鲁教版五四制七年级数学上册第五章《位置与坐标》单元测试题
鲁教版(五四制) 七年级上册《第5章 位置与坐标》 单元练习卷

第5章位置与坐标一.选择题1.已知:点P到x轴的距离为2,到y轴的距离为3,且点P在x轴的上方,则点P的坐标为()A.(2,3)B.(3,2)C.(2,3)或(﹣2,3)D.(3,2)或(﹣3,2)2.已知点P的坐标是(﹣2﹣,1),则点P在()A.第一象限B.第二象限C.第三象限D.第四象限3.象棋在中国有着三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏.如图,是一局象棋残局,已知表示棋子“馬”和“車”的点的坐标分别为(4,3),(﹣2,1),则表示棋子“炮”的点的坐标为()A.(1,3)B.(3,2)C.(0,3)D.(﹣3,3)4.下列数据不能确定物体位置的是()A.电影票5排8号B.北偏东30°C.希望路25号D.东经118°,北纬40°5.如图,△ABC顶点C的坐标是(﹣3,2),过点C作AB上的高线CD,则垂足D点的坐标为()A.(2,0)B.(﹣3,0)C.(0,2)D.(0,﹣3)6.在平面直角坐标系中,点A(﹣3,2),B(3,5),C(x,y),若AC∥x轴,则线段BC 的最小值及此时点C的坐标分别为()A.6,(﹣3,5)B.10,(3,﹣5)C.1,(3,4)D.3,(3,2)7.已知点P(a,3)、Q(﹣2,b)关于y轴对称,则=()A.﹣5B.5C.﹣D.8.若点A(m,n)和点B(5,﹣7)关于x轴对称,则m+n的值是()A.2B.﹣2C.12D.﹣129.在平面直角坐标系中,点P(0,1)关于直线x=﹣1的对称点坐标是()A.(﹣2,1)B.(2,1)C.(0,﹣1)D.(0,1)10.在平面直角坐标系中,点A关于原点的对称点A1(3,﹣2),则点A的坐标为()A.(﹣3,2)B.(2,﹣3)C.(3,2)D.(﹣3,﹣2)11.已知点P(﹣1,m2+1)与点Q关于原点对称,则点Q一定在()A.第一象限B.第二象限C.第三象限D.第四象限12.在平面直角坐标系中,点P(﹣3,m2+4m+5)关于原点对称点在()A.第一象限B.第二象限C.第三象限D.第四象限二.填空题13.如果P(m+3,2m+4)在y轴上,那么点P的坐标是.14.如图,等边△OAB的边长为,则点B的坐标为.15.在平面直角坐标系中,点A(﹣1,0)与点B(0,2)的距离是.16.若点P(3m﹣1,2+m)关于原点的对称点P′在第四象限,则m的取值范围是.17.已知点P(﹣b,2)与点Q(3,2a)关于原点对称,则a b的值是.三.解答题18.已知点P(2a﹣2,a+5),解答下列各题.(1)点P在x轴上,求出点P的坐标.(2)点Q的坐标为(4,5),直线PQ∥y轴;求出点P的坐标.(3)若点P在第二象限,且它到x轴、y轴的距离相等,求a2020+2020的值.19.在平面直角坐标系中,有A(﹣2,a+1),B(a﹣1,4),C(b﹣2,b)三点.(1)当AB∥x轴时,求A、B两点间的距离;(2)当CD⊥x轴于点D,且CD=1时,求点C的坐标.20.在平面直角坐标系xOy中,△ABC的位置如图所示.(1)分别写出△ABC各个顶点的坐标;(2)分别写出顶点A关于x轴对称的点A′的坐标、顶点B关于y轴对称的点B′的坐标及顶点C关于原点对称的点C′的坐标;(3)求线段BC的长.21.已知点A(a+2b,1),B(7,a﹣2b).(1)如果点A、B关于x轴对称,求a、b的值;(2)如果点A、B关于y轴对称,求a、b的值.参考答案一.选择题1.解:∵点P在x轴上方,∴点P在第一或第二象限,∵点P到x轴的距离为2,到y轴的距离为3,∴点P的横坐标为3或﹣3,纵坐标为2,∴点P的坐标为(﹣3,2)或(3,2).故选:D.2.解:∵≥0,∴﹣2﹣<0,∴(﹣2﹣,1)在第二象限,故选:B.3.解:如图所示:帅的位置为原点,则棋子“炮”的点的坐标为(1,3).故选:A.4.解:不能确定物体位置的是北偏东30°,故选:B.5.解:过点C作CD垂直于x轴,垂足为D,∵点C(﹣3,2),∴点D横坐标与点C横坐标相等,∴点D(﹣3,0).故选:B.6.解:依题意可得:∵AC∥x轴,A(﹣3,2)∴y=2,根据垂线段最短,当BC⊥AC于点C时,点B到AC的距离最短,即BC的最小值=5﹣2=3,此时点C的坐标为(3,2),故选:D.7.解:∵点P(a,3)、Q(﹣2,b)关于y轴对称,∴a=2,b=3,则==﹣.故选:C.8.解:∵点A(m,n)和点B(5,﹣7)关于x轴对称,∴m=5,n=7,则m+n的值是:12.故选:C.9.解:∵点P(0,1),∴点P到直线x=﹣1的距离为1,∴点P关于直线x=﹣1的对称点P′到直线x=﹣1的距离为1,∴点P′的横坐标为﹣2,∴对称点P′的坐标为(﹣2,1).故选:A.10.解:∵点A关于原点的对称点A1(3,﹣2),∴点A的坐标为(﹣3,2),故选:A.11.解:∵点P(﹣1,m2+1)与点Q关于原点对称,∴Q(1,﹣m2﹣1),∴点Q一定在第四象限,故选:D.12.解:∵m2+4m+5=(m+2)2+1>0,∴点P(﹣3,m2+4m+5)关于原点对称点为:[3,﹣(m2+4m+5)],则﹣(m2+4m+5)<0,故点P(﹣3,m2+4m+5)关于原点对称点在第四象限.故选:D.二.填空题13.解:∵P(m+3,2m+4)在y轴上,∴m+3=0,得m=﹣3,即2m+4=﹣2.即点P的坐标为(0,﹣2).故答案为:(0,﹣2).14.解:如图,作BH⊥OA于H.∵△OAB是等边三角形,BH⊥OA,∴OH=AH=,∠BOH=60°,∴BH=OH•tan60°=3,∴B(,3),故答案为(,3)15.解:点A(﹣1,0)与点B(0,2)的距离是:=.故答案填:.16.解:∵点P(3m﹣1,2+m)关于原点的对称点P′(﹣3m+1,﹣2﹣m)在第四象限,∴,解得:﹣2<m<.故答案为:﹣2<m<.17.解:∵点P(﹣b,2)与点Q(3,2a)关于原点对称,∴﹣b=﹣3,2a=﹣2,解得:b=3,a=﹣1,∴a b=(﹣1)3=﹣1.故答案是:﹣1.三.解答题18.解:(1)∵点P在x轴上,∴a+5=0,∴a=﹣5,∴2a﹣2=2×(﹣5)﹣2=﹣12,∴点P的坐标为(﹣12,0).(2)点Q的坐标为(4,5),直线PQ∥y轴,∴2a﹣2=4,∴a=3,∴a+5=8,∴点P的坐标为(4,8).(3)∵点P在第二象限,且它到x轴、y轴的距离相等,∴2a﹣2=﹣(a+5),∴2a﹣2+a+5=0,∴a=﹣1,∴a2020+2020=(﹣1)2020+2020=2021.∴a2020+2020的值为2021.19.解:(1)∵AB∥x轴,∴A、B两点的纵坐标相同.∴a+1=4,解得a=3.∴A、B两点间的距离是|(a﹣1)+2|=|3﹣1+2|=4.(2)∵CD⊥x轴,∴C、D两点的横坐标相同.∴D(b﹣2,0).∵CD=1,∴|b|=1,解得b=±1.当b=1时,点C的坐标是(﹣1,1).当b=﹣1时,点C的坐标是(﹣3,﹣1).20.解:(1)A(﹣4,3),C(﹣2,5),B(3,0);(2)如图所示:点A′的坐标为:(﹣4,﹣3),B′的坐标为:(﹣3,0),点C′的坐标为:(2,﹣5);(3)线段BC的长为:=5.21.解:(1)∵点A、B关于x轴对称,∴,解得:;(2))∵点A、B关于y轴对称,∴,解得:.。
