概率论答案(南航)第七章
概率论习题答案 第7章答案

p
X
(3)
∫ ∫ E(X )
=
∞
xf (x,θ )dx
=
∞
2xe−2(x−θ ) dx
=
1
+θ
−∞
θ
2
令 1 + θ = X ,解得θ 矩估计量为 2
θˆ = X − 1 2
∫ ∫ ∞
1
(4) E( X ) = xf (x,θ )dx = θ x θ dx =
θ ,令
θ =X,
−∞
0
θ +1
θ +1
n
令
∑ d ln L =
n
+
ln xi
i =1
= 0 ,解得θ 的极大似然估计值为
θˆ =
n2
dθ 2θ 2 θ
∑⎡ n
⎤2
⎣⎢ i=1 ln xi ⎦⎥
第 7 章习题答案 总 11 页第 3 页
θ 的极大似然估计量为
θˆ =
n2
∑⎡ n
⎤2
⎢⎣ i=1 ln X i ⎥⎦
(5) 设 x1, x2 ,", xn 是相应于 X 1, X 2 ,", X n 的样本,则似然函数为
=
(θ1
+ θ2 )2
+
θ
2 2
令
∑ ⎧
⎪ ⎪⎩⎨(θ1
θ1 + θ2 = X
+ θ2 )2
+
θ
2 2
=
1 n
n i =1
X
2 i
解得参数θ1,θ 2 的矩估计量为:
θˆ1 = X − θˆ2 ,
∑ θˆ2 =
1 n
概率论第七章 习题解答

第七章 假设检验I 教学基本要求1、了解假设检验的相关概念及基本思想,掌握假设检验的基本步骤,知道犯两类错误的概率的含义;2、掌握单正态总体均值和方差的假设检验;3、掌握两个正态总体均值差与方差比的假设检验;4、了解分布的假设检验.II 习题解答A 组1、某企业生产铜丝,而折断力的大小是铜丝的主要质量指标.从过去的资料来看,可认为折断力2(570,8)X N ~(单位:千克力),现更换了一批原材料,测得10个样品的折断力如下:578 572 570 568 572 570 570 572 596 584 从性能上看,折断力的方差不会有什么变化,试问折断力的大小与原先有无差异(0.05)α=?解:若折断力的大小与原先无差异,则总体均值μ应为570,因此,提出假设如下:0H :570μ= vs 1H :570μ≠由0.05α=,查附表得临界值0.975 1.96u =,根据样本观测值求得575.2x =于是,检验统计量U 的值2.055U ==由于0.975||U u ≥,所以,在显著性水平0.05α=下拒绝原假设0H ,即认为折断力与原先有差异.2、某工厂生产的电子元件平均使用寿命2(,)X N μσ~,现抽测15个元件,得到18000x =、5200s =(单位:小时),试问该工厂生产的电子元件的平均使用寿命是否为20000(0.05)α=?解:若该工厂生产的电子元件的平均使用寿命为20000,则总体均值μ应为20000,因此,提出假设如下:0H :20000μ= vs 1H :20000μ≠由0.05α=,查附表得临界值0.975(14) 2.145t =,由已知数据求得检验统计量T 的值0.149T ==-由于0.975||(14)T t <,所以,在显著性水平0.05α=下接受原假设0H ,即认为该工厂生产的电子元件的平均使用寿命是20000小时.3、用热敏电阻测温仪间接测量地热勘探井底温度,重复测量6次,测得温度(C )为:111.0112.4110.2111.0113.5111.9假定测量的温度服从正态分布,且井底温度的真实值为111.6C ,试问用热敏电阻测温仪间接测温是否准确(0.05)α=?解:若用热敏电阻测温仪间接测温是准确的,则总体均值μ应为111.6,因此,提出假设如下:0H :111.6μ= vs 1H :111.6μ≠由0.05α=,查附表得临界值0.975(5) 2.571t =,根据样本观测值求得111.67x =、2 1.399s =于是,检验统计量T 的值0.145T ==由于0.975||(5)T t <,所以,在显著性水平0.05α=下接受原假设0H ,即认为用热敏电阻测温仪间接测温是准确的.4、设考生在某次考试中的成绩服从正态分布,从中随机地抽取36位考生的成绩,得到平均成绩为66.5分、标准差为15分,问是否可以认为这次考试全体考生的平均成绩为70分(0.05)α=?解:若这次考试全体考生的平均成绩为70分,则总体均值μ应为70,因此,提出假设如下:0H :70μ= vs 1H :70μ≠由0.05α=,查附表得临界值0.975(35) 2.0301t =,由已知数据求得检验统计量T 的值1.4T ==-由于0.975||(35)T t <,所以,在显著性水平0.05α=下接受原假设0H ,即认为这次考试全体考生的平均成绩为70分.5、某化肥厂用自动包装机包装化肥,每包质量服从正态分布2(50,)N σ,某日开工后,随机抽取8包化肥,测得质量(单位:kg )如下:49.249.850.350.849.749.650.550.1问该天包装的化肥质量的方差是否为1.3(0.05)α=?解:若该天包装的化肥质量的方差是1.3,则21.3σ=,因此,提出假设如下:0H :2 1.3σ= vs 1H :2 1.3σ≠由0.05α=,查附表得临界值20.025(8) 2.1797χ=、20.975(8)17.5345χ=,根据样本观测值求得21()2.192nii x μ=-=∑于是,检验统计量2χ的值2 2.1921.6861.3χ== 由于220.025(8)χχ≤,所以,在显著性水平0.05α=下拒绝原假设0H ,即认为该天包装的化肥质量的方差不是1.3.6、设某化纤厂生产的维尼纶的纤度在正常情况下服从方差为20.05的正态分布,现随机抽取6根,测得其纤度为1.33 1.351.541.451.371.53问维尼纶纤度的方差是否正常(0.10)α=?解:若维尼纶纤度的方差正常,则220.05σ=,因此,提出假设如下:0H :220.05σ= vs 1H :220.05σ≠由0.10α=,查附表得临界值20.05(5) 1.146χ=、20.95(5)11.07χ=,根据样本观测值求得1.43x =、20.0085s =于是,检验统计量2χ的值22(61)0.00851.70.05χ-⨯==由于2220.050.95(5)(5)χχχ<<,所以,在显著性水平0.10α=下接受原假设0H ,即认为维尼纶纤度的方差是正常的.7、生产某种产品可用两种操作方法.用第一种操作方法生产的产品抗折强度21(,7)X N μ~;用第二种操作方法生产的产品抗折强度22(,9)Y N μ~(单位:千克),现从第一种操作方法生产的产品中随机抽取13件,得到42x =,从第二种操作方法生产的产品中随机抽取17件,测得36y =,问这两种操作方法生产的产品的平均抗折强度是否有显著差异(0.05)α=?解:若这两种操作方法生产的产品的平均抗折强度无显著差异,则12μμ=,因此,提出假设如下:0H :12μμ= vs 1H :12μμ≠由0.05α=,查附表得临界值0.975 1.96u =,由已知数据求得检验统计量U 的值2.054U ==由于0.975||U u ≥,所以,在显著性水平0.05α=下拒绝原假设0H ,即认为这两种操作方法生产的产品的平均抗折强度有显著差异.8、某种物品在处理前与处理后分别抽样分析其含脂率,测得数据如下:假设处理前后的含脂率都服从正态分布,且方差不变,问该物品处理前后含脂率的均值是否有显著差异(0.01)α=?解:若该物品处理前后含脂率的均值无显著差异,则12μμ=,因此,提出假设如下:0H :12μμ= vs 1H :12μμ≠由0.01α=,查附表得临界值0.995(13) 3.012t =,根据样本观测值求得0.23x =、0.18y =、20.0094x s =、20.0045ys =、0.0822w s = 于是,检验统计量T 的值2.273T==由于0.995||(13)T t<,所以,在显著性水平0.01α=下接受原假设H,即认为该物品处理前后含脂率的均值无显著差异.9、有甲、乙两台机床加工同样的产品,现从这两台机床加工的产品中随机地抽取若干产品,测得产品直径(单位:)为:问甲乙两台机床加工的精度是否有显著差异(0.05)α=?解:若甲乙两台机床加工的精度无显著差异,则它们的方差相同,因此,提出假设如下:0H:2212σσ=vs1H:2212σσ≠由0.05α=,查附表得临界值0.0250.97511(7,6)0.1953(6,7) 5.12FF===、0.975(7,6) 5.70F=,根据样本观测值求得19x=、19y=、20.1029xs=、20.3967ys=于是,检验统计量F的值0.10290.25940.3967F==由于0.0250.975(7,6)(7,6)F F F<<,所以,在显著性水平0.05α=下接受原假设H,即认为甲乙两台机床加工的精度无显著差异.10、某车床生产滚珠,现随机抽取了50个产品,测得它们的直径(单位:mm)为:15.0 15.8 15.2 15.1 15.9 14.7 14.8 15.5 15.6 15.315.1 15.3 15.0 15.6 15.7 14.8 14.5 14.2 14.9 14.915.2 15.0 15.3 15.6 15.1 14.9 14.2 14.6 15.8 15.215.9 15.2 15.0 14.9 14.8 14.5 15.1 15.5 15.5 15.115.1 15.0 15.3 14.7 14.5 15.5 15.0 14.7 14.6 14.2问滚珠直径是否服从正态分布(0.05)α=?解:若滚珠直径服从正态分布,则2(,)X Nμσ~,因此,提出假设如下:0H:2(,)X Nμσ~由于μ、2σ未知,因而用它们的最大似然估计值ˆ15.1xμ==、222ˆ0.4325sσ==代替得到分布2(15.1,0.4325)N,为了求统计量2χ的值,取14.05a=、16.15ka=,将0[,]k a a 等分为7个小区间,列表计算得:于是,检验统计量2χ的值221() 3.062ki i i i n np np χ=-==∑再由0.05α=,查附表得临界值20.95(4)9.488χ=,由于220.95(4)χχ<,所以,在显著性水平0.05α=下接受原假设0H ,即认为滚珠直径服从正态分布.B 组1、随机地从一批直径服从正态分布的滚珠中抽取7个,测得其直径(单位:mm )为: 13.70 14.21 13.90 13.91 14.32 14.32 14.10假设滚珠直径总体分布的方差为0.05,问这批滚珠的平均直径是否小于等于14.25(0.05)α=?解:若这批滚珠的平均直径是小于等于14.25,则14.25μ≤,因此,提出假设如下:0H :14.25μ≤ vs 1H :14.25μ>由0.05α=,查附表得临界值0.95 1.65u =,根据样本观测值求得14.07x =于是,检验统计量U 的值2.118U ==-由于0.95U u <,所以,在显著性水平0.05α=下接受原假设0H ,即认为这批滚珠的平均直径小于等于14.25.2、设1x 、2x 、…、n x 是取自正态总体2(,)N μσ的样本,记11ni i x x n ==∑、221()ni i Q x x ==-∑,试在此记号下求检验假设0H :0μ=的检验统计量?