Evolution of Tight Gas Sandstone Plays and Production, Western Canada Sedimentary Basin
苏里格气田致密砂岩气藏开发认识与稳产建议

天 然 气 工 业Natural Gas Industry 第41卷第2期2021年 2月· 100 ·苏里格气田致密砂岩气藏开发认识与稳产建议王继平1,2 张城玮3 李建阳4 李娅1,2 李小锋1,2 刘平1,2 陆佳春51.中国石油长庆油田公司勘探开发研究院2.低渗透油气田勘探开发国家工程实验室3.中国石油大学(北京)石油工程学院4.中国石油长庆油田公司气田开发事业部5.中国石油长庆油田公司苏里格气田开发分公司摘要:鄂尔多斯盆地苏里格气田致密砂岩气藏的天然气储量规模和年产气量目前都位居全国第一。
为了进一步延长该气田致密砂岩气藏的稳产时间、提高气藏采收率,总结了该气田致密砂岩气开发过程中所取得的地质与气藏工程认识,梳理了影响气田持续稳产的难点问题,提出了该气田致密砂岩气藏下一步的开发建议。
研究结果表明:①苏里格气田致密砂岩气藏有效砂体规模、储层物性、含气性等都具有强非均质性特征,并且局部气水关系复杂;②不同区域气井产量、累计产气量、产量递减率等存在着明显的差异,气藏采收率受储层品质和开发井网的影响大;③优质储层储量动用程度高、储量劣质化趋势明显、剩余储量碎片化现象严重,导致该气田致密砂岩气藏稳产难度大;④为了实现该气田的长期稳产,针对致密砂岩气藏强非均质性的特征,需要进一步推广“基础井组+基础井网+差异化加密”的井网部署策略,持续推进动/静态分析相结合的储层精细描述技术和混合井型部署技术,运用老井查层补孔、侧钻水平井及重复改造等手段提高储量动用程度,配合地质工程一体化改造工艺技术提升储层改造的有效性,采用智能化和水平井高效排水采气工艺技术提升气田精细化管理水平,并且尽早推广“负压”开采技术,以恢复濒临废弃井的生产能力;⑤寻求必要的财税政策支持是实现致密气资源充分利用的重要保障。
关键词:鄂尔多斯盆地;苏里格气田;致密砂岩气藏;储集层特征;开发指标;剩余储量;挖潜对策DOI: 10.3787/j.issn.1000-0976.2021.02.012Tight sandstone gas reservoirs in the Sulige Gas Field:Development understandings and stable-production proposals WANG Jiping1,2, ZHANG Chengwei3, LI Jianyang4, LI Ya1,2, LI Xiaofeng1,2, LIU Ping1,2, LU Jiachun5(1. Exploration and Development Research Institute, PetroChina Changqing Oilfield Company, Xi'an, Shaanxi 710018, China;2. Nation-al Engineering Laboratory of Low-Permeability Oil & Gas Exploration and Development, Xi'an, Shaanxi 710018, China;3. School of Petroleum Engineering, China University of Petroleum, Beijing 100249, China;4. Development Department, PetroChina Changqing Oil-field Company, Xi'an, Shaanxi 710018, China;5. Sulige Gas Field Development Branch, PetroChina Changqing Oilfield Company, Xi'an, Shaanxi 710018, China)Natural Gas Industry, vol.41, No.2, p.100-110, 2/25/2021. (ISSN 1000-0976; In Chinese)Abstract: The Sulige Gas Field in the Ordos Basin ranks the first in China in terms of reserve scale and annual gas production of tight sandstone gas reservoirs. In order to further extend the stable production time and enhance the recovery factor of tight sandstone gas reservoirs in the Sulige Gas Field, this paper summarizes the geological and gas reservoir engineering understandings obtained in the development process of tight sandstone gas in this gas field, sorts out the difficulties impacting its sustainable stable production, and pro-poses suggestions for the following development of tight sandstone gas reservoirs in this field. And the following research results were obtained. First, the effective sand body scale, reservoir physical property and gas bearing property are strongly heterogeneous and the lo-cal gas–water relationship is complex in the tight sandstone gas reservoirs of the Sulige Gas Field. Second, there are obvious differences in gas well production, accumulative gas production and decline rate in different regions. The recovery factor of the gas reservoirs is af-fected more by reservoir quality and development well pattern. Third, the reserve producing degree