初中数学鲁教版(五四制)七年级上册第五章 位置与坐标本章综合与测试-章节测试习题(3)

章节测试题1.【答题】已知直角坐标平面内两点A(-3,1)和B(3,-1),则A、B两点间的距离等于______.【答案】2【分析】【解答】2.【题文】已知点A(a,3),B(-4,b),试根据下列条件求出a、b的值.(1)A、B两点关于y轴对称;(2)AB∥x轴;(3)A、B两点在第二、四象限两坐标轴夹角的平分线上.【答案】解:(1)∵点A(a,3),B(-4,b),A、B两点关于y轴对称,∴a=4,b=3;2分(2)∵点A(a,3),B(-4,b),AB∥x轴,∴b=3,a为任意实数;3分(3)∵A、B两点在第二、四象限两坐标轴夹角的平分线上,∴a=-3,b=4.3分【分析】【解答】3.【题文】已知,点P(2m-6,m+2).(1)若点P在y轴上,P点的坐标为______;(2)若点P的纵坐标比横坐标大6,求点P在第几象限?(3)若点P和点Q都在过A(2,3)点且与x轴平行的直线上,PQ=3,求Q点的坐标.【答案】解:(1)∵点P在y轴上,∴2m-6=0,解得m=3,∴P点的坐标为(0,5);故答案为(0,5);2分(2)根据题意得2m-6+6=m+2,解得m=2,∴P点的坐标为(-2,4),∴点P在第二象限;2分(3)∵点P和点Q都在过A(2,3)点且与x轴平行的直线上,∴点P和点Q的纵坐标都为3,∴P(-4,3),而PQ=3,∴Q点的横坐标为-1或-7,∴Q点的坐标为(-1,3)或(-7,3).3分【分析】【解答】4.【题文】在平面直角坐标系中,△ABC的位置如图所示.(1)分别写出下列顶点的坐标:A______,B______;(2)顶点A关于y轴对称的点A′的坐标为:A′______;(3)△ABC的面积为______.【答案】解:(1)由题可得,A(-2,6),B(-4,3);故答案为:(-2,6),(-4,3);3分(2)点A关于y轴对称的点A′的坐标为(2,6);故答案为:(2,6);3分(3)△ABC的面积为×4×3+×4×3=12,故答案为:12.4分【分析】【解答】5.【题文】如图,在平面直角坐标系中有一个轴对称图形,A(3,-2),B(3,-6)两点在此图形上且互为对称点,若此图形上有一个点C(-2,+1).(1)求点C的对称点的坐标.(2)求△ABC的面积.【答案】解:∵A、B关于某条直线对称,且A、B的横坐标相同,∴对称轴平行于x轴,又∵A的纵坐标为-2,B的纵坐标为-6,∴故对称轴为y==-4,∴y=-4.则设C(-2,1)关于y=-4的对称点为(-2,m),于是=-4,解得m=-9.则C的对称点坐标为(-2,-9).5分(2)如图所示,S△ABC=×(-2+6)×(3+2)=10.5分【分析】【解答】6.【题文】附加题如图,已知平面直角坐标系中A(-1,3),B(2,0),C(-3,-1)(1)在图中作出△ABC关于y轴的对称图形△A1B1C1,并写出点A1,B1,C1的坐标.(2)在y轴上找一点P,使PA+PC最短,并求出P点的坐标.【答案】附加题.解:(1)A1(1,3),B1(-2,0),C1(3,-1);5分(2)连接A1C,交y轴于P,这时PA+PC最短,15分设直线A1C解析式为y=kx+b,∵直线经过A1(1,3)和C(-3,-1),∴,解得,∴直线A1C解析式为y=x+2,当x=0时,y=2,∴P(0,2).【分析】【解答】7.【答题】如果点P(m,1-2m)在第一象限,那么m的取值范围是()A. 0<m<B. -<m<0C. m<0D. m>【答案】A【分析】【解答】8.【答题】点P(m,n)在平面直角坐标系中的位置如图所示,则坐标(m+1,n-1)对应的点可能是()A. AB. BC. CD. D【答案】B【分析】【解答】9.【答题】如果P(m+3,2m+4)在y轴上,那么点P的坐标是()A. (-2,0)B. (0,-2)C. (1,0)D. (0,1)【答案】B【分析】【解答】10.【答题】点M(-3,4)离原点的距离是多少单位长度()A. 3B. 4C. 5D. 7【答案】C【分析】【解答】11.【答题】已知点A(1,2)与点A′(a,b)关于坐标原点对称,则实数a、b的值是()A. a=1,b=2B. a=-1,b=2C. a=1,b=-2D. a=-1,b=-2【答案】D【分析】【解答】12.【答题】在平面直角坐标系中,点A的坐标为(-2,3),点B的坐标为(-2,-3),那么点A和点B的位置关系是()A. 关于x轴对称B. 关于y轴对称C. 关于原点对称D. 关于坐标轴和原点都不对称【答案】A【分析】【解答】13.【答题】如图,已知棋子“车”的坐标为(-2,3),棋子“马”的坐标为(1,3),则棋子“炮”的坐标为()A. (3,2)B. (3,1)C. (2,2)D. (-2,2)【答案】A【分析】【解答】14.【答题】已知点M(3,-4),在x轴上有一点与M的距离为5,则该点的坐标为()A. (6,0)B. (0,1)C. (0,-8)D. (6,0)或(0,0)【答案】D【分析】【解答】15.【答题】已知点P(a,2a-1)在一、三象限的角平分线上,则a的值为()A. -1B. 0C. 1D. 2【答案】C【分析】【解答】16.【答题】如图,右边坐标系中四边形的面积是()A. 4B. 5.5C. 4.5D. 5【答案】C【分析】【解答】17.【答题】在平面直角坐标系中,已知点A(-2,-3),点B(1,3).对A点作下列变换:①先把点A向右平移3个单位,再向上平移6个单位;②先把点A向上平移6个单位,再向右平移3个单位;③先作点A以y轴为对称轴的轴对称变换,再向左平移1个单位;④先作点A以x轴为对称轴的轴对称变换,再向右平移3个单位.其中能由点A得到点B的变换是______.【答案】①②④【分析】【解答】18.【答题】若点A(n,2)与点B(-3,m)关于原点对称,则n-m=______.【答案】5【分析】【解答】19.【答题】如图,在平面直角坐标系中,一动点从原点O出发,沿着箭头所示方向,每次移动一个单位,依次得到点P1(0,1);P2(1,1);P3(1,0);P4(1,-1);P5(2,-1);P6(2,0)……,则点P2019的坐标是______.【答案】(673,0)【分析】【解答】20.【答题】在平面直角坐标系中,若点M(2,4)与点N(x,4)之间的距离是3,则x的值是______.【答案】-1或5【分析】【解答】。
鲁教版(五四制)七年级数学上册 第5章 位置与坐标 单元测试卷