解:该问题是单正态总体方差未知时关于期望μ的假设检验问题,检验统计量应选为x T =由于222111()11n ii s x x Q n n ==-=--∑,即s =,从而检验统计量为x T ==3、某种导线要求其电阻的标准差不超过0.004欧姆,现从生产的一批导线中随机抽取8根,得到220.006s =,若该导线的电阻服从正态分布,问能否认为这批导线的标准差偏小(0.05)α=?解:若这批导线的标准差偏小,则220.004σ≤,因此,提出假设如下:0H :220.004σ≤ vs 1H :220.004σ>由0.05α=,查附表得临界值20.95(7)14.067χ=,由已知数据求得检验统计量2χ的值222(81)0.00615.750.004χ-⨯== 由于220.95(7)χχ≥,所以,在显著性水平0.05α=下拒绝原假设0H ,即认为这批导线的标准差偏大.4、下面是某两种型号的电器充电后所能使用的时间(单位:小时)的观测值 型号A 5.5 5.6 6.3 4.6 5.3 5.0 6.2 5.8 5.1 5.2 5.9 型号B 3.8 4.3 4.2 4.0 4.9 4.5 5.2 4.8 4.5 3.9 3.7 4.6设两样本独立且抽样的两个正态总体方差相等,试问能否认为型号A 比型号B 平均使用的时间更短(0.01)α=?解:若型号A 比型号B 平均使用的时间更短,则12μμ≤,因此,提出假设如下:0H :12μμ≤ vs 1H :12μμ>由0.01α=,查附表得临界值0.99(21) 2.5176t =,根据样本观测值求得5.5x =、 4.3667y =、20.274x s =、20.2188ys =、0.4951w s =于是,检验统计量T的值5.4837T==由于0.99(21)T t≥,所以,在显著性水平0.01α=下拒绝原假设H,即认为型号A比型号B平均使用的时间更长.5、某药厂生产一种新的止痛片,厂方希望验证服用新药片后到开始起作用的时间间隔较原有止痛片至少缩短一半,因此厂方提出检验假设H:122μμ=vs1H:122μμ>其中1μ、2μ分别是服用原有止痛片和服用新止痛片后到开始起作用的时间间隔的总体均值,若这两个总体均服从正态分布,且方差21σ、22σ已知,现分别从两个总体中抽取两个独立样本1x、2x、…、mx和1y、2y、…、ny,试给出上述假设检验问题的检验统计量及拒绝域?解:设X为服用原有止痛片后到开始起作用的时间间隔,Y为服用新止痛片后到开始起作用的时间间隔,则211(,)X Nμσ~、222(,)Y Nμσ~,于是22121242(2,)x y Nm nσσμμ-~-+()~(0,1)x yU N⇒=当H成立,有~(0,1)x yU N=所以,可选取检验统计量x yU=对于给定的显著性水平α,检验的拒绝域为1{|}W U U uα-=≥.6、有两箱来自不同厂家的功能相同的金属部件,从第一箱中抽取60个,从第二箱中抽取40个,得到部件重量()mg的样本方差分别为215.46xs=、29.66ys=.若两样本相互独立且服从正态分布,试问第一箱重量的总体方差是否比第二箱重量的总体方差小(0.05)α=?解:若第一箱重量的总体方差比第二箱重量的总体方差小,则2212σσ≤,因此,提出假设如下:0H :2212σσ≤ vs 1H :2212σσ> 由0.05α=,查附表得临界值0.95(59,39) 1.64F =,根据已知数据求得检验统计量F 的值15.461.609.66F == 由于0.95(59,39)F F <,所以,在显著性水平0.05α=下接受原假设0H ,即认为第一箱重量的总体方差比第二箱重量的总体方差小.7A B 设两批电子器件的电阻分别服从211(,)N μσ、222(,)N μσ,试问能否认为两个总体服从相同的正态分布(0.05)α=?解:(1) 先检验两个总体方差相同.若两个总体方差相同,则2212σσ=,因此,提出假设如下: 0H :2212σσ= vs 1H :2212σσ≠ 由0.05α=,查附表得临界值0.0250.97511(5,5)0.140(5,5)7.15F F ===、0.975(5,5)7.15F =,根据样本观测值求得0.141x =、0.139y =、20.0000078x s =、20.0000071ys = 于是,检验统计量F 的值0.00000781.10.0000071F ==由于0.0250.975(5,5)(5,5)F F F <<,所以,在显著性水平0.05α=下接受原假设0H ,即认为两个总体方差相同;(2) 在(1)的基础上检验两个总体均值相同.若两个总体均值相同,则12μμ=,因此,提出假设如下:0H :12μμ= vs 1H :12μμ≠由0.05α=,查附表得临界值0.975(10) 2.2281t =,根据样本观测值求得20.0000074w s =于是,检验统计量T 的值1.267T ==由于0.975||(10)T t <,因而在显著性水平0.05α=下接受原假设0H ,即认为两个总体均值相同;所以,可认为两个总体服从相同的正态分布.8、在一批灯泡中抽取300只进行寿命测试,试验结果如下:试检验假设:0H :灯泡寿命服从指数分布0.0050.0050()00te tf t t -⎧>=⎨≤⎩(0.05)α=?解:根据题意提出假设0H :(0.005)X E ~为了求统计量2χ的值,将(0,)+∞分为4个小区间(0,100]、(100,200]、(200,300]、(300,)+∞,列表计算得:于是,检验统计量2χ的值221() 1.8393ki i i in np np χ=-==∑再由0.05α=,查附表得临界值20.95(3)7.8147χ=,由于220.95(3)χχ<,所以,在显著性水平0.05α=下接受原假设0H ,即认为该批灯泡寿命服从参数为0.005的指数分布.。
概率论与数理统计第七章练习题与答案详解

概率论与数理统计 第七章 参数估计练习题与答案(答案在最后)1.设总体X 的二阶矩存在,n X X X ,,,21 是来自总体X 的一个样本,则2EX 的矩估计是( ).(A) X (B) ()∑=-n i i X X n 121 (C) ∑=n i i X n 121 (D) 2S2.矩估计必然是( ).(A) 总体矩的函数 (B) 样本矩的函数 (C) 无偏估计 (D) 最大似然估计3.某钢珠直径X 服从()1,μN ,从刚生产出的一批钢珠中随机抽取9个,求得样本均值06.31=X ,样本标准差98.0=S ,则μ的最大似然估计是 .4.设θˆ是未知参数θ的一个估计量,若θθ≠ˆE ,则θˆ是θ的( ) (A) 最大似然估计 (B) 矩估计 (C) 有效估计 (D) 有偏估计5.设21,X X 是()1,μN 的一个样本,下面四个关于μ估计量中,只有( )才是μ的无偏估计.(A) 213432X X + (B) 214241X X + (C)215352X X + (D) 214143X X - 6.设总体X 服从参数为λ的Poisson 分布,n X X X ,,,21 是来自总体X 的一个样本,则下列说法中错误的是( ).(A) X 是EX 的无偏估计量 (B) X 是DX 的无偏估计量 (C) X 是EX 的矩估计量 (D) 2X 是2λ的无偏估计量 7.设321,,X X X 是()1,μN 的一个样本,下面四个关于μ无偏估计量中,根据有效性这个标准来衡量,最好的是( ).(A) 321313131X X X ++ (B) 213132X X + (C)321412141X X X ++ (D) 216561X X + 8.设n X X X ,,,21 是来自总体()2,σμN 的一个样本,其中μ未知,而σ已知,则⎪⎪⎭⎫⎝⎛+-n U X n U X σσ025.0025.0,作为μ的置信区间,其置信水平是( ).(A) 0.9 (B) 0.95 (C) 0.975 (D) 0.05 9.设n X X X ,,,21 是来自总体()2,σμN 的一个样本,其中μ未知,而σ已知,μ的置信水平为α-1的置信区间⎪⎪⎭⎫ ⎝⎛+-n U X n U X σσαα22 ,的长度是α的减函数,对吗?10.总体X 的密度函数为()⎪⎩⎪⎨⎧<<=-其它101x x x f θθ,其中θ是未知参数,n X X X ,,,21 是来自总体X 的一个样本,求参数θ的矩估计量和最大似然估计量.11.总体X 的密度函数为()⎪⎩⎪⎨⎧>=-其它002222x ex x f x θθ, 其中θ是未知参数,n X X X ,,,21 是来自总体X 的一个样本,求参数θ的矩估计量和最大似然估计量.12.设总体X 服从几何分布:()()11--==x p p x X P ,() ,2,1=x ,n X X X ,,,21 是来自总体X 的一个样本,求参数p 的最大似然估计. 13.设n X X X ,,,21 是来自总体()2,0σN 的一个样本,求参数2σ的最大似然估计.14.设n X X X ,,,21 是来自总体()2,7t a n σμ+N 的一个样本,其中22πμπ<<-,求参数2,σμ的最大似然估计.15.设n X X X ,,,21 是来自总体()2,~σμN X 的一个样本,对给定t ,求()t X P ≤的最大似然估计.16.一个罐子里装有黑球和白球,有放回地抽取一个容量为n 的样本,发现其中有k 个白球,求罐中黑球数和白球数之比R 的最大似然估计. 17.总体X 的分布律是:()()()θθθ312,0,21-=====-=X P X P X P ,n X X X ,,,21 是来自总体X 的一个样本,求参数θ的矩估计和最大似然估计. 18.设总体X 服从二项分布()p N B ,,N 为正整数,10<<p ,n X X X ,,,21 是来自总体X 的大样本,求参数p N ,的矩估计量.19.设μ=EX ,n X X X ,,,21 是来自总体X 的一个样本,证明:()∑=-=n i i X n T 121μ是总体方差的无偏估计.20.总体X 服从()θθ2,上均匀分布,n X X X ,,,21 是来自总体X 的一个样本,证明X 32ˆ=θ是参数θ的无偏估计.21.设总体X 服从二项分布()p m B ,,n X X X ,,,21 是来自总体X 的一个样本,证明∑==ni i X n m p 11ˆ是参数θ的无偏估计. 22.设n X X X ,,,21 是来自总体X 的一个样本,且X 服从参数为λ的Poisson 分布,对任意()1,0∈α,证明()21S X αα-+是λ的无偏估计,其中2,S X 分别是样本均值和样本方差.23.设02>=σDX ,n X X X ,,,21 是来自总体X 的一个样本,问2X 是否是()2EX 的无偏估计.24.