of good-quality reservoirs is high, the tendency of poor-quality reserves is obvious and the fragmentation of remaining reserves is serious, which increases the production sta-bilization difficulty in the tight sandstone gas reservoirs of the Sulige Gas Field. Fourth, in order to realize sustainable stable production in the Sulige Gas Field, considering the strong heterogeneity characteristics of tight sandstone gas reservoirs, it is recommended to popu-larize the well pattern deployment strategy of "basic well group + basic well pattern + differential infilling" further, continuously improve fine reservoir description technology and mixed well deployment technology with combined dynamic and static analysis, apply layer reviewing and reperforating of old wells, horizontal well sidetracking and re-stimulation to improve the reserve producing degree, adopt the geology–engineering integrated stimulation technology to improve the effectiveness of reservoir stimulation, make use of intelligent and efficient drainage gas recovery technology by horizontal well to improve the fine management level of gas field, and popularize the "negative pressure" production technology as soon as possible to recover the production capacity of wells on the verge of abandonment. Fifth, seeking for the necessary fiscal and tax support is an important guarantee for the full utilization of tight gas resources. Keywords: Ordos Basin; Sulige Gas Field; Tight sandstone gas reservoir; Reservoir characteristics; Development indexes; Remaining re-serves; Potential tapping countermeasures基金项目:国家科技重大专项“鄂尔多斯盆地大型低渗透岩性地层油气藏开发示范工程”(编号:2016ZX05050)、中国石油天然气股份有限公司重大科技专项“长庆气田稳产及提高采收率技术研究”(编号:2016E-0509)。
逐步回归分析方法在储层参数预测中的应用

逐步回归分析方法在储层参数预测中的应用范雯【摘要】目前,储层参数(孔隙度和渗透率等)分布规律和储层非均质性研究是油气藏描述的核心,储层参数是油层评价的重要依据,储层参数预测在油气勘探开发中具有重要意义.文中通过采用某一个点的测井曲线或地震数据推测出该点的孔隙度或渗透率,基于多种测井信息的多元线性回归方法已成为储层孔隙度定量预测的主要方法,多元逐步回归分析方法的理论正好适用于这种实际问题.它是利用通过特殊仪器测量的测井曲线数据参数与岩芯属性参数(例如孔隙度),建立测井曲线数据参数与多个岩芯属性参数之间的线性关系,这种方法比较简单实用.因此文中采用逐步回归分析方法作为预测方法,重点介绍了回归分析中的逐步回归的基本思想以及具体计算步骤.最后,提出油气勘探中预测孔隙度的问题,并用逐步回归分析优化回归方程并周此方程预测岩芯属性参数.研究表明,该方法预测精度高,方法稳定有效,逐步回归较好的解决了部分测井勘探的实际问题,基于多种测井信息的多元线性回归方法已成为储层孔隙度定量预测的主要方法,该方法可以把非线性问题转化为线性问题,大大减少了技术上的难题.【期刊名称】《西安科技大学学报》【年(卷),期】2014(034)003【总页数】6页(P350-355)【关键词】逐步回归分析;储层参数;测井曲线;孔隙度;渗透率【作者】范雯【作者单位】陕西职业技术学院人事处,陕西西安710100【正文语种】中文【中图分类】P618.130 引言在油气勘探中,储层参数是含油气性的一个重要标志。
许多地质工作者致力于储层参数的研究和预测。
随着我国经济的飞速发展,对各种能源的需求与日俱增,能源短缺问题日渐突出,尤其是对石油的需求更为紧迫,如何解决我国石油能源紧缺问题是许多科学工作者正在潜心研究的重要课题。
目前,储层参数(孔隙度和渗透率等)分布规律和储层非均质性研究是油气藏描述的核心,同时它也是精细油藏描述的核心内容。
孔隙度和渗透率分布的不均匀性直接影响油气分布、运移和开采[1]。
致密砂岩油气成藏机理

致密砂岩油气成藏机理摘要:致密砂岩油气储量丰富、可采资源量可信度高,已成为我国非常规油气勘探开发的首选领域。
关键字:致密砂岩油气成藏条件生储盖组合成藏过程0 引言随着常规油气勘探开发程度的不断提高,油气勘探开发领域从常规油气向非常规油气跨越,是石油工业发展的必然趋势(邹才能等,2012)。
非常规油气资源量巨大,全球非常规石油资源规模达4495×108t,全球非常规天然气资源规模达3921×1012m3,是常规天然气资源的8倍(邹才能等,2012)。
近年来,国内外非常规油气的勘探开发取得了重大突破。
美国已发现的储量排名前100的气藏中有58个是致密砂岩气藏(Baihly,et al,2009);我国2010年底共发现储量大于1000×108m3的大气田18个,其中9个为致密砂岩大气田,总探明地质储量25777.9×108m3,占18个大气田的53.5%(戴金星等,2012)。
