根据图象可知函数在[3,+∞)上是递增的.5.①②④解析 由函数单调性的定义可知,若函数y =f (x )在给定的区间上是增函数,则x 1-x 2与f (x 1)-f (x 2)同号,由此可知,①、②、④正确;对于③,若x 1<x 2时,可有x 1=a 或x 2=b ,即f (x 1)=f (a )或f (x 2)=f (b ),故③不成立.6.(-∞,-3]解析 该函数的定义域为(-∞,-3]∪[1,+∞),函数f (x )=x 2+2x -3的对称轴为x =-1,由函数的单调性可知该函数在区间(-∞,-3]上是减函数.7.m >0解析 由f (m -1)>f (2m -1)且f (x )是R 上的减函数得m -1<2m -1,∴m >0.8.-3解析 f (x )=2(x -m 4)2+3-m 28, 由题意m 4=2,∴m =8.∴f (1)=2×12-8×1+3=-3.9.解 y =-x 2+2|x |+3=⎩⎪⎨⎪⎧ -x 2+2x +3 (x ≥0)-x 2-2x +3 (x <0)=⎩⎪⎨⎪⎧-(x -1)2+4 (x ≥0)-(x +1)2+4 (x <0). 函数图象如图所示.函数在(-∞,-1],[0,1]上是增函数,函数在[-1,0],[1,+∞)上是减函数.∴函数y =-x 2+2|x |+3的单调增区间是(-∞,-1]和[0,1], 单调减区间是[-1,0]和[1,+∞).10.证明 设a <x 1<x 2<b ,∵g (x )在(a ,b )上是增函数,∴g (x 1)<g (x 2),且a <g (x 1)<g (x 2)<b ,又∵f (x )在(a ,b )上是增函数,∴f (g (x 1))<f (g (x 2)),∴f (g (x ))在(a ,b )上是增函数.11.解 函数f (x )=x 2-1在[1,+∞)上是增函数. 证明如下:任取x 1,x 2∈[1,+∞),且x 1<x 2,则f (x 2)-f (x 1)=x 22-1-x 21-1 =x 22-x 21x 22-1+x 21-1 =(x 2-x 1)(x 2+x 1)x 22-1+x 21-1. ∵1≤x 1<x 2,∴x 2+x 1>0,x 2-x 1>0,x 22-1+x 21-1>0.∴f (x 2)-f (x 1)>0,即f (x 2)>f (x 1),故函数f (x )在[1,+∞)上是增函数.12.解 (1)在f (m +n )=f (m )·f (n )中,令m =1,n =0,得f (1)=f (1)·f (0).因为f (1)≠0,所以f (0)=1.(2)函数f (x )在R 上单调递减.任取x 1,x 2∈R ,且设x 1<x 2.在已知条件f (m +n )=f (m )·f (n )中,若取m +n =x 2,m =x 1,则已知条件可化为f (x 2)=f (x 1)·f (x 2-x 1),由于x 2-x 1>0,所以0<f (x 2-x 1)<1.在f (m +n )=f (m )·f (n )中,令m =x ,n =-x ,则得f (x )·f (-x )=1.当x >0时,0<f (x )<1,所以f (-x )=1f (x )>1>0, 又f (0)=1,所以对于任意的x 1∈R 均有f (x 1)>0.所以f (x 2)-f (x 1)=f (x 1)[f (x 2-x 1)-1]<0,即f (x 2)<f (x 1).所以函数f (x )在R 上单调递减.13.解 (1)∵f (4)=f (2+2)=2f (2)-1=5,∴f (2)=3.(2)由f (m -2)≤3,得f (m -2)≤f (2).∵f (x )是(0,+∞)上的减函数,∴⎩⎪⎨⎪⎧m -2≥2m -2>0,解得m ≥4.∴不等式的解集为{m |m ≥4}.。
函数练习题及答案

函数练习题及答案函数练习题及答案函数作为数学中的重要概念,被广泛应用于各个领域。
在数学学习过程中,通过练习题的形式巩固和提高对函数的理解和运用能力是非常有效的方法。
本文将介绍一些常见的函数练习题及其答案,希望能对读者的数学学习有所帮助。
一、函数定义与性质题1. 已知函数f(x) = 2x + 3,求f(4)的值。
解答:将x = 4代入函数表达式中,得到f(4) = 2(4) + 3 = 11。
2. 函数f(x) = x^2 + 2x - 1的定义域是什么?解答:由于函数中存在x的平方项,所以定义域应满足x^2存在的条件,即实数集R。
3. 函数f(x) = 3x^2 - 4x + 1的图像是否对称于y轴?解答:对称于y轴的函数满足f(x) = f(-x)。
将函数中的x替换为-x,得到f(-x) = 3(-x)^2 - 4(-x) + 1 = 3x^2 + 4x + 1。
由于f(x) ≠ f(-x),所以函数的图像不对称于y轴。
二、函数图像与方程题1. 函数f(x) = x^3的图像在坐标系中的形状是什么?解答:函数f(x) = x^3是一个奇函数,其图像关于原点对称。
当x > 0时,f(x) > 0;当x < 0时,f(x) < 0。
因此,函数图像在坐标系中呈现出一种类似"S"形的形状。
2. 已知函数f(x) = x^2 - 4x + 3,求解方程f(x) = 0。
解答:将f(x)置为0,得到x^2 - 4x + 3 = 0。
通过因式分解或者求根公式,可以得到(x - 1)(x - 3) = 0,解得x = 1或x = 3。
三、函数与导数题1. 已知函数f(x) = x^3 - 2x^2 + x,求f'(x)。
解答:对函数f(x)进行求导,得到f'(x) = 3x^2 - 4x + 1。
2. 已知函数f(x) = e^x,求f''(x)。
高中数学(苏教版,必修一) 第二章函数 2.1.3第1课时 课时作业(含答案)