设321,,X X X 是来自总体()2,σμN 的一个样本,试验证:32112110351ˆX X X ++=μ,32121254131ˆX X X ++=μ,都是参数μ的无偏估计,并指出哪个更有效.25.从总体()1,1μN 抽取一个容量为1n 的样本:1,,,21n X X X ,从总体()4,2μN 抽取一个容量为2n 的样本:2,,,21n Y Y Y ,求21μμα-=的最大似然估计αˆ.假定总的样本容量21n n n +=不变时,求21,n n 使αˆ的方差最小. 26.为了测量一台机床的椭圆度,从全部产品中随机抽取100件进行测量,求得样本均值为mm X 081.0=,样本标准差为mm S 025.0=,求平均椭圆度μ的置信水平为0.95的置信区间.27.自动机床加工的同类零件中,随机抽取9件,测得长度如下:21.1,21.3,21.4,21.5,21.3,21.7,21.4,21.3,21.6,已知零件长度X 服从()2,σμN ,置信水平为0.95,(1) 若15.0=σ,求μ置信区间; (2) 若σ未知,求μ置信区间; (3) 若4.21=μ,求σ置信区间; (4) 若μ未知,求σ置信区间. 28.设总体X 服从()23,μN ,如果希望μ的置信水平为0.9的置信区间长度不超过2,则需要抽取的样本容量至少是多少?29.某厂利用两条自动化流水线灌装面粉,分别从两条流水线上抽取12和17的两个独立样本,其样本均值和样本方差分别为:6.10=X ,4.221=S ,5.9=Y ,7.422=S ,假设两条生产线上灌装面粉的重量都服从正态分布,其均值分别为21,μμ,方差相等,求21μμ-的置信水平为0.9的置信区间. 30.设两位化验员独立对某种聚合物含氯量用相同方法各作10次测定,其测定值的样本方差分别为:5419.021=S ,6065.022=S ,设2221,σσ分别为两位化验员所测定值总体的方差,设两位化验员的测定值都服从正态分布,求方差比2221σσ的置信水平为0.9的置信区间.31.从一批产品中抽取100个产品,发现其中有9个次品,求这批产品的次品率p 的置信水平为0.9的置信区间.答案详解1.C 2.B 3.31.064.D 5.C 6.D 7.A 8.B 9.对10.(1) 矩估计因为()⎰∞+∞-=dx x xf EX 11+==⎰θθθθdx x ,所以21⎪⎭⎫⎝⎛-=EX EX θ,而X EX =∧,由此得参数θ的矩估计量为21ˆ⎪⎪⎭⎫ ⎝⎛-=X X θ (2) 最大似然估计似然函数为:()()∏==ni i x f L 1θ()()121-=θθnnx x x ,两边取对数, ()θL ln ()()nx x x n21ln 1ln 2-+=θθ,令()θθd L d ln ()0ln 21221=+=n x x x n θθ, 得参数θ的最大似然估计为:212ln ˆ⎪⎭⎫⎝⎛=∑=ni i x n θ11.(1) 矩估计因为()⎰∞+∞-=dx x xf EX ⎰∞+-=022222dx exx θθ⎰∞+∞--=dx e xx 2222221θθ⎰∞+∞--=dx exx 2222222θθπθπθπ22=, 所以EX πθ2=,而X EX =∧,由此得参数θ的矩估计量为X πθ2ˆ=。
大学概率论第七章答案

0 1
∫
1
∫
2
3 2
− θ , 所以 θ 矩 =
3 2
−X .
(2) 见本章第三节三(9). 2. 设总体 X 的概率密度为
⎧1 ⎪ 2θ , ⎪ ⎪ 1 , f ( x, θ ) = ⎨ ⎪ 2(1 − θ ) ⎪0, ⎪ ⎩
− X )2 .
∑(X
i =1
n
i
解 选(D). (2) 设 X U [0, θ ] , 其中 θ>0 为未知参数, 又 X 1 , X 2 ,L , X n 为来自总体 X 的样本, 则 θ 的矩估计量是( (A) X . (B) 2 X . 解 选(B). 2. 设总体 X 的分布律为 X P -2 1 5 ). (C) max{ X i } .
E( X ) = ∫
+∞
−∞
xf ( x )dx = ∫ (θ + 1) xθ +1dx =
0
1
θ +1 . θ +2
令 E( X ) = X , 即
2X −1 θ +1 ˆ . = X , 得参数θ的矩估计量为 θ = 1− X θ +2 设x1, x2,…, x n是相应于样本X1, X 2,… , X n的一组观测值, 则似然函数为
∑X n −1
i =1
1
n
i
和
∑(X n −1
i =1
1
i
− μ ) 2 . (D)
1
∑X n
i =1
1 n
i
∑(X
i =1
n
概率论与数理统计课后习题答案第7章习题详解

习题七1.设总体X 服从二项分布b (n ,p ),n 已知,X 1,X 2,…,X n 为来自X 的样本,求参数p 的矩法估计.【解】1(),(),E X np E X A X ===因此np =X所以p 的矩估计量 ˆXpn= 2.设总体X 的密度函数f (x ,θ)=22(),0,0,.x x θθθ⎧-<<⎪⎨⎪⎩其他X 1,X 2,…,X n 为其样本,试求参数θ的矩法估计. 【解】23022022()()d ,233x x E X x x x θθθθθθθ⎛⎫=-=-= ⎪⎝⎭⎰令E (X )=A 1=X ,因此3θ=X 所以θ的矩估计量为 ^3.X θ=3.设总体X 的密度函数为f (x ,θ),X 1,X 2,…,X n 为其样本,求θ的极大似然估计.(1) f (x ,θ)=,0,0,0.e x x x θθ-⎧≥⎨<⎩(2) f (x ,θ)=1,01,0,.x x θθ-⎧<<⎨⎩其他【解】(1) 似然函数111(,)e e eniii n nx x nn ii i L f x θθθθθθ=---==∑===∏∏1ln ln ni i g L n x θθ===-∑由1d d ln 0d d ni i g L n x θθθ===-=∑知 1ˆnii nxθ==∑所以θ的极大似然估计量为1ˆXθ=.(2) 似然函数11,01nni i i L x x θθ-==<<∏,i =1,2,…,n.1ln ln (1)ln ni i L n x θθ==+-∏由1d ln ln 0d ni i L n x θθ==+=∏知11ˆln ln nniii i n nxx θ===-=-∑∏所以θ的极大似然估计量为 1ˆln nii nxθ==-∑求这批股民的收益率的平均收益率及标准差的矩估计值. 【解】0.094x =- 0.101893s = 9n =0.094.EXx ==- 由222221()()[()],()ni i x E X D X E X E X A n==+==∑知222ˆˆ[()]E X A σ+=,即有 ˆσ=于是 ˆ0.101890.0966σ=== 所以这批股民的平均收益率的矩估计值及标准差的矩估计值分别为-0.94和0.966. 5.随机变量X 服从[0,θ]上的均匀分布,今得X 的样本观测值:0.9,0.8,0.2,0.8,0.4,0.4,0.7,0.6,求θ的矩法估计和极大似然估计,它们是否为θ的无偏估计. 【解】(1) ()2E X θ=,令()E X X =,则ˆ2X θ=且ˆ()2()2()E E X E X θθ===, 所以θ的矩估计值为ˆ220.6 1.2x θ==⨯=且ˆ2X θ=是一个无偏估计.(2) 似然函数8811(,)i i L f x θθ=⎛⎫== ⎪⎝⎭∏,i =1,2, (8)显然L =L (θ)↓(θ>0),那么18max{}i i x θ≤≤=时,L =L (θ)最大, 所以θ的极大似然估计值ˆθ=0.9.因为E(ˆθ)=E (18max{}i i x ≤≤)≠θ,所以ˆθ=18max{}i i x ≤≤不是θ的无偏计.6.设X 1,X 2,…,X n 是取自总体X 的样本,E (X )=μ,D (X )=σ2,2ˆσ=k 1211()n i i i XX -+=-∑,问k 为何值时2ˆσ为σ2的无偏估计. 【解】令 1,i i i Y X X +=-i =1,2,…,n -1,则 21()()()0,()2,i i i i E Y E X E X D Y μμσ+=-=-==于是 1222211ˆ[()](1)2(1),n ii E E k Yk n EY n k σσ-===-=-∑那么当22ˆ()E σσ=,即222(1)n k σσ-=时, 有 1.2(1)k n =-7.设X 1,X 2是从正态总体N (μ,σ2)中抽取的样本112212312211311ˆˆˆ;;;334422X X X X X X μμμ=+=+=+ 试证123ˆˆˆ,,μμμ都是μ的无偏估计量,并求出每一估计量的方差. 【证明】(1)11212212121ˆ()()(),333333E E X X E X E X μμμμ⎛⎫=+=+=+= ⎪⎝⎭21213ˆ()()()44E E X E X μμ=+=, 31211ˆ()()(),22E E X E X μμ=+= 所以123ˆˆˆ,,μμμ均是μ的无偏估计量. (2) 22221122145ˆ()()(),3399D D X D X X σμσ⎛⎫⎛⎫=+== ⎪ ⎪⎝⎭⎝⎭222212135ˆ()()(),448D D X D X σμ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭()223121ˆ()()(),22D D X D X σμ⎛⎫=+= ⎪⎝⎭8.某车间生产的螺钉,其直径X ~N (μ,σ2),由过去的经验知道σ2=0.06,今随机抽取6枚,测得其长度(单位mm )如下:14.7 15.0 14.8 14.9 15.1 15.2 试求μ的置信概率为0.95的置信区间. 【解】n =6,σ2=0.06,α=1-0.95=0.05,0.25214.95, 1.96,a x u u ===,μ的置信度为0.95的置信区间为/2(14.950.1 1.96)(14.754,15.146)x u α⎛±=±⨯= ⎝.9.总体X ~N (μ,σ2),σ2已知,问需抽取容量n 多大的样本,才能使μ的置信概率为1-α,且置信区间的长度不大于L ?【解】由σ2已知可知μ的置信度为1-α的置信区间为/2x u α⎛± ⎝,/2u α,/2u α≤L ,得n ≥22/224()u L ασ 10.设某种砖头的抗压强度X ~N (μ,σ2),今随机抽取20块砖头,测得数据如下(kg ·cm -2):64 69 49 92 55 97 41 84 88 99 84 66 100 98 72 74 87 84 48 81 (1) 求μ的置信概率为0.95的置信区间. (2) 求σ2的置信概率为0.95的置信区间. 