2004年高考.北京卷.理科数学试题及答案

合集下载

2000年春季高考.北京、安徽卷.理科数学试题及答案

2000年春季高考.北京、安徽卷.理科数学试题及答案

绝密★启用前2000年普通高等学校春季招生考试(北京、安徽卷)数学(理工农医类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页.第Ⅱ卷3至8页.共150分.考试时间120分钟.第Ⅰ卷(选择题共60分)注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上.2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮干净后,再选涂其它答案,不能答在试题卷上.3.考试结束,监考人将本试卷和答题卡一并收回.参考公式:三角函数和差化积公式正棱台、圆台的侧面积公式其中c′、c分别表示上、下底面周长,l表示斜高或母线长台体的体积公式其中S′、S分别表示上、下底面积,h表示高一、选择题:本大题共14小题;第(1)─(10)题每小题4分,第(11)—(14)题每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)z=3+i z=1-i z=z z复数,,则·在复平面内的对应点位于[ ] 1212A.第一象限B.第二象限C.第三象限D.第四象限是 [](3)双曲线12222=-ay b x 的两条渐近线互相垂直,那么该双曲线的离心率是 [ ](4)曲线xy=1的参数方程是 [ ]⎩⎨⎧==⎩⎨⎧==⎩⎨⎧==⎪⎩⎪⎨⎧==-.,D sec ,cos C csc sin B A 2121ctga y tga x a y a x a y a x t y t x .... (5)一个圆锥的底面直径和高都同一个球的直径相等,那么圆锥与球的体积之比是[ ]A .1∶3B .2∶3C .1∶2D .2∶9(6)直线θ=α和直线ρsin(θ-α)=1的位置关系是 [ ]A .垂直B .平行C .相交但不垂直D .重合(7)函数y=lg|x| [ ]A .是偶函数,在区间(-∞,0)上单调递增B .是偶函数,在区间(-∞,0)上单调递减C .是奇函数,在区间(0,+∞)上单调递增D .是奇函数,在区间(0,+∞)上单调递减(8)从单词“equation”中选取5个不同的字母排成一排,含有“qu”(其中“qu”相连且顺序不变)的不同排列共有A .120个B .480个C .720个D .840个(9)椭圆短轴长是2,长轴是短轴的2倍,则椭圆的中心到其准线距离是 [ ](12)设α,β是一个钝角三角形的两个锐角,下列四个不等式中不正确...的是[ ][ ]A.b∈(-∞,0) B.b∈(0,1) C.b∈(1,2) D.b∈(2,+∞)第Ⅱ卷(非选择题)注意事项:1.第Ⅰ卷共6页,用钢笔或圆珠笔直接答在试题卷中.2.答卷前将密封线内的项目写清楚.二、填空题:本大题共4小题;每小题4分,共16分,把答案填在题中横线上.(16)下图是一体积为72的正四面体,连结两个面的重心E、F,则线段EF的长是______.(18)在空间,下列命题正确的是______.(注:把你认为正确的命题的序号都.填上)①如果两直线a、b分别与直线l平行,那么a∥b②如果直线a与平面β内的一条直线b平行,那么a∥β③如果直线a与平面β内的两条直线b、c都垂直,那么a⊥β④如果平面β内的一条直线a垂直平面γ,那么β⊥γ三、解答题:本大题共6小题;共74分,解答应写出文字说明、证明过程或演算步骤.(19)(本小题满分12分)在△ABC中,角A、B、C对边分别为a、b、c.证明:=a(如图一),将△ADC沿AC折起,使D到D′.记面ACD′为α,面ABC 为β,面BCD′为γ.(Ⅰ)若二面角α-AC-β为直二面角(如图二),求二面角β-BC-γ的大小;(Ⅱ)若二面角α-AC-β为60°(如图三),求三棱锥D′-ABC的体积.(21)(本小题满分12分)设函数f(x)=|lgx|,若0<a<b,且(a)>f(b),证明:ab<1.(22)(本小题满分12分)知OA⊥OB,OM⊥AB,求点M的轨迹方程,并说明它表示什么曲线.(23)(本小题满分12分)某地区上年度电价为0.8元/kW ·h ,年用电量为akW ·h ,本年度计划将电价降到0.55元/kW ·h 至0.75元/kW ·h 之间,而用户期望电价为0.4元/kW ·h ,经测算,下调电价后新增的用电量与实际电价和用户期望电价的差成反比(比例系数为k ).该地区电力的成本价为0.3元/kW ·h .(Ⅰ)写出本年度电价下调后,电力部门的收益y 与实际电价x 的函数关系式;(Ⅱ)设k=0.2a ,当电价最低定为多少时仍可保证电力部门的收益比上年至少增长20%?(注:收益=实际用电量×(实际电价-成本价))(24)(本小题满分14分)()x [0,12),x 01Ⅲ若求∈==f x f x x x (),(),.0100绝密★启用前2000年普通高等学校春季招生考试(北京、安徽卷)数学试题(理工农医类)参考解答及评分标准说明:一、本解答指出了每题考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则。

2004年普通高等学校春季招生考试数学(理工)(北京卷)(附解答)

2004年普通高等学校春季招生考试数学(理工)(北京卷)(附解答)

