概率论与数理统计第八章练习
概率论与数理统计第八章习题

概率论与数理统计习题 第八章 假设检验习题8-1 某批矿砂的5个样品中的镍含量,经测定为(%) 3.25 3.27 3.24 3.26 3.24设测定值总体服从正态分布,但参数均未知。
问在α=0.01下能否接受假设:这批矿砂的镍含量均值为3.25。
解:设测定值总体X ~N (μ,σ 2),μ,σ 2均未知步骤:(1)提出假设检验H 0:μ=3.25; H 1:μ≠3.25 (2)选取检验统计量为)1(~25.3--=n t nSX t(3)H 0的拒绝域为| t |≥).1(2-n t α(4)n=5, α = 0.01,由计算知01304.0)(11,252.3512=--==∑=i iX Xn S x查表t 0.005(4)=4.6041, )1(343.0501304.025.3252.3||2-<=-=n t t α(5)故在α = 0.01下,接受假设H 0习题8-2 要求一种元件平均使用寿命不得低于1000小时,生产者从一批这种元件中随机抽取25件,测得其寿命的平均值为950小时。
已知该种元件寿命服从标准差为σ=100小时的正态分布。
试在显著性水平α=0.05下判定这批元件是否合格?设总体均值为μ,μ未知。
即需检验假设01:1000,:1000H H μμ≥ 。
解:步骤:(1):0H μ≥1000;H 1:μ<1000;(σ =100已知) (2)H 0的拒绝域为αz nσx -≤-1000(3)n =25,α = 0.05,950=x , 计算知645.15.225100100005.0=-<-=-z x(4)故在α = 0.05下,拒绝H 0,即认为这批元件不合格。
习题8-3 下表分别给出两个文学家马克·吐温(Mark Twain )的8篇小品文以及斯诺特格拉斯(Snodgrass )的10篇小品文中由3个字母组成的单字的比例。
个作家所写的小品文中包含由3个字母组成的单字的比例是否有显著的差异(取0.05α=)?h =1significance =0.0013 ci =0.0101 0.0343 stats = tstat: 3.8781 df: 16 sd: 0.0121h=1, 拒绝原假设,认为两个作家所写的小品文中包含由3个字母组成的词的比例有显著的差异。
概率论与数理统计第八章试题

第八章试题1.设总体X 服从正态分布N (μ,1),x 1,x 2,…,x n 为来自该总体的样本,x 为样本均值,s 为样本标准差,欲检验假设H 0∶μ=μ0,H 1∶μ≠μ0,则检验用的统计量是( )A.n /s x 0μ-B.)(0μ-x nC.10-μ-n /s xD.)(10μ--x n2.设总体X~N (μ,σ2),X 1,X 2,…,X n 为来自该总体的一个样本,X 为样本均值,S 2为样本方差.对假设检验问题:H 0:μ=μ0↔H 1:μ≠μ0,在σ2未知的情况下,应该选用的检验统计量为( ) A .nX σμ0- B .1--n X σμC .nS X 0μ-D .10--n SX μ3.在假设检验问题中,犯第一类错误的概率α的意义是()A.在H0不成立的条件下,经检验H0被拒绝的概率B.在H0不成立的条件下,经检验H0被接受的概率C.在H0成立的条件下,经检验H0被拒绝的概率D.在H0成立的条件下,经检验H0被接受的概率4.设总体X~N (μ,σ2),σ2未知,X为样本均值,S n 2=n1∑=-n1i iXX()2,S 2=1n 1-∑=-n 1i iXX()2,检验假设H 0:μ=μ0时采用的统计量是( )A .Z=n /X 0σμ- B .T=n /S X n 0μ-C .T=n /S X 0μ- D .T=n /X 0σμ-5.设样本x 1,x 2,…,x n 来自正态总体N (μ,9),假设检验问题为H 0∶μ=0,H 1∶μ≠0,则在显著性水平α下,检验的拒绝域W=___________。
6.设0.05是假设检验中犯第一类错误的概率,H 0为原假设,则P {拒绝H 0|H 0真}=___________。