【解】76.6,18.14,10.950.05,20,x s n α===-==/20.025222/20.0250.975(1)(19)2.093,(1)(19)32.852,(19)8.907t n t n ααχχχ-==-===(1) μ的置信度为0.95的置信区间/2(1)76.6 2.093(68.11,85.089)a x n ⎛⎫⎛⎫-== ⎪ ⎪⎝⎭⎝⎭(2)2σ的置信度为0.95的置信区间222222/21/2(1)(1)1919,18.14,18.14(190.33,702.01)(1)(1)32.8528.907n s n s n n ααχχ-⎛⎫--⎛⎫=⨯⨯= ⎪⎪--⎝⎭⎝⎭ 11.设总体X ~f (x )=(1),01;10,.x x θθθ⎧+<<>-⎨⎩其中其他 X 1,X 2,…,X n 是X 的一个样本,求θ的矩估计量及极大似然估计量.【解】(1)1101()()d (1)d ,2E X xf x x x x θθθθ+∞+-∞+==+=+⎰⎰ 又1(),2X E X θθ+==+ 故21ˆ1X Xθ-=- 所以θ的矩估计量 21ˆ.1X Xθ-=- (2) 似然函数11(1) 01(1,2,,)()()0n n ni i i i i x x i n L L f x θθθ==⎧+<<=⎪===⎨⎪⎩∏∏其他. 取对数11ln ln(1)ln (01;1),d ln ln 0,d 1nii i ni i L n x x i n L nx θθθθ===++<<≤≤=+=+∑∑所以θ的极大似然估计量为1ˆ1.ln nii nXθ==--∑12.设总体X ~f (x )= 36(),0;0,.xx x θθθ⎧-<<⎪⎨⎪⎩其他X 1,X 2,…,X n 为总体X 的一个样本 (1) 求θ的矩估计量ˆθ;(2) 求ˆ()D θ.【解】(1) 236()()d ()d ,2x E X xf x x x x θθθθ+∞-∞=-=⎰⎰令 ,2EX X θ==所以θ的矩估计量 ˆ2.X θ= (2)4ˆ()(2)4(),D D X D X DX nθ===, 又322236()63()d ,2010x x E X x θθθθθ-===⎰于是222223()()(),10420D XE X EX θθθ=-=-=,所以2ˆ().5D nθθ=13.设某种电子元件的使用寿命X 的概率密度函数为f (x ,θ)= 2()2,;0,.x x x θθθ--⎧>⎨≤⎩e其中θ(θ>0)为未知参数,又设x 1,x 2,…,x n 是总体X 的一组样本观察值,求θ的极大似然估计值.【解】似然函数12()12e 0;1,2,,;()0ln ln 22(),;1,2,,,ni i x n i n i i i x i n L L L n x x i n θθθθ=--=⎧∑⎪⋅≥===⎨⎪⎩=--≥=∑ 其他.由d ln 20ln (),d Ln L θθ=>↑知 那么当01ˆˆmin{}ln ()max ln ()ii nx L L θθθθ>≤≤==时 所以θ的极大似然估计量1ˆmin{}ii nx θ≤≤=其中θ(0<θ<12)是未知参数,利用总体的如下样本值3,1,3,0,3,1,2,3,求θ的矩估计值和极大似然估计值. 【解】813ˆ(1)()34,()4 28ii x E X E X x x x θθ=-=-====∑令得又 所以θ的矩估计值31ˆ.44x θ-== (2) 似然函数86241(,)4(1)(12).ii L P x θθθθ===--∏2ln ln 46ln 2ln(1)4ln(1),d ln 628628240,d 112(1)(12)L L θθθθθθθθθθθθ=++-+--+=--==---- 解2628240θθ-+=得1,272θ=. 由于71,122> 所以θ的极大似然估计值为7ˆ2θ-=. 15.设总体X 的分布函数为F (x ,β)=1,,0,.x xx ββααα⎧->⎪⎨⎪≤⎩其中未知参数β>1,α>0,设X 1,X 2,…,X n 为来自总体X 的样本(1) 当α=1时,求β的矩估计量;(2) 当α=1时,求β的极大似然估计量; (3) 当β=2时,求α的极大似然估计量. 【解】当α=1时,11,1;(,)(,1,)0,1.x x f x F x x x ββββ+⎧≥⎪==⎨⎪<⎩当β=2时, 2132,;(,)(,,2)0,.x x f x F x x x ααααα⎧≥⎪==⎨⎪<⎩(1) 111()d 11E X x x x βββββββ+∞-+∞===--⎰令()E X X =,于是ˆ,1XX β=- 所以β的矩估计量ˆ.1XX β=- (2) 似然函数(1)1111,1,(1,2,,);()(,)0,.ln ln (1)ln ,d ln ln 0,d n n ni i i i i ni i ni i x x i n L L f x L n x L n x ββββββββ-+====⎧⎛⎫>=⎪ ⎪===⎨⎝⎭⎪⎩=-+=-=∏∏∑∑ 其他所以β的极大似然估计量1ˆ.ln nii nxβ==∑(3) 似然函数23112,,(1,2,,);(,)0,.n ni nn i i i i x i n L f x x ααα==⎧≥=⎪⎪⎛⎫==⎨ ⎪⎝⎭⎪⎪⎩∏∏ 其他 显然(),L L α=↑那么当1ˆmin{}i i nx α≤≤=时,0ˆ()max ()a L L L αα>== , 所以α的极大似然估计量1ˆmin{}i i nx α≤≤=. 16.从正态总体X ~N (3.4,62)中抽取容量为n 的样本,如果其样本均值位于区间(1.4,5.4)内的概率不小于0.95,问n 至少应取多大?2/2()d zt z t ϕ-=⎰【解】26~3.4,X N n ⎛⎫⎪⎝⎭,则~(0,1),X Z N ={1.4 5.4}33210.95Z P X P PZ ΦΦΦ<<<<=⎧=-<<⎨⎩⎭⎛=-=-≥ ⎝于是0.975Φ≥ 1.96≥, ∴ n ≥35.17. 设总体X 的概率密度为f (x ,θ)=,01,1,12,0,.x x θθ<<⎧⎪-≤<⎨⎪⎩其他 其中θ是未知参数(0<θ<1),X 1,X 2,…,X n 为来自总体X 的简单随机样本,记N 为样本值x 1,x 2,…,x n 中小于1的个数.求: (1) θ的矩估计;(2) θ的最大似然估计. 解 (1) 由于121(;)d d (1)d EX xf x x x x x x θθθ+∞-∞==+⎰⎰⎰-133(1)222θθθ=+-=-. 令32X θ-=,解得32X θ=-, 所以参数θ的矩估计为32X θ=-. (2) 似然函数为1()(;)(1)nN n N i i L f x θθθθ-===-∏,取对数,得ln ()ln ()ln(1),L N n N θθθ=+--两边对θ求导,得d ln ().d 1L N n Nθθθθ-=-- 令 d ln ()0,d L θθ=得 Nnθ=,所以θ的最大似然估计为Nnθ=.。
概率论第7-10章课后习题答案

习题七1.设总体X 服从二项分布b (n ,p ),n 已知,X 1,X 2,…,X n 为来自X 的样本,求参数p 的矩法估计.【解】1(),(),E X np E X A X ===因此np =X所以p 的矩估计量 ˆXpn= 2.设总体X 的密度函数f (x ,θ)=22(),0,0,.x x θθθ⎧-<<⎪⎨⎪⎩其他X 1,X 2,…,X n 为其样本,试求参数θ的矩法估计. 【解】23022022()()d ,233x x E X x x x θθθθθθθ⎛⎫=-=-= ⎪⎝⎭⎰令E (X )=A 1=X ,因此3θ=X 所以θ的矩估计量为 ^3.X θ=3.设总体X 的密度函数为f (x ,θ),X 1,X 2,…,X n 为其样本,求θ的极大似然估计.(1) f (x ,θ)=,0,0,0.e x x x θθ-⎧≥⎨<⎩(2) f (x ,θ)=1,01,0,.x x θθ-⎧<<⎨⎩其他【解】(1) 似然函数111(,)e e eniii n nx x nn ii i L f x θθθθθθ=---==∑===∏∏1ln ln ni i g L n x θθ===-∑由1d d ln 0d d ni i g L n x θθθ===-=∑知 1ˆnii nxθ==∑所以θ的极大似然估计量为1ˆXθ=. (2) 似然函数11,01nni i i L x x θθ-==<<∏,i =1,2,…,n.1ln ln (1)ln ni i L n x θθ==+-∏由1d ln ln 0d ni i L n x θθ==+=∏知11ˆln ln nniii i n nxx θ===-=-∑∏所以θ的极大似然估计量为 1ˆln nii nxθ==-∑4.从一批炒股票的股民一年收益率的数据中随机抽取10人的收益率数据,结果如下:1-求这批股民的收益率的平均收益率及标准差的矩估计值.【解】 0.094x =- 0.101893s =9n = 0.094.EX x ==-由222221()()[()],()ni i x E X D X E X E X A n==+==∑知222ˆˆ[()]E X A σ+=,即有ˆσ=于是 ˆ0.101890.0966σ=== 所以这批股民的平均收益率的矩估计值及标准差的矩估计值分别为-0.94和0.966.5.随机变量X 服从[0,θ]上的均匀分布,今得X 的样本观测值:0.9,0.8,0.2,0.8,0.4,0.4,0.7,0.6,求θ的矩法估计和极大似然估计,它们是否为θ的无偏估计.【解】(1) ()2E X θ=,令()E X X =,则ˆ2X θ=且ˆ()2()2()E E X E X θθ===, 所以θ的矩估计值为ˆ220.6 1.2x θ==⨯=且ˆ2X θ=是一个无偏估计. (2) 似然函数8811(,)i i L f x θθ=⎛⎫== ⎪⎝⎭∏,i =1,2, (8)显然L =L (θ)↓(θ>0),那么18max{}i i x θ≤≤=时,L =L (θ)最大,所以θ的极大似然估计值ˆθ=0.9.因为E(ˆθ)=E (18max{}i i x ≤≤)≠θ,所以ˆθ=18max{}i i x ≤≤不是θ的无偏计.6.设X 1,X 2,…,X n 是取自总体X 的样本,E (X )=μ,D (X )=σ2,2ˆσ=k1211()n i i i XX -+=-∑,问k 为何值时2ˆσ为σ2的无偏估计. 【解】令 1,i i i Y X X +=-i =1,2,…,n -1,则 21()()()0,()2,i i i i E Y E X E X D Y μμσ+=-=-==于是 1222211ˆ[()](1)2(1),n ii E E k Yk n EY n k σσ-===-=-∑那么当22ˆ()E σσ=,即222(1)n k σσ-=时, 有 1.2(1)k n =-7.设X 1,X 2是从正态总体N (μ,σ2)中抽取的样本112212312211311ˆˆˆ;;;334422X X X X X X μμμ=+=+=+ 试证123ˆˆˆ,,μμμ都是μ的无偏估计量,并求出每一估计量的方差. 