2004年普通高等学校春季招生考试数学(理工)(北京卷)一. 选择题:本大题共10小题,每小题5分,共50分在每小题给出的四个选项中,只有一项是符合题目要求的1. 在函数y x y x y x y tgx====sin sin cos 22,,,中,最小正周期为π的函数是( ) A. y x =sin2 B. y x =sin C. y x =cos D. y tg x=22. 当231<<m 时,复数z m m i =-+-()()321在复平面上对应的点位于( ) A. 第一象限B. 第二象限C. 第三象限D. 第四象限3. 双曲线x y 22491-=的渐近线方程是( ) A. y x =±32B. y x =±23 C. y x =±94D. y x =±494. 一个圆锥的侧面积是其底面积的2倍,则该圆锥的母线与底面所成的角为( ) A. 30︒B. 45︒C. 60︒D. 75︒5. 在极坐标系中,圆心在()2,π且过极点的圆的方程为( ) A. ρθ=22cos B. ρθ=-22cos C. ρθ=22sinD. ρθ=-22sin6. 已知sin()cos()θπθπ+<->00,,则下列不等关系中必定成立的是( ) A. tgctgθθ22<B. tgctgθθ22> C. sincos θθ22< D.sincos θθ22>7. 已知三个不等式:ab bc ad c a db>->->000,,(其中a ,b ,c ,d 均为实数),用其中两个不等式作为条件,余下的一个不等式作为结论组成一个命题,可组成的正确命题的个数是( ) A. 0 B. 1 C. 2 D. 38. 两个完全相同的长方体的长、宽、高分别为5cm ,4cm ,3cm ,把它们重叠在一起组成一个新长方体,在这些新长方体中,最长的对角线的长度是( ) A.77cmB. 72cmC. 55cmD. 102cm9. 在100件产品中有6件次品,现从中任取3件产品,至少有1件次品的不同取法的种数是( ) A. C C 61942B. C C 61992C. C C 1003943-D. P P 1003943-10. 期中考试以后,班长算出了全班40个人数学成绩的平均分为M ,如果把M 当成一个同学的分数,与原来的40个分数一起,算出这41个分数的平均值为N ,那么M:N 为( ) A.4041B. 1C.4140D. 2二. 填空题:本大题共4小题,每小题4分,共16分,把答案填在题中横线上11. 若f x -1()为函数f x x ()lg()=+1的反函数,则fx -1()的值域是_________12.sin()sin()cos ααα+︒--︒3030的值为____________13. 据某校环保小组调查,某区垃圾量的年增长率为b ,2003年产生的垃圾量为a 吨测,该区下一年的垃圾量为____________吨,2008年的垃圾量为_________吨14. 若直线mx ny +-=30与圆x y 223+=没有公共点,则m ,n 满足的关系式为____________;以(m ,n )为点P 的坐标,过点P 的一条直线与椭圆x y 22731+=的公共点有_________个三. 解答题:本大题共6小题,共84分解答应写出文字说明,证明过程或演算步骤15. (本小题满分13分) 当01<<a 时,解关于x 的不等式a a x x 212--<16. (本小题满分13分) 在∆ABC 中,a ,b ,c 分别是∠∠∠A B C ,,的对边长,已知a ,b ,c 成等比数列,且a c ac bc 22-=-,求∠A 的大小及b Bcsin 的值17. (本小题满分15分) 如图,四棱锥S ABCD -的底面是边长为1的正方形,SD 垂直于底面ABCD ,SB =(I )求证BC SC ⊥; (II (III )设棱SA 的中点为M18.上,(II)求线段BC中点M的坐标;(III)求BC所在直线的方程19. (本小题满分14分)某厂生产某种零件,每个零件的成本为40元,出厂单价定为60元,该厂为鼓励销售商订购,决定当一次订购量超过100个时,每多订购一个,订购的全部零件的出厂单价就降低0.02元,但实际出厂单价不能低于51元(I)当一次订购量为多少个时,零件的实际出厂单价恰降为51元?=()的表达式;(II)设一次订购量为x个,零件的实际出厂单价为P元,写出函数P f x(III)当销售商一次订购500个零件时,该厂获得的利润是多少元?如果订购1000个,利润又是多少元?(工厂售出一个零件的利润=实际出厂单价-成本)其中每行、每列都是等差数列,a ij表示位于第i行第j列的数(I)写出a的值;(II)写出a ij的计算公式;45(III)证明:正整数N在该等差数列阵中的充要条件是2N+1可以分解成两个不是1的正整数之积2004年普通高等学校春季招生考试数学试题(理工)(北京卷)参考解答一. 选择题:本大题主要考查基本知识和基本运算5分,满分50分 1. A 2. D 3. A 4. C 5. B 6. B 7. D 8. C 9. C 10. B二. 填空题:本大题主要考查基本知识和基本运算4分,满分16分11. ()-+∞1, 12. 1 13. a b ()1+a b ()15+14. 0322<+<m n 2三. 解答题:本大题共6小题,共84分解答应写出文字说明,证明过程或演算步骤15. 本小题主要考查不等式的解法、指数函数的性质等基本知识,考查运算能力和逻辑思维能力,满分13分解:由01<<a ,原不等式可化为212x x ->- 这个不等式的解集是下面不等式组(1)及(2)的解集的并集:210201x x -≥-<⎧⎨⎩() 或2102021222x x x x -≥-≥->-⎧⎨⎪⎩⎪()() 解不等式组(1)得解集{|}x x 122≤< 解不等式组(2)得解集{|}x x 25≤<所以原不等式的解集为{|}x x 125≤<16. 本小题主要考查解斜三角形等基本知识,考查逻辑思维能力、分析问题和解决问题的能力满分13分解:(I ) a b c ,,成等比数列 ∴=b ac 2又a c ac bc 22-=- ∴+-=b c a bc 222在∆ABC 中,由余弦定理得cos A b c a bc bc bc =+-==2222212∴∠=︒A 60 (II )在∆ABC 中,由正弦定理得sin sin B b Aa=b ac A 260=∠=︒, ∴=︒=︒=b B c b ca sin sin sin 260603217. 本小题主要考查直线与平面的位置关系等基本知识,考查空间想象能力、逻辑思维能力和运算能力满分15分(由三垂线定理得BC SC ⊥(II )解:SD ⊥底面ABCD ,且ABCD 为正方形∴可以把四棱锥S ABCD -补形为长方体A B C S ABCD 111-,如图2 面ASD 与面BSC 所成的二面角就是面ADSA 1与面BCSA 1所成的二面角,SC BC BC A S SC A S⊥∴⊥,//11 又SD A S ⊥1 ∴∠C S D 为所求二面角的平面角在Rt∆ ∴∠C S(III )解:如图3 SD AD SDA ==∠=︒190, ∴∆S D A 是等腰直角三角形 又M 是斜边SA 的中点∴⊥⊥⊥=DM SABA AD BA SD AD SD D,, ∴⊥BA 面ASD ,SA 是SB 在面ASD 上的射影18. 题的能力满分15分解:(I )由点A (2,8)在抛物线y px 22=上,有8222=⋅p 解得p =16所以抛物线方程为y x 232=,焦点F 的坐标为(8,0)(II )如图,由F (8,0)是∆ABC 的重心,M 是BC 的中点,所以F 是线段AM 的定比分点,且AFFM =2 设点M 的坐标为()x y 00,,则 221288212000++=++=x y , 解得x y 00114==-, 所以点M 的坐标为(11,(III 设BC 所成直线的方程为 y k x k +=-≠4110()()由y k x y x+=-=⎧⎨⎩411322()消x 得 ky y k 232321140--+=()所以y y k 1232+=由(II )的结论得y y 1224+=- 解得k =-4 因此BC 所在直线的方程为 y x +=--4411() 即4400x y +-=19. 满分14分解:(I )设每个零件的实际出厂价恰好降为51元时,一次订购量为x 0个,则 x 01006051002550=+-=. 因此,当一次订购量为550个时,每个零件的实际出厂价恰好降为51元(II )当0100<≤x 时,P =60当100550<<x 时,P x x =--=-600021006250.() 当x ≥550时,P =51所以P f x x x x x N x ==<≤-<<∈≥⎧⎨⎪⎪⎩⎪⎪()()600100625010055051550 (III )设销售商的一次订购量为x 个时,工厂获得的利润为L 元,则L P x x x x x x x N =-=<≤-<≤∈⎧⎨⎪⎩⎪()()4020010022501005002当x =500时,L =6000;当x =1000时,L =11000因此,当销售商一次订购500个零件时,该厂获得的利润是6000元; 如果订购1000个,利润是11000元20. 本小题主要考查等差数列、充要条件等基本知识,考查逻辑思维能力、分析问题和解决问题的能力满分14分解:(I )a 4549=(II )该等差数阵的第一行是首项为4,公差为3的等差数列: a j j 1431=+-()第二行是首项为7,公差为5的等差数列: a j j 2751=+-()……第i 行是首项为431+-()i ,公差为21i +的等差数列,因此a i i j ij i j i j jij =+-++-=++=++431211221()()()()(III )必要性:若N 在该等差数阵中,则存在正整数i ,j 使得N i j j =++()21 从而2122121N i j j +=+++() =++()()2121i j即正整数2N+1可以分解成两个不是1的正整数之积充分性:若2N+1可以分解成两个不是1的正整数之积,由于2N+1是奇数,则它必为两个不是1的奇数之积,即存在正整数k ,l ,使得212121N k l +=++()() 从而N k l l a kl =++=()21可见N 在该等差数阵中 综上所述,正整数N 在该等差数阵中的充要条件是2N+1可以分解成两个不是1的正整数之积。