2.1.3 函数的简单性质第1课时 函数的单调性 课时目标 1.理解函数单调性的性质.2.掌握判断函数单调性的一般方法.1.单调性设函数y =f (x )的定义域为A ,区间I ⊆A .如果对于区间I 内的任意两个值x 1,x 2当x 1<x 2时,都有__________,那么就说y =f (x )在区间I 上是单调______,I 称为y =f (x )的单调________.如果对于区间I 内的任意两个值x 1,x 2,当x 1<x 2时,都有f (x 1)>f (x 2),那么就说y =f (x )在区间I 上是单调________,I 称为y =f (x )的单调________.2.a >0时,二次函数y =ax 2的单调增区间为________.3.k >0时,y =kx +b 在R 上是____函数.4.函数y =1x的单调递减区间为__________.一、填空题1.定义在R 上的函数y =f (x +1)的图象如右图所示.给出如下命题:①f (0)=1;②f (-1)=1;③若x >0,则f (x )<0;④若x <0,则f (x )>0,其中正确的是________.(填序号)2.若(a ,b )是函数y =f (x )的单调增区间,x 1,x 2∈(a ,b ),且x 1<x 2,则f (x 1)________f (x 2).(填“>”、“<”或“=”)3.f (x )在区间[a ,b ]上单调,且f (a )·f (b )<0,则方程f (x )=0在区间[a ,b ]上________.(填序号)①至少有一个根;②至多有一个根;③无实根;④必有唯一的实根.4.函数y =x 2-6x +10的单调增区间是________.5.如果函数f (x )在[a ,b ]上是增函数,对于任意的x 1,x 2∈[a ,b ](x 1≠x 2),则下列结论中正确的是______________________________________.①f (x 1)-f (x 2)x 1-x 2>0; ②(x 1-x 2)[f (x 1)-f (x 2)]>0;③f (a )<f (x 1)<f (x 2)<f (b );④x 1-x 2f (x 1)-f (x 2)>0. 6.函数y =x 2+2x -3的单调递减区间为________.7.设函数f (x )是R 上的减函数,若f (m -1)>f (2m -1),则实数m 的取值范围是________.8.函数f (x )=2x 2-mx +3,当x ∈[2,+∞)时是增函数,当x ∈(-∞,2]时是减函数,则f (1)=________.二、解答题9.画出函数y =-x 2+2|x |+3的图象,并指出函数的单调区间.10.已知f(x),g(x)在(a,b)上是增函数,且a<g(x)<b,求证:f(g(x))在(a,b)上也是增函数.11.已知f(x)=x2-1,试判断f(x)在[1,+∞)上的单调性,并证明.能力提升12.定义在R上的函数f(x)满足:对任意实数m,n总有f(m+n)=f(m)·f(n),且当x>0时,0<f(x)<1.(1)试求f(0)的值;(2)判断f(x)的单调性并证明你的结论.13.函数f(x)是定义在(0,+∞)上的减函数,对任意的x,y∈(0,+∞),都有f(x+y)=f(x)+f(y)-1,且f(4)=5.(1)求f(2)的值;(2)解不等式f(m-2)≤3.2.1.3 函数的简单性质第1课时 函数的单调性知识梳理1.f (x 1)<f (x 2) 增函数 增区间 减函数 减区间 2.[0,+∞)3.增 4.(-∞,0)和(0,+∞)作业设计1.①④2.<解析 由题意知y =f (x )在区间(a ,b )上是增函数,因为x 2>x 1,所以f (x 2)>f (x 1).3.④解析 ∵f (x )在[a ,b ]上单调,且f (a )·f (b )<0,∴当f (x )在[a ,b ]上单调递增,则f (a )<0,f (b )>0,当f (x )在[a ,b ]上单调递减,则f (a )>0,f (b )<0,故f (x )在区间[a ,b ]上必有x 0使f (x 0)=0且x 0是唯一的.4.[3,+∞)解析 如图所示,该函数的对称轴为x =3,根据图象可知函数在[3,+∞)上是递增的.5.①②④解析 由函数单调性的定义可知,若函数y =f (x )在给定的区间上是增函数,则x 1-x 2与f (x 1)-f (x 2)同号,由此可知,①、②、④正确;对于③,若x 1<x 2时,可有x 1=a 或x 2=b ,即f (x 1)=f (a )或f (x 2)=f (b ),故③不成立.6.(-∞,-3]解析 该函数的定义域为(-∞,-3]∪[1,+∞),函数f (x )=x 2+2x -3的对称轴为x =-1,由函数的单调性可知该函数在区间(-∞,-3]上是减函数.7.m >0解析 由f (m -1)>f (2m -1)且f (x )是R 上的减函数得m -1<2m -1,∴m >0.8.-3解析 f (x )=2(x -m 4)2+3-m 28, 由题意m 4=2,∴m =8.∴f (1)=2×12-8×1+3=-3.9.解 y =-x 2+2|x |+3=⎩⎪⎨⎪⎧ -x 2+2x +3 (x ≥0)-x 2-2x +3 (x <0)=⎩⎪⎨⎪⎧-(x -1)2+4 (x ≥0)-(x +1)2+4 (x <0). 函数图象如图所示.函数在(-∞,-1],[0,1]上是增函数,函数在[-1,0],[1,+∞)上是减函数.∴函数y =-x 2+2|x |+3的单调增区间是(-∞,-1]和[0,1], 单调减区间是[-1,0]和[1,+∞).10.证明 设a <x 1<x 2<b ,∵g (x )在(a ,b )上是增函数,∴g (x 1)<g (x 2),且a <g (x 1)<g (x 2)<b ,又∵f (x )在(a ,b )上是增函数,∴f (g (x 1))<f (g (x 2)),∴f (g (x ))在(a ,b )上是增函数.11.解 函数f (x )=x 2-1在[1,+∞)上是增函数. 证明如下:任取x 1,x 2∈[1,+∞),且x 1<x 2,则f (x 2)-f (x 1)=x 22-1-x 21-1=x 22-x 21x 22-1+x 21-1 =(x 2-x 1)(x 2+x 1)x 22-1+x 21-1. ∵1≤x 1<x 2,∴x 2+x 1>0,x 2-x 1>0,x 22-1+x 21-1>0.∴f (x 2)-f (x 1)>0,即f (x 2)>f (x 1),故函数f (x )在[1,+∞)上是增函数.12.解 (1)在f (m +n )=f (m )·f (n )中,令m =1,n =0,得f (1)=f (1)·f (0).因为f (1)≠0,所以f (0)=1.(2)函数f (x )在R 上单调递减.任取x 1,x 2∈R ,且设x 1<x 2.在已知条件f (m +n )=f (m )·f (n )中,若取m +n =x 2,m =x 1,则已知条件可化为f (x 2)=f (x 1)·f (x 2-x 1),由于x 2-x 1>0,所以0<f (x 2-x 1)<1.在f (m +n )=f (m )·f (n )中,令m =x ,n =-x ,则得f (x )·f (-x )=1.当x >0时,0<f (x )<1,所以f (-x )=1f (x )>1>0, 又f (0)=1,所以对于任意的x 1∈R 均有f (x 1)>0.所以f (x 2)-f (x 1)=f (x 1)[f (x 2-x 1)-1]<0,即f (x 2)<f (x 1).所以函数f (x )在R 上单调递减.13.解 (1)∵f (4)=f (2+2)=2f (2)-1=5,∴f (2)=3.(2)由f (m -2)≤3,得f (m -2)≤f (2).∵f (x )是(0,+∞)上的减函数,∴⎩⎪⎨⎪⎧ m -2≥2m -2>0,解得m ≥4.∴不等式的解集为{m |m ≥4}.。