美国圣胡安盆地向斜轴部白垩系致密砂岩气田可采储量为7079×108m3(Bruce et al,2006);Bakken 致密油含油面积7×104km2,资源量达到566×108t,可采资源量68×108t(USGS,2008);Eagle Ford致密油含油面积约4×104km2、目前产油量为560t/d(Lucas et al,2010)。
2011年苏里格致密砂岩大气区实现探明储量超3.0×1012m3,四川盆地须家河组致密砂岩大气区发现三级储量1.0×1012m3;鄂尔多斯盆地晚三叠世仅长6、长7段致密油资源量达20×108t以上,四川盆地侏罗系致密油探明地质储量8118×104t(邹才能等,2012)。
致密油气作为非常规油气的重要组成部分,以其储量丰富、分布范围广、可采资源量可信度高、相关技术理论研究早、发展迅速等诸多优点已成为中国近期非常规油气首选的重要勘探领域(戴金星等,2012;贾承造等,2012;邹才能等,2012)。
川西致密砂岩气藏新的矿场评价标准和评价方法

3本文系“九五”国家重点科技攻关项目(96-110-03-04-01)部分成果。
33段永刚,1963年生,副研究员,1988年获得西南石油学院油气田开发专业的硕士学位;现今在西南石油学院油井完井技术中心工作,主要从事试井、油层损害的矿场评价、油层保护、油藏工程等研究;负责和参加完成国家“863”和国家项目多项。
地址:(637001)四川省南充市西南石油学院油井完井技术中心。
电话:(0817)2642934。
川西致密砂岩气藏新的矿场评价标准和评价方法3段永刚33 陈伟 李其深 康毅力 徐兴华 徐进 (西南石油学院) (中国石化西南石油局) 段永刚等.川西致密砂岩气藏新的矿场评价标准和评价方法.天然气工业,2001;21(5):74~76摘 要 文章根据川西致密砂岩气藏的损害特征和现场100多口井的测试资料的统计分析表明,储层表现出自身的损害特点,其常规的矿场评价指标和标准不一定完全适合非常规的致密碎屑岩气藏的情况。
针对川西致密砂岩气藏损害特征,提出新的气藏损害的评价标准,同时根据致密砂岩气藏油层损害的要求和评价标准的需要,建立起新的描述裂缝—孔隙性砂岩气藏损害评价的数学模型,该模型在原来裂缝—孔隙性砂岩渗流模型的基础上考虑裂缝与基块之间窜流表皮系数对渗流的影响。
将该矿场评价标准和评价方法应用于川西致密砂岩储层的损害评价中取得很好的效果,这不仅对于川西致密砂岩的油层损害评价有现实意义,而且对裂缝—孔隙油气藏的试井解释和损害评价都具有重要的指导意义。
主题词 储集层 评价 不稳定试井 表皮系数 地层损害 裂缝(岩石) 四川盆地 西 川西致密碎屑岩气藏具有低孔、低渗、高含水饱和度和异常高压的特点,纵向上多个气层叠置,且不同程度地发育裂缝,所以勘探开发致密碎屑岩气藏技术难度大,成功率低。
对于致密碎屑岩气藏的油层应以保护裂缝为主,同时也要保护基质岩块为原则。
致密碎屑岩气藏在许多方面表现出显著的不同于常规油气藏,对于致密碎屑岩的损害机理,室内评价方面以及矿场评价方法仍处于探索研究之中。
能源地质学专业术语中英文对照

125
低位沼泽(flat bog,low moor)
126
中位沼泽(medium bog,medium swamp)
127
高位沼泽(raised bog,highmoor)
128
富营养沼泽(eutrophic mire)
129
中营养沼泽(mesotrophic swamp)
97
氯仿沥青A(chloroform bitumen A)
98
族组成(group composition)
99
饱和烃(saturated hydrocarbon)
100
芳烃(aromatic hydrocarbon)
101
胶质(colloid,pectin,colloid substance)
102
116
浅海(shallow sea)
117
泻湖(lagoon,lagune)
118
潮坪(tidal flat)
119
砂坪(sand flat)
120
泥坪(mud flat)
121
混合坪(mixed flat)
122
苔草沼泽(sedge mire)
123
木本沼泽(swamp,woody mire)
124
202
微粒体(micrinite)
203
粗粒体(macrinite)
204
菌类体(sclerotinite)
205
碎屑惰质体(inertodetrinite)
206
孢子体(sporinite)
207
角质体(cutinite)
195
均质镜质体(telocollinite)
苏里格气田致密砂岩气藏剩余气分布特征及其挖潜

第44卷 第5期 新 疆 石 油 地 质Vol. 44,No.52023年10月 XINJIANG PETROLEUM GEOLOGY Oct. 2023文章编号:1001-3873(2023)05-0554-08 DOI :10.7657/XJPG20230506苏里格气田致密砂岩气藏剩余气分布特征及其挖潜石耀东1,王丽琼1,臧苡澄2,张吉1,3,李鹏2,李旭1(1.中国石油 长庆油田分公司 第四采气厂,内蒙古 鄂尔多斯 017300;2.中国石油 长庆油田分公司 勘探开发研究院,西安 710018;3.低渗透油气田勘探开发国家工程实验室,西安 710018)摘 要:苏里格气田中区苏36-11区块已开发17年,开发程度和储量动用程度均高,储集层非均质性强,储量动用不均衡,剩余气分布复杂,剩余气分布的确定及挖潜是气田稳产的关键。
通过储集层构型精细表征,明确剩余气分布的主要影响因素,确定不同类型剩余气分布规律,提出对应的挖潜对策。
研究结果表明:研究区含气砂体主要分布在4级构型单元心滩坝与点坝中,整体规模小,宽度为150~500 m ,长度为300~800 m ,连通性差,受各级次渗流屏障影响大,区块北东—南西向主砂带开发程度最高,地层压力低,剩余气主要分布在区块西北部盒8段下亚段;剩余气分布主要受储集层非均质与开采非均匀影响,可分为井网未控制型、复合砂体阻流带型、水平井未动用次产层型、直定向井未射开气层型和投产未采出型5类;提出井间加密、老井侧钻、查层补孔和老井挖潜4种动用措施,调整方案后,预测可稳产7年,采收率可达45%。