鲁教五四版七年级数学上册第5章位置与坐标单元测试卷题号一二三总分得分一、选择题(本大题共10小题,共30分)1.平面直角坐标系中,点(2,4)在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限2.点P(−1,−4)关于y轴的对称点的坐标是()A. (4,−1)B. (1,−4)C. (1,4)D. (−1,43.点M(−4,−1)关于y轴对称的点的坐标为()A. (−4,1)B. (4,−1)C. (4,1)D. (−4,−1)4.线段MN在直角坐标系中的位置如图,若线段M′N′与MN关于y轴对称,则点M的对应点M′的坐标为()A. (4,2)B. (−4,2)C. (−4,−2)D. (4,−2)5.如图,平行四边形ABCO的顶点O、A、C的坐标分别是(0,0)、(3,0)、(1,2),则点B的坐标是()A. (2,4)B. (2,2)C. (3,2)D. (4,2)6.点P(−2,4)关于坐标原点对称的点的坐标为().A. (4,−2)B. (−4,2)C. (2,4)D. (2,−4)7.已知点P(a,3+a)在第二象限,则a的取值范围是()A. B. C. D.8.在平面直角坐标系中,若点P(x,y)的坐标满足xy>0,则点P在()A. 第一象限内B. 第一或第三象限内C. 第三象限内D. 第二或第四象限内9.在直角坐标系中,已知点P(2,a)在第四象限,则()A. a<0B. a≤0C. a>0D. a≥010.点G(−2,−2),将点G先向右平移6个单位长度,再向上平移5个单位长度,得到G′,则G′的坐标为()A. (6,5)B. (4,5)C. (6,3)D. (4,3)二、填空题(本大题共10小题,共30分)11.点A(m−2,5)在y轴上,则m=______ .12.点A(−5,−3)关于x轴对称的点的坐标是_______.13.若0<a<1,则点M(a−1,a)在第象限.14.若点A(m+3,1−m)在y轴上,则点A的坐标为______.15.在平面直角坐标系中,点A(1,2a+3)在第一象限,且到x轴的距离与到y轴的距离相等,则a=________.16.把点A(−3,a)向下平移5个单位,所得点与点A关于x轴对称,则a=.17.已知点P(2,−6)到x轴的距离为a,到y轴的距离为b,则a−b=________.18.在平面直角坐标系中,点A(2,−3)位于第________象限。
鲁教版(五四制)七年级上册 第五章 位置与坐标测试试题(一)练习

位置与坐标测试题(一)A卷(时间:90分钟满分:100分)一、精心选一选(每小题3分,共30分)1.多层楼的电影院要确定一个座位,需要的数据个数是()A.1个B.2个C.3个D.4个2.如图1是方格纸上画出的小旗图案,如果用(0,0)表示A点,(0,4)表示B点,那么C点的位置可表示为()A.(0,3)B.(2,3)C.(3,2)D.(5,3)BCA图13.点P在第二象限,且到x轴、y轴的距离分别为3,4,则P点的坐标为()A.(—4,3)B.(4,—3)C.(3,—4)D.(—3,4)4.点M(x,y)的坐标满足xy=0,那么点M在()A.原点B.x轴上C.y轴上D.坐标轴上5.坐标平面内,点A(m,n)在第四象限,则点B(n,m)在()A.第一象限B.第二象限C.第三象限D.第四象限6.正方形ABCD的三个顶点分别为(—1,2),(2,2),(2,—1),则第四个顶点为()A.(0,0)B.(—1,—1)C.(5,—1)D.(—1,5)7.点P关于x轴对称的点P1的坐标为(2,3),则点P关于原点对称的点P2的坐标为()A.(—3,—2)B.(2,—3)C.(—2,—3)D.(—2,3)8.在平面直角坐标系中,顺次连接点(—4,2),(2,2),(—4,—1),(2,—1)得到的图形是()A.梯形B.菱形C.矩形D.正方形二、细心填一填(每小题3分,共30分)9.在A处观测到点B位于北偏东60°且距A点500m处,那么从B处观测点A时,点A位于.10.如图2,沿小正方形的边有许多方法可以把2×3的方格纸分成两个全等的图形,如,按(0,1)→(1,1)→(2,1)→(3,1)分开.请你再写出一种分法.210 1 2 3图211.点P(—5,12)到x轴的距离为,到y轴的距离为,到原点的距离为.0 1 2 3 4 5 6 77 6 5 4 3 2 1AE 2E 1F 2F 10 1 2 3 4 5 6 7 8 9 10 1111 10 9 8 7 6 5 4 3 2 1AF F 4 F 3F 2F 11 yO 1 x FE D C B A12.已知点P (x ,y )在x 轴上,且到y 轴的距离为6,则P 点的坐标为 . 13.已知点A (a ,3)与点B (4,b )关于原点对称,则a= ,b= . 14.当32<m <1时,点P (3m —2,m —1)在第 象限. 15.在同一直角坐标系中,图形a 是图形b 向上平移3个单位得到的,如果在图形a 中,点A 的坐标为(5,—3),则图形b 中与点A 对应的点A |的坐标为 .16.以点(1,1),(3,1),(3,2)为顶点的三角形,变为以点(0,0),(2,0),(2,1)为顶点的三角形,前后发生的变化是 .三、耐心做一做(每小题10分,共40分)17.一名邮递员每天从邮局A 出发,将报刊送到每一个订户的手中. ⑴现有如图3所示两条送报路线,分别表示出订户所在的位置,并比较两条路线的长短.A (1,0)→F 1( , )→F 2( , );A (1,0)→E 1( , )→E 2( , );图3 图4⑵如果⑴中的第一条送报路线又增加了几个新订户(如图4),请表示出新订户的位置: A →F 1→F 2→F 3( , )→F 4( , )→F ( , ).⑶如果⑴中的第二条送报路线也增加了几个新订户,它们所在的位置可表示如下: A →E 1→E 2→E 3(7,5)→E 4(10,3)→E (11,5).请你在图4中的方格纸上画出这条路线,并比较从A 点到F 点和从A 点到E 点这两条路线哪条长.18.已知菱形的两条对角线长分别为6和8,以两条对角线所在的直线为坐标轴建立直角坐标系,画出图形并写出各顶点的坐标(不要求写计算过程).19.将图5中的小船沿x 轴的负方向移动5个单位长度,画出平移后的图形,并求图中所标各点变化后的坐标.图5O A (2,0) xB (0,4) yC20.在直角坐标系中描出下列各点,并用线段依次连接起来: (1,4),(1,2),(0,1),(1,0),(2,0),(3,1),(2,2),(2,4),(1,4). 观察所得的图形,你觉得它象什么?你能算出它的面积吗?B 卷(时间:50分钟 满分:50分)一、精心选一选(每小题4分,共16分)1.在方格纸上,每个小方格的顶点叫做格点,以格点的连线为边的三角形叫做格点三角形.若方格纸的每个小正方形边长都为1,所作的格点三角形不可能是 ( )A .直角三角形B .钝角三角形C .等边三角形D .等腰三角形 2.已知点P (x ,|x|),则点P 一定 ( ) A .在第一象限 B .在第一或第四象限 C .在x 轴上方 D .不在x 轴下方3.在直角坐标系中,坐标轴上到点P (—4,—3)的距离等于5的点的个数为( ) A .1个 B .2个 C .3个 D .4个 4.已知线段AB 的两个端点分别为(1,1),(3,1),若将两个端点的横坐标都乘以—2,纵坐标不变,则得到的线段 ( )A .与AB 的长相等 B .是AB 长的一半C .是AB 长的2倍D .与AB 关于y 轴对称 二、细心填一填(每小题4分,共16分) 5.根据指令〔s ,A 〕(s ≥0,︒≤︒3600<A )机器人在平面上能完成如下动作:先在原地逆时针旋转角度A ,再朝其面对的方向沿直线行走距离s .现在机器人在平面直角坐标系的原点,且面对y 轴的负方向,为使其移动到点(—3,3),应下的指令是 .6.