2004高考数学试题(全国4理)及答案

2004高考数学试题(全国4理)及答案

2004年高考试题全国卷Ⅳ理科数学(必修+选修Ⅱ)第I 卷参考公式: 如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率是P ,那么n 次独立重复试验中恰好发生k 次的概率P n (k)=C kn P k (1-P)n -k一、选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的 1.已知集合},2|{},2,1,0{M a a x x N M ∈===,则集合N M ⋂= ( )A .{0}B .{0,1}C .{1,2}D .{0,2} 2.函数)(2R x e y x∈=的反函数为( )A .)0(ln 2>=x x yB .)0)(2ln(>=x x yC .)0(ln 21>=x x y D .)0(2ln 21>=x x y 3.过点(-1,3)且垂直于直线032=+-y x 的直线方程为( )A .012=-+y xB .052=-+y xC .052=-+y xD .072=+-y x 4.)1)31(2ii +-=( )A .i +3B .i --3C .i -3D .i +-3 5.不等式03)2(<-+x x x 的解集为( )A .}30,2|{<<-<x x x 或B .}3,22|{><<-x x x 或C .}0,2|{>-<x x x 或D .}3,0|{<<x x x 或6.等差数列}{n a 中,78,24201918321=++-=++a a a a a a ,则此数列前20项和等于 ( )A .160B .180C .200D .220 7.对于直线m 、n 和平面α,下面命题中的真命题是( )A .如果m n m ,,αα⊄⊂、n 是异面直线,那么α//n ;B .如果m n m ,,αα⊄⊂、n 是异面直线,那么α与n 相交C .如果m n m ,//,αα⊂、n 共面,那么n m //;D .如果m n m ,//,//αα、n 共面,那么n m //8.已知椭圆的中心在原点,离心率21=e ,且它的一个焦点与抛物线x y 42-=的焦点重合, 则此椭圆方程为( )球的表面积公式S=42R π其中R 表示球的半径, 球的体积公式V=334R π 其中R 表示球的半径A .13422=+y x B .16822=+y x C .1222=+y x D .1422=+y x 9.从5位男教师和4位女教师中选出3位教师,派到3个班担任班主任(每班1位班主任),要求这3位班主任中男、女教师都要有,则不同的选派方案共有( )A .210种B .420种C .630种D .840种10.已知球的表面积为20π,球面上有A 、B 、C 三点.如果AB=AC=2,BC=32,则球心 到平面ABC 的距离为( )A .1B .2C .3D .211.△ABC 中,a 、b 、c 分别为∠A 、∠B 、∠C 的对边.如果a 、b 、c 成等差数列,∠B=30°,△ABC 的面积为23,那么b = ( )A .231+ B .31+C .232+ D .32+12.设函数))((R x x f ∈为奇函数,),2()()2(,21)1(f x f x f f +=+=则=)5(f ( )A .0B .1C .25 D .5第Ⅱ卷二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.8)1(xx -展开式中5x 的系数为 .14.向量a 、b 满足(a -b )·(2a +b )=-4,且|a |=2,|b |=4,则a 与b夹角的余弦值等于 .15.函数)(2cos 21cos )(R x x x x f ∈-=的最大值等于 . 16.设y x ,满足约束条件:⎪⎩⎪⎨⎧≥≤≤+,0,,1y x y y x 则y x z +=2的最大值是 .三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知α为第二象限角,且 sin α=,415求12cos 2sin )4sin(+++ααπα的值. 18.(本小题满分12分)求函数241)1ln()(x x x f -+=在[0,2]上的最大值和最小值.C19.(本小题满分12分) 某同学参加科普知识竞赛,需回答三个问题.竞赛规则规定:每题回答正确得100分,回答不正确得-100分.假设这名同学每题回答正确的概率均为0.8,且各题回答正确与否相互之间没有影响. (Ⅰ)求这名同学回答这三个问题的总得分ξ的概率分布和数学期望; (Ⅱ)求这名同学总得分不为负分(即ξ≥0)的概率. 20.(本小题满分12分)如图,四棱锥P —ABCD 中,底面ABCD 为矩形,AB=8,AD=43,侧面PAD 为等边三角形,并且与底面所成二面角为60°.(Ⅰ)求四棱锥P —ABCD 的体积; (Ⅱ)证明PA ⊥BD. 21.(本小题满分12分)双曲线)0,1(12222>>=-b a by a x 的焦点距为2c ,直线l 过点(a ,0)和(0,b ),且点(1,0)到直线l 的距离与点(-1,0)到直线l 的距离之和.54c s ≥求双曲线的离心率e 的取值范围. 22.(本小题满分14分)已知函数0)(),sin (cos )(='+=-x f x x ex f x将满足的所有正数x 从小到大排成数列}.{n x(Ⅰ)证明数列{}{n x f }为等比数列;(Ⅱ)记n S 是数列{}{n n x f x }的前n 项和,求.lim 21nS S S nn +++∞→2004年高考试题全国卷4理科数学(必修+选修Ⅱ)参考答案一、选择题1—12 D C A D A B C A B A B C二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.28 14.21-15.43 16.2三、解答题17.本小题主要考查同角三角函数的基本关系式,二倍角公式以及三角函数式的恒等变形等 基础知识和基本技能.满分12分.解:αααααααπα2cos 2cos sin 2)cos (sin 2212cos 2sin )4sin(++=+++.)cos (sin cos 4)cos (sin 2ααααα++= 当α为第二象限角,且415sin =α时41cos ,0cos sin -=≠+ααα, 所以12cos 2sin )4sin(+++ααπα=.2cos 42-=α 18.本小题主要考查函数的导数计算,利用导数讨论函数的性质,判断函数的最大值、最小值以及综合运算能力.满分12分. 解:,2111)(x x x f -+=' 令 ,02111=-+x x 化简为,022=-+x x 解得.1),(221=-=x x 舍去当)(,0)(,10x f x f x >'<≤时单调增加; 当)(,0)(,21x f x f x <'≤<时单调减少. 所以412ln )1(-=f 为函数)(x f 的极大值. 又因为 ),2()1(,013ln )2(,0)0(f f f f >>-==所以 0)0(=f 为函数)(x f 在[0,2]上的最小值,412ln )1(-=f 为函数)(x f 在[0,2]上的最大值.19.本小题主要考查离散型随机变量的分布列、数学期望等概念,以及运用概率统计知识解 决实际问题的能力.满分12分. 解:(Ⅰ)ξ的可能值为-300,-100,100,300.P (ξ=-300)=0.23=0.008, P (ξ=-100)=3×0.22×0.8=0.096, P (ξ=100)=3×0.2×0.82=0.384, P (ξ=300)=0.83=0.512,图2Cy所以ξ的概率分布为根据ξ的概率分布,可得ξ的期望E ξ=(-300)×0.08+(-100)×0.096+100×0.384+300×0.512=180.(Ⅱ)这名同学总得分不为负分的概率为P (ξ≥0)=0.384+0.512=0.896.20.本小题主要考查棱锥的体积、二面角、异面直线所成的角等知识和空间想象能力、分析问题能力.满分12分. 解:(Ⅰ)如图1,取AD 的中点E ,连结PE ,则PE ⊥AD.作PO ⊥平面在ABCD ,垂足为O ,连结OE. 根据三垂线定理的逆定理得OE ⊥AD , 所以∠PEO 为侧面PAD 与底面所成的二面角的平面角, 由已知条件可知∠PEO=60°,PE=6, 所以PO=33,四棱锥P —ABCD 的体积 V P —ABCD =.963334831=⨯⨯⨯ (Ⅱ)解法一:如图1,以O 为原点建立空间直角坐标系.通过计算可得P (0,0,33),A (23,-3,0),B (23,5,0),D (-23,-3,0) 所以).0,8,34(),33,3,32(--=--=BD PA 因为,002424=++-=⋅BD PA 所以PA ⊥BD.解法二:如图2,连结AO ,延长AO 交BD 于点F.通过计算可得EO=3,AE=23知AD=43,AB=8,得.ABADAE EO = 所以 Rt △AEO ∽Rt △BAD. 得∠EAO=∠ABD.所以∠EAO+∠ADF=90° 所以 AF ⊥BD.因为 直线AF 为直线PA 在平面ABCD 内的身影,所以PA ⊥BD.21.本小题主要考查点到直线距离公式,双曲线的基本性质以及综合运算能力.满分12分. 解:直线l 的方程为1=+bya x ,即 .0=-+ab ay bx 由点到直线的距离公式,且1>a ,得到点(1,0)到直线l 的距离221)1(ba ab d +-=,同理得到点(-1,0)到直线l 的距离222)1(ba ab d ++=.222221cabb a ab d d s =+=+= 由,542,54c c ab c s ≥≥得 即 .25222c a c a ≥- 于是得 .025254,2152422≤+-≥-e e e e 即解不等式,得.5452≤≤e 由于,01>>e 所以e 的取值范围是.525≤≤e 22.本小题主要考查函数的导数,三角函数的性质,等差数列与等比数列的概念和性质,以及综合运用的能力.满分14分. (Ⅰ)证明:.sin 2)cos sin ()sin (cos )(x e x x e x x ex f x x x----=+-++-='由,0)(='x f 得.0sin 2=--x e x解出n n x ,π=为整数,从而,3,2,1,==n n x n π .)1()(πn n n e x f --=.)()(1π-+-=e x f x f n n所以数列)}({n x f 是公比π--=eq 的等比数列,且首项.)(1q x f =(Ⅱ)解:)()()(2211n n n x f x x f x x f x S +++= ),21(1-+++=n nq q q π),11()21(),2(122n nnn n n n n nq qq q nq qq q qS S nq q q q qS ---=-+++=-+++=-πππ 而).11(1n nn nq qq q q S ----=πnS S S n+++ 21.)1()1()1(2)1()11()1(11)1()1()21()1()1()1()1(2232222222121222q q q q n q q qnq qq q n q q q q n q q q nq q q n q qq q n q q qn n n nn n n -+----=----------=+++--+++---=+--πππππππππ因为0lim .1||=<=∞→-n n q eq π,所以.)1()1(lim 2221+-=-=+++∞→ππππe e q q n S S S n n。

2022北京高考理科数学试题及答案解析

2022北京高考理科数学试题及答案解析

2022北京高考理科数学试题及答案解析北京卷着重基础以及数学能力的结合,突出对学生素养的考查。

2022年高考数学考试已经结束了,下面是小编分享的2022北京高考理科数学试题及答案,欢迎大家阅读。

2022北京卷高考数学试题及答案数学选择题解题策略(1)注意审题。

把题目多读几遍,弄清这个题目求什么,已知什么,求、知之间有什么关系,把题目搞清楚了再动手答题。

(2)答题顺序不一定按题号进行。

可先从自己熟悉的题目答起,从有把握的题目入手,使自己尽快进入到解题状态,产生解题的激情和欲望,再解答陌生或不太熟悉的题目。

若有时间,再去拼那些把握不大或无从下手的题。

这样也许能超水平发挥。

(3)挖掘隐含条件,注意易错易混点,例如集合中的空集、函数的定义域、应用性问题的限制条件等。

(4)方法多样,不择手段。

高考试题凸现能力,小题要小做,注意巧解,善于使用数形结合、特值(含特殊值、特殊位置、特殊图形)、排除、验证、转化、分析、估算、极限等方法,一旦思路清晰,就迅速作答。