精选最新《函数综合问题》单元测试完整考题(含答案)

2019年高一年级数学单元测试卷函数综合问题学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.函数()(1cos )sin f x x x =-在[,]ππ-的图像大致为 (2013年高考课标Ⅰ卷(文))2.已知函数()f x 的定义域为()1,0-,则函数()21f x -的定义域为(2013年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对)) (A)()1,1- (B)11,2⎛⎫- ⎪⎝⎭ (C)()-1,0 (D)1,12⎛⎫ ⎪⎝⎭3.对于正实数α,记M α为满足下述条件的函数()f x 构成的集合:12,x x ∀∈R 且21x x >,有212121()()()()x x f x f x x x αα--<-<-.下列结论中正确的是 ( )A .若1()f x M α∈,2()g x M α∈,则12()()f x g x M αα⋅⋅∈B .若1()f x M α∈,2()g x M α∈,且()0g x ≠,则12()()f x M g x αα∈ C .若1()f x M α∈,2()g x M α∈,则12()()f x g x M αα++∈D .若1()f x M α∈,2()g x M α∈,且12αα>,则12()()f x g x M αα--∈ 4.已知32a=,那么33log 82log 6-用a 表示是( ) A 、2a - B 、52a - C 、23(1)a a -+ D 、 23a a - 二、填空题5.某同学在借助题设给出的数据求方程lg x =2-x 的近似数(精确到0.1)时,设()f x =lg x +x -2,得出(1)f <0,且(2)f >0,他用“二分法”取到了4个x 的值,计算其函数值的正负,并得出判断:方程的近似解为x ≈1.8,那么他所取的4个值中的第二个值为 .6. 奇函数()[3,7]f x 在区间上是增函数,在区间[3,6]上的最大值为8,最小值为-1, 则2(6)(3)f f -+-= ▲ 。
《函数》练习题参考答案

《函数》练习题参考答案3.1.1映射 3.1.2一一对应1.唯一,从A 到B,f ∶A →B2.集合A.B 以及对应法则f,3.①②③④⑤4.A5.A6.B7.C8.A9.(1)是(2)是映射,是一一对应.(3)是 10.D3.1.3对等集合与可数集合3.1.4函数1.1︒正确,2︒正确,3︒正确,4︒正确.2.函数的定义域.对应法则和值域.3.解析法.图象法.列举法4.f (2)=22+3×2+1=115.解:不是同一函数,定义域.值域都不同6.解:f (1)=3×12-2=1 , f (-2)=-1 , f (0)=∏7.⑴ 解:要使函数有意义,必须: ⑵ 解:要使函数有意义,必须: 02≠-x 3x +2≥0 即 x ≠ 2 即 x ≥32- ∴函数21)(-=x x f 的定义域是: ∴函数23)(+=x x f 的定义域是 {}2|≠x x ⎭⎬⎫⎩⎨⎧-≥32|x x8.⑴解:不是同一函数,定义域不同⑵解:不是同一函数,定义域不同9.⑴解:要使函数有意义,必须: ⎩⎨⎧≠-≥+0201x x ⇒ ⎩⎨⎧≠-≥21x x∴函数23)(+=x x f 的定义域是: {}21|≠-≥x x x 且 ⑵解:要使函数有意义,必须:142≥-x 即: 33≤≤-x⑶解:要使函数有意义,必须: 011110110≠++≠+≠xx x ⇒ 2110-≠-≠≠x x x∴函数的定义域为:⎭⎬⎫⎩⎨⎧--≠∈21,1,0|x R x x 且3.2四种具有特殊性质的函数1.⑴f (x +T )=f (x )⑵存在常数k 〉0,使得对任意x ∈A,都有︱f (x )︱≤k. 2.{a ︱a<0} 3.⑴⑵(奇函数) ⑶⑷(偶函数) ⑸(即奇且偶函数)⑹(非奇非偶函数)4.y=f(x)在上[-5,-2],[1,3]是减函数,在(-2,1),(3,5)上是增函数5.证明:设x1,x2是R 上的任意两个实数,且x1<x2则 f(x1)-f(x2)=3(x1+2)-3(x2+2)=3(x1-x2) 由 x1<x2, 得 x1-x2<0 于是 f(x1)-f(x2)<0 即 f(x1)<f(x2)所以f(x)=3x+2在R 上是增函数6.解:定义域:⎩⎨⎧⎩⎨⎧≤≤--≤≥⇒≥-≥-1111010122x x x x x 或 ∴定义域为 x =±1 )(11)(22x f x x x f =--=- 且 f (±1) = 0 ∴此函数为即奇且偶函数7.解:定义域 {x |-1≤x ≤1} 在[-1,1]上任取x 1,x 2且x 1<x 2则2111)(x x f -= 2221)(x x f -= 则)(1x f -2221211)(x x x f ---==2221222111)1()1(xx x x -+----=222112122221212211))((11xx x x x x xx x x -+--+=-+--∵21x x < ∴012>-x x 另外,恒有0112221>+++x x ∴若-1≤x 1<x 2≤0 则 x 1+x 2<0 则)(1x f -0)(2<x f )(1x f <)(2x f 若 x 1<x 2≤1 则 x 1+x 2>0 则)(1x f -0)(2>x f )(1x f >)(2x f ∴ 在[-1,0]上f (x )为增函数,在[0,1]上为减函数.3.3.3反函数1. B2. C3. D4. A5. 16. {a|a 21-≤} 7. ⑴y=)4,(432≠∈--x R x x x ⑵ )3(1>--=x x y3.4 幂函数1. C2. C3. -0.14. >5. 