【证明】(1)11212212121ˆ()()(),333333E E X X E X E X μμμμ⎛⎫=+=+=+= ⎪⎝⎭21213ˆ()()()44E E X E X μμ=+=, 31211ˆ()()(),22E E X E X μμ=+= 所以123ˆˆˆ,,μμμ均是μ的无偏估计量.(2) 22221122145ˆ()()(),3399D D X D X X σμσ⎛⎫⎛⎫=+== ⎪ ⎪⎝⎭⎝⎭222212135ˆ()()(),448D D X D X σμ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭()223121ˆ()()(),22D D X D X σμ⎛⎫=+= ⎪⎝⎭8.某车间生产的螺钉,其直径X ~N (μ,σ2),由过去的经验知道σ2=0.06,今随机抽取6枚,测得其长度(单位mm )如下:14.7 15.0 14.8 14.9 15.1 15.2 试求μ的置信概率为0.95的置信区间. 【解】n =6,σ2=0.06,α=1-0.95=0.05,0.25214.95, 1.96,a x u u ===,μ的置信度为0.95的置信区间为/2(14.950.1 1.96)(14.754,15.146)x u α⎛±=±⨯= ⎝.9.总体X ~N (μ,σ2),σ2已知,问需抽取容量n 多大的样本,才能使μ的置信概率为1-α,且置信区间的长度不大于L ?【解】由σ2已知可知μ的置信度为1-α的置信区间为/2x u α⎛± ⎝,/2u α,/2u α≤L ,得n ≥22/224()u L ασ 10.设某种砖头的抗压强度X ~N (μ,σ2),今随机抽取20块砖头,测得数据如下(kg ·cm -2):64 69 49 92 55 97 41 84 88 99 84 66 100 98 72 74 87 84 48 81 (1) 求μ的置信概率为0.95的置信区间. (2) 求σ2的置信概率为0.95的置信区间.【解】76.6,18.14,10.950.05,20,x s n α===-==/20.025222/20.0250.975(1)(19)2.093,(1)(19)32.852,(19)8.907t n t n ααχχχ-==-===(1) μ的置信度为0.95的置信区间/2(1)76.6 2.093(68.11,85.089)a x n ⎛⎫⎛⎫-== ⎪ ⎪⎝⎭⎝⎭(2)2σ的置信度为0.95的置信区间222222/21/2(1)(1)1919,18.14,18.14(190.33,702.01)(1)(1)32.8528.907n s n s n n ααχχ-⎛⎫--⎛⎫=⨯⨯= ⎪ ⎪--⎝⎭⎝⎭11.设总体X ~f (x )=(1),01;10,.x x θθθ⎧+<<>-⎨⎩其中其他X 1,X 2,…,X n 是X 的一个样本,求θ的矩估计量及极大似然估计量.【解】(1)1101()()d (1)d ,2E X xf x x x x θθθθ+∞+-∞+==+=+⎰⎰ 又1(),2X E X θθ+==+ 故21ˆ1X Xθ-=-所以θ的矩估计量 21ˆ.1X Xθ-=- (2) 似然函数11(1) 01(1,2,,)()()0nn ni i i i i x x i n L L f x θθθ==⎧+<<=⎪===⎨⎪⎩∏∏其他. 取对数11ln ln(1)ln (01;1),d ln ln 0,d 1nii i ni i L n x x i n L n x θθθθ===++<<≤≤=+=+∑∑所以θ的极大似然估计量为1ˆ1.ln nii nXθ==--∑12.设总体X ~f (x )= 36(),0;0,.xx x θθθ⎧-<<⎪⎨⎪⎩其他X 1,X 2,…,X n 为总体X 的一个样本 (1) 求θ的矩估计量ˆθ;(2) 求ˆ()D θ. 【解】(1) 236()()d ()d ,2x E X xf x x x x θθθθ+∞-∞=-=⎰⎰令 ,2EX X θ==所以θ的矩估计量 ˆ2.X θ= (2)4ˆ()(2)4(),D D X D X DX nθ===, 又322236()63()d ,2010x x E X x θθθθθ-===⎰于是222223()()(),10420D XE X EX θθθ=-=-=,所以2ˆ().5D nθθ= 13.设某种电子元件的使用寿命X 的概率密度函数为f (x ,θ)= 2()2,;0,.x x x θθθ--⎧>⎨≤⎩e其中θ(θ>0)为未知参数,又设x 1,x 2,…,x n 是总体X 的一组样本观察值,求θ的极大似然估计值.【解】似然函数12()12e 0;1,2,,;()0ln ln 22(),;1,2,,,ni i x n i n i i i x i n L L L n x x i n θθθθ=--=⎧∑⎪⋅≥===⎨⎪⎩=--≥=∑其他.由d ln 20ln (),d Ln L θθ=>↑知 那么当01ˆˆmin{}ln ()max ln ()ii nx L L θθθθ>≤≤==时所以θ的极大似然估计量1ˆmin{}ii nx θ≤≤=其中θ(0<θ<2)是未知参数,利用总体的如下样本值3,1,3,0,3,1,2,3,求θ的矩估计值和极大似然估计值.【解】813ˆ(1)()34,()4 28i i x E X E X x xx θθ=-=-====∑令得又 所以θ的矩估计值31ˆ.44x θ-== (2) 似然函数86241(,)4(1)(12).ii L P x θθθθ===--∏2ln ln 46ln 2ln(1)4ln(1),d ln 628628240,d 112(1)(12)L L θθθθθθθθθθθθ=++-+--+=--==---- 解2628240θθ-+=得1,272θ=. 由于1,2> 所以θ的极大似然估计值为 ˆθ=15.设总体X 的分布函数为F (x ,β)=1,,0,.x xx ββααα⎧->⎪⎨⎪≤⎩其中未知参数β>1,α>0,设X 1,X 2,…,X n 为来自总体X 的样本(1) 当α=1时,求β的矩估计量;(2) 当α=1时,求β的极大似然估计量; (3) 当β=2时,求α的极大似然估计量. 【解】当α=1时,11,1;(,)(,1,)0, 1.x x f x F x x x ββββ+⎧≥⎪==⎨⎪<⎩当β=2时, 2132,;(,)(,,2)0,.x x f x F x x x ααααα⎧≥⎪==⎨⎪<⎩(1) 111()d 11E X x x x βββββββ+∞-+∞===--⎰令()E X X =,于是ˆ,1XX β=- 所以β的矩估计量ˆ.1XX β=- (2) 似然函数(1)1111,1,(1,2,,);()(,)0,.ln ln (1)ln ,d ln ln 0,d n n ni i i i i n i i ni i x x i n L L f x L n x L n x ββββββββ-+====⎧⎛⎫>=⎪ ⎪===⎨⎝⎭⎪⎩=-+=-=∏∏∑∑其他所以β的极大似然估计量1ˆ.ln nii nxβ==∑(3) 似然函数23112,,(1,2,,);(,)0,.n ni nn i i i i x i n L f x x ααα==⎧≥=⎪⎪⎛⎫==⎨ ⎪⎝⎭⎪⎪⎩∏∏其他显然(),L L α=↑那么当1ˆmin{}i i nx α≤≤=时,0ˆ()max ()a L L L αα>== , 所以α的极大似然估计量1ˆmin{}i i nx α≤≤=. 16.从正态总体X ~N (3.4,62)中抽取容量为n 的样本,如果其样本均值位于区间(1.4,5.4)内的概率不小于0.95,问n至少应取多大?2/2()dz tz tϕ-=⎰z【解】26~ 3.4,X Nn⎛⎫⎪⎝⎭,则~(0,1),XZ N={1.4 5.4}33210.95333ZP X PPZΦΦΦ<<<<=⎧=-<<⎨⎩⎭⎛⎛⎛⎫=-=-≥-⎪⎝⎭⎝⎭⎝⎭于是0.975Φ≥ 1.96≥,∴n≥35.17. 设总体X的概率密度为f(x,θ)=,01,1,12,0,.xxθθ<<⎧⎪-≤<⎨⎪⎩其他其中θ是未知参数(0<θ<1),X1,X2,…,X n为来自总体X的简单随机样本,记N为样本值x1,x2,…,x n中小于1的个数.求:(1)θ的矩估计;(2)θ的最大似然估计.解(1)由于1201(;)d d(1)dEX xf x x x x x xθθθ+∞-∞==+⎰⎰⎰-133(1)222θθθ=+-=-.令32Xθ-=,解得32Xθ=-,所以参数θ的矩估计为32Xθ=-.似然函数为1()(;)(1)nN n NiiL f xθθθθ-===-∏,取对数,得ln ()ln ()ln(1),L N n N θθθ=+--两边对θ求导,得d ln ().d 1L N n Nθθθθ-=-- 令d ln ()0,d L θθ=得 Nnθ=, 所以θ的最大似然估计为N nθ=.18. 19. 习题八1. 已知某炼铁厂的铁水含碳量在正常情况下服从正态分布N (4.55,0.1082).现在测了5炉铁水,其含碳量(%)分别为4.28 4.40 4.42 4.35 4.37问若标准差不改变,总体平均值有无显著性变化(α=0.05)? 【解】0010/20.0250.025: 4.55;: 4.55.5,0.05, 1.96,0.1084.364,(4.364 4.55)3.851,0.108.H H n Z Z x x Z Z Z αμμμμασ==≠=======-===->所以拒绝H 0,认为总体平均值有显著性变化.2. 某种矿砂的5个样品中的含镍量(%)经测定为:3.24 3.26 3.24 3.27 3.25 设含镍量服从正态分布,问在α=0.01下能否接收假设:这批矿砂的含镍量为3.25. 【解】设0010/20.0050.005: 3.25;: 3.25.5,0.01,(1)(4) 4.60413.252,0.013,(3.252 3.25)0.344,0.013(4).H H n t n t x s x t t t αμμμμα==≠===-====-===<所以接受H 0,认为这批矿砂的含镍量为3.25.3. 在正常状态下,某种牌子的香烟一支平均1.1克,若从这种香烟堆中任取36支作为样本;测得样本均值为1.008(克),样本方差s 2=0.1(g 2).问这堆香烟是否处于正常状态.已知香烟(支)的重量(克)近似服从正态分布(取α=0.05).【解】设0010/20.02520.025: 1.1;: 1.1.36,0.05,(1)(35) 2.0301,36,1.008,0.1,6 1.7456,1.7456(35)2.0301.H H n t n t n x s x t t t αμμμμα==≠===-=========<=所以接受H 0,认为这堆香烟(支)的重要(克)正常.4.