不要在一两个小题上纠缠,杜绝小题大做,如果确实没有思路,也要坚定信心,“题可以不会,但是要做对”,即使是“蒙”也有25%的胜率。

解三角形问题怎么答1.解题路线图(1) ①化简变形;②用余弦定理转化为边的关系;③变形证明。

(2) ①用余弦定理表示角;②用基本不等式求范围;③确定角的取值范围。

2.构建答题模板①定条件:即确定三角形中的已知和所求,在图形中标注出来,然后确定转化的方向。

②定工具:即根据条件和所求,合理选择转化的工具,实施边角之间的互化。

③求结果。

④再反思:在实施边角互化的时候应注意转化的方向,一般有两种思路:一是全部转化为边之间的关系;二是全部转化为角之间的关系,然后进行恒等变形。

高考数学答题技巧确保运算准确,立足一次成功数学高考题的容量在120分钟时间内完成大小26个题,时间很紧张,不允许做大量细致的解后检验,所以要尽量准确运算(关键步骤,力求准确,宁慢勿快),立足一次成功。

2004年高考数学(理科)真题及答案[全国卷I]

2004年高考数学(理科)真题及答案[全国卷I]

2004年全国统一考试理科数学本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分. 共150分. 考试时间120分钟.第I 卷参考公式: 如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率是P ,那么 n 次独立重复试验中恰好发生k 次的概率 P n (k)=C k n P k(1-P)n -k一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合=⋂<--=<=N M x x x N x x M 则集合},032|{},4|{22 ( )A .{2|-<x x }B .{3|>x x }C .{21|<<-x x }D . {32|<<x x }2.=-+-+→542lim 22x x x x n x ( )A .21B .1C .52 D .41 3.设复数ωω++-=1,2321则i =( )A .ω-B .2ωC .ω1-D .21ω 4.已知圆C 与圆1)1(22=+-y x 关于直线x y -=对称,则圆C 的方程为( )A .1)1(22=++y xB .122=+y xC .1)1(22=++y xD .1)1(22=-+y x球的表面积公式S=42R π其中R 表示球的半径, 球的体积公式V=334R π,其中R 表示球的半径5.已知函数)2tan(ϕ+=x y 的图象过点)0,12(π,则ϕ可以是( )A .6π-B .6πC .12π-D .12π 6.函数x e y -=的图象( )A .与x e y =的图象关于y 轴对称B .与x e y =的图象关于坐标原点对称C .与x e y -=的图象关于y 轴对称D .与x e y -=的图象关于坐标原点对称7.已知球O 的半径为1,A 、B 、C 三点都在球面上,且每两点间的球面距离均为2π,则 球心O 到平面ABC 的距离为( )A .31 B .33 C .32 D .36 8.在坐标平面内,与点A (1,2)距离为1,且与点B (3,1)距离为2的直线共有( ) A .1条 B .2条 C .3条 D .4条 9.已知平面上直线l 的方向向量e =),53,54(-点O (0,0)和A (1,-2)在l 上的射影分别是O ′和A ′,则λ=''A O e ,其中λ= ( )A .511 B .511-C .2D .-2 10.函数x x x y sin cos -=在下面哪个区间内是增函数( )A .)23,2(ππB .)2,(ππC .)25,23(ππ D .)3,2(ππ 11.函数x x y 24cos sin +=的最小正周期为 ( )A .4π B .2π C .πD .2π12.在由数字1,2,3,4,5组成的所有没有重复数字的5位数中,大于23145且小于43521 的数共有 ( ) A .56个 B .57个 C .58个 D .60个第Ⅱ卷二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.13.从装有3个红球,2个白球的袋中随机取出2个球,设其中有ξ个红球,则随机变量ξ的概率分布为14.设y x ,满足约束条件:⎪⎩⎪⎨⎧≤-≥≥,12,,0y x y x x则y x z 23+=的最大值是 .15.设中心在原点的椭圆与双曲线2222y x -=1有公共的焦点,且它们的离心率互为倒数,则该椭圆的方程是 . 16.下面是关于四棱柱的四个命题:①若有两个侧面垂直于底面,则该四棱柱为直四棱柱②若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱 ③若四个侧面两两全等,则该四棱柱为直四棱柱 ④若四棱柱的四条对角线两两相等,则该四棱柱为直四棱柱其中,真命题的编号是 (写出所有正确结论的编号).三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知锐角三角形ABC 中,.51)sin(,53)sin(=-=+B A B A (Ⅰ)求证:B A tan 2tan =;(Ⅱ)设AB=3,求AB 边上的高. 18.(本小题满分12分) 已知8支球队中有3支弱队,以抽签方式将这8支球队分为A 、B 两组,每组4支.求:(Ⅰ)A 、B 两组中有一组恰有两支弱队的概率; (Ⅱ)A 组中至少有两支弱队的概率. 19.(本小题满分12分)数列}{n a 的前n 项和记为S n ,已知).3,2,1(2,111 =+==+n S nn a a n n 证明: (Ⅰ)数列}{nS n是等比数列; (Ⅱ).41n n a S =+ 20.(本小题满分12分)如图,直三棱柱ABC —A 1B 1C 1中,∠ACB=90°,AC=1,CB=2,侧棱AA 1=1,侧面AA 1B 1B的两条对角线交点为D ,B 1C 1的中点为M.(Ⅰ)求证CD ⊥平面BDM ;(Ⅱ)求面B 1BD 与面CBD 所成二面角的大小.21.(本小题满分12分)给定抛物线C :y 2=4x ,F 是C 的焦点,过点F 的直线l 与C 相交于A 、B 两点。

1999年高考北京卷数学(理科)

1999年高考北京卷数学(理科)

1999年普通高等学校招生全国统一考试数学数学(理工农医类)本试卷分第I卷(选择题)和第II卷(非选择题)两部分。

第I卷1至2页。

第II卷3至8。

共150分。

考试时间120分钟。

第I卷(选择题共60分)注意事项:l.答第I卷前,考生务必将自己的姓名、准考证号、考试科目、试卷类型(A或B)用铅笔涂写在答题卡上。

2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后。

再选涂其它答案,不能答在试题卷上。

3. 考试结束。

监考人将本试卷和答题卡一并收回。

参考公式:正棱台、圆台的侧面积公式三角函数的积化和差公式sinα=cosβ[sin(α+β)+sin(α-β)]cosα=sinβ[sin(α+β)-sin(α-β)]cosα=cosβ[cos(α+β)+cos(α-β)]sinα=sinβ[cos(α+β)-cos(α-β)]一.选择题:本大题共14小题;第(1)—(10)题每小题4分,第(11)—(14)题每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)如图,I是全集,M、P、S是I的3个子集,则阴影部分所表示的集合是(A)(M∩P〕∩S(B)(M∩P)∪S(C〕(M∩P)∩(D〕(M∩P)∪(2)已知映射f:AB,其中,集合A={-3,-2,-1,l,2,3,4,},集合B中的元素都是A中元素在映射f下的象,且对任意的a∈A,在B中和它对应的元素是{a},则集合B中元素的个数是(A)4 (B)5 (C〕6 (D〕7(3)若函数y=f(x)的反函数是y=g(x),f(a)=b,ab0,则g(b)等于(A) a (B)a-1(C)b (D)b-1(4)函数f(x)=Msin(ωx+ρ)(ω>0)在区间[a,b]上是增函数,且f(a)=-M,f(b)=M,则函数g(x)=Mcos(ωx+ρ)在[a,b]上(A)是增函数(B)是减函数(C)可以取得最大值M (D)可以取得最小值-M(5)若f(x)sinx是周期为∏的奇函数,则f(x)可以是(A)sin x (B)cos x (C)sin 2x (D)cos 2x(6)在极坐标系中,曲线ρ=4sin(θ-π/3)关于(A)直线θ=π/3轴对称(B)直线θ=6/5π轴对称(C)点(2,π/3)中心对称(D)极点中心对称(7)若于毫升水倒人底面半径为2cm的圆杜形器皿中,量得水面的高度为6cm,若将这些水倒人轴截面是正三角形的倒圆锥形器皿中,则水面的高度是(8)若(2x+)4=a0+a1x+a2x2+a3x3+a4x4,则(a0+a2+a4)2-(a1+a3)2的值为(A)l (B)-1 (C)0 (D)2(9)直线x+y2=0截圆x2+y2=4得的劣弧所对的圆心角为(A)π/6 (B)π/4 (C)π/3 (D)π/2(10)如图,在多面体ABCDEF中,已知面ABCD是边长为3的正方形,EF//AB,EF=3/2,EF与面AC的距离为2,则该多面体的体积为(A)9/2 (B)5 (C)6 (D)15/2(11)若sina>tga>ctga(-π/2<a<π/2),则a∈(A) (-π/2,-π/4) (B)(-π/4,0)(C)(0,π/4)(D)(π/4,π/2)(12)如果圆台的上底面半径为5.下底面半径为R ,中截面把圆台分为上、下两个圆台,它们的侧面积的比为1:2,那么R=(A)10 (B)15 (C)20 (D)25(13)已知两点M(1,5/4)、N(-4,-5/4),给出下列曲线方程:①4x + 2y-1=0②x2+y2=3 ③x2/2+y2=1 ④x2/2-y2=1在曲线上存在点P满足|MP|=|NP|的所有曲线方程是(A)①③ (B)②④ (C)①②③ (D)②③④(14)某电脑用户计划使用不超过500元的资金购买单价分别为60元、70元的单片软件和盒装磁盘,根据需要,软件至少买3片,磁盘至少买2盒,则不同的选购方式共有(A)5种(B)6种(C)7种(D)8种第II卷(非选择题共90分)注意事项:1.第II卷共6页。