7.设总体X~N (μ,σ2),X 1,X 2,…,X n 为来自该总体的一个样本.对假设检验问题2021220::σσσσ≠↔=H H ,在μ未知的情况下,应该选用的检验统计量为___________.三、计算题(本大题共2小题,每小题8分,共16分)8.假设某校考生数学成绩服从正态分布,随机抽取25位考生的数学成绩,算得平均成绩61 x 分,标准差s=15分.若在显著性水平0.05下是否可以认为全体考生的数学平均成绩为70分?(附:t 0.025(24)=2.0639)9.某日从饮料生产线随机抽取16瓶饮料,分别测得重量(单位:克)后算出样本均值x =502.92及样本标准差s =12.假设瓶装饮料的重量服从正态分布N (2,σμ),其中σ2未知,问该日生产的瓶装饮料的平均重量是否为500克?(α=0.05) (附:t 0.025(15)=2.13)五、应用题(本大题共1小题,10分)10. 假设某城市购房业主的年龄服从正态分布,根据长期统计资料表明业主年龄X~N(35,52).今年随机抽取400名业主进行统计调研,业主平均年龄为30岁.在01.0=α下检验业主年龄是否显著减小.(58.2,32.2005.001.0==u u )11.设某商场的日营业额为X万元,已知在正常情况下X服从正态分布N(3.864,0.2)十一黄金周的前五天营业额分别为:4.28、4.40、4.42、4.35、4.37(万元)假设标准差不变,问十一黄金周是否显著增加了商场的营业额.(取α=0.01,μ0.01=2.32,μ0.005=2.58)。
上海立信会计学院_概率论与数理统计_第八章练习题答案(教考分离)

专业班级学号姓名第八章练习题(解答各题必须写出必要步骤)1.用传统工艺加工的某种水果罐头中,每瓶的平均维生素C的含量为19(单位:mg)。
现改变了加工工艺,抽查了16瓶罐头,测得维生素C的含量的平均值,样本标准差。
假定水果罐头中维生素C的含量是否服从正态分布,问在使用新工艺后,维生素C的含量是否有显著变化(显著水平)?(,)答案:有显著变化2.已知某炼铁厂在生产正常的情况下,铁水含碳量服从正态分布,其方差为0.03,在某段时间抽测了10炉铁水,算得铁水含碳量的样本方差为0.0375。
试问这段时间生产的铁水含碳量方差与正常情况下的方差有无显著差异?(显著性水平)(,)答案:无显著变化3.某公司产品的不合格率过去为0.02,今从五批产品中抽取500件作为样本送给订货者检验,检验出不合格率只有0.01。
在显著水平下检验,对。
(,)答案:接受4.某电子元件的耐用时数服从均值为1000h的正态分布,现随机抽取10件新工艺条件下生产的产品做耐用性能测试,测得其平均耐用时数为1077h,样本标准差为51.97h,能否认为新工艺条件下生产的电子元件之耐用性能(平均耐用时数)明显不同于老产品?(显著性水平)()答案:明显不同5.用热敏电阻测温仪间接测量地热,勘探井底温度,重复测量7次,测得温度(℃):112.0,113.4,111.2,112.0,114.5,112.9,113.6,而用某精确办法测得温度为112.6℃(可看作温度真值),试问用热敏电阻测温仪间接测温有无系统偏差?(显著性水平)(设热敏电阻测温仪测得温度总体服从正态分布)()答案:无系统偏差6.设购买某名牌车的人的年龄,最近随机抽查了该车购买者400人,得平均年龄为30岁,在下检验,对(,)答案:接受7.某校大二学生概率统计成绩服从正态分布,从中随机地抽取25位考生的成绩,算得平均成绩分,样本标准差分。
问:在显著性水平,可否认为这次考试全体考生平均成绩为75分?()答案:可以认为这次考试全体考生平均成绩为75分8.某日从饮料生产线随机抽取16瓶饮料,分别测得重量(单位:克)后算出样本均值及样本标准差。
概率论与数理统计第8章习题

综合证明题解析
总结词
考察概率的性质和定理证明
详细描述
综合证明题主要涉及概率的性质和定理的证明,需要熟 练掌握概率的基本性质和定理,并能够灵活运用进行证 明。
总结词
考察大数定律和中心极限定理的证明
详细描述
大数定律和中心极限定理是概率论中的重要定理,综合 证明题中可能涉及这些定理的证明,需要掌握相关定理 的证明方法和技巧。
总结词
考察随机变量的收敛性和极限定理
详细描述
综合证明题中可能涉及随机变量的收敛性和极限定理的 证明,需要理解收敛性的定义和性质,掌握极限定理的 证明方法和技巧。
综合应用题解析
总结词
考察概率论与数理常涉及实际问题的概率模型和统计分析,需 要将实际问题转化为数学模型,并运用概率论和数理统计 的知识进行解决。
总结词
考察随机变量的联合概率分布
详细描述