某公司宣称由他们生产的某种型号的电池其平均寿命为21.5小时,标准差为2.9小时.在实验室测试了该公司生产的6只电池,得到它们的寿命(以小时计)为19,18,20,22,16,25,问这些结果是否表明这种电池的平均寿命比该公司宣称的平均寿命要短?设电池寿命近似地服从正态分布(取α=0.05).【解】0100.050.05:21.5;:21.5.21.5,6,0.05, 1.65, 2.9,20,(2021.5)1.267,2.91.65.H H n z x x z z z μμμασ≥<======-===->-=- 所以接受H 0,认为电池的寿命不比该公司宣称的短.5.测量某种溶液中的水分,从它的10个测定值得出x =0.452(%),s =0.037(%).设测定值总体为正态,μ为总体均值,σ为总体标准差,试在水平α=0.05下检验.(1) H 0:μ=0.5(%);H 1:μ<0.5(%).(2)0:H σ' =0.04(%);1:H σ'<0.04(%). 【解】(1)00.050.050.5;10,0.05,(1)(9) 1.8331,0.452,0.037,(0.4520.5) 4.10241,0.037(9) 1.8331.n t n t x s x t t t αμα===-====-===-<-=-所以拒绝H 0,接受H 1. (2)2222010.95222220220.95(0.04),10,0.05,(9) 3.325,0.452,0.037,(1)90.0377.7006,0.04(9).n x s n s ασαχχχσχχ-=======-⨯===>所以接受H 0,拒绝H 1.6.某种导线的电阻服从正态分布N (μ,20.005).今从新生产的一批导线中抽取9根,测其电阻,得s =0.008欧.对于α=0.05,能否认为这批导线电阻的标准差仍为0.005?【解】00102222/20.0251/20.975222220.025220:0.005;:0.005.9,0.05,0.008,(8)(8)17.535,(8)(8) 2.088,(1)80.00820.48,(8).(0.005)H H n s n s αασσσσαχχχχχχχσ-===≠=======-⨯===> 故应拒绝H 0,不能认为这批导线的电阻标准差仍为0.005.7.有两批棉纱,为比较其断裂强度,从中各取一个样本,测试得到: 第一批棉纱样本:n 1=200,x =0.532kg, s 1=0.218kg ; 第二批棉纱样本:n 2=200,y =0.57kg, s 2=0.176kg.设两强度总体服从正态分布,方差未知但相等,两批强度均值有无显著差异?(α=0.05)【解】01211212/2120.0250.0250.025:;:.200,0.05,(2)(398) 1.96,0.1981,1.918;(398).w H H n n t n n t z s x y t t t αμμμμα=≠===+-=≈=======-< 所以接受H 0,认为两批强度均值无显著差别.8.两位化验员A ,B 对一种矿砂的含铁量各自独立地用同一方法做了5次分析,得到样本方差分别为0.4322(%2)与0.5006(%2).若A ,B 所得的测定值的总体都是正态分布,其方差分别为σA 2,σB 2,试在水平α=0.05下检验方差齐性的假设222201:;:.A B A B H H σσσσ=≠【解】221212/2120.0250.9750.02521225,0.05,0.4322,0.5006,(1,1)(4,4)9.6,11(4,4)0.1042,(4.4)9.60.43220.8634.0.5006n n s s F n n F F F s F s αα=====--========那么0.9750.025(4,4)(4,4).F F F <<所以接受H 0,拒绝H 1. 9. 10. 11. 12. 习题九1 灯泡厂用4种不同的材料制成灯丝,检验灯线材料这一因素对灯泡寿命的影响.若灯泡寿命服从正态分布,不同材料的灯丝制成的灯泡寿命的方差相同,试根据表中试验结8 1【解】14,26;====∑ri i r n n2442..11===-∑∑T iji j T S x n =69895900-69700188.46=195711.54, 242...11==-∑A i i iT S T n n =69744549.2-69700188.46=44360.7, =-E T A S S S =151350.8,0.05/(1)44360.7/3 2.15/()151350.8/22(3,22) 3.05.-===-=>A E S r F S n r F F ,故灯丝材料对灯泡寿命无显著影响.2. 一个年级有三个小班,他们进行了一次数学考试,现从各个班级随机地抽取了试在显著性水平0.05下检验各班级的平均分数有无显著差异.设各个总体服从正态分布,且方差相等.【解】13,40,====∑ri i r n n232..11in T iji j T S x n ===-∑∑=199462-185776.9=13685.1, 232...11==-∑A i i iT S T n n =186112.25-185776.9=335.35, =-E T A S S S =13349.65,0.05/(1)167.70.465/()360.8(2,37) 3.23.-===-=>A E S r F S n r F F故各班平均分数无显著差异.取显著性水平α=0.05,试分析操作工之间,机器之间以及两者交互作用有无显著差异?【解】由已知r =4,s =3,t =3........,,,ij i j T T T T 的计算如表9-3-1.22 (111)22 (12)2.....122....111106510920.25144.75,11092310920.25 2.75,110947.4210920.2527.17,173.50=====⨯===-=-==-=-==-=-=⎛⎫-=--= ⎪⎝⎭∑∑∑∑∑∑∑rstT ijki j k r A i i s B j j r s ij A B A B i j T S x rst T S T st rst T S T rt rst T T S S S t rst ,41.33.⨯=---=E T A B A B S S S S S0.050.050.05(3,24) 3.01,(2,24) 3.40,(6,24) 2.51.===F F F接受假设01H ,拒绝假设0203,H H .即机器之间无显著差异,操作之间以及两者的交互作用有显著差异.4. 为了解3种不同配比的饲料对仔猪生长影响的差异,对3种不同品种的猪各选3头进行试验,分别测得其3个月间体重增加量如下表所示,取显著性水平α=0.05,试分析不同饲料与不同品种对猪的生长有无显著影响?假定其体重增长量服从正态分布,且各种配【解】由已知r =s =3,经计算x =52, 1.x =50.66, 2.x =533.x =52.34, .1x =52, .2x =57, .3x =47,2112.12.1()162;()8.73,()150,3.27.rsT ij i j r A i i rB j j E T A B S x x S s x x S r x x S S S S =====-==-==-==--=∑∑∑∑表9-4-1得方差分析表由于0.050.05(2,4) 6.94,(2,4).A B F F F F =>< 因而接受假设01H ,拒绝假设02H .即不同饲料对猪体重增长无显著影响,猪的品种对猪体重增长有显著影响.5.研究氯乙醇胶在各种硫化系统下的性能(油体膨胀绝对值越小越好)需要考察补强剂(A )、防老剂(B )、硫化系统(C )3个因素(各取3个水平),根据专业理论经验,4试作最优生产条件的直观分析,并对3因素排出主次关系. 给定α=0.05,作方差分析与(1)比较.【解】(1) 对试验结果进行极差计算,得表9-5-1.由于要求油体膨胀越小越好,所以从表9-5-1的极差R j 的大小顺序排出因素的主次顺序为:主→次B ,A ,C最优工艺条件为:223A B C .(2) 利用表9-5-1的结果及公式2211==-∑r j ij i T S T r P,得表9-5-2.表9-5-2 表9-5-2中第4列为空列,因此40.256==e S S ,其中2=e f ,所以eeS f =0.128方差分析表如表9-5-3.由于0.05(2,2)19.00F,故因素C作用较显著,A次之,B较次,但由于要求油体膨胀越小越好,所以主次顺序为:BAC,这与前面极差分析的结果是一致的.6. 某农科站进行早稻品种试验(产量越高越好),需考察品种(A),施氮肥量(B),氮、磷、钾肥比例(C),插植规格(D)4个因素,根据专业理论和经验,交互作用全忽略,早稻试验方案及结果分析见下表:(1) 试作出最优生产条件的直观分析,并对4因素排出主次关系.(2) 给定α=0.05,作方差分析,与(1)比较.【解】被考察因素有4个:A,B,C,D每个因素有两个水平,所以选用正交表L8(27),进行极差计算可得表9-6-1.表9-6-1从表9-6-1的极差R j 的大小顺序排出因素的主次为:,,,→主次B C A D 最优方案为:1222A B C D(2) 利用表9-6-1的结果及公式2211n j ij i T s T r P==-∑得表9-6-2.表9-6-2表9-6-2中第1,3,7列为空列,因此s e =s 1+s 3+s 7=18.330,f e =3,所以ees f =6.110.而在上表中其他列中j ejes s f f <.故将所有次均并入误差,可得 ΔΔ18.895,7.===e T e s s f整理得方差分析表为表9-6-3.由于0.05(1.7) 5.59=F ,故4因素的影响均不显著,但依顺序为:,,,→主次B C A D 与(1)中极差分析结果一致.习题十1. 在硝酸钠(NaNO 3)的溶解度试验中,测得在不同温度x (℃)下,溶解于100份水9999211112234,811.3,10144,24628.6,110144(234)4060,9124628.6234811.33534.8.9ii ii i i i i i xx xy xy x x y S S =========-==-⨯⨯=∑∑∑∑故^^^811.32340.8706,67.5078,99xyxx S b a b S ===-⨯=从而回归方程:^67.50780.8706.y x =+求(1) 儿子身高y 关于父亲身高x 的回归方程.(2) 取α=0.05,检验儿子的身高y 与父亲身高x 之间的线性相关关系是否显著. (3) 若父亲身高70英寸,求其儿子的身高的置信度为95%的预测区间. 