关键词:苏里格气田;致密砂岩;储集层构型;剩余气储量评价;剩余气分布;挖潜对策;开发中—后期;开发调整方案中图分类号:TE122 文献标识码:A©2018 Xinjiang Petroleum Geology. Creative Commons Attribution-NonCommercial 4.0 International License 收稿日期:2022-11-12 修订日期:2023-04-13基金项目:国家科技重大专项(2016ZX05050);中国石油科技重大专项(2016E-0509)第一作者:石耀东(1973-),男,陕西靖边人,高级工程师,气田开发与生产管理,(Tel )************(E-mail )syd_cq@通讯作者:王丽琼(1989-),女,甘肃华池人,高级工程师,硕士,油气田开发,(Tel )************(E-mail )wangliqiong12_cq@petrochina..Distribution and Potential Tapping Strategies of Remaining Gasin Tight Sandstone Gas ReservoirsSHI Yaodong 1,WANG Liqiong 1,ZANG Yicheng 2,ZHANG Ji 1,3,LI Peng 2,LI Xu 1(1.No.4 Gas Production Plant, Changqing Oilfield Company, PetroChina, Ordos, Inner Mongolia 017300, China;2.Research Institute of Exploration and Development, Changqing Oilfield Company, PetroChina, Xi ’an, Shaanxi 710018, China ;3.National Engineering Laboratory for Exploration and Development of Low Permeability Oil and Gas Fields, Xi ’an, Shaanxi 710018, China )Abstract :The Su 36⁃11 block in the central area of Sulige gas field has been developed for 17 years, with high degrees of development and reserves producing. The strong reservoir heterogeneity in this block leads to uneven producing of reserves and complex distribution of re⁃maining gas. Distribution determination and potential tapping of the remaining gas are crucial for maintaining stable production in the gas field. By accurately characterizing the reservoir architecture, the main factors influencing remaining gas distribution were identified, the distribution patterns of different types of remaining gas were determined, and corresponding strategies for recovering the remaining gas were proposed. The research results show that the gas⁃bearing sand bodies in the study area are mainly distributed in the 4th⁃order architec⁃ture units, such as channel bar and point bar, these sand bodies are significantly affected by various levels of flow barriers, with small over⁃all scale, poor connectivity, width of 150-500 m and length of 300-800 m. The main NE⁃SW sand belt in the block has been developed the most, with low formation pressure, and the remaining gas is mainly distributed in the lower He 8 member in the northwestern part of the block. Remaining gas, whose distribution is mainly influenced by reservoir heterogeneity and uneven development, can be divided into five types: gas uncontrolled by well pattern, gas in composite sand body flow barrier, gas in secondary pay zone unexploited by horizontal well, gas in unperforated gas⁃bearing layer in vertical well, and gas unproduced. Four potential tapping measures were proposed, including well infilling, reperforation, sidetracking and potential tapping in exsisting wells. According to the adjusted development plan, it is predicted that stable production can be maintained for 7 years with the recovery efficiency reaching 45%.Keywords :Sulige gas field; tight sandstone; reservoir architecture; remaining gas reserves evaluation; remaining gas distribution; potential tapping; middle-late development stage; adjusted development plan中国致密气资源总量及开发潜力巨大,约占全球资源量的十分之一,主要分布在鄂尔多斯盆地、四川盆地、塔里木盆地等区域。
致密砂岩气井结盐抑制剂的研究进展

Researchprogressofsaltprecipitationinhibitors fortightsandstonegaswells
QISuitao1,CHETinghua1,TANXiao1,LIUGuoqiang2
(1.SchoolofChemicalEngineeringandTechnologyofXi’anJiaotongUniversity,Xi’an710049,China; 2.LinfenBranchofPetrochinaCoalbedMethaneCompanyLimited,Linfen042399,China)