96. π-67. ⑴< ⑵∵指数02<- 底数14.3>π ∴2-π<214.3- ⑶<8. ⑴x ≠3 ⑵{x ︳-4≦x,x≠-3} ⑶(0, ∞)9. -8ab 2/33.5 指数函数1. ⑴2. D3. D4. A5. ⑴× ⑵× ⑶√ 6⑴> ⑵> ⑶< 7. 由43-->a a ∵43->- ∴x a y =为增函数 ∴1>a 8. ⑴解:要使函数有意义,必须 01≥-x a , 1≤x a 当1>a 时, 0≤x 当10<<a 时, 0≥x . ⑵x ∈R3.6.1对数及其性质1. A2. B3. ⑴2 ⑵2 ⑶21⑷2- 4. 5-15. 设 x=81log 43 则81)3(4=x , 4433=x, ∴16=x6. =227. 证明: b m na mb n ab b a mn na m log lg lg lg lg log ===8. 解:由题意:218lg lg 4lg 8lg 3lg 4lg =⋅⋅m ∴3lg 21lg =m ∴3=m9. 解:∵ a 3 =2 ∴ a = log 23 ∴ log 6log 433-= 112log 32log 33-=-=a 3.6.3 对数函数及其图像和性质1. A2. {x|-1/2≤x }3. ⑴> ⑵< ⑶13.0log 7.0log 3.03.0=< ⑷>4. 解:∵522++x x 对一切实数都恒有4522≥++x x ∴函数定义域为R.5. ⑴当0<a<1时,函数y=log a x 在(0,+∞)上是减函数, ∵5.1<5.9 ∴log a 5.1>log a 5.9⑵当a>1时,函数y=log a x 在(0,+∞)上是增函数, ∵5.1<5.9 ∴log a 5.1<log a 5.96. ⑴{x ︳x≦1/3} ⑵{x ︳x>0,x≠1}7. 解: ⎪⎩⎪⎨⎧+<-+>+>+)33(32x 03)(3x 03-2x x 22x x 即:⎪⎩⎪⎨⎧<<-->><3211x -3x x x 或 不等式的解为:1<x<33.6.4 简单的指数方程和对数方程1. A2. A3. D4. log 235. 1/26. 3007. 解:x 的取值范围:2x+7>0,x>-7/2,2x+7=100,x=93/2,经检验:x=93/2是原方程的根.8. 解:x=79. 解:x 的取值范围:X>0 设Lgx=y,得:y=1;y=3. 所以x=10,x=1000经检验,x=10,x=1000是原方程的解.10. 证明:提示: ax=ln ax e ,再利用对数的性质,变形.。
【创新设计】高中数学(苏教版必修一)配套练习:2.1.3函数的简单性质习题课(含答案解析)

习题课课时目标 1.加深对函数的基本性质的理解.2.培养综合运用函数的基本性质解题的能力.1.若函数y =(2k +1)x +b 在R 上是减函数,则k 的取值范围为________. 2.定义在R 上的函数f(x)对任意两个不相等的实数a ,b ,总有-a -b>0成立,则必有________.(填序号) ①函数f(x)先增后减; ②函数f(x)先减后增; ③f(x)在R 上是增函数; ④f(x)在R 上是减函数.3.已知函数f(x)在(-∞,+∞)上是增函数,a ,b ∈R ,且a +b>0,则下列不等关系不一定正确的为________.(填序号) ①f(a)+f(b)>-f(a)-f(b); ②f(a)+f(b)<-f(a)-f(b); ③f(a)+f(b)>f(-a)+f(-b); ④f(a)+f(b)<f(-a)+f(-b).4.函数f(x)的图象如图所示,则最大、最小值分别为________________.5.已知f(x)=ax 2+bx +3a +b 是偶函数,定义域为[a -1,2a],则a =________,b =________.6.已知f(x)=⎩⎨⎧12x -1, x≥0,1x , x<0,若f(a)>a ,则实数a 的取值范围是________.一、填空题1.设f(x)是定义在R 上的偶函数,且在(-∞,0)上是增函数,已知x 1>0,x 2<0,且f(x 1)<f(x 2),那么下列不等式一定正确的为________.(填序号) ①x 1+x 2<0;②x 1+x 2>0;③f(-x 1)>f(-x 2); ④f(-x 1)·f(-x 2)<0. 2.下列判断:①如果一个函数的定义域关于坐标原点对称,那么这个函数为偶函数; ②对于定义域为实数集R 的任何奇函数f(x)都有f(x)·f(-x)≤0; ③解析式中含自变量的偶次幂而不含常数项的函数必是偶函数; ④既是奇函数又是偶函数的函数存在且唯一. 其中正确的序号为________.3.定义两种运算:a ⊕b =ab ,a ⊗b =a 2+b 2,则函数f(x)=2⊕x⊗-2为________函数(填“奇”、“偶”或“非奇非偶”).4.用min{a ,b}表示a ,b 两数中的最小值,若函数f(x)=min{|x|,|x +t|}的图象关于直线x =-12对称,则t 的值为________.5.如果奇函数f(x)在区间[1,5]上是减函数,且最小值为3,那么f(x)在区间[-5,-1]上是________.(填序号)①增函数且最小值为3;②增函数且最大值为3;③减函数且最小值为-3;④减函数且最大值为-3.6.若f(x)是偶函数,且当x ∈[0,+∞)时,f(x)=x -1,则f(x -1)<0的解集是________.7.若函数f(x)=-x +abx +1为区间[-1,1]上的奇函数,则它在这一区间上的最大值为____.8.已知函数f(x)是定义域为R 的奇函数,且当x>0时,f(x)=2x -3,则f(-2)+f(0)=________.9.函数f(x)=x 2+2x +a ,若对任意x ∈[1,+∞),f(x)>0恒成立,则实数a 的取值范围是________. 二、解答题10.已知奇函数f(x)的定义域为(-∞,0)∪(0,+∞),且f(x)在(0,+∞)上是增函数,f(1)=0.(1)求证:函数f(x)在(-∞,0)上是增函数; (2)解关于x 的不等式f(x)<0.11.已知f(x)=x 2+ax +bx ,x ∈(0,+∞).(1)若b≥1,求证:函数f(x)在(0,1)上是减函数; (2)是否存在实数a ,b.使f(x)同时满足下列二个条件:①在(0,1)上是减函数,(1,+∞)上是增函数;②f(x)的最小值是3.若存在,求出a ,b 的值;若不存在,请说明理由. 