这类题目要求计算多个随机变量的联合概率分布,需要掌 握联合概率分布的定义和性质,以及边缘概率分布和条件 概率分布的计算方法。
总结词
考察随机变量的函数变换
详细描述
这类题目要求计算随机变量函数的概率分布,需要掌握随 机变量函数变换的原理和计算方法,同时还需要理解新的 随机变量的概率分布。
学生可以进一步深入学习 概率论的相关知识,如随 机过程、随机模拟等。
扩展数理统计知识
学生可以进一步学习数理 统计的相关知识,如回归 分析、方差分析等。
应用实践
学生可以将所学的概率论 与数理统计知识应用于实 际问题中,提高解决实际 问题的能力。
THANKS FOR WATCHING
感谢您的观看
多选题解析
考察综合运用 题目示例: 下列哪些事件是相互独立事件?
概率论与数理统计课后习题答案第八章习题详解

习题八1. 已知某炼铁厂的铁水含碳量在正常情况下服从正态分布N(4.55,0.1082).现在测了5炉铁水,其含碳量(%)分别为4.28 4.40 4.42 4.35 4.37问若标准差不改变,总体平均值有无显著性变化(α=0.05)?【解】0010/20.0250.025: 4.55;: 4.55.5,0.05, 1.96,0.1084.364,(4.364 4.55)3.851,0.108.H Hn Z ZxxZZZαμμμμασ==≠=======-===->所以拒绝H0,认为总体平均值有显著性变化.2. 某种矿砂的5个样品中的含镍量(%)经测定为:3.24 3.26 3.24 3.27 3.25设含镍量服从正态分布,问在α=0.01下能否接收假设:这批矿砂的含镍量为3.25.【解】设0010/20.0050.005: 3.25;: 3.25.5,0.01,(1)(4) 4.60413.252,0.013,(3.252 3.25)0.344,0.013(4).H Hn t n tx sxtttαμμμμα==≠===-====-===<所以接受H0,认为这批矿砂的含镍量为3.25.3. 在正常状态下,某种牌子的香烟一支平均1.1克,若从这种香烟堆中任取36支作为样本;测得样本均值为1.008(克),样本方差s2=0.1(g2).问这堆香烟是否处于正常状态.已知香烟(支)的重量(克)近似服从正态分布(取α=0.05).【解】设0010/20.02520.025: 1.1;: 1.1.36,0.05,(1)(35) 2.0301,36,1.008,0.1,6 1.7456,1.7456(35)2.0301.H Hn t n t nx sxtttαμμμμα==≠===-=========<=所以接受H0,认为这堆香烟(支)的重要(克)正常.4.某公司宣称由他们生产的某种型号的电池其平均寿命为21.5小时,标准差为2.9小时.在实验室测试了该公司生产的6只电池,得到它们的寿命(以小时计)为19,18,20,22,16,25,问这些结果是否表明这种电池的平均寿命比该公司宣称的平均寿命要短?设电池寿命近似地服从正态分布(取α=0.05). 【解】0100.050.05:21.5;:21.5.21.5,6,0.05, 1.65, 2.9,20,(2021.5)1.267,2.91.65.H Hn z xxzz zμμμασ≥<======-===->-=-所以接受H0,认为电池的寿命不比该公司宣称的短.5.测量某种溶液中的水分,从它的10个测定值得出x=0.452(%),s=0.037(%).设测定值总体为正态,μ为总体均值,σ为总体标准差,试在水平α=0.05下检验.(1)H0:μ=0.5(%);H1:μ<0.5(%).(2):Hσ'=0.04(%);1:Hσ'<0.04(%).【解】(1)00.050.050.5;10,0.05,(1)(9) 1.8331,0.452,0.037,(0.4520.5)4.10241,0.037(9) 1.8331.n t n tx sxtt tαμα===-====-===-<-=-所以拒绝H0,接受H1.(2)2222010.9522222220.95(0.04),10,0.05,(9) 3.325,0.452,0.037,(1)90.0377.7006,0.04(9).nx sn sασαχχχσχχ-=======-⨯===>所以接受H0,拒绝H1.6.某种导线的电阻服从正态分布N(μ,0.0052).今从新生产的一批导线中抽取9根,测其电阻,得s=0.008欧.