等腰Rt △ABC 的斜边两个端点的坐标分别为A (—4,0),B (2,0),则直角顶点C 的坐标为 .7.如图1,已知两点A (2,0),B (0,4),且AC=BC ,则点C 的坐标为 .图1 图2 图38.如图,在直角坐标系中,第一次将△OAB 变换成△OA 1B 1,第二次将△OA 1B 1变换成△OA 2B 2,第三次将△OA 2B 2变换成△OA 3B 3.已知A (1,3),A 1(2,3),A 2(4,3),A 3(8,3);B (2,0),B 1(4,0),B 2(8,0),B 3(16,0).⑴观察每次变换前后的三角形有何变化,找出规律,按此变换规律再将△OA 3B 3变换成△OA 4B 4,则A 4的坐标是 ,B 4的坐标是 ;53443 B O A4 xyO 1 2 4 8 16 xB B 1 B 2 B 3 3 A A 1 A 2 A 3y ⑵若按第⑴题找出的规律将△OAB 进行了n 次变换,得到△OA n B n ,比较每次变换中三角形顶点坐标有何变化,找出规律,推测A n 的坐标是 ,B n 的坐标是 .图三、耐心做一做(每小题9分,共18分) 9.小明没有记下作业中的图形(如图2),如果他打电话问你,请你通过建立直角坐标系,用点的坐标来描述这个图形.你还能用其他方法描述这个图形吗?10.如图3,已知直角坐标系中的两个点A (4,0)和B (0,3),连接AB .若有一个直角三角形与Rt △ABO 全等且有一条公共的直角边,请你写出这个直角三角形第三个顶点的坐标.位置的确定测试题(一)参考答案A 卷一、1.C 2.C 3.A 4.D 5.B 6.B 7.D 8.C 二、9.南偏西60°且距B 点500m 处10.答案不惟一,如,按(1,0)→(1,1)→(2,1)→(2,2)分开 11.12,5,13 12.(6,0)或(—6,0) 13.—4,—3 14.四 15.(5,—6) 16.向左平移了1个单位长度且向下平移了1个单位长度O xy5 34 4 三、17.⑴F 1(2,2),F 2(1,5),E 1(4,1),E 2(5,3);两条路线一样长,即AF 1+ F 1F 2= AE 1+ E 1E 2.⑵F 3(3,7),F 4(2,9),F (5,11). ⑶画图略;两条路线一样长.18.画图略.四个顶点的坐标为(4,0),(0,3),(—4,0),(0,—3);或(3,0),(0,4),(—3,0),(0,—4).19.A 1(—4,2),B 1(—3,1),C 1(—2,1),D 1(0,2),E 1(—2,4),F 1(—3,3). 20.象一个花瓶,其面积为6.B 卷一、1.C 2.D 3.C 4.C二、5.〔32,225°〕 6.(—1,3)或(—1,—3) 7.(0,1.5)8.⑴A 4(16,3),B 4(32,0);⑵A n (2n ,3),B n (2n+1,0). 三、9.答案不惟一,建立如图的直角坐标系,则顺次连接(0,0),(9,0),(9,4),(4,4),(4,7),(0,7)各点可得到这个图形.其他方法如:将长为9、宽为7的矩形的右上角剪去一个长为5、宽为3的小矩形,即可得到这个图形.10.本题有多种情况,注意不要漏解.各种情况下第三个顶点的坐标分别为(—4,0),(—4,3),(0,—3),(4,—3),(4,3).。
鲁教版七年级数学上册 第五章 位置与坐标 单元测试

第五章位置与坐标单元测试一.单选题(共10题;共30分)1.若a+b<0,ab<0,则下列判断正确的是 ( )A. a、b都是正数B. a、b都是负数C. a、b异号且负数的绝对值大D. a、b异号且正数的绝对值大2.点(一2.1)所在的象限是( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限3.在平面直角坐标系中,点(-1,m2+1)一定在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限4.小明和小刚买了两张票去观看电影,小明坐位号是11排7座记为(11,7),小刚的记为(11,9)其含义是( )A. 9座B. 11排C. 11排9座D. 9排11座5.点(-2.1)所在的象限是( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限6.点(﹣1,0)在()A. x轴的正半轴B. x轴的负半轴C. y轴的正半轴D. y轴的负半轴7.点P(x+2,x﹣2)不可能在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限8.在平面直角坐标系中,点P(﹣3,4)位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限9.在平面直角坐标系中,点(﹣2,3)所在的象限是()A. 第一象限B. 第二象限C. 第三象限D. 第四象限10.已知直角坐标系中,点P(x,y)满足(5x+2y﹣12)2+|3x+2y﹣6|=0,则点P坐标为()A. (3,﹣1.5)B. (﹣3,﹣1.5)C. (﹣2,﹣3)D. (2,﹣3)二.填空题(共8题;共36分)11.在平面直角坐标系中,已知线段AB∥x轴,端点A的坐标是(﹣1,4)且AB=4,则端点B的坐标是________.12.如下图,五间亭的位置是________,飞虹桥的位置是________,下棋亭的位置是________,碑亭的位置是________.13.如果将一张“8排3号”的电影票记为(8,3),那么电影票(3,8)表示的实际意义是________ .14.如图,在平面直角坐标系中,直线AB与y轴在正半轴、x轴正半轴分别交A、B两点,M在BA的延长线上,PA平分∠MAO,PB平分∠ABO,则∠P=________.15.点P(x﹣3,2x+4)在x轴上,则点P的坐标是________.16.若点M(a+5,a﹣3)在y轴上,则点M的坐标为________,到x轴的距离为________.17.在平面直角坐标系中,对于任意两点A(x1,y1)B (x2,y2),规定运算:⑴A⊕B=(x1+x2,y1+y2);(2)A⊙B=x1x2+y1y2;(3)当x1=x2且y1=y2时,A=B.有下列四个命题:①若有A(1,2),B(2,-1),则A⊕B=(3,1),A⊙B=0;②若有A⊕B=B⊕C,则A=C;③若有A⊙B=B⊙C, 则A=C;④(A⊕B)⊕C=A⊕(B⊕C)对任意点A、B、C均成立。
鲁教版(五四制)2020-2021学年七年级数学上册第五章 位置与坐标测试题(含答案)