能力提升12.设函数f(x)=1-1x +1,x ∈[0,+∞)(1)用单调性的定义证明f(x)在定义域上是增函数;(2)设g(x)=f(1+x)-f(x),判断g(x)在[0,+∞)上的单调性(不用证明),并由此说明f(x)的增长是越来越快还是越来越慢?13.如图,有一块半径为2的半圆形纸片,计划剪裁成等腰梯形ABCD 的形状,它的下底AB 是⊙O 的直径,上底CD 的端点在圆周上,设CD =2x ,梯形ABCD 的周长为(1)求出y关于x的函数f(x)的解析式;(2)求y的最大值,并指出相应的x值.,1,f(x)习题课双基演练 1.(-∞,-12)解析 由已知,令2k +1<0,解得k<-12.2.③ 解析 由-a -b>0,知f(a)-f(b)与a -b 同号,由增函数的定义知③正确. 3.①②④解析 ∵a +b>0,∴a>-b ,b>-a.由函数的单调性可知,f(a)>f(-b),f(b)>f(-a). 两式相加得③正确. 4.f(0),f(-32)解析 由图象可知,当x =0时,f(x)取得最大值; 当x =-32时,f(x)取得最小值.5.130 解析 偶函数定义域关于原点对称, ∴a -1+2a =0.∴a =13.∴f(x)=13x 2+bx +1+b.又∵f(x)是偶函数,∴b =0. 6.(-∞,-1)解析 若a≥0,则12a -1>a ,解得a<-2,∴a ∈∅;若a<0,则1a >a ,解得a<-1或a>1,∴a<-1.综上,a ∈(-∞,-1). 作业设计 1.②解析 由已知得f(x 1)=f(-x 1),且-x 1<0,x 2<0,而函数f(x)在(-∞,0)上是增函数,因此由f(x 1)<f(x 2),知f(-x 1)<f(x 2)得-x 1<x 2,x 1+x 2>0.2.②解析 判断①,一个函数的定义域关于坐标原点对称,是这个函数具有奇偶性的前提条件,但并非充分条件,故①错误.判断②正确,由函数是奇函数,知f(-x)=-f(x),特别地当x =0时,f(0)=0,所以f(x)·f(-x)=-[f(x)]2≤0.判断③,如f(x)=x 2,x ∈[0,1],定义域不关于坐标原点对称,即存在1∈[0,1],而-1 [0,1];又如f(x)=x 2+x ,x ∈[-1,1], 有f(x)≠f(-x).故③错误.判断④,由于f(x)=0,x ∈[-a ,a],根据确定一个函数的两要素知,a 取不同的实数时,得到不同的函数.故④错误. 综上可知,只有②正确. 3.奇解析 因为f(x)=2xx 2+2,f(-x)=-f(x),故f(x)为奇函数.4.1解析 当t>0时f(x)的图象如图所示(实线)对称轴为x =-t 2,则t 2=12,∴t =1.5.④解析 当-5≤x≤-1时,1≤-x≤5, ∴f(-x)≥3,即-f(x)≥3. 从而f(x)≤-3,又奇函数在原点两侧的对称区间上单调性相同, 故f(x)在[-5,-1]是减函数. 6.(0,2)解析 依题意,因为f(x)是偶函数, 所以f(x -1)<0化为f(|x -1|)<0,又x ∈[0,+∞)时,f(x)=x -1,所以|x -1|-1<0, 即|x -1|<1,解得0<x<2. 7.1解析 f(x)为[-1,1]上的奇函数,且在x =0处有定义,所以f(0)=0,故a =0.又f(-1)=-f(1),所以--1-b +1=1b +1,故b =0,于是f(x)=-x.函数f(x)=-x 在区间[-1,1]上为减函数, 当x 取区间左端点的值时,函数取得最大值1. 8.-1解析 ∵f(-0)=-f(0),∴f(0)=0, 且f(2)=22-3=1. ∴f(-2)=-f(2)=-1, ∴f(-2)+f(0)=-1. 9.a>-3解析 ∵f(x)=x 2+2x +a =(x +1)2+a -1, ∴[1,+∞)为f(x)的增区间,要使f(x)在[1,+∞)上恒有f(x)>0,则f(1)>0, 即3+a>0,∴a>-3.10.(1)证明 设x 1<x 2<0,则-x 1>-x 2>0. ∵f(x)在(0,+∞)上是增函数, ∴f(-x 1)>f(-x 2). 由f(x)是奇函数,∴f(-x 1)=-f(x 1),f(-x 2)=-f(x 2), ∴-f(x 1)>-f(x 2),即f(x 1)<f(x 2). ∴函数f(x)在(-∞,0)上是增函数.(2)解 若x>0,则f(x)<f(1),∴x<1,∴0<x<1; 若x<0,则f(x)<f(-1),∴x<-1.∴关于x 的不等式f(x)<0的解集为(-∞,-1)∪(0,1). 11.(1)证明 设0<x 1<x 2<1,则x 1x 2>0,x 1-x 2<0. 又b>1,且0<x 1<x 2<1,∴x 1x 2-b<0. ∵f(x 1)-f(x 2)=1-x 21x 2-x 1x 2>0,∴f(x 1)>f(x 2),所以函数f(x)在(0,1)上是减函数. (2)解 设0<x 1<x 2<1, 则f(x1)-f(x 2)=1-x 21x 2-x 1x 2由函数f(x)在(0,1)上是减函数,知x 1x 2-b<0恒成立,则b≥1. 设1<x 1<x 2,同理可得b≤1,故b =1.x ∈(0,+∞)时,通过图象可知f(x)min =f(1)=a +2=3. 故a =1.12.解 (1)设x 1>x 2≥0,f(x 1)-f(x 2)=(1-1x 1+1)-(1-1x 2+1)=x 1-x 21+2+.由x 1>x 2≥0⇒x 1-x 2>0,(x 1+1)(x 2+1)>0, 得f(x 1)-f(x 2)>0,即f(x 1)>f(x 2). 所以f(x)在定义域上是增函数. (2)g(x)=f(x +1)-f(x)=1++,g(x)在[0,+∞)上是减函数,自变量每增加1,f(x)的增加值越来越小,所以f(x)的增长是越来越慢.13.解 (1)作OH ,DN 分别垂直DC ,AB 交于H ,N , 连结OD.由圆的性质,H 是中点,设OH =h , h =OD 2-DH 2=4-x 2.又在直角△AND 中,AD =AN 2+DN 2 =-2+-x 2=8-4x =22-x ,所以y =f(x)=AB +2AD +DC =4+2x +42-x ,其定义域是(0,2). (2)令t =2-x ,则t ∈(0,2),且x =2-t 2, 所以y =4+2·(2-t 2)+4t =-2(t -1)2+10, 当t =1,即x =1时,y 的最大值是10.。
精编《函数的综合问题》单元测试完整考题(含答案)