对于α=0.05,能否认为这批导线电阻的标准差仍为0.005?【解】00102222/20.0251/20.975222220.02522:0.005;:0.005.9,0.05,0.008,(8)(8)17.535,(8)(8) 2.088,(1)80.00820.48,(8).(0.005)H Hn sn sαασσσσαχχχχχχχσ-===≠=======-⨯===>故应拒绝H0,不能认为这批导线的电阻标准差仍为0.005.7.有两批棉纱,为比较其断裂强度,从中各取一个样本,测试得到:第一批棉纱样本:n1=200,x=0.532kg, s1=0.218kg;第二批棉纱样本:n2=200,y=0.57kg, s2=0.176kg.设两强度总体服从正态分布,方差未知但相等,两批强度均值有无显著差异?(α=0.05) 【解】01211212/2120.0250.0250.025:;:.200,0.05,(2)(398) 1.96,0.1981,1.918;(398).w H H n n t n n t z s x y t t t αμμμμα=≠===+-=≈=======-< 所以接受H 0,认为两批强度均值无显著差别.8.两位化验员A ,B 对一种矿砂的含铁量各自独立地用同一方法做了5次分析,得到样本方差分别为0.4322(%2)与0.5006(%2).若A ,B 所得的测定值的总体都是正态分布,其方差分别为σA 2,σB 2,试在水平α=0.05下检验方差齐性的假设222201:;:.A B A B H H σσσσ=≠【解】221212/2120.0250.9750.02521225,0.05,0.4322,0.5006,(1,1)(4,4)9.6,11(4,4)0.1042,(4.4)9.60.43220.8634.0.5006n n s s F n n F F F s F s αα=====--========那么0.9750.025(4,4)(4,4).F F F << 所以接受H 0,拒绝H 1. 9~12. 略。
概率论与数理统计第8章例题

第八章例题1.在假设检验中,检验水平α的意义是:原假设0H 成立,经检验被____________的概率(填写“拒绝”或“接受”) 拒绝2.在假设检验中,犯第一类错误是指___ 弃真。
即0H 正确却被拒绝 __3. ),(~2σμN X ,当2σ未知时,为检验假设00:μμ=H 须构造统计量__________ nS x /μ- 4.从已知标准差 5.2σ=的正态总体中,抽取容量为16的样本,算得样本均值27.56x =,试在显著水平0.05α=之下,检验假设0:26H μ=.(0.025 1.96u =) 解:0:26H μ=)1,0(~/00N n x U σμ-=;0.05α=,/20.025 1.96u u α==; 算得 1.2u ==; 由于0.025u u <,所以在显著水平0.05α=之下,接受假设0:26H μ=.5.某产品按规定每包重为10kg ,现从中抽取6包进行测试,得9.7 10.1 9.8 10.0 10.2 9.6若包重服从正态分布2(,)N μσ,且20.05σ=,问在显著性水平为0.05α=下,包的平均重量是否为10kg ?(0.025 1.96u =) 解01:10,:10.H H μμ=≠令, 9.9x =0.025||||| 1.095u 1.96x u ===<= 所以可以认为重量为10kg6. 工厂某电子元件平均使用寿命为3000小时,采用新的生产设备后,从中随机抽取20个,测得这批电子元件的平均寿命X =3100小时,样本标准差为S=170小时,设电子元件的寿命X 服从正态分布N ()2,σμ,试检验用了新生产设备后产品质量是否显著改变?(显著性水平01.0=α,54.2)19(01.0=t )解 0H :μ=3000, 1H :3000>μ0.01(19)t 显著改变 7. 设罐头番茄汁中维生素C 含量服从正态分布。
规定每罐维生素C 的平均含量为21毫克。
概率论与数理统计习题及答案第八章