位置与坐标 测试题(时间:90分钟 满分:100分)一、精心选一选(每小题3分,共30分)1.如图1所示的象棋棋盘上,若“帅”位于点(1,—2)上,“相”位于点(3,—2)上,则“炮”位于点 ( )A .(—1,1)B .(—1,2)C .(—2,1)图1 2.如图2,将平行四边形ABCD 的对角线的交点与直角坐标系的原点重合,若点A 、B 的坐标分别为(—2,—1)和(21,—1),则点C 、D 的坐标分别为 ( ) A .(2,1),(—21,1) B .(2,—1),(—21,—1) C .(—2, 1),(21,1) D .(—1,—2),(—1,21) 3.以边长等于4的正方形的对角线为轴建立直角坐标系,其中一个顶点位于y 轴的负半轴上,则该点坐标为 ( )A .(2,0)B .(0,—2)C .(0,22)D .(0,—22)4.设点P (x ,y )在第二象限,且|x|=2,|y|=3,则点P 关于原点对称的点为( )A .(2,—3)B .(—2,3)C .(3,—2)D .(—3,2)5.点A (a —2,a+2)在x 轴上,则点A 的坐标为 ( )A .(—4,0)B .(0,—4)C .(4,0)D .(0,4)6.直线l ⊥x 轴,点A 、B 在直线l 上,则 ( )A .A 、B 两点的横坐标相同 B .A 、B 两点的纵坐标相同C .A 、B 两点的横、纵坐标都相同D .A 、B 两点的横、纵坐标都不相同7.若点(a ,b )在第三象限,则点(—3a+3,4b —4)在 ( )A .第一象限B .第二象限C .第三象限D .第四象限8.在直角坐标系中,将△ABC 先向右平移2个单位,再向上平移3个单位,则( )A .三个顶点的坐标不变B .周长变为原来的6倍C .周长不变D .各边都比原来缩短二、细心填一填(每小题3分,共30分)9. 点P (—2,2b —1)关于x 轴对称的点是P 1(3a —1,5),则a= ,b= .10.小明将点A 关于x 轴的对称点误认为是关于y 轴对称的点,得到点(—3,—2),图3相帅炮则点A 关于x 轴的对称点是 .11.在直角坐标系中,A 、B 、C 三点的坐标分别为(0,0),(4,0),(3,2),以A 、B 、C 三点为顶点画平行四边形,则第四个顶点不可能在第 象限.12.点A (x ,0)与点B (2,0)的距离是3,则x= .13.等边△ABC 的边长为2,以BC 边的中点为原点、BC 边所在的直线为x 轴建立直角坐标系,则点A 的坐标为 .14.点P (2—a ,3a+6)到两条坐标轴的距离相等,则点P 的坐标是 .15.线段的两个端点的坐标为(2,—1),(—2,3),若横坐标不变,纵坐标分别乘以—1,所得线段与原线段关于 对称.16.在一单位为1cm 的方格纸上,依图3所示的规律,设定点A 1,A 2,A 3,A 4,…,A n ,连接点A 1,A 2,A 3组成三角形,记为 A 2,A 3, A 4 ,…,连接点A n ,A n+1,A n+2n 为正整数).请你推断,当100cm 2时,n= .三、耐心做一做(每小题10分,共40分)17.如图4,已知等腰梯形ABCD ,顶点A 与坐标原点重合,点B 在x 轴的正半轴上,点C 、D 都在x 轴的上方,且AB//CD ,CD=2,AD=CB=2,∠DAB=45°,求梯形ABCD 各顶点的坐标及其面积.18.⑴在平面直角坐标系中描出下列各点,并用封闭线段顺次连接起来:A (0,1),B (3,1),C (3,3),D (6,0),E (3,—3),F (3,—1),G (0,—1). ⑵将以上各点的横坐标都乘以—1,纵坐标不变,然后再描出各点,并顺次用线段连接. 整个图案具有怎样的对称性?19.如图,在直角坐标系中,△ABC 的顶点坐标分别为A (—1,0)、B (—3,—3)、C (—1,—2).将△ABC 绕原点O 按逆时针方向旋转90°,画出旋转后的△A 1B 1C 1并写出它的各顶点的坐标.20.某个展览会共设有16个展室,如图6所示,每个方格代表一个展室,各展室间均有门相通.一个参观者想参观所有展室,且每个展室只到一次.若用D1→C1→C2→D2→D3→C3→B3→B2→B1→A1→A2→A3→A4→B4→C4→D4表示由入口到出口的一条参观路线,请在图上画出这条参观路线.你还能用同样的方法写出其他的参观路线吗?(至少写出两条)图5 图6B 卷(时间:50分钟 满分:50分)一、精心选一选(每小题4分,共16分)1.在方格纸上有△ABC ,它的顶点分别记为A (3,4),B (1,1),C (5,1),请你借助如图1的方格纸判断△ABC 的形状为 ( )A .直角三角形B D .钝角三角形图12.点P (x+1,x —1)不可能在 ( )A .第一象限B .第二象限C .第三象限D .第四象限3. 坐标轴上到点(3,0)的距离等于5的点的个数为 ( )A .4个B .3个C .2个D .1个4.若平行四边形的三个顶点分别为(0,0),(1,2),(4,0),则第四个顶点为( )A .(5,2)B .(3,—2)C .(—3,2)D .(5,2)或(3,—2)或(—3,2)二、细心填一填(每小题4分,共16分)5.正方形网格中的每个小正方形的边长都是1,图3中B 、C 两点的位置分别为(2,0),(4,0),若△ABC 是直角三角形,且面积为3图2 6.如图3,一束光线从y 轴上点A (0,2)出发,经x 轴上点C (1.5,0)反射后,恰好经过点B (6,6),则光线从A 点到B 点所经过的路线长是 .7.将一张坐标纸折叠一次,使得点(0,2)与(—2,0)重合,则点(—21,0)与点重合.8.观察下列图象,与图⑴中的三角形相比,图⑵、图⑶、图⑷中的三角形都发生了一些变化,若设图⑴中的点P的坐标为(a,b),则这个点在图⑵、图⑶、图⑷中的对应点P1、P2⑴⑵⑶⑷三、耐心做一做(每小题9分,共18分)9.如图5,在△ABC中,∠ACB=90°,AC=25,斜边AB在x轴上,点C在y轴的正半轴上,点A的坐标为(2,0).求点B、C的坐标.图610.在3×3的方格纸上,用格点连线将方格纸分割成两个全等的图形,如图6所示就是其中一例,各格点分别是A(0,3),B(2,2),C(1,1),D(3,0),顺次连接这些点,即可把方格纸分割成两个全等的图形.参考答案一、1.C 2.A 3.D 4.A 5.A 6.A 7.D 8.C二、9.—31,—2 10.(3,2) 11.三 12.—1或513.(0,3)或(0,—3) 14.(3,3)或(6,—6) 15.x 轴 16.9三、17.A (0,0),B (4,0),C (3,1),D (1,1);面积为3.18.画图略.整个图案是以x 轴为对称轴的轴对称图形,也是以y 轴为对称轴的轴对称图形,还是以坐标原点为对称中心的中心对称图形.19A 1(0,—1),B 1(3,—3),C 1(2,—1).20.画图略.参观路线答案不惟一,如:D1→C1→B1→A1→A2→B2→C2→D2→D3→C3→B3→A3→A4→B4→C4→D4,D1→D2→C2→C1→B1→A1→A2→B2→B3→A3→A4→B4→C4→C3→D3→D4,等等.B 卷一、1.B 2.B 3.A 4.D二、5.(2,3)或(4,3) 6. 10 7.(0,21) 8.(a+1,b —1),(a ,—b ),(21a ,b ) 三、9.在Rt △AOC 中,由OA=2,AC=25,易求得OC=4,所以C (0,4). 在Rt △BOC 和Rt △ABC 中,由勾股定理可得OB 2+OC 2=BC 2=AB 2—AC 2,即OB 2+16=(OB+2)2—20,OB=8.所以B (—8,0).10图①中各格点的坐标为(0,3),(1,2),(2,1),(3,0);图②中各格点的坐标为(1,3),(1,2),(2,1),(2,0);图③中各格点的坐标为(0,1),(1,2),(2,1),(3,2).1、学而不思则罔,思而不学则殆。