2003年高考.北京卷.理科数学试题及答案

2003年高考.北京卷.理科数学试题及答案

2003年普通高等学校招生全国统一考试数学(理工农医类)(北京卷)本试卷分第Ⅰ卷(选择题)第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟。

第Ⅰ卷(选择题共50分)注意事项:1.答第Ⅰ卷前,考生务必将自己姓名、准考证号、考试科目用铅笔涂写在答题卡上.2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上.3.考试结束,监考人将本试卷和答题卡一并收回.参考公式:三角函数的积化和差公式:正棱台、圆台的侧面积公式)]sin()[sin(21cos sin βαβαβα-++=⋅l c c S )(21+'=台侧)]sin()[sin(21sin cos βαβαβα--+=⋅其中c '、c 分别表示上、下底面)]cos()[cos(21cos cos βαβαβα-++=⋅周长,l 表示斜高或母线长.)]cos()[cos(21sin sin βαβαβα--+-=⋅球体的体积公式:334R V π=球,其中R 表示球的半径.一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合要求的.1.设集合B A x x B x x A ⋂>=>-=则|},0log |{},01|{22等于()A .}1|{>x xB .}0|{>x xC .}1|{-<x xD .}11|{>-<x x x 或2.设5.1344.029.01)21(,8,4-===y y y ,则()A .y 3>y 1>y 2B .y 2>y 1>y 3C .y 1>y 2>y 3D .y 1>y 3>y 23.“232cos -=α”是“Z k k ∈+=,125ππα”的()A .必要非充分条件B .充分非必要条件C .充分必要条件D .既非充分又非必要条件4.已知α,β是平面,m ,n 是直线.下列命题中不.正确的是()A .若m ∥n ,m ⊥α,则n ⊥αB .若m ∥α,α∩β=n ,则m ∥nC .若m ⊥α,m ⊥β,则α∥βD .若m ⊥α,β⊂m ,则α⊥β5.极坐标方程1cos 22cos 2=-θρθρ表示的曲线是()A .圆B .椭圆C .抛物线D .双曲线6.若C z ∈且|22|,1|22|i z i z --=-+则的最小值是()A .2B .3C .4D .57.如果圆台的母线与底面成60°角,那么这个圆台的侧面积与轴截面面积的比为()A .π2B .π23C .π332D .π218.从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出3种,分别种在不同土质的三块土地上,其中黄瓜必须种植,不同的种植方法共有()A .24种B .18种C .12种D .6种9.若数列{}n a 的通项公式是 ,2,1,2)23()1(23=--++=----n a n n n n n n ,则)(lim 21n n a a a +++∞→ 等于()A .2411B .2417C .2419D .242510.某班试用电子投票系统选举班干部候选人.全班k 名同学都有选举权和被选举权,他们的编号分别为1,2,…,k ,规定:同意按“1”,不同意(含弃权)按“0”,令⎩⎨⎧=.,0.,1号同学当选号同学不同意第第号同学当选号同学同意第第j i j i a ij 其中i =1,2,…,k ,且j =1,2,…,k ,则同时同意第1,2号同学当选的人数为()A .k k a a a a a a 2222111211+++++++B .2221212111k k a a a a a a +++++++C .2122211211k k a a a a a a +++D .kk a a a a a a 2122122111+++ 第Ⅱ卷(非选择题共100分)二、填空题:本大题共4小题,每小题4分,共16分,把答案填在题中横线上.11.函数x tg x h x x x x x x g x x f 2)(.1,2.1||0.1,2)(),1lg()(2=⎪⎩⎪⎨⎧>+-≤-<+=+=中,是偶函数.12.以双曲线191622=-y x 右顶点为顶点,左焦点为焦点的抛物线的方程是13.如图,已知底面半径为r 的圆柱被一个平面所截,剩下部分母线长的最大值为a ,最小值为b ,那么圆柱被截后剩下部分的体积是.14.将长度为1的铁丝分成两段,分别围成一个正方形和一个圆形,要使正方形与圆的面积之和最小,正方形的周长应为.三、解答题:本大题共6小题,共84分.解答应写出文字说明,证明过程或演算步骤.15.(本小题满分13分)已知函数.sin cos sin 2cos )(44x x x x x f --=(Ⅰ)求)(x f 的最小正周期;(Ⅱ)若2,0[π∈x ,求)(x f 的最大值、最小值..16.(本小题满分13分)已知数列{}n a 是等差数列,且.12,23211=++=a a a a (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)令).(R x x a b nn n ∈=求数列{}n b 前n 项和的公式.17.(本小题满分15分)如图,正三棱柱ABC —A 1B 1C 1的底面边长的3,侧棱AA 1=,233D 是CB 延长线上一点,且BD=BC.(Ⅰ)求证:直线BC 1//平面AB 1D ;(Ⅱ)求二面角B 1—AD —B 的大小;(Ⅲ)求三棱锥C 1—ABB 1的体积.18.(本小题满分15分)如图,椭圆的长轴A 1A 2与x 轴平行,短轴B 1B 2在y 轴上,中心为M (0,r )().0>>r b (Ⅰ)写出椭圆的方程,求椭圆的焦点坐标及离心率;(Ⅱ)直线x k y 1=交椭圆于两点);0)(,(),,(22211>y y x D y x C 直线x k y 2=交椭圆于两点).0)(,(),,(44433>y y x H y x G 求证:4343221211x x x x k x x x x k +=+;(Ⅲ)对于(Ⅱ)中的C ,D ,G ,H ,设CH 交x 轴于点P ,GD 交x 轴于点Q.求证:|OP|=|OQ|.(证明过程不考虑CH 或GD 垂直于x 轴的情形)19.(本小题满分14分)有三个新兴城镇,分别位于A ,B ,C 三点处,且AB=AC=a ,BC=2b.今计划合建一个中心医院,为同时方便三镇,准备建在BC 的垂直平分线上的P 点处,(建立坐标系如图)(Ⅰ)若希望点P 到三镇距离的平方和为最小,点P 应位于何处?(Ⅱ)若希望点P 到三镇的最远距离为最小,点P 应位于何处?20.(本小题满分14分)设)(x f y =是定义在区间]1,1[-上的函数,且满足条件:(i );0)1()1(==-f f (ii )对任意的.|||)()(|],1,1[,v u v f u f v u -≤--∈都有(Ⅰ)证明:对任意的;1)(1],1,1[x x f x x -≤≤--∈都有(Ⅱ)证明:对任意的;1|)()(|],1,1[,≤--∈v f u f v u 都有(Ⅲ)在区间[-1,1]上是否存在满足题设条件的奇函数)(x f y =,且使得⎪⎪⎩⎪⎪⎨⎧∈-=-∈-<-].1,21[,|,||)()(|].21,0[,.|||)()(|v u v u v f u f v u v u v f u f 当当若存在,请举一例:若不存在,请说明理由.2003年普通高等学校招生全国统一考试数学试题(理工农医类)(北京卷)参考解答一、选择题:本题考查基本知识和基本运算.每小题5分,满分50分.1.A 2.D 3.A 4.B5.D 6.B7.C8.C9.C10.C二、填空题:本题考查基本知识和基本运算.每小题4分,满分16分.11.)();(x g x f 12.)4(362--=x y 13.)(212b a r +π14.44+π三、解答题:本大题共6小题,共84分.解答应写出文字说明,证明过程或演算步骤.15.本小题主要考查三角函数的倍角、和角公式,以及三角函数的性质等基本知识,考查运算能力,满分13分.(Ⅰ)解:因为xx x x x f 44sin cos sin 2cos )(--=)42cos(22sin 2cos 2sin )sin )(cos sin (cos 2222π+=-=--+=x x x x x x x x 所以)(x f 的最小正周期.22ππ==T (Ⅱ)解:因为,20π≤≤x 所以.45424πππ≤+≤x 当442ππ=+x 时,)42cos(π+x 取得最大值22;当ππ=+42x 时,)42cos(π+x 取得最小值-1.所以)(x f 在]2,0[π上的最大值为1,最小值为-.216.本小题主要考查等差、等比数列等基本知识,考查综合运用数学知识和方法解决问题的能力.满分13分.(Ⅰ)解:设数列}{n a 公差为d ,则,12331321=+=++d a a a a 又.2,21==d a 所以.2n a n=(Ⅱ)解:令,21n n b b b S +++= 则由,2n n n n nx x a b ==得,2)22(4212n n n nx x n x x S +-++=- ①,2)22(42132++-+++=n n n nx x n x x xS ②当1≠x时,①式减去②式,得,21)1(22)(2)1(112++---=-++=-n nn n n nx xx x nx x x x S x 所以.12)1()1(212x nx x x x S n n n----=+当1=x 时,)1(242+=+++=n n n S n 综上可得当1=x 时,)1(+=n n S n 当1≠x时,.12)1()1(212x nx x x x Sn n n----=+17.本小题主要考查直线与平面的位置关系,正棱柱的性质,棱锥的体积等基本知识,考查空间想象能力和逻辑推理能力.满分15分.(Ⅰ)证明:CD//C 1B 1,又BD=BC=B 1C 1,∴四边形BDB 1C 1是平行四边形,∴BC 1//DB 1.又DB 1⊂平面AB 1D ,BC 1⊄平面AB 1D ,∴直线BC 1//平面AB 1D.(Ⅱ)解:过B 作BE ⊥AD 于E ,连结EB 1,∵B 1B ⊥平面ABD ,∴B 1E ⊥AD ,∴∠B 1EB 是二面角B 1—AD —B 的平面角,∵BD=BC=AB ,∴E 是AD 的中点,.2321==AC BE 在Rt △B 1BE 中,.32332311===∠BEB B BE B tg ∴∠B 1EB=60°。