2019年高一年级数学单元测试卷函数综合问题学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.已知函数()=cos sin 2f x x x ,下列结论中错误的是(A)()y f x =的图像关于(),0π中心对称 (B)()y f x =的图像关于直线2x π=对称 (C)()f x(D)()f x 既奇函数,又是周期函数(2013年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))2.设直线t x =与函数()()x x g x x f ln ,2==的图像分别交于点N M ,,则当MN 达到最小时的t 值为A. 1B.21 C. 25 D. 22二、填空题 3.设函数⎪⎪⎩⎪⎪⎨⎧<≥-=)0(1)0(132)(x xx x x f ,若a a f =)(,则实数a 的值是 -1 .4.若a >0且a 1≠,函数y=2-x a 与y=3a 的图像有两个交点,则a 的取值范围是________.5.定义在R 上的函数f(x)的图像过点M (-6,2)和N (2,-6),且对任意正实数k ,有f(x+k)< f(x)成立,则当不等式| f(x-t)+2|<4的解集为(-4,4)时,实数t 的值为 .6.已知函数f(x)= 1112+++x ax x (a ∈R),若对于任意的X ∈N*,f(x)≥3恒成立,则a 的取值范围是______。
8[,)3-+∞(江苏省南京市2011年3月高三第二次模拟考试)7.函数f(x)=f '(π2)sinx+cosx ,则f(π4)=_______________. 8.已知函数2()ln(1)f x a x x =+-,若在区间(0,1)内任取两个实数,p q ,且p q ≠,不等式(1)(1)1f p f q p q+-+>-恒成立,则实数a 的取值范围是 ▲ . 9.已知函数y=f(x)(x ∈R )满足f(x+1)=f(x —1),且x ∈[—1,1]时,f(x)=x 2,则y=f(x)与y=log 5x 的图象的交点个数为 410. 已知函数2()f x x x =-,若2(1)(2)f m f --<,则实数m 的取值范围是 .11.设函数a a x a x g x x x f ,=+=++226)(,143)(>31, 若对任意[]a x ,00∈,总存在相应的[]a x x ,0,21∈,使得)()()(201x g x f x g ≤≤成立,实数a 的取值范围为 ▲ .12.将3log 2,234-,3log 5.0用“<”从小到大排列13.已知函数2,01,()12, 1.2x x x f x x +<⎧⎪=⎨+⎪⎩≤≥若0a b >≥,且()()f a f b =,则()bf a 的取值范围是 ▲ .14.已知函数21,0()1,0x x f x x ⎧+≥=⎨<⎩,则满足不等式2(1)(2)f x f x ->的x 的范围是__ ___。
精选《函数的综合问题》单元测试完整考题(含答案)

2019年高一年级数学单元测试卷函数综合问题学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.将函数sin(2)y x ϕ=+的图象沿x 轴向左平移8π个单位后,得到一个偶函数的图象,则ϕ的一个可能取值为(A) 34π (B) 4π(C)0 (D) 4π-(2013年普通高等学校招生统一考试山东数学(理)试题(含答案)) 2.已知函数1()ln(1)f x x x=+-;则()y f x =的图像大致为( )3.对实数a 与b ,定义新运算“⊗”:,1,, 1.a a b a b b a b -≤⎧⊗=⎨->⎩设函数()()22()2,.f x x x x x R =-⊗-∈若函数()y f x c =-的图像与x 轴恰有两个公共点,则实数c 的取值范围是( )A .(]3,21,2⎛⎫-∞-⋃- ⎪⎝⎭ B .(]3,21,4⎛⎫-∞-⋃-- ⎪⎝⎭C .11,,44⎛⎫⎛⎫-∞⋃+∞ ⎪ ⎪⎝⎭⎝⎭D.4. 若函数3()f x x ax =-(0a >)的零点都在区间[-10,10]上,则使得方程()1000f x =有正整数解的实数a的取值个数为( )A. 1;B. 2;C. 3;D. 4.二、填空题5.已知函数()f x 是定义在R 上的奇函数,且它的图像关于直线x=1对称,若函数()1)f x x =<≤,则(5.5)f = .6.设2)(.3),1(log ,22)(231>⎪⎩⎪⎨⎧≥-<=-x f x x x ex f x 则不等式的解集为 ),10()2,1(+∞ 7.已知函数)(x f 在R 上可导,且)2(2)('2f x x x f ⋅+=,则)1(-f ____)1(f8.设函数221,1()2,1x x f x x x x ⎧-≤=⎨+->⎩,则1()(2)f f =___________________9.如果一个点是一个指数函数与一个对数函数图象的公共点,那么称这个点为“好点”,下面五个1(1,1),(1,2),(2,1),(2,2),(2,)2M N Q G H 中,“好点”为 ▲ .10.已知定义在R 上的函数)(x F 满足()()()F x y F x F y +=+,当0x >时,()0F x <.若对任意的[0,1]x ∈,不等式组22(2)(4)()(3)F kx x F k F x kx F k ⎧-<-⎪⎨-<-⎪⎩均成立,则实数k 的取值范围是 )2,3(- .11. 函数()ln(1)f x x x =-+的减区间是311,,44⎛⎫⎡⎫--⋃+∞ ⎪⎪⎢⎝⎭⎣⎭12.函数f(x)=f '(π2)sinx+cosx ,则f(π4)=_______________. 13.若42x ππ<<,则函数3tan 2tan y x x =的最大值为 ▲ .14.函数()()[)()sin 0,0,0,2f x A x A ωϕωϕπ=+>>∈的图象如图所示,则ϕ= ▲ . (江苏省苏州市2011年1月高三调研)4π15.若直角坐标平面内两点P 、Q 满足条件:①P 、Q 都在函数()f x 的图象上;②P 、Q 关于原点对称,则称点对(P ,Q )是函数()f x 的一个“友好点对”(点对(P ,Q )与(Q ,P )看作同一个“友好点对”).已知函数2241,0,()2,0,x x x x f x x e ⎧++<⎪=⎨≥⎪⎩则()f x 的“友好点对”有 个. 三、解答题16. 