鲁教版数学七上第五章《位置与坐标》单元检测含答案

第五章平面直角坐标系检测题(时间:90分钟,满分:100分)一、选择题(每小题3分,共30分)1.若点在第三象限,则应在()A.第一象限B.第二象限C.第三象限D.第四象限2.已知点P坐标为,且P点到两坐标轴的距离相等,则点P的坐标是()A.(3,3) B.(3,-3) C.(6,-6) D.(3,3)或(6,-6)3.设点在轴上,且位于原点的左侧,则下列结论正确的是()A.,为一切数B.,C.为一切数,D.,4. 在直角坐标系中,一个图案上各个点的横坐标和纵坐标分别加正数,那么所得的图案与原来图案相比()A.形状不变,大小扩大到原来的倍B.图案向右平移了个单位C.图案向上平移了个单位D.图案向右平移了个单位,并且向上平移了个单位5.已知点,在轴上有一点点与点的距离为5,则点的坐标为()A.(6,0)B.(0,1)C.(0,-8)D.(6,0)或(0,0)6.在直角坐标系中,已知A(2,0),B(-3,-4),O(0,0),则△AOB的面积为()A. 4B. 6C. 8D. 37. 若点P()的坐标满足xy=0,则点P的位置是()A.在轴上B.在轴上C.是坐标原点D.在轴上或在轴上8.点A(m+3,m+1)在轴上,则A点的坐标为()A.(0,-2)B.(2,0)C.(4,0)D.(0,-4)9.已知在坐标平面内有一点,若,那么点的位置在()A.在第一象限B.不在轴上C.不在轴上D.不在坐标轴上10. 若A (-3,2)关于原点对称的点是B ,B 关于轴对称的点是C ,则点C 的坐标是( ) A.(3,2)B .(-3,2)C .(3,-2)D .(-2,3)二、填空题(每小题3分,共24分)11. 已知点是第二象限的点,则的取值范围是.12. 已知点(13)A m -,与点(21)B n +,关于x 轴对称,则m =,n =.13. 一只蚂蚁由(0,0)先向上爬4个单位长度,再向右爬3个单位长度,再向下爬2个单位长度后,它所在位置的坐标是_________. 14.已知两点、,如果,则、两点关于________对称. 15. 点和点关于轴对称,而点与点关于轴对称,那么_______ ,_______ , 点和点的位置关系是__________.16.如果多边形各个顶点的横坐标保持不变,纵坐标分别加-1,那么所得到的图形与原多边形相比的变化是___________;如果多边形各个顶点的纵坐标保持不变,横坐标分别加-1,那么所得到的图形与原多边形相比的变化是___________ . 17.已知在直角坐标系中,,,△为等边三角形,则点的坐标是_______ .18.已知是整数,点在第二象限,则_____.三、解答题(共46分)19.(6分)如图所示:三角形ABC 三个顶点A 、B 、C 的坐标分别为A (1,2)、B (4,3)、C (3,1).把三角形A 1B 1C 1向右平移4个单位,再向下平移3个单位,恰好得到三角形ABC ,试写出三角形A 1B 1C 1三个顶点的坐标.第19题图第20题图20.(8分)如图在平面网格中每个小正方形边长为1, (1)线段CD 是线段AB 经过怎样的平移后得到的? (2)线段AC 是线段BD 经过怎样的平移后得到的? 21.(8分)在直角坐标系中,用线段顺次连接点A (,0),B (0,3),C (3,3),D (4,0).(1)这是一个什么图形; (2)求出它的面积; (3)求出它的周长. 22.(8分)如图,点用表示,点用表示.若用→→→→表示由到的一种走法,并规定从到只能向上或向右走,用上述表示法写出另两种走法,并判断这几种走法的路程是否相等.23.(8分)如图,已知A (-1,0),B (1,1),把线段AB 平移,使点B 移动到点D (3,4)处,这时点A 移动到点C 处.(1)画出平移后的线段CD ,并写出点C 的坐标;(2)如果平移时只能左右或者上下移动,叙述线段AB 是怎样移到CD 的.24.(8分)如图所示.(1)写出三角形③的顶点坐标.(2)通过平移由③能得到④吗?为什么?第22题图第23题图第24题图(3)由对称性③可得①、②三角形,顶点坐标各是什么?第五章平面直角坐标系检测题参考答案1.B 解析:因为点在第三象限,所以,所以,所以,所以点在第二象限,故选B.2.D 解析:因为P点到两坐标轴的距离相等,所以,所以,当3.D 解析:∵点在轴上,∴纵坐标是0,即.又∵点位于原点的左侧,∴横坐标小于0,即,∴,故选D.4.D5.D 解析:过点作⊥轴于点,则点的坐标为(3,0).因为点到轴的距离为4,所以.又因为,所以由勾股定理得,所以点的坐标为(6,0)或(0,0),故选D.6.A 解析:设点到轴的距离为,则.因为,所以,故选A.7. D 解析:若点P()的坐标满足xy=0,则所以点P在轴上或在轴上.故选D.8. B 解析:因为点A (m +3,m +1)在轴上,所以m +1=0,所以m =-1,所以A (2,0).9.D 解析:∵,∴且.当时,横坐标不是0,点不在轴上;当时,纵坐标不是0,点不在轴上.故点不在坐标轴上,选D .10.A 解析:点A (-3,2)关于原点对称的点B 的坐标是(3,-2),则点B 关于轴对称的点C 的坐标是(3,2),故选A . 11.解析:因为点是第二象限的点,所以⎩⎨⎧>-<,,030a a 解得.12.3 -4 解析:因为点(13)A m -,与点(21)B n +,关于x 轴对称,所以横坐标不变,纵坐标互为相反数,所以所以13. (3,2) 解析:一只蚂蚁由(0,0)先向上爬4个单位长度,则坐标变为(0,4),再向右爬3个单位长度,坐标变为(3,4),再向下爬2个单位长度,则坐标变为(3,2),所以它所在位置的坐标为(3,2).14.轴 解析:∵ ,∴,,∴两点关于轴对称. 15. 关于原点对称 解析:因为点和点关于轴对称,所以点的坐标为;因为点与点关于轴对称,所以点的坐标为,所以,点和点关于原点对称.16.向下平移了一个单位 向左平移了一个单位17.解析:∵ ,以点为圆心,2为半径画弧,交轴于点,,在直角三角形和直角三角形中,由勾股定理得,∴ 点的坐标为或.18.-1 解析:因为点A 在第二象限,所以,所以.又因为是整数,所以.19. 解:设△A 1B 1C 1的三个顶点的坐标分别为A 1(,将它的三个顶点分别向右平移4个单位,再向下平移3个单位,则此时三个顶点的坐标分别为 (,由题意可得=2,.20. 解:(1)将线段AB 向右(或下)平移3个小格(或4个小格),再向下(或右)平移4个小格(或3个小格),得线段CD.(2)将线段BD 向左平移(或向下平移1个小格)3个小格,再向下平移(或向左平移3个小格)1个小格,得到线段AC . 21. 解:(1)因为(0,3)和(3,3)的纵坐标相同,因而BC ∥AD ,故四边形是梯形.作出图形如图所示. (2)因为,,高, 故梯形的面积是21227. (3)在Rt△中,根据勾股定理得,同理可得,因而梯形的周长是.22. 解:路程相等. 走法一:; 走法二:;答案不唯一.23.解:(1)∵ 点B (1,1)移动到点D (3,4)处,如图, ∴ C (1,3);(2)向右平移2个单位长度再向上平移3个单位长度即可得到CD .24. 分析:(1)根据坐标的确定方法,读出各点的纵、横坐标,即可得出各个顶点的坐标;(2)根据平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减,可得④不能由③通过平移得到; (3)根据对称性,即可得到①、②三角形顶点坐标.第21题答图第23题答图解:(1)(-1,-1),(-4,-4),(-3,-5).(2)不能,下面两个点向右平移5个单位长度,上面一个点向右平移4个单位长度.(3)三角形②顶点坐标为(-1,1),(-4,4),(-3,5).(三角形②与三角形③关于轴对称);三角形①顶点坐标为(1,1),(4,4),(3,5)•(由③与①关于原点对称可得①的顶点坐标).。