习题8-11.填空题(1) 假设检验易犯的两类错误分别是____________和__________.解第一类错误(弃真错误); 第二类错误(取伪错误).(2) 犯第一类错误的概率越大, 则右侧检验的临界值(点)越_____, 同时犯第二类错误的概率越_____.解小, 小.2. 已知一批零件的长度X(单位:cm)服从正态分布(,1)Nμ, 从中随机地抽取16个零件, 得到长度的平均值为40cm. 求:(1) 取显著性水平α=0.05时, 均值μ的双侧假设检验的拒绝域;(2) μ的置信水平为0.95的置信区间;(3) 问题(1)和(2)的结果有什么关系.解(1) 计算得到拒绝域为(-∞, 39.51)∪(40.49, +∞).(2) 已知x=40, σ =1,α = 0.05, 查表可得0.02521.96,z zα==所求置信区间为22()(40 1.96,40 1.96),x z x zαα+=-(39.51,40.49).=(3) 对于显著性水平α=0.05, μ的双侧假设检验的接受域恰为μ的置信水平为0.95的置信区间.习题8-21.填空题(1) 设总体2~(,)X Nμσ,12,,,nX X X是来自总体X的样本. 对于检验假设H:μμ=(μμ≥或μμ≤), 当2σ未知时的检验统计量是,H为真时该检验统计量服从分布; 给定显著性水平为α, 关于μ的双侧检验的拒绝域为, 左侧检验的拒绝域为, 右侧检验的拒绝域为__________.解Xt=; 自由度为n-1的t分布;2t tα…;t tα-…;t tα….2. 统计资料表明某市人均年收入服从2150μ=元的正态分布. 对该市从事某种职业的职工调查30人, 算得人均年收入为2280x=元, 样本标准差476s=元. 取显著性水平0.1, 试检验该种职业家庭人均年收入是否高于该市人均年收入?解由于总体方差未知, 故提出假设H0:μ≤μ0=2150; H1:μ>μ0.对于α=0.1,选取检验统计量X t =拒绝域为t >)1(-n t α=t 0.1(29)=1.3114.代入数据n =30, x =2280, s =476, 得到4959.130476215022800=-=-=n s x t μ>1.3114.所以拒绝原假设, 可以认为该种职业家庭人均年收入高于市人均年收入.3. 从某种试验物中取出24个样品,测量其发热量, 算得平均值11958, 样本标准差316s =.设发热量服从正态分布. 取显著性水平α=0.05, 问是否可认为该试验物发热量的期望值为12100?解 提出假设 H 0: μ=μ0=12100; H 1:μ≠μ0 .对于α=0.05,选取检验统计量X t =, 拒绝域为|t |>)1(2-n t α=t 0.025(23)=2.0687代入数据n =24, x =11958, s =316, 得到|| 2.20144x t ===>2.0687.所以拒绝原假设, 不能认为该试验物发热量的期望值为12100.4.从某锌矿的东西两支矿脉中, 各抽取容量分别为9和8的样品, 计算其样本含锌量(%)的平均值与方差分别为:东支: 0.230,x =2110.1337,9;n s ==西支: 0.269,y =2220.1736,8s n ==.假定东、西两支矿脉的含锌量都服从正态分布. 取显著性水平0.05α=, 问能否认为两支矿脉的含锌量相同?解 提出假设 H 0:μ1-μ2=0 ; H 1: μ1-μ2≠0.已知α=0.05, 210.230,0.1337x s ==, 220.269,0.1736y s ==,129,8,n n ==选取检验统计量X Y t =, 22112212(1)(1)2w n S n S S n n -+-=+-,拒绝域为|t |>120.0252(2)(15) 2.1315.t n n t α+-==因为2222112212(1)(1)(91)0.1337(81)0.17360.392982wn s n s s n n -+--⨯+-⨯===+-+-,||0.2058x y t ===<2.1315,所以不能拒绝原假设, 可以认为两支矿脉的含锌量相同.习题8-3一、 填空题1. 设总体2~(,)X N μσ, 12,,,n X X X 是来自总体X 的样本, 则检验假设0H :220σσ=(220σσ≥或220σσ≤), 当μ未知时的检验统计量是 , 0H 为真时该检验统计量服从 分布; 给定显著性水平α, 关于σ2的双侧检验的拒绝域为 , 左侧检验的拒绝域为 , 右侧检验的拒绝域为__________.