2004年普通高等学校招生全国统一考试北京卷文科数学试题及答案

2004年普通高等学校招生全国统一考试北京卷文科数学试题及答案

2004 年一般高等学校招生北京卷文史类数学试题本试卷分第 I 卷(选择题)和第II 卷(非选择题)两部分第 I 卷1至2页第 II 卷 3 至 9 页共 150 分 考试时间 120 分钟第 I卷(选择题共40分)注意事项:1. 答第 I 卷前,考生务势必自己的姓名、准考据号、考试科目用铅笔涂写在答题卡上2. 每题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需变动,用橡皮擦洁净后,再选涂其余答案,不可以答在试题卷上3. 考试结束,监考人将本试卷和答题卡一并回收参照公式:三角函数的积化和差公式s i n cos1[sin()sin()]2cos sin1[sin()sin()]2cos cos1 )cos()][cos(2s i n s i n1[ c o s () cos()]2正棱台、圆台的侧面积公式S 台侧1(c' c) l2l 表示斜高或母线长此中 c ’, c 分别表示上、下底面周长,球体的表面积公式 S4 R 2球此中 R 表示球的半径一. 选择题:本大题共 8 小题,每题 5 分,共 40 分 在每题给出的四个选项中,只有一项是切合题目要求的(1)设 M{ x| 2 x 2} , N{ x| x 1} ,则 M N 等于A. { x|1 x 2}B. { x| 2 x 1}C. { x|1 x 2}D. { x| 2x 1}( 2)知足条件 |z| |34i| 的复数 z 在复平面上对应点的轨迹是A. 一条直线B. 两条直线C. 圆D. 椭圆( 3)设 m 、 n 是两条不一样的直线,, , 是三个不一样的平面,给出以下四个命题:①若 m , n / / ,则 mn②若/ / , / / , m ,则 m③若 m / / , n / / ,则 m / / n ④若,,则/ /此中正确命题的序号是A. ①和②B. ②和③C. ③和④D. ①和④( 4)已知 a 、 b 、c 知足 c b a ,且 ac 0 ,那么以下选项中必定建立的是A. abacB. c(b a) 0C. cb 2ab 2D. ac (a c) 0( 5)从长度分别为 1,2,3,4 的四条线段中,任取三条的不一样取法共有 n 种,在这些取法中,以拿出的三条线段为边可构成的三角形的个数为m ,则m等于11 3 nA. 0C.B.2D.44( 6)如图,在正方体ABCDA 1B 1C 1D 1 中, P 是侧面 BB 1 C 1C 内一动点,若P 到直线 BC 与直线 C 1 D 1 的距离相等,则动点P 的轨迹所在的曲线是D 1C 1AB 11PDCABA. 直线B. 圆C. 双曲线D. 抛物线( 7)函数 f (x) x 22ax 3 在区间[ 1, 2]上存在反函数的充足必需条件是A. a( ,1] B. a [ 2, )C. a( ,1] [ 2, ) D. a [ 1,2]( 8)函数 f ( x)x, x P,此中 P 、 M为实数集 R 的两个非空子集,又规定x, x Mf ( P) { y|yf ( x), x P} , f ( M ){ y|y f ( x), xM } ,给出以下四个判断:①若 P M ,则 f ( P) f ( M )②若 PM,则 f ( P)f ( M )③若 P M R ,则 f ( P)f ( M ) R④若 P M R ,则 f ( P)f ( M )R此中正确判断有A.3 个B.2个C. 1个D. 0个二.填空题:本大题共( 9)函数f (x)6 小题,每题 5 分,共sin x cosx 的最小正周期是30 分把答案填在题中的横线上______________( 10)方程lg( x 22)lg x lg 3的解是______________( 11)圆x2( y1)21的圆心坐标是______________,假如直线x y a0 与该圆有公共点,那么实数 a 的取值范围是______________( 12)某地球仪上北纬30 纬线的长度为12cm ,该地球仪的半径是__________cm ,表面积是______________cm2( 13)在函数 f (x)ax2bx c 中,若a,b,c 成等比数列且 f (0) 4 ,则 f ( x)有最 ______________值(填“大”或“小” ),且该值为 ______________(14)定义“等和数列” :在一个数列中,假如每一项与它的后一项的和都为同一个常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和已知数列 { a n } 是等和数列,且a1 2 ,公和为5,那么 a18的值为______________,且这个数列的前21 项和S21的值为 ______________三.解答题:本大题共 6 小题,共 80 分解答应写出文字说明,证明过程或演算步骤(15)(本小题满分 14 分)在ABC 中, sin A cos A2,AC2, AB 3 ,求tgA的值和ABC 的面积2(16)(本小题满分 14分)如图,在正三棱柱ABC A1 B1C1中,AB=2, AA1 2 ,由极点 B 沿棱柱侧面经过棱 AA1到极点 C1的最短路线与AA1的交点记为M,求:( I)三棱柱的侧面睁开图的对角线长( II )该最短路线的长及A1M 的值AM( III )平面C1MB与平面 ABC 所成二面角(锐角)的大小A1C1 B1MCAB( 17)(本小分14 分)如,抛物对于x 称,它的点在座原点,点P(1,2),A(x1, y1),B(x2, y2)均在抛物上( I)写出抛物的方程及其准方程( II )当 PA 与 PB 的斜率存在且斜角互,求y1y2的及直AB 的斜率yPO xAB( 18)(本小分14 分)函数 f ( x) 定在[0,1]上,足 f ( x) 2 f ( x) 且 f (1) 1,在每个区 (1,1] 22i2i1( i 1,2⋯⋯)上,y f ( x) 的象都是平行于x 的直的一部分( I)求f (0)及f (1),f (1)的,并出 f (1)(i 1,2,) 的表达式242i1,x1,x 及y f ( x) 的象成的矩形的面a(i1,( II )直 x2i2i12⋯⋯),求a1, a2及lim( a1a2a n ) 的n( 19)(本小分12 分)某段城路上挨次有 A 、B 、 C 三站, AB=15km ,BC=3km ,在列运转刻表上,定列 8 整从 A 站, 8 07 分抵达 B 站并停 1 分, 812 分抵达 C 站,在运转中,假列从 A 站正点,在 B 站逗留 1 分,并内行以同一速度vkm / h 匀速行,列从 A 站抵达某站的与刻表上相之差的称列在站的运转差( I)分写出列在B、C 两站的运转差( II )若要求列在B, C 两站的运转差之和不超 2 分,求v的取范( 20)(本小分12 分)定有限个正数足条件T:每个数都不大于50 且和 L = 1275 将些数按以下要求行分,每数之和不大于150 且分的步是:第一,从些数中一些数构成第一,使得 150 与数之和的差r1与所有可能的其余对比是最小的,r1称第一余差;而后,在去掉已入第一的数后,余下的数按第一的方式构成第二,的余差 r2;这样构成第三(余差r3)、第四(余差 r4)、⋯⋯,直至第N (余差 r N)把些数所有分完止( I)判断r1,r2,,r N的大小关系,并指出除第N 外的每起码含有几个数( II )当构成第n ( n<N )后,指出余下的每个数与r n的大小关系,并明150n Lrn 1n 1( III )任何足条件T 的有限个正数,明:N112004 年一般高等学校招生北京卷文史类数学试题参照答案一. 选择题:本大题主要考察基本知识和基本运算每题 5分,满分40 分( 1)D(2)C(3) A( 4)A( 5)B(6)D(7) C( 8)B二. 填空题:本大题主要考察基本知识和基本运算每题 5分,满分30 分( 9)(10)x11, x2 2( 11)( 0, -1),12 a 1 2(12)4 3192(13)大-3(14)352三.