摘 要:分析了气井结盐的原因,即主要是温度和压力降低导致了排出液中盐的过饱和现象。介绍了 4种气井除 盐防盐方法,包括掺水除盐、热洗除盐、化学防盐和毛细管掺水加抑制剂结盐。就化学除盐防盐中有应用前景的抑 制剂进行了重点介绍,亚铁氰化物、表面活性剂、酒石酸盐、氮川三乙酰胺(NTA)抑制剂、复合抑盐剂及降滤缓释抑 盐剂均对氯化钠结晶有着很好的抑制效果,抑制机理主要基于改变外界条件提高溶液的过饱和度,或是通过盐晶 畸变抑制晶核生成和晶体生长。 关键词:致密砂岩气;气井结盐;氯化钠;结盐原因;化学防盐;抑制剂;抑制机理 中图分类号:TQ20 文献标识码:A 文章编号:1671-3206(2019)09-2231-04
Abstract:Inthisregard,thereasonsforthesaltdepositioningaswellswasfirstlyanalyzed,thatis,the temperatureandpressuredecreaseresultedinthesupersaturationofsaltintheeffluent.Next,fourmeth odsfordesaltingandsaltremovalfrom gaswellswereintroduced,includingwaterandsaltremoval,hot washandsaltremoval,chemicalsaltprotection,andcapillarywateradditionplusinhibitorsaltformation. Themainfocusisoninhibitorswithpotentialapplicationsinchemicaldesalinationandsaltremoval.Fer rocyanides,surfactants,tartrates,NTA,compoundsaltinhibitors,andlowreleaseofsaltinhibitorshavea goodinhibitoryeffectonsodium chloridecrystals.Theinhibitionmechanism ismainlybasedonchanging theexternalconditionstoincreasethedegreeofsupersaturationofthesolution,ortheinhibitionofnuclea tionandcrystalgrowthbysaltcrystaldistortion.Thestudyonsaltinhibitorscanhelptoclarifythemecha nism ofactionofinhibitorsandthedesignanddevelopmentofnovelinhibitorsbycombininggasliquid equilibrium andgasliquidtwophaseflowrelatedtheoryandquantum chemistrytheory. Keywords:tightsandstonegaswells;gaswellsalt;sodiumchloride;reasonsofsaltformation;chemical saltprotection;inhibitors;inhibitionmechanism
多层段致密砂岩气藏有利区评价方法再认识

14
石油化工应用 2019 年ห้องสมุดไป่ตู้
第 38 卷
ing layer is calculated by weighting. Finally, the economic development limits of the compos原 ite index are defined according to the economic limit evaluation. This method transforms the optimal selection of favorable area from traditional "multi-layer qualitative description" to "normalized layer quantitative characterization", which has been widely used in the high ef原 ficiency and scale development of Shenmu gasfield. Key words:tight sandstone;multi -layers gas;favorable area;comprehensive index method; PI factor;weight coefficient
Oil/Gas Fields Exploration and Development,Xi'an Shaanxi 710021,China)
Abstract :Many gasfields in Ordos basin, such as Shenmu, Mizhi and Sulige, all have the characteristics of multi-layer gas bearing, and all belong to typical tight sandstone gas reser原 voirs. In view of the difficulties in the development of this kind of gas reservoir, taking Shenmu gasfield as an example, based on the previous research results, the concept of PI factor is introduced to further optimize and perfect the evaluation method of favorable area of multi-layer tight sandstone gas reservoir.Firstly, the geological parameters related to singlelayer productivity are optimized for normalization and their influence weights are analyzed, and the evaluation criteria for single-layer favorable areas are established. Secondly, accord原 ing to the single-layer PI factor, combined with the gas production profile test, the produc原 tivity contribution weight of different layers is defined,and then the composite index of stack原