第五章位置与坐标单元测试卷(含解析)

〖鲁教版五四制七年级上数学单元测试卷〗第五章《位置与坐标》班级: 姓名: 得分:(时间90分钟 满分100分)一、选择题:本大题共10小题,每小题3分,满分30分,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.1. 如图,在平面直角坐标系中,小猴子挡住的点坐标有可能是( ) A. (3,2) B.(—3,2) C.(3,—2) D.(—3,—2)2. (2016▪北京)如图,直线m n ⊥,在某平面直角坐标系中,x 轴∥m ,y 轴∥n ,点A的坐标为42-(,),点B 的坐标为24-(,),则坐标原点为( )A. 1OB. 2OC. 3OD.4O3. 如果点Q 到x 轴的距离为2016,到y 轴的距离为2017,且Q 在第四象限,则点Q 的坐标为( )4. (2016·湖北武汉)已知点A (a ,1)与点A ′(5,b )关于坐标原点对称,则实数a 、b 的值是( )A .a =5,b =1B .a =-5,b =1C .a =5,b =-1D .a =-5,b =-15. 下列说法正确的是( )A .若xy =0,则点P (x ,y )表示原点B .如果两个点的坐标相等,那么这个点在一、三象限的角平分线上;二、四象限的角平分线上的点坐标互为相反数C .平行于x 轴的直线上的点,横坐标相同D .点(﹣x 2,2016)在第二象限6.如图,在平面直角坐标系中,△ABC 的三个顶点都在网格图的格点上,A 点坐标(—2,1),B 点坐标(1,2),C 点坐标(2,—2),则△ABC 的面积为( )A. 7B. 6.5C. 5D.无法计算7. 在平面直角坐标系中,点()2016,122--+-b a P ,则点P 在第( )象限 A. 第一象限 B. 第二象限 C. 第三象限 D.第四象限8. 若P(a ,b ),且满足()062=++++b a b a ab ,则P 点的位置( ) A. x 轴上 B. y 轴上 C. 原点 D.x 轴上或y 轴上 9. 在平面直角坐标系中,点P (2a + 1,3 -b )在第三象限,则点⎪⎪⎭⎫ ⎝⎛-a b a b Q ,2在第( )象限10. 如图,在平面直角坐标系中,长方形ABCD ,D 点坐标(—2,4),点B 和原点重合,将长方形ABCD 沿x 轴翻滚,第1次翻滚D 点的对应点是1D ,第2次翻滚D 点的对应点是2D ,第3次翻滚D 点的对应点是3D ,……,以此类推,第2017次翻滚D 点的对应点2017D 的坐标为( )A. (6048,4)B. (6052,4)C.(6048,2)D.(6052,2)二、填空题(本大题共4小题,每小题4分,满分16分)11. (2015•绵阳第)如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的平面坐标分别为A (﹣2,1)和B (﹣2,﹣3),那么第一架轰炸机C 的平面坐标是 .12. (2015江苏常州)如图是根据某公园的平面示意图建立的平面直角坐标系,公园的入口位于坐标原点O ,古塔位于点A (400,300),从古塔出发沿射线OA 方向前行300m 是盆景园B ,从盆景园B 向左转90°后直行400m 到达梅花阁C ,则点C 的坐标是_______________.y (单位:m )(单位:m )Ox300400CBA13. 如图,点A在y轴,坐标为(0,4);点B在y轴,坐标为(0,—2),若△ABC的面积等于9,且点C在x轴上,则C点的坐标为。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章《位置与坐标》单元测试题
课型:复习课执笔人:陈宁审核人: 王淑香上课时间:
【学习目标】
1、巩固平面直角坐标系的有关概念。
2、能运用相关知识解决实际问题。
【学习过程】
一、复习导学:
二、合作交流
1、平面内确定一个点的位置,至少需要_______个独立的数据
2、在平面内,两条互相_______且有公共_______的数轴组成平面直角坐标系。
水平的数轴叫做_______,向_____的方向为正方向:铅直的数轴叫做_______。
向______的方向为正方向。
两条坐标轴的公共原点称为直角坐标系的________。
3、在平面直角坐标系中,第一象限点的符号记作(+,+),那么第二象限点的坐标特征是_____;三象限的是_______;四象限的是_______。
4、设点p的坐标为(x.y),若点P在__________上,则x=0;
若点P在__________上,则y=0;若点P在________,则x=0,y=0
若点p在x轴上方,则______>0; 若点p在x轴下方,则______<0;
若点p在y轴左侧,则______<0;若点p在y轴右侧,则______>0
5、设点p的坐标为(x.y),则点p关于x轴对称的点的坐标为_____;点p关于y轴对称的点的坐标为_____;点p关于原点对称的点的坐标为____;
6、p(m,n)到x轴的距离为______;到y 轴的距离为______;到原点的距离为______;
7、(1)各点的纵坐标不变,横坐标都加上(或减去)正数a,则图形整体向_____(或向_____)平移_____个单位。
各点的横坐标不变,纵坐标都加上(或减去)正数a,则图形整体向_____(或向_____)平移_____个单位。
(2)点的纵坐标不变,横坐标都乘以-1,所得图形与原图形关于_ __对称。
各点的横坐标不变,纵坐标都乘以-1,所得图形与原图形关于____对称。
各点的横坐标、纵坐标都乘以-1,所得图形与原图形关于_____对称。
(3)各点的横坐标(或纵坐标)都乘以绝对值大于1的数时,图形横向(或纵向)
_________
各点的横坐标(或纵坐标)都乘以绝对值小于1的数时,图形横向(或纵向)__________ 三、达标测评
(一)选择题
1、在平面直角坐标系中,点P(-2,3)在()
A、第一象限
B、第二象限
C、第三象限
D、第四象限
2、点M(2,-3)关于y轴的对称点N的坐标是()
A、(-2,-3)
B、(-2, 3)
C、(2, 3)
D、(-3,2)
3、(已知点P (3,-2)与点Q 关于x 轴对称,则Q 点的坐标为( )
A 、(-3,2)
B 、(-3,-2)
C 、(3,2)
D 、(3,-2)
4、已知△ABC 在直角坐标系中的位置如图所示,如果△A'B'C' 与△ABC 关于y 轴对称,那么点A 的对应点A'的坐标为( ).