某商场对A 品牌的商品进行了市场调查,预计2012年从1月起前x 个月顾客对A 品牌的商品的需求总量P (x )件与月份x 的近似关系是:P (x )=12x (x +1)(41-2x )(x ≤12且x ∈N *) (1)写出第x 月的需求量f (x )的表达式;(2)若第x 月的销售量g (x )=⎩⎪⎨⎪⎧f x -21x ,1≤x <7且x ∈N *,x 2e x ⎝⎛⎭⎫13x 2-10x +96,7≤x ≤12且x ∈N *(单位:件),每件利润q (x )元与月份x 的近似关系为:q (x )=10e xx ,问:该商场销售A 品牌商品,预计第几月的月利润达到最大值?月利润最大值是多少?(e 6≈403)17.已知定义在R 的函数bax f x x ++-=+122)((b a ,为实常数).(1)当1==b a 时,证明:)(x f 不是奇函数;(2)设)(x f 是奇函数,求a 与b 的值;(3)当)(x f 是奇函数时,证明对任何实数x 、c 都有33)(2+-<c c x f 成立.18.(本小题满分14分)已知函数22()32log ,()log f x x g x x =-=.(1)当[]1,4x ∈时,求函数[]()()1()h x f x g x =+⋅的值域;(2)如果对任意的[]1,4x ∈,不等式2()()f x f k g x ⋅>⋅恒成立,求实数k 的取值范围.19.(本小题满分14分)已知常数a b 、都是实数, 不等式22(1)x a bx b --++>0的解集为(1,3). (Ⅰ)求实数b a ,的值;(Ⅱ)若0x <,求函数22(1)()x a bx bg x x--++=的最小值.20.设某物体一天中的温度T 是时间t 的函数,已知32()(0)T t at bt ct d a =+++≠,其中温度的单位是℃,时间的单位是小时.中午12:00相应的t =0,中午12:00以后相应的t 取正数,中午12:00以前相应的t 取负数(如早上8:00相应的t =-4,下午16:00相应的t =4).若测得该物体在早上8:00的温度为8℃,中午12:00的温度为60℃,下午13:00的温度为58℃,且已知该物体的温度早上8:00与下午16:00有相同的变化率. (1)求该物体的温度T 关于时间t 的函数关系式;(2)该物体在上午10:00到下午14:00这段时间中(包括端点)何时温度最高?最高温度是多少?21. 经济学中有一个用来权衡企业生产能力(简称“产能”)的模型,称为“产能边界”.它表示一个企业在产能最大化的条件下,在一定时期内所能生产的几种产品产量的各种可能的组合. 例如,某企业在产能最大化条件下,一定时期内能生产A 产品x 台和B 产品y 台,则它们之间形成的函数)(x f y =就是该企业的“产能边界函数”. 现假设该企业此时的“产能边界函数”为x y 2160015-=.(1)试分析该企业的产能边界,分别选用①、②、③中的一个序号填写下表:① 这是一种产能未能充分利用的产量组合; ② 这是一种生产目标脱离产能实际的产量组合; ③ 这是一种使产能最大化的产量组合.(2)假设A 产品每台利润为)0(>a a 元,B 产品每台利润为A 产品每台利润的k 倍1,k k N *>∈.在该企业的产能边界条件下,试为该企业决策,应生产A 产品和B 产品各多少台才能使企业获得最大利润.22.已知函数()lg(2)lg(2).f x x x =++- (1)求函数()f x 的定义域; (2)记函数()()103,f x g x x =+求函数()g x 的值域.23.某商场销售一种进价为20元/台的台灯,经调查发现,该台灯每天的销售量w (台)与销售单价x (元)满足802+-=x w ,设销售这种台灯每天的利润为y(元)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单调性 . (5)下结论(即指出函数f(x)在给定的区间M上的________)
返回导航
第二章 函 数
1.函数 f(x)=2 在[-2,4]上的单调性为 导学号 65164326 ( D ) A.减函数 C.先减后增
[解析]
数 学 必 修 ① · 人 教 B 版
返回导航
数 学 必 修 ① · 人 教 B 版
ቤተ መጻሕፍቲ ባይዱ
第二章 函 数
命题方向3 证明含参数的函数的单调性
ax 已知函数 f(x)= 2 (a 为常数且 a≠0), 试判断函数 f(x)在(-1,1)上的 x -1 单调性. 导学号 65164335
[解析] 任取 x1、x2,使得-1<x1<x2<1, 则 Δx=x2-x1>0.
数 学 必 修 ① · 人 教 B 版
返回导航
第二章 函 数
x+2 5 . 设函 数 f(x) = , 用 单 调性 定义 证 明 f(x) 在 ( - 1 ,+ ∞) 上 是减 函 x+1 数. 导学号 65164330
[证明] 设任意 x1∈(-1,+∞),x2∈(-1,+∞),且 x1<x2. x2+2 x1+2 x1-x2 f(x2)-f(x1)= - = x2+1 x1+1 x2+1x1+1 ∵x1<x2,x1∈(-1,+∞),x2∈(-1,+∞),
综上所述,当a>0时, f(x)在(0,+∞)上是减函数,当a<0时, f(x)在(0,+ ∞)上是增函数.
数 学 必 修 ① · 人 教 B 版
返回导航
第二章 函 数
证明函数 f(x)=x3+x 在 R 上是增函数. 导学号 65164337
[错解] 设 x1、x2∈R,且 x1<x2,则
3 3 3 f(x1)-f(x2)=(x3 + x ) - ( x + x ) = ( x - x 1 1 2 2 1 2)+(x1-x2). 3 ∵x1<x2,∴x3 < x 1 2,x1-x2<0. 3 ∴x3 1-x2<0.
数 学 必 修 ① · 人 教 B 版
∵两个负数相加依然为负, ∴f(x1)-f(x2)<0,即 f(x1)<f(x2). ∴f(x)=x3+x 在 R 上是增函数.
返回导航
第二章 函 数
[辨析] 本题实质上就是证明 y=x3 在 R 上是增函数.而由 x1<x2 直接推出 x3 1
3 <x3 ,这是将 y = x 为增函数作为依据,犯了循环论证的错误,即把要证明的结论 2
数 学 必 修 ① · 人 教 B 版
2 =2(x2 - x 2 1)+4(x2-x1)=2(x2-x1)(x1+x2+2).
∵x1<x2≤-1,x1+x2+2<0,∴Δy<0. ∴f(x)在(-∞,-1]上是减函数.