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Brad J. Hayescle #10182 (2009)
Posted April 6, 2009 *Adapted from extended abstract prepared for presentation at AAPG Annual Convention, San Antonio, Texas, April 20-23, 2008
to optimize locations where thrust-associated deformation has fractured the Nikanassin sufficiently to impart economic permeability. Wells drilled off thrust fronts are generally non-productive. Up to five zones within the Nikanassin are typically completed, and each is fracture-stimulated separately. Many wells have only recently been put on stream, so it is still early to assess long-term productive potential. Several of Shell’s wells at Chinook Ridge have produced up to 90 106m3 (3.2 BCF) in less than two years, although some of these include contributions from commingled uphole zones. Many wells to the northwest at Hiding Creek show lower initial productivities, although production from uphole zones in this area is more often segregated in separate wellbores. The ultimate prize in this play is represented by one of the original wells at North Grizzly, which has produced 577 106m3 (20.4 BCF) since 1979. Nikanassin reservoirs and thrust deformation can be mapped northwest and southeast of the current production area, giving this play considerable upside as seismic control and facilities expand. Cretaceous Multi-Formation Commingled Play Numerous Cretaceous reservoirs are productive in the Deep Basin (basin-centered gas area) of west-central Alberta and northeastern British Columbia. Until recently, exploration has been limited to the pursuit of prolific, high-permeability stratigraphic “sweet spots”, many of them areally-limited conglomeratic shoreline facies. With advances in drilling and completion technology, operators are now developing strategies to access far larger gas volumes, by commingling production from stacked Cretaceous tight-gas sandstones. The Cretaceous commingled play has been developed most intensively at Wild River, where almost every section in a four-township area has been downspaced to 2-4 (and in some cases 6) wells per section. The play area has expanded rapidly and will ultimately encompass 100 townships or more (based upon regional mapping of the main productive zones). By drilling to the Upper Jurassic Nikanassin Formation, up to ten reservoir intervals are evaluated, and the best four to five are generally completed. Major producers include: Nikanassin -- shallow marine sandstones subcropping beneath the pre-Cretaceous unconformity Cadomin -- fluvial sandstones and conglomerates, occurring as a channelized sheet across the area (Figure 5) Gething -- fluvial sandstones, mappable as discrete channel trends, stacked at several stratigraphic levels within a 100-metre thick continental succession (Figure 6) Bluesky -- marine shoreface sandstones, occurring in a relatively homogeneous sheet (Figure 7) Lower Spirit River -- nearshore facies capping progradational successions, locally exhibiting economic reservoir quality Upper Spirit River -- intricate valley fill network, incised during a mid-Cretaceous sea level fall and filled with massive, low-