A 、(-4,2)
B 、 (-4,-2)
C 、(4,-2)
D 、(4,2)
5、在平面直角坐标系中,□ABCD 的顶点A 、B 、D 的坐标分别是(0,0),(5,0),(2,3),
则顶点C 的坐标是( )
A 、(3,7);
B 、(5,3)
C 、(7,3);
D 、(8,2)
6、以如图所示的方格纸中,每个小正方形的边长为1,如果以MN 所在的直线为Y 轴,以小正方形的边长为单位长度建立平面直角坐标系,使A 点与B 点关于原点对称,则这时C 点的坐标可能是( )
A 、(1,3)
B 、(2,-1)
C 、2,1)
D 、(3,1)
7、在平面直角坐标系中,若点P (x -2, x )在第二象限,则x 的取值范围为( )
A 、x >0 ;
B 、x <2 ;
C 、0<x <2;
D 、x >2
8、若点P 的坐标是(m ,n ),且m <0,n >0,则点P 在( )
A 、第一象限
B 、第二象限
C 、第三象限
D 、第四象限
9、已知坐标平面内点A (m 、n )在第四象限,那么点B (n 、m )在( )
A 、第一象限
B 、第二象限
C 、第三象限
D 、第四象限
10、把点P 1(2,一3)向右平移3个单位长度再向下平移2个单位长度到达点P 2处,则P 2的坐标是( )
A 、(5,-1)
B 、(-1,-5)
C 、(5,-5)
D 、(-1,-1)
(二)、填空题
11、若点A(a -9,a+2)在y 轴上,则a=______.
12、小王在求点 A 关于x 轴对称的点的坐标时,由于把x 轴看成是y 轴 ,结果是(2,-5),那么正确的答案应该是 。
13、已知点P(a,b),ab>0,a+b<0,则点P 在第_______象限
14、点P (x,y )坐标x,y 满足xy=0,则p 点__________
15、已知点P 在第四象限,点P 到x 轴的距离为2,到y 轴的距离是3,则点P 的坐标是 _____________.
16、把点A (3,2)向左平移6个单位长度得点B ( , )再向下平移4个单位长度得到C ( , ),点A 与B 关于 对称,点A 与点C 关于 对称.
17、(-4,3)到x 轴距离为 ,到y 轴距离为 , 到原点的距离为______;
18、在平面直角坐标系中,点(3,-5)在第___象限.
19、如图,将边长为1的正方形OAPB 沿x 轴正方向边连续翻转2006次,点P 依次落在点1232006,,P P P P 的位置,则2006P 的横坐标2006x =____________则2006P 的横坐标2006x =____________
第16(1)图 第16(2)图
20、先将一矩形ABCD 置于直角坐标系中,使点A 与坐标系的原点重合,边AB 、AD 分别落在x 轴、y 轴上,如图16(1),再将此矩形在坐标平面内按逆时针方向绕原点旋转30°如图16(2),若AB =4,BC =3,则图16(1)和图16
(2)中点B 点的坐标为 .点C 的坐标 .
三、解答题 21、如图,ABC △中,1204BAC AB AC BC ∠===,,,请你建立适当的直角坐标系,并写出A B C ,,各点的坐标.
22、在直角坐标系中描出下列各组点,并组各组的点用线段依次连结起来.
(1)(1,0)、(6,0)、(6,1)、(5,0)、(6,-1)、(6,0);
(2)(2,0)、(5,3)、(4,0);
(3)(2,0)、(5,-3)、(4,0).
观察所得到的图形像什么?如果要将此图形向上平移到x 轴上方,那么至少要向上平移几个单位长度.
23、如图 ,是一个8×10正方形格纸,△ABC 中A 点坐标为(-2,1).
(1)△ABC 和△A 'B 'C '满足什么几何变换(直接写答案)?
(2)作△A 'B 'C '关于x 轴对称图形△A ''B ''C '';
(3)△ABC 和△A ''B ''C ''满足什么几何变换?求A ''、B ''、C ''三点坐标(直接写答案)
24、如图,我们称每个小正方形的顶点为“格点”,以格点为顶点的三角形叫做“格点三角形”.根据图形解答下列问题:
A B C A B
C
A B C
(1)图中的格点△DEF是由格点△ABC通过怎样的变换得到的?(写出变换过程)
(2)在图中建立适当的直角坐标系,写出△DEF各顶点的坐标.
25、如图7,在平面直角坐标系中,已知点为A(-2,0),B(2,0).
(1)画出等腰三角形ABC(画出一个即可);
(2)写出(1)中画出的ABC的顶点C的坐标.
图7
26、如图8,△ABC三个顶点的坐标分别为A(4,3),B(3,1),C(4,1).
(1)将三角形ABC三个顶点的横坐标都减去6,纵坐标不变,分别得到点A1,B1,C1,依次连接A1,B1,C1各点,所得△A1B1C1与三角形ABC的大小、形状和位置上有什么关系?
(2)将△ABC三个顶点的纵坐标都减去5,横坐标不变,分别得到点A2,B2,C2,依次连接A2,B2,C2各点,所得△A2B2C2与△ABC的大小、形状和位置上有什么关系?
图8
【课后反思】
初中数学试卷
灿若寒星制作。