解答题:本大题共 6 小题,共 80 分解答应写出文字说明,证明过程或演算步骤( 15)本小题主要考察三角恒等变形、三角形面积公式等基本知识,考察运算能力满分14分解法一:s i nA2 c o sA2 c o sA( 45 )2c o sA(1 45 )2又0A 180A 45 60 ,A 105t g A tg(45132 3 60 )31s i nA s i n105s i n45(60 )s i n45cos60cos4526 sin 604S ABC 1AB sin A12636) AC234( 2224解法二:s i nA cos A2( 1)2(sin A cos A) 212 2 sin A cos A120A 180 , sin A 0,cos A 0( s i nA cos A) 21 2 sin A cos A32s i nA cos A6( 2)2( 1)+( 2)得:sin A264( 1)-( 2)得:cos A264t g A s i nA26 423c o sA426(以下同解法一)( 16)本小题主要考察直线与平面的地点关系、棱柱等基本知识,考察空间想象能力、逻辑思想能力和运算能力满分 14分解:( I )正三棱柱 ABCA 1B 1C 1 的侧面睁开图是长为 6,宽为 2 的矩形其对角线长为62 22210( II )如图, 将侧面 AA 1B 1 B 绕棱 AA 1 旋转 120 使其与侧面 AA 1C 1 C 在同一平面上, 点B 运动到点 D 的地点,连结 DC 1 交 AA 1 于 M ,则 DC 1 就是由极点 B 沿棱柱侧面经过棱 AA 1 到极点 C 1 的最短路线,其长为DC 2 CC 1 2 42222 5D M A C 1MA 1,AM A 1MA 1 M 1故AMA1C1B1MD A CB( III )连结 DB ,C1B,则 DB 就是平面C1MB与平面 ABC 的交线在 DCB中DBC CBA ABD 603090CB DB又 C1C 平面 CBD由三垂线定理得C1B DBC1 BC 就是平面 C1 MB 与平面ABC所成二面角的平面角(锐角)侧面 C1 B1 BC 是正方形C1 BC45故平面 C1 MB 与平面ABC所成的二面角(锐角)为45(17)本小题主要考察直线、抛物线等基本知识,考察运用分析几何的方法剖析问题和解决问题的能力,满分 14 分解:( I )由已知条件,可设抛物线的方程为y 2 2 pxyPO xAB点 P( 1, 2)在抛物线上222p 1,得p2故所求抛物线的方程是y 24x准线方程是 x1( II )设直线 PA 的斜率为 k PA ,直线 PB 的斜率为 k PB则 k PAy 12 (x 1 1) , k PB y 2 2( x 2 1)x 1 2 x 2 1PA 与 PB 的斜率存在且倾斜角互补kPAkPB由 A ( x 1 , y 1 ), B ( x 2 , y 2 )在抛物线上,得y 124x 1 (1)y 2 24x 2( 2)y 1 2y 221y 1211 y2 2 1 44 y 1 2 ( y 2 2) y 1y 24由( 1) -( 2)得直线 AB 的斜率y 2 y 1 44 k ABx 1y 1 y 21(x 1 x 2 )x 24( 18)本小题主要考察函数、数列等基本知识,考察剖析问题和解决问题的能力满分14 分解:( I )由 f (0) 2 f (0) ,得 f ( 0) 0由 f (1)1 1,得 f (1 1 12 f () 及 f (1)2)f (1)222同理, f ( 1 )1f ( 1) 442 2概括得 f ( 1 )1 (i 1,2, )2i2i(II )当1x1时, f ( x)12i2i 12i1a 12 1 a 28a i1 ( 1 1 112,) i 1i 1 2i )2i 1 (i22因此 { a n } 是首项为1,公比为1的等比数列2412 因此 lim( a 1 a 2a n )2n1314( 19)本小题主要考察解不等式等基本知识, 考察应用数学知识剖析问题和解决问题的能力满分 12分解:( I )列车在 B , C 两站的运转偏差(单位:分钟)分别是|3007| 和 |48011|vv( II )因为列车在 B , C 两站的运转偏差之和不超出 2 分钟,因此300 7| |48011| 2( *)|vv当 0v300 300 480 11 2时,( * )式变形为v7v7解得 39v3007300480300 480 当v11 时,(* )式变形为 7vv 11 27解得3004807v11当 v480时,( * )式变形为 700 11 480 211vv解得480 195 11v4195综上所述, v 的取值范围是 [39 ,]4( 20)本小题主要考察不等式的证明等基本知识, 考察逻辑思想能力、 剖析问题和解决问题的能力 满分 12 分解:( I ) r 1 r 2r N 除第 N 组外的每组起码含有150 3 个数50( II )当第 n 组形成后,因为 nN ,因此还有数没分完,这时余下的每个数必大于余差 r n ,余下数之和也大于第n 组的余差 r n ,即L [(150 r 1 ) (150 r 2 ) (150 r n )] r n由此可得 r 1 r 2 rn 1150nL因为 ( n 1)r n 1r 1 r 2150nLr n 1,因此 r n 11n( III )用反证法证明结论,假定N 11 ,即第 11 组形成后,还有数没分完,由(I )和( II )可知,余下的每个数都大于第11 组的余差 r 11 ,且 r 11 r 10r1115011 1275 ( * )故余下的每个数r1010375.2004年普通高等学校招生全国统一考试北京卷文科数学试题及答案因为第 11组数中起码含有 3 个数,因此第11 组数之和大于375. 3 1125.此时第 11组的余差 r11150 第11组数之和 150 112.5 37.5这与( * )式中r11375. 矛盾,因此N11新疆奎屯市第一高级中学王新敞。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2004年普通高等学校招生全国统一考试数学(理工农医类)(北京卷)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。

第I 卷1至2页。

第II 卷3至9页。

共150分。

考试时间120分钟。

第I 卷(选择题共40分)注意事项:1.答第I 卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上。

2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,不能答在试题卷上。

3.考试结束,监考人将本试卷和答题卡一并收回。

参考公式:三角函数的积化和差公式sin cos [sin()sin()]αβαβαβ=++-12cos sin [sin()sin()]αβαβαβ=+--12cos cos [cos()cos()]αβαβαβ=++-12sin sin [cos()cos()]αβαβαβ=-+--12正棱台、圆台的侧面积公式S c c l 台侧=+12(')其中c’,c 分别表示上、下底面周长,l 表示斜高或母线长球体的表面积公式S R 球=42π其中R 表示球的半径一.选择题:本大题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)设全集是实数集R ,M x x =-≤≤{|}22,N x x =<{|}1,则M N ⋂等于A.{|}x x <-2 B.{|}x x -<<21C.{|}x x <1 D.{|}x x -≤<21(2)满足条件|43|||i i z +=-的复数z 在复平面上对应点的轨迹是A.一条直线B.两条直线C.圆D.椭圆(3)设m 、n 是两条不同的直线,αβγ,,是三个不同的平面,给出下列四个命题:①若m ⊥α,n //α,则m n ⊥②若αβ//,βγ//,m ⊥α,则m ⊥γ③若m //α,n //α,则m n //④若αγ⊥,βγ⊥,则αβ//其中正确命题的序号是A.①和② B.②和③C.③和④D.①和④(4)如图,在正方体ABCD A B C D -1111中,P 是侧面BB C C 11内一动点,若P 到直线BC 与直线C D 11的距离相等,则动点P 的轨迹所在的曲线是1A 1 CA.直线B.圆C.双曲线D.抛物线(5)函数f x x ax ()=--223在区间[1,2]上存在反函数的充分必要条件是A.a ∈-∞(,]1 B.a ∈+∞[,)2 C.a ∈[,]12 D.a ∈-∞⋃+∞(,][,)12(6)已知a 、b 、c 满足c b a <<,且ac <0,那么下列选项中一定成立的是A.ab ac> B.c b a ()-<0C.cb ab22< D.ac a c ()->0(7)从长度分别为1,2,3,4,5的五条线段中,任取三条的不同取法共有n 种。