Although the WCSB tight gas play spectrum is much different than that in the U.S. Rockies, huge gains in reserves and productivity have been attained with improved understanding of the reservoirs. Nikanassin Structural Play Nikanassin strata (Figure 2) comprise a thick (in places >1000 meters), easterly-thinning wedge of clastics, deposited as the Jurassic Fernie Sea retreated northward from the WCSB, in response to eustatic sea level fall and immense volumes of sediment being shed from the rising Columbian Orogen to the west. Blocky to fining-upward sandstone bodies are interbedded with siltstones, shales, and minor coal. Net sandstone / gross thickness ratios may exceed 50%, so that more than 500 meters of clean sandstone are found in some areas. Deposition took place in marginal marine to continental settings, resulting in an absence of regional stratigraphic markers and mappable depositional trends. Burial depths range from 1000 meters in the Peace River Plains, up to 3500-4000 meters in the deep Foothills. The Nikanassin has been tested throughout the basin, but is productive only where it is extensively fractured by deformation associated with thrust faulting in the outer Foothills. Reservoir Characteristics Reservoir sandstones consist primarily of fine- to medium-grained siliceous litharenites, deposited as channelized bodies on the order of 5 to 15 meters thick, although individual channels may stack into thicker bodies. Regional shoreline or valley-fill trends, where reservoir sandstones would preferentially occur, have not been mapped. Reservoir quality is very poor. In hand section, sandstones are glassy and brittle, and break across sand grains, indicating strong and pervasive cementation. Petrographically, they are poorly sorted, highly compacted litharenites, composed primarily of quartz, chert, and sedimentary rock fragments, cemented tightly with silica. Pores are generally small and isolated -- most primary porosity has been destroyed, and little solution porosity has developed. Conventional core analysis porosity values are generally up to 6%, while permeabilities are 0.1 md or less. Where the Nikanassin is productive, however, core and thin-sections show extensive fracturing (Figures 3 and 4). Tight Gas Production Several companies are developing Nikanassin tight gas pools along structural trends in the outer Foothills of northeastern British Columbia and adjacent Alberta. Wells are drilled along northwest-southeast fairways, parallel to the leading edges of thrust faults. Thrust repeats of Cretaceous and Upper Jurassic strata have been identified in several wellbores, but high-quality seismic is required