解 2220(1)n S χσ-=; 2(1)n χ-; 2212(1)n αχχ--≤或222(1)n αχχ-≥;221(1)n αχχ--≤;22(1)n αχχ-≥. 2. 为测定某种溶液中的水分, 由它的10个测定值算出样本标准差的观察值0.037s =%. 设测定值总体服从正态分布, 2σ为总体方差, 2σ未知. 试在0.05α=下检验假设0:0.04H σ≥%; 1:0.04H σ<%.解 只需考虑假设 022:0.04)%H ≥(σ; 122:(0.04)%H <σ . 对于α=0.05, 选取检验统计量2220(1)n S χσ-=, 拒绝域为22210.95(1)(9) 3.325n αχχχ--==≤.代入数据10=n ,220(0.04%)=σ, s 2=(0.037%)2, 计算得到222220(1)(101)(0.037%)(0.04%)n S --⨯==χσ=7.701>3.325,不落在拒绝域内,所以在水平α=0.05下接受H 0, 即认为σ≥0.04%.3. 有容量为100的样本, 其样本均值观察值 2.7x =, 而10021225()i i x -x ==∑.试以0.01α=检验假设H 0: σ2=2.5.解 提出假设 2201: 2.5;: 2.5.H H σσ=≠对于α=0.01, 选取检验统计量2220(1)n S χσ-=, 拒绝域为22220.9950.995121(1)(99)(2n z αχχχ--=≈+≤=65.67,或22220.0050.00521(1)(99)(2n z αχχχ-=≈≥=137.96.代入数据n =100, 2(1)225,n s -=得到2220(1)2252.5n s χσ-===90.因为65.67<90<137.96, 即χ2的观察值不落在拒绝域内, 所以在水平α=0.01下接受H 0, 即认为σ2=2.5.习题8-41..试在显著性水平α=0.025下检验H 0: X 的概率密度2,01,()0,.x x f x <<⎧=⎨⎩其它解 因为22/4(1)/41(1){}2,4416i i i i i i i p P X x x ----=<==⎰≤d i =1, 2, 3, 4.待检假设 02,01,:()0,.x x H X f x <<⎧=⎨⎩ 其它列计算表如表8-1所示, 算得2421() 1.83.i i i if np npχ=-==∑表8-1 第1题数据处理查表知20.025(3)9.348,χ= 经比较知220.0251.83(3)9.348,χχ=<=故接受H 0, 认为X 的概率密度为2,01,()0,.x x f x <<⎧=⎨⎩其它2. 在显著性水平α=0.05下, 检验这枚骰子是否均匀.解 用X 表示骰子掷出的点数, P {X =i }=p i , i =1, 2, …, 6. 如果骰子是均匀的, 则p i =16, i =1, 2, …, 6. 因此待检假设01:6i H p =, i =1, 2, …, 6. 计算检验统计量221()ni i i if np np χ=-=∑的值, 得2222222100100100[(13)(14)(20)666100100100100(17)(15)(21)]66663.2.χ=-+-+-+-+-+-÷=查表知20.05(61)11.071,χ-= 经比较知220.053.2(5)11.071,χχ=<= 故接受H 0, 认为骰子是均匀的.。
概率论与数理统计(理工类,第四版)吴赣昌主编课后习题答案第八章

由于工作太忙,现在才把答案更新完整,多谢广大网友的支持与厚爱。
为简化计算,将原表各数据减去40,然后计算,结果如下:方差来源平方和自由度均方和F(α=0.05)因素A615.6s-1=2S¯A=307.8S¯A/S¯E≈17.0684因素E216.4n-s=12S¯E≈18.0333F0.05(2,12)=3.89总和T832n-1=14F=17.0684>3.89由上表可知,拒绝H0,即认为电池一平均寿命有显著差异.由于置信度为0.95的置信区间为(Xj⋅¯-Xk⋅¯±ta2(n-r)SE(1nj+1nk)¯),且t0.025(12)=2.1788,SE(1nj+1nk)¯=18.033×(25)≈2.6858,X1⋅¯=2.6,X2⋅¯=-10,X3⋅¯=4.4,则μA-μB的置信值为0.95的置信区间为(2.6+10±2.1788×2.6858)=(2.6+10±5.852),即(6.75,18.45);μA-μC的置信度为0.95的置信区间为(2.6-4.4±5.852),即(-7.652,4.052);习题8.2 双因素试验的方差分析习题1酿造厂有化验员3名,担任发酵粉的颗粒检验. 