在这些取法中,以取出的三条线段为边可组成的钝角三角形的个数为m ,则m n等于A.110B.15C.310D.25(8)函数f x x x Px x M (),,=∈-∈⎧⎨⎩,其中P 、M 为实数集R 的两个非空子集,又规定f P y y f x x P (){|(),}==∈,f M y y f x x M (){|(),}==∈,给出下列四个判断:①若P M ⋂=∅,则f P f M ()()⋂=∅②若P M ⋂≠∅,则f P f M ()()⋂≠∅③若P M R ⋃=,则f P f M R ()()⋃=④若P M R ⋃≠,则f P f M R ()()⋃≠其中正确判断有A.1个 B.2个C.3个D.4个第II 卷(非选择题共110分)二.填空题:本大题共6小题,每小题5分,共30分。

把答案填在题中横线上。

(9)函数f x x x x ()cos sin cos =-223的最小正周期是___________(10)方程lg()lg lg 4223xx+=+的解是___________________(11)某地球仪上北纬30纬线的长度为12πcm ,该地球仪的半径是__________cm ,表面积是______________cm 2(12)曲线C :x y ==-+⎧⎨⎩cos sin θθ1(θ为参数)的普通方程是__________,如果曲线C 与直线x y a ++=0有公共点,那么实数a 的取值范围是_______________--(13)在函数f x ax bx c ()=++2中,若a ,b ,c 成等比数列且f ()04=-,则f x ()有最______________值(填“大”或“小”),且该值为______________(14)定义“等和数列”:在一个数列中,如果每一项与它的后一项的和都为同一个常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和。

已知数列{}a n 是等和数列,且a 12=,公和为5,那么a 18的值为______________,这个数列的前n 项和S n 的计算公式为________________三.解答题:本大题共6小题,共80分。

解答应写出文字说明,证明过程或演算步骤。

(15)(本小题满分13分)在∆ABC 中,sin cos A A +=22,AC =2,AB =3,求tgA 的值和∆ABC 的面积(16)(本小题满分14分)如图,在正三棱柱ABC A B C -111中,AB =3,AA 14=,M 为AA 1的中点,P 是BC 上一点,且由P沿棱柱侧面经过棱CC1到M的最短路线长为29,设这条最短路线与CC1的交点为N,求:(I)该三棱柱的侧面展开图的对角线长(II)PC和NC的长(III)平面NMP与平面ABC所成二面角(锐角)的大小(用反三角函数表示)1NC(17)(本小题满分14分)如图,过抛物线y px p220=>()上一定点P(x y00,)(y0>),作两条直线分别交抛物线于A(x y11,),B(x y22,)(I)求该抛物线上纵坐标为p2的点到其焦点F的距离(II)当PA与PB的斜率存在且倾斜角互补时,求y yy12+的值,并证明直线AB的斜率是非零常数yPO xAB(18)(本小题满分14分)函数f x()是定义在[0,1]上的增函数,满足f x fx()(=22且f()11=,在每个区间(,]12121i i-(i=1,2……)上,y f x=()的图象都是斜率为同一常数k的直线的一部分。

(I)求f()0及f()12,f(14的值,并归纳出f ii()(,,)1212= 的表达式(II )设直线x i =12,x i =-121,x 轴及y f x =()的图象围成的矩形的面积为a i (i =1,2……),记S k a a a n n ()lim()=+++→∞12 ,求S k ()的表达式,并写出其定义域和最小值(19)(本小题满分12分)某段城铁线路上依次有A 、B 、C 三站,AB=5km ,BC=3km ,在列车运行时刻表上,规定列车8时整从A 站发车,8时07分到达B 站并停车1分钟,8时12分到达C 站,在实际运行中,假设列车从A 站正点发车,在B 站停留1分钟,并在行驶时以同一速度vkm h /匀速行驶,列车从A 站到达某站的时间与时刻表上相应时间之差的绝对值称为列车在该站的运行误差。

(I )分别写出列车在B 、C 两站的运行误差(II )若要求列车在B ,C 两站的运行误差之和不超过2分钟,求v 的取值范围(20)(本小题满分13分)给定有限个正数满足条件T :每个数都不大于50且总和L =1275。

现将这些数按下列要求进行分组,每组数之和不大于150且分组的步骤是:首先,从这些数中选择这样一些数构成第一组,使得150与这组数之和的差r 1与所有可能的其他选择相比是最小的,r 1称为第一组余差;然后,在去掉已选入第一组的数后,对余下的数按第一组的选择方式构成第二组,这时的余差为r 2;如此继续构成第三组(余差为r 3)、第四组(余差为r 4)、……,直至第N 组(余差为r N )把这些数全部分完为止。

(I )判断r r r N 12,,, 的大小关系,并指出除第N 组外的每组至少含有几个数(II )当构成第n (n<N )组后,指出余下的每个数与r n 的大小关系,并证明r n Ln n ->--11501(III )对任何满足条件T 的有限个正数,证明:N ≤112004年普通高等学校招生全国统一考试数学试题(理工农医类)(北京卷)参考答案一.选择题:本大题主要考查基本知识和基本运算。

每小题5分,满分40分。

(1)A (2)C (3)A (4)D (5)D (6)C (7)B (8)B二.填空题:本大题主要考查基本知识和基本运算。

每小题5分,满分30分。

(9)π(10)x x 1201==,(11)43192π(12)x y 2211++=()1212-≤≤+a (13)大-3(14)3当n 为偶数时,S n n =52;当n 为奇数时,S n n =-5212三.解答题:本大题共6小题,共80分。

解答应写出文字说明,证明过程或演算步骤。

(15)本小题主要考查三角恒等变形、三角形面积公式等基本知识,考查运算能力。

满分13分。

解法一:sin cos cos()cos()A A A A +=-=∴-=245224512又0180<<A ∴-==∴=+=+-=--A A tgA tg 45601054560131323,()sin sin sin()sin cos cos sin A ==+=+=+105456045604560264S AC AB A ABC ∆=⨯=⨯⨯⨯+=+1212232643426sin ()解法二:sin cos A A +=22(1)∴+=∴=-<<∴><(sin cos )sin cos ,sin ,cos A A A A A A A 212212018000 (sin cos )sin cos A A A A -=-=21232∴-=sin cos A A 62(2)(1)+(2)得:sin A =+264(1)-(2)得:cos A =-264∴==+⨯-=--tgA AAsin cos 26442623(以下同解法一)(16)本小题主要考查直线与平面的位置关系、棱柱等基本知识,考查空间想象能力、逻辑思维能力和运算能力。

满分14分。

解:(I )正三棱柱ABC A B C -111的侧面展开图是一个长为9,宽为4的矩形,其对角线长为949722+=(II )如图1,将侧面BB C C 11绕棱CC 1旋转120使其与侧成AA C C 11在同一平面上,点P 运动到点P 1的位置,连接MP 1,则MP 1就是由点P 沿棱柱侧面经过棱CC 1到点M 的最短路线设PC x =,则P C x 1=,在Rt MAP ∆1中,由勾股定理得()322922++=x 求得x =2∴====∴=PC P C NC MA P C P A NC 11122545(III )如图2,连结PP 1,则PP 1就是平面NMP 与平面ABC 的交线,作NH PP ⊥1于H ,又CC 1⊥平面ABC ,连结CH ,由三垂线定理得,CH PP ⊥1A∴∠NHC 就是平面NMP 与平面ABC 所成二面角的平面角(锐角)在Rt PHC ∆中,∠=∠=PCH PCP 12601∴==CH PC21在Rt NCH ∆中,tg NHC NC CH ∠===45145故平面NMP 与平面ABC 所成二面角(锐角)的大小为arctg45(17)本小题主要考查直线、抛物线等基本知识,考查运用解析几何的方法分析问题和解决问题的能力。

相关文档
最新文档