【解】经计算得,9999922111112291603,604.6,40569,40584.9,40651.68140569(603)168,9140584.9603604.676.7,9140651.68(604.6)35.9956.9ˆˆˆ(1)0.4565,/9/ii ii i i i i i i i xx xy yy xyi i i xx xy x x y y S S S S b a x b x S ============-==-⨯⨯==-====-⨯∑∑∑∑∑∑91936.5891,i ==∑故回归方程:ˆ36.58910.4565.yx =+20.05(2) 35.0172,35.995635.01720.9784,250.5439(1,7) 5.59./2xyxxS Q Q Q Q S Q F F Q n ===-=-===>=-回剩总回回剩故拒绝H 0,即两变量的线性相关关系是显著的.00.025/2ˆ(3)36.58910.45657068.5474,ˆ0.05,(7) 2.3646,0.3739,1.0792, (2) 2.36460.3739 1.079yt t n αασσ=+⨯========-=⨯⨯给定故20.9540.=从而其儿子的身高的置信度为95%的预测区间为(68.5474±0.9540)=(67.5934,69.5014).3.随机抽取了10个家庭,调查了他们的家庭月收入x (单位:百元)和月支出y (单(2) 求y 与x 的一元线性回归方程.(3) 对所得的回归方程作显著性检验.(α=0.025)【解】(1) 散点图如右,从图看出,y 与x 之间具有线性相关关系. (2) 经计算可得10101010102211111191,170,3731,3310,2948,82.9,63,58.170191ˆˆ0.7600,0.76 2.4849,1010ii ii i i i i i i i xx xy yy xy xxxy x x y y S S S S baS ================-⨯=∑∑∑∑∑故从而回归方程:ˆ 2.48490.76.yx =+题3图20.05(3) 47.8770,5847.87710.1230,37.8360(1,8)7.57./2xyxxS Q Q Q Q S Q F F Q n ===-=-===>=-回剩总回回剩故拒绝H 0,即两变量的线性相关关系是显著的.4.设y 为树干的体积,x 1为离地面一定高度的树干直径,x 2为树干高度,一共测量了31棵树,数据列于下表,作出y 对x 1,x 2的二元线性回归方程,以便能用简单分法从x 101201201231411.72356923.9,411.75766.5531598.713798.85,235631598.718027472035.6.b b b b b b b b b ++=⎧⎪++=⎨⎪++=⎩解之得,b 0=-54.5041,b 1=4.8424,b 2=0.2631. 故回归方程:^y =-54.5041+4.8424x 1+0.2631x 2.5.一家从事市场研究的公司,希望能预测每日出版的报纸在各种不同居民区内的周末发行量,两个独立变量,即总零售额和人口密度被选作自变量.由n =25个居民区组成的随机样本所给出的结果列表如下,求日报周末发行量y 关于总零售额x 1和人口密度x 2的线性回归方程.【解】类似于习题4,可得正规方程组01201201225 739.5 1576.6 98.2,739.5 22429.15 47709.1 2968.58,1576.6 47709.1 101568 6317.95.b b b b b b b b b ++=⎧⎪++=⎨⎪++=⎩解之得,b 0=0.3822,b 1=0.0678,b 2=0.0244.故回归方程:ˆy=0.3822+0.0678x 1+0.0244x 2.(1) 作散点图.(2) 以模型y =b 0+b 1x 1+b 2x 2+ε,ε~N (0,σ2)拟合数据,其中b 0,b 1,b 2,σ2与x 无关,求回归方程ˆy =0ˆb +1ˆb x +2ˆb x 2. 【解】散点图如下图.题6图122,根据表中数据可得下表根据上表中数据可得正规方程组01201201215 300 6750 450.5,300 6750 165000 9155,6750 165000 4263750 207990.b b b b b b b b b ++=⎧⎪++=⎨⎪++=⎩解之得:b 0=19.0333,b 1=1.0086,b 2=-0.0204.故y 关于x 1与x 2的回归方程:=19.0333+1.0086x 1-0.0204x 2,从而抗压强度y 关于浓度x 的回归方程: ˆy=19.0333+1.0086x -0.0204x 2.。
概率论与数理统计第七章课后习题及参考答案

易得ˆ
max
1in
X
i
,ˆ
的密度函数为
p(x)
n(x
) n 1
1
,0
x
,
0, 其他.
7
则 E(ˆ)
xp(x)d x
0
xn
x
n1 n1
1
dx
n n 1
,
可知 的最大似然估计量不是无偏的.
12.设从均值为 ,方差为 2 0 的总体中,分别抽取容量为 n1 ,n2 的两独立样
本.X1 和 X 2 分别是两样本的样本均值.试证对于任意常数 a ,b ( a b 1),
X
1
2
3
P
2
2 (1 )
(1 )2
其中, ( 0 1 )为未知数.已知取得了样本值 x1 1, x2 2 , x3 1 ,求 的矩估计值和最大似然估计值.
(2) 设 X1 , X 2 ,…, X n 是来自参数为 的泊松分布总体的一个样本,试求
的矩估计量和极大似然估计量.
解:(1) 因为 E( X ) 1 2 2 2 (1 ) 3(1 )2 3 2 ,
x c x( 1)d x c
c
c
x
d
x
c 1
,
令
E(X
)
X
,即
X
c 1
,得
的矩估计量为
1
ˆ X . X c
从而 的矩估计量值为 4.设总体 X 的概率密度为
ˆ x . x c
f
(x)
6x(
3
x)
,
x
c,
0, 其他.
X1 , X 2 ,…, X n 是来自总体 X 的一个样本. (1) 求 的矩估计量ˆ ;
概率论第七章 习题解答

第七章 假设检验I 教学基本要求1、了解假设检验的相关概念及基本思想,掌握假设检验的基本步骤,知道犯两类错误的概率的含义;2、掌握单正态总体均值和方差的假设检验;3、掌握两个正态总体均值差与方差比的假设检验;4、了解分布的假设检验.II 习题解答A 组1、某企业生产铜丝,而折断力的大小是铜丝的主要质量指标.从过去的资料来看,可认为折断力2(570,8)X N ~(单位:千克力),现更换了一批原材料,测得10个样品的折断力如下:578 572 570 568 572 570 570 572 596 584 从性能上看,折断力的方差不会有什么变化,试问折断力的大小与原先有无差异(0.05)α=?解:若折断力的大小与原先无差异,则总体均值μ应为570,因此,提出假设如下:0H :570μ= vs 1H :570μ≠由0.05α=,查附表得临界值0.975 1.96u =,根据样本观测值求得575.2x =于是,检验统计量U 的值2.055U ==由于0.975||U u ≥,所以,在显著性水平0.05α=下拒绝原假设0H ,即认为折断力与原先有差异.2、某工厂生产的电子元件平均使用寿命2(,)X N μσ~,现抽测15个元件,得到18000x =、5200s =(单位:小时),试问该工厂生产的电子元件的平均使用寿命是否为20000(0.05)α=?解:若该工厂生产的电子元件的平均使用寿命为20000,则总体均值μ应为20000,因此,提出假设如下:0H :20000μ= vs 1H :20000μ≠由0.05α=,查附表得临界值0.975(14) 2.145t =,由已知数据求得检验统计量T 的值0.149T ==-由于0.975||(14)T t <,所以,在显著性水平0.05α=下接受原假设0H ,即认为该工厂生产的电子元件的平均使用寿命是20000小时.3、用热敏电阻测温仪间接测量地热勘探井底温度,重复测量6次,测得温度(C )为:111.0112.4110.2111.0113.5111.9假定测量的温度服从正态分布,且井底温度的真实值为111.6C ,试问用热敏电阻测温仪间接测温是否准确(0.05)α=?解:若用热敏电阻测温仪间接测温是准确的,则总体均值μ应为111.6,因此,提出假设如下:0H :111.6μ= vs 1H :111.6μ≠由0.05α=,查附表得临界值0.975(5) 2.571t =,根据样本观测值求得111.67x =、2 1.399s =于是,检验统计量T 的值0.145T ==由于0.975||(5)T t <,所以,在显著性水平0.05α=下接受原假设0H ,即认为用热敏电阻测温仪间接测温是准确的.4、设考生在某次考试中的成绩服从正态分布,从中随机地抽取36位考生的成绩,得到平均成绩为66.5分、标准差为15分,问是否可以认为这次考试全体考生的平均成绩为70分(0.05)α=?解:若这次考试全体考生的平均成绩为70分,则总体均值μ应为70,因此,提出假设如下:0H :70μ= vs 1H :70μ≠由0.05α=,查附表得临界值0.975(35) 2.0301t =,由已知数据求得检验统计量T 的值1.4T ==-由于0.975||(35)T t <,所以,在显著性水平0.05α=下接受原假设0H ,即认为这次考试全体考生的平均成绩为70分.5、某化肥厂用自动包装机包装化肥,每包质量服从正态分布2(50,)N σ,某日开工后,随机抽取8包化肥,测得质量(单位:kg )如下:49.249.850.350.849.749.650.550.1问该天包装的化肥质量的方差是否为1.3(0.05)α=?解:若该天包装的化肥质量的方差是1.3,则21.3σ=,因此,提出假设如下:0H :2 1.3σ= vs 1H :2 1.3σ≠由0.05α=,查附表得临界值20.025(8) 2.1797χ=、20.975(8)17.5345χ=,根据样本观测值求得21()2.192nii x μ=-=∑于是,检验统计量2χ的值2 2.1921.6861.3χ== 由于220.025(8)χχ≤,所以,在显著性水平0.05α=下拒绝原假设0H ,即认为该天包装的化肥质量的方差不是1.3.6、设某化纤厂生产的维尼纶的纤度在正常情况下服从方差为20.05的正态分布,现随机抽取6根,测得其纤度为1.33 1.351.541.451.371.53问维尼纶纤度的方差是否正常(0.10)α=?解:若维尼纶纤度的方差正常,则220.05σ=,因此,提出假设如下:0H :220.05σ= vs 1H :220.05σ≠由0.10α=,查附表得临界值20.05(5) 1.146χ=、20.95(5)11.07χ=,根据样本观测值求得1.43x =、20.0085s =于是,检验统计量2χ的值22(61)0.00851.70.05χ-⨯==由于2220.050.95(5)(5)χχχ<<,所以,在显著性水平0.10α=下接受原假设0H ,即认为维尼纶纤度的方差是正常的.7、生产某种产品可用两种操作方法.