今有3位化验员每天从该厂所产的发酵粉中抽样一次,连续10天,每天检验其中所含颗粒的百分率,结果如下表所示.设α=5%,试分析3名化验员的化验技术之间与每日所抽取样本之间有无显著差异?SB=13∑i=13T⋅j2-130T2=13×3662.12-130×1782≈164.57, SE=ST-SA-SB=0.13833.从而得方差分析表(见下表)T⋅1=∑i=1rXi1=5.46,T⋅2=∑i=1rXi2=4.88,T⋅3=∑i=1rXi3=5.08, T1⋅=∑i=1sX1i=4.88,T2⋅=∑i=1sX2i=3.86,T3⋅=∑i=1sX3i=3.6,T4⋅=∑i=1sX4i=3.71,T=∑i=1r∑j=1sXij=15.42,ST=∑i=1r∑j=1sXij2-T2rs=1.632+⋯+1.322-15.42212=0.2007,SA=1s∑i=1rTi⋅2-T2rs=13(4.252+3.862+3.62+3.712)-15.42212=0.0807,SB=1r∑j=1sT⋅j2-T2rs=14(5.462+4.882+5.082)-15.42212=0.0434,SE=ST-SA-SB=0.0766,得方差分析表如下习题8.3 一元线性回归习题1F∼F(1,n-2),且此检验问题的拒绝域为F>Fα(1,n-2). n=12,所需计算如下表所示:F=S回\DivS剩(n-2)≈27.15,查表知F0.05(1,10)=4.96.显然F=27.15>4.96=F0.05(1,10),说明F落在拒绝域中,从而拒绝H0,即认为β1≠0,认为某商品的供给量s与价格p间存在近似的线性关系,设线性关系为s=β0+β1p,则β1=Lps/Lpp≈3.27,β0=112∑i=112si-(112∑i=112pi)β1=112×732-112×112×3.27≈30.48,即近似的线性关系为s=30.48+3.27p.习题4有人认为,企业的利润水平和它的研究费用间存在近似的线性关系,下表所列资料能否证实这利论断(α=0.05)?时间1955195619571958195919601961196219631964研究费用10108881212121111利润(万元) 100150200180250300280310320300解答:n=10,所需计算如果下表所示:xi12121111∑i=110xi=102yi280310320300∑i=110yi=2390xi2144144121121∑i=110xi2=1066yi2784009610010240090000∑i=110yi2=624300xiyi3360372035203300∑i=110xiy i=25040Lxx=∑i=110xi2-110(∑i=110xi)2=1066-110×1022=25.6,Lxy=∑i=110xiyi-110(∑i=110xi)(∑i=110yi)=25040-110×102×2390=662Lyy=∑i=110yi2-110(∑i=110yi)2=624300-110×23902=53090.设研究费用x与利润y之间有线性关系y=a+bx,检验假设H0:b=0,H1:b≠0,H0的拒绝域为F>Fα(1,n-2),其中F=UQ/(n-2),U=Lxy2/Lxx=17118.90625,Q=Lyy(1-Lxy2LxxLyy)=35971.094,则F=UQ/(n-2)≈3.807,查表知F0.05(1,8)=5.32.显然F=3.807<5.32=F0.05(1,8),说明F没有落在拒绝域中,从而接受H0,即认为b=0,这说明用原表中所列资料不能证实企业的利润水平和它的研究费用之间存在线性关系.习题5在钢线碳含量对于电阻的效应的研究院中,得到以下的数据:(2)待解决的原假设为H0:β1=0的显著性假设检验问题,检验统计量是F=U/Qn-2,检验水平为α的拒绝域为{F>Fα(1,n-2)},由所给数据可得Lyy=∑i=110yi2-10(y¯)2=48.129,U=β1∧Lxy=0.3713×63.72≈23.6592,Q=Lyy(1-Lxy2LxxLyy)≈24.4679,代入可得F=23.6592/24.467910-2≈7.736,而查表得F0.05(1,8)=5.32<7.736,因此拒绝原假设H0,即认为回归效果显著.