返回导航
第二章 函 数
『规律方法』
利用定义证明函数单调性的步骤如下:(1)取值:设x1、x2是
数 学 必 修 ① · 人 教 B 版
返回导航
第二章 函 数
减函数 ,如图(2) 当Δy=f(x2)-f(x1)<0时,就称函数 y=f(x)在区间M上是________ 所示.
如果一个函数在某个区间 M 上是增函数或是减函数,就说这个函数在这个
数 学 必 修 ① · 人 教 B 版
单调性 区间M称为__________) 单调区间 . 区间M上具有________(
[ 解析 ]
数 学 必 修 ① · 人 教 B 版
B.一定是减函数 D.单调性不能确定
由函数单调性的定义可知,判断单调性时不能用特殊值代替任意
值,故选D.
返回导航
第二章 函 数
[-1,+∞) 3. 函数 f(x)=x2+2x+3 的单调递增区间为_____________. 导学号 65164328 [解析] f(x)=x2+2x+3=(x+1)2+2,函数f(x)的图象的对称轴为x=-1,
返回导航
第二章 函 数
2.判断函数单调性的步骤 利用定义证明函数f(x)在给定的区间M上的单调性的一般步骤: > (1)任取x1、x2∈M, 且Δy=x2-x1________0 ;
f(x2)-f(x1) ; (2)作差:Δy=_____________
变形 通常所用的方法有:因式分解、配方、分子有理化、分母有理 (3)________( 化、通分等); Δy (4)定号(即判断________ 的正负);
该区间内的任意两个值,且x1<x2;(2)作差变形:作差f(x1)-f(x2),并通过因式分
解、通分、配方、有理化等手段,转化为易判断正负的式子; (3) 定号:确定 f(x1)-f(x2)的符号;(4)结论:根据f(x1)-f(x2)的符号及定义判断单调性.
数 学 必 修 ① · 人 教 B 版
返回导航
[解析]
.
画出函数 f(x)的图象如图所示.
数 学 必 修 ① · 人 教 B 版
由图象可知,函数的单调增区间为(-∞,1],[2,+∞);单调减区间为[1,2].
返回导航
第二章 函 数
『规律方法』
1.作出函数的图象,利用图形的直观性能快速判断函数的单
调区间,但要注意图象一定要画准确. 2.函数的单调区间是函数定义域的子集,在求解的过程中不要忽略了函数 的定义域.
的图象,并指出函数的单调区间.
[解析] 函数
-x-3x≤1 f(x)= 2 x-2 +3x>1
的图象如图所示.
数 学 必 修 ① · 人 教 B 版
由图象可知:函数 f(x)的单调递减区间为(-∞,1](1,2]; 单调递增区间为[2,+∞).
返回导航
第二章 函 数
命题方向2 用定义证明函数的单调性
数 学 必 修 ① · 人 教 B 版
『规律方法』 从而确定单调性.
判断含参数的函数的单调性时,利用定义边证明边讨论,
返回导航
第二章 函 数
〔跟踪练习 3〕 导学号 65164336 a 判断函数 f(x)= (a 为常数且 a≠0)在(0,+∞)上的单调性. x
[解析] 任取 x1、x2,使得 0<x1<x2, 则 Δx=x2-x1>0. a a ax1-x2 Δy=f(x2)-f(x1)= - = , x2 x1 x1x2
当成了条件.
[正解] 设 x1、x2∈R,且 x1<x2,则 x2-x1>0,
3 f(x2)-f(x1)=(x3 2+x2)-(x1+x1) 3 =(x3 - x 2 1)+(x2-x1)
数 学 必 修 ① · 人 教 B 版
2 =(x2-x1)(x2 + x x + x 2 2 1 1)+(x2-x1)
命题方向1 求函数的单调区间
已知 x∈R,函数 f(x)=x|x-2|,试画出 y=f(x)的图象,并结合图象 写出函数的单调区间. 导学号 65164331
[分析]
数 学 必 修 ① · 人 教 B 版
首先分类讨论,去掉绝对值号,将函数化为分段函数,然后画出图
象求解即可.
返回导航
第二章 函 数
xx-2x≥2 f(x)=x|x-2|= x2-xx<2
故函数f(x)的单调递增区间为[-1,+∞).
数 学 必 修 ① · 人 教 B 版
返回导航
第二章 函 数
x1 >x2 4. 若函数 f(x)是 R 上的减函数, 且 f(x1)<f(x2), 则 x1 与 x2 的大小关系是________.
导学号 65164329
[解析] 根据减函数的定义可知,x1>x2.
数 学 必 修 ① · 人 教 B 版
∵0<x1<x2,∴x1x2>0,x1-x2<0, x1-x2 ∴ <0, x1x2
返回导航
第二章 函 数
∴当a>0时,f(x2)-f(x1)<0, 故此时函数f(x)在(0,+∞)上是减函数, 当a<0时,f(x2)-f(x1)>0,
故此时函数f(x)在(0,+∞)上是增函数.
返回导航
第二章 函 数
2 =(x2-x1)(x2 2+x2x1+x1+1)
x1 2 3 2 =(x2-x1)x2+ 2 +4x1+1 .
x1 2 3 2 ∵(x2+ ) + x1+1>0, 2 4 ∴f(x2)-f(x1)>0,即 f(x2)>f(x1).
势.数学上的单调性,是绝对上升或下降的趋势,这是数学单调趋势的特
征.怎样表示这种绝对的上升和下降呢?如果是有限个数字,把它们一个个排
数 学 必 修 ① · 人 教 B 版
列起来就行了,现在的问题是有无限多个变量的值,没法排.数学的思考是 “任意取两个,都是上升(下降),保证不出意外”,这就是无限多个变量时,对 “一个不能少”的数学处理.下面我们就一起来探索吧!
第二章 函 数
〔跟踪练习 2〕 导学号 65164334 证明函数 f(x)=- x在定义域上是减函数.
[证明] 易知 f(x)=- x的定义域为[0,+∞). 设 x1、x2 是[0,+∞)内的任意两个实数,且 x1<x2,则 Δx=x2-x1>0, Δy=f(x2)-f(x1)=- x2-(- x1)= x1- x2 x1- x2 x1+ x2 x1-x2 = = x1+ x2 x1+ x2. ∵x1-x2=-Δx<0, x1+ x2>0,Δy<0. ∴f(x)=- x在[0,+∞)上是减函数.
证明: 函数 f(x)=2x2+4x 在(-∞, -1]上是减函数. 导学号 65164333
[分析] 即可.