用第一种操作方法生产的产品抗折强度21(,7)X N μ~;用第二种操作方法生产的产品抗折强度22(,9)Y N μ~(单位:千克),现从第一种操作方法生产的产品中随机抽取13件,得到42x =,从第二种操作方法生产的产品中随机抽取17件,测得36y =,问这两种操作方法生产的产品的平均抗折强度是否有显著差异(0.05)α=?解:若这两种操作方法生产的产品的平均抗折强度无显著差异,则12μμ=,因此,提出假设如下:0H :12μμ= vs 1H :12μμ≠由0.05α=,查附表得临界值0.975 1.96u =,由已知数据求得检验统计量U 的值2.054U ==由于0.975||U u ≥,所以,在显著性水平0.05α=下拒绝原假设0H ,即认为这两种操作方法生产的产品的平均抗折强度有显著差异.8、某种物品在处理前与处理后分别抽样分析其含脂率,测得数据如下:假设处理前后的含脂率都服从正态分布,且方差不变,问该物品处理前后含脂率的均值是否有显著差异(0.01)α=?解:若该物品处理前后含脂率的均值无显著差异,则12μμ=,因此,提出假设如下:0H :12μμ= vs 1H :12μμ≠由0.01α=,查附表得临界值0.995(13) 3.012t =,根据样本观测值求得0.23x =、0.18y =、20.0094x s =、20.0045ys =、0.0822w s = 于是,检验统计量T 的值2.273T==由于0.995||(13)T t<,所以,在显著性水平0.01α=下接受原假设H,即认为该物品处理前后含脂率的均值无显著差异.9、有甲、乙两台机床加工同样的产品,现从这两台机床加工的产品中随机地抽取若干产品,测得产品直径(单位:)为:问甲乙两台机床加工的精度是否有显著差异(0.05)α=?解:若甲乙两台机床加工的精度无显著差异,则它们的方差相同,因此,提出假设如下:0H:2212σσ=vs1H:2212σσ≠由0.05α=,查附表得临界值0.0250.97511(7,6)0.1953(6,7) 5.12FF===、0.975(7,6) 5.70F=,根据样本观测值求得19x=、19y=、20.1029xs=、20.3967ys=于是,检验统计量F的值0.10290.25940.3967F==由于0.0250.975(7,6)(7,6)F F F<<,所以,在显著性水平0.05α=下接受原假设H,即认为甲乙两台机床加工的精度无显著差异.10、某车床生产滚珠,现随机抽取了50个产品,测得它们的直径(单位:mm)为:15.0 15.8 15.2 15.1 15.9 14.7 14.8 15.5 15.6 15.315.1 15.3 15.0 15.6 15.7 14.8 14.5 14.2 14.9 14.915.2 15.0 15.3 15.6 15.1 14.9 14.2 14.6 15.8 15.215.9 15.2 15.0 14.9 14.8 14.5 15.1 15.5 15.5 15.115.1 15.0 15.3 14.7 14.5 15.5 15.0 14.7 14.6 14.2问滚珠直径是否服从正态分布(0.05)α=?解:若滚珠直径服从正态分布,则2(,)X Nμσ~,因此,提出假设如下:0H:2(,)X Nμσ~由于μ、2σ未知,因而用它们的最大似然估计值ˆ15.1xμ==、222ˆ0.4325sσ==代替得到分布2(15.1,0.4325)N,为了求统计量2χ的值,取14.05a=、16.15ka=,将0[,]k a a 等分为7个小区间,列表计算得:于是,检验统计量2χ的值221() 3.062ki i i i n np np χ=-==∑再由0.05α=,查附表得临界值20.95(4)9.488χ=,由于220.95(4)χχ<,所以,在显著性水平0.05α=下接受原假设0H ,即认为滚珠直径服从正态分布.B 组1、随机地从一批直径服从正态分布的滚珠中抽取7个,测得其直径(单位:mm )为: 13.70 14.21 13.90 13.91 14.32 14.32 14.10假设滚珠直径总体分布的方差为0.05,问这批滚珠的平均直径是否小于等于14.25(0.05)α=?解:若这批滚珠的平均直径是小于等于14.25,则14.25μ≤,因此,提出假设如下:0H :14.25μ≤ vs 1H :14.25μ>由0.05α=,查附表得临界值0.95 1.65u =,根据样本观测值求得14.07x =于是,检验统计量U 的值2.118U ==-由于0.95U u <,所以,在显著性水平0.05α=下接受原假设0H ,即认为这批滚珠的平均直径小于等于14.25.2、设1x 、2x 、…、n x 是取自正态总体2(,)N μσ的样本,记11ni i x x n ==∑、221()ni i Q x x ==-∑,试在此记号下求检验假设0H :0μ=的检验统计量?解:该问题是单正态总体方差未知时关于期望μ的假设检验问题,检验统计量应选为x T =由于222111()11n ii s x x Q n n ==-=--∑,即s =,从而检验统计量为x T ==3、某种导线要求其电阻的标准差不超过0.004欧姆,现从生产的一批导线中随机抽取8根,得到220.006s =,若该导线的电阻服从正态分布,问能否认为这批导线的标准差偏小(0.05)α=?解:若这批导线的标准差偏小,则220.004σ≤,因此,提出假设如下:0H :220.004σ≤ vs 1H :220.004σ>由0.05α=,查附表得临界值20.95(7)14.067χ=,由已知数据求得检验统计量2χ的值222(81)0.00615.750.004χ-⨯== 由于220.95(7)χχ≥,所以,在显著性水平0.05α=下拒绝原假设0H ,即认为这批导线的标准差偏大.4、下面是某两种型号的电器充电后所能使用的时间(单位:小时)的观测值 型号A 5.5 5.6 6.3 4.6 5.3 5.0 6.2 5.8 5.1 5.2 5.9 型号B 3.8 4.3 4.2 4.0 4.9 4.5 5.2 4.8 4.5 3.9 3.7 4.6设两样本独立且抽样的两个正态总体方差相等,试问能否认为型号A 比型号B 平均使用的时间更短(0.01)α=?解:若型号A 比型号B 平均使用的时间更短,则12μμ≤,因此,提出假设如下:0H :12μμ≤ vs 1H :12μμ>由0.01α=,查附表得临界值0.99(21) 2.5176t =,根据样本观测值求得5.5x =、 4.3667y =、20.274x s =、20.2188ys =、0.4951w s =于是,检验统计量T的值5.4837T==由于0.99(21)T t≥,所以,在显著性水平0.01α=下拒绝原假设H,即认为型号A比型号B平均使用的时间更长.5、某药厂生产一种新的止痛片,厂方希望验证服用新药片后到开始起作用的时间间隔较原有止痛片至少缩短一半,因此厂方提出检验假设H:122μμ=vs1H:122μμ>其中1μ、2μ分别是服用原有止痛片和服用新止痛片后到开始起作用的时间间隔的总体均值,若这两个总体均服从正态分布,且方差21σ、22σ已知,现分别从两个总体中抽取两个独立样本1x、2x、…、mx和1y、2y、…、ny,试给出上述假设检验问题的检验统计量及拒绝域?解:设X为服用原有止痛片后到开始起作用的时间间隔,Y为服用新止痛片后到开始起作用的时间间隔,则211(,)X Nμσ~、222(,)Y Nμσ~,于是22121242(2,)x y Nm nσσμμ-~-+()~(0,1)x yU N⇒=当H成立,有~(0,1)x yU N=所以,可选取检验统计量x yU=对于给定的显著性水平α,检验的拒绝域为1{|}W U U uα-=≥.6、有两箱来自不同厂家的功能相同的金属部件,从第一箱中抽取60个,从第二箱中抽取40个,得到部件重量()mg的样本方差分别为215.46xs=、29.66ys=.若两样本相互独立且服从正态分布,试问第一箱重量的总体方差是否比第二箱重量的总体方差小(0.05)α=?解:若第一箱重量的总体方差比第二箱重量的总体方差小,则2212σσ≤,因此,提出假设如下:0H :2212σσ≤ vs 1H :2212σσ> 由0.05α=,查附表得临界值0.95(59,39) 1.64F =,根据已知数据求得检验统计量F 的值15.461.609.66F == 由于0.95(59,39)F F <,所以,在显著性水平0.05α=下接受原假设0H ,即认为第一箱重量的总体方差比第二箱重量的总体方差小.7A B 设两批电子器件的电阻分别服从211(,)N μσ、222(,)N μσ,试问能否认为两个总体服从相同的正态分布(0.05)α=?解:(1) 先检验两个总体方差相同.若两个总体方差相同,则2212σσ=,因此,提出假设如下: 0H :2212σσ= vs 1H :2212σσ≠ 由0.05α=,查附表得临界值0.0250.97511(5,5)0.140(5,5)7.15F F ===、0.975(5,5)7.15F =,根据样本观测值求得0.141x =、0.139y =、20.0000078x s =、20.0000071ys = 于是,检验统计量F 的值0.00000781.10.0000071F ==由于0.0250.975(5,5)(5,5)F F F <<,所以,在显著性水平0.05α=下接受原假设0H ,即认为两个总体方差相同;(2) 在(1)的基础上检验两个总体均值相同.若两个总体均值相同,则12μμ=,因此,提出假设如下:0H :12μμ= vs 1H :12μμ≠由0.05α=,查附表得临界值0.975(10) 2.2281t =,根据样本观测值求得20.0000074w s =于是,检验统计量T 的值1.267T ==由于0.975||(10)T t <,因而在显著性水平0.05α=下接受原假设0H ,即认为两个总体均值相同;所以,可认为两个总体服从相同的正态分布.8、在一批灯泡中抽取300只进行寿命测试,试验结果如下:试检验假设:0H :灯泡寿命服从指数分布0.0050.0050()00te tf t t -⎧>=⎨≤⎩(0.05)α=?解:根据题意提出假设0H :(0.005)X E ~为了求统计量2χ的值,将(0,)+∞分为4个小区间(0,100]、(100,200]、(200,300]、(300,)+∞,列表计算得:于是,检验统计量2χ的值221() 1.8393ki i i in np np χ=-==∑再由0.05α=,查附表得临界值20.95(3)7.8147χ=,由于220.95(3)χχ<,所以,在显著性水平0.05α=下接受原假设0H ,即认为该批灯泡寿命服从参数为0.005的指数分布.。