(3)Y0的置信度为1-α的预测区间为(y0∧-tα2(n-2)σ∧^2(1+1n+(x0-x¯)2Lxx),y0∧+tα2(n-2)σ2∧(1+1n+(x0-x¯)2Lxx))现在x0=69,Y0的置信度为0.95的预测区间可计算如下y0∧=41.7072+0.3713×69=67.3269,σ2∧=Qn-2=24.46798=3.0585,t0.025(8)σ2∧(1+110+(x0-x¯)2Lxx)=2.3063.0585(1+0.1+(69-66.8)2171.6)=4.2836,所以x0=69时,Y0的置信度为0.95的预测区间为(63.0433,71.6105).8.4 多元线性回归习题1一种合金在某种添加剂的不同浓度之下,各做三次试验,得数据如下:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第八章 假设检验(一)
一、选择题:
1.假设检验中,显著性水平为α,则 [ ] (A) 犯第二类错误的概率不超过α (B) 犯第一类错误的概率不超过α (C)
α是小于等于%10的一个数,无具体意义 (D) 可信度为α-1.
2.设某产品使用寿命X 服从正态分布,要求平均寿命不低于1000小时,现从一批这种产品中随机抽出25只,测得平均寿命为950小时,方差为100小时,检验这批产品是否合格可用 [ ]
(A )t 检验法 (B )2
χ检验法 (C )Z 检验法 (U 检验法) (D )F 检验法 3.从一批零件中随机抽出100个测量其直径,测得的平均直径为5.2cm ,标准方差为1.6cm ,若这批零件的直径是符合标准5cm ,采用了t 检验法,在显著性水平α下,接受域为 [ ]
(A )2
||(99)<t t α (B )2
||(100)<t t α (C )2
||(99)≥t t α (D )2
||(100)≥t t α
4.设样本12,,,n X X X 来自正态分布2
~(,)X N μσ,在进行假设检验是时,采用统计
量t =
是对于
[ ]
(A )μ未知,检验220σσ= (B )μ已知,检验220σσ=
(C )2σ未知,检验0μμ= (D )2
σ已知,检验0μμ= 二、计算题:
1.已知某炼铁厂铁水含碳量在正常情况下,服从正态分布2
(4.52,0.108)N ,现在测定了5炉铁水,其含碳量分别为4.29 4.33 4.77 4.35 4.36 若标准差不变,给定显著性水平05.0=α,问 (1)现在所炼铁水总体均值μ有无显著性变化?
(2)若有显著性变化,可否认为现在生产的铁水总体均值 4.52μ<?
010.02522: 4.52,: 4.52~(0,1)
0.05 1.964.421,0.108|| 2.07 1.96
H H x Z N z x Z μμασμ=≠=
=====
>提出假设: 选统计量 在给定显著性水平下,取临界值为,
由于 计算 所以,现在所炼铁水总体均值有显、.二著性变化。
2.设某种灯泡的寿命服从正态分布,按规定其寿命不得低于1500小时,今从某日生产的一批灯泡中随机抽取9只灯泡进行测试,得到样本平均寿命为1312小时,样本标准差为380小时,在显著水平05.0=α下,能否认为这批灯泡的平均寿命显著地降低?
010.0522: 4.52,: 4.52~(0,1)
0.05 1.645,
4.42,0.108 4.52)
2.07 1.645
0.108
4.512
H H x Z N z x x Z μμασμ<≥=
====-=
=
=-<<提出假设: 选统计量 在给定显著性水平下,取临界值为 由于 计算 所以,接受原假设。
可以认为现在生产的铁水 总体均值)二.(2
、010.050.050:1500,:1500~(1)
0.05(1)(8) 1.85951312,380,13121500
1.48 1.8595
380/3
2H H x T t n t n t x S x T H μμα≥<=
-=-====-=
=
=->-提出假设: 选统计量 在给定显著性水平下,取临界值为 , 由于计算 所以应该接受,即认为这批灯泡的平均寿命、.二 没有显著地降低。