2019高考数学总复习优编增分练:中档大题规范练数列理
2019高考数学优编增分练5套

高考数学优编增分练目录(一)三角函数与解三角形 (2)(二)立体几何 (5)(三)数列 (10)(四)解析几何 (15)(五)函数与导数 (21)(一)三角函数与解三角形1.(2018·浙江省教育绿色评价联盟月考)已知函数f (x )=sin x ·(cos x +3sin x ).(1)求f (x )的最小正周期;(2)若关于x 的方程f (x )=t 在区间⎣⎡⎦⎤0,π2内有两个不相等的实数解,求实数t 的取值范围. 解 (1)f (x )=sin x cos x +3sin 2x=12sin 2x +32(1-cos 2x ) =12sin 2x -32cos 2x +32=sin ⎝⎛⎭⎫2x -π3+32. 所以f (x )的最小正周期T =2π2=π. (2)因为x ∈⎣⎡⎦⎤0,π2,所以2x -π3∈⎣⎡⎦⎤-π3,2π3. 令u =2x -π3,因为y =sin u 在⎣⎡⎦⎤-π3,π2上是增函数,在⎣⎡⎦⎤π2,2π3上是减函数, 令u =2x -π3=π2,则x =5π12,所以f (x )在⎣⎡⎦⎤0,5π12上是增函数,在⎣⎡⎦⎤5π12,π2上是减函数. 由题意知,关于x 的方程f (x )=t 在区间⎣⎡⎦⎤0,π2内有两个不相等的实数解,等价于y =f (x )与y =t 的图象(图略)在区间⎣⎡⎦⎤0,π2内有两个不同的交点, 又因为f (0)=0,f ⎝⎛⎭⎫5π12=1+32,f ⎝⎛⎭⎫π2=3, 所以3≤t <1+32,即t 的取值范围是⎣⎡⎭⎫3,1+32. 2. (2018·湖州、衢州、丽水三地市模拟)已知函数f (x )=3sin ⎝⎛⎭⎫2x +π6-2sin x cos x . (1)求函数f (x )的最小正周期;(2)当x ∈⎣⎡⎦⎤-π4,π4时,求函数f (x )的最大值和最小值. 解 (1)f (x )=3⎝⎛⎭⎫sin 2x cos π6+cos 2x sin π6-sin 2x =32cos 2x +12sin 2x =sin ⎝⎛⎭⎫2x +π3, 因此函数f (x )的最小正周期T =π.(2)因为-π4≤x ≤π4,所以-π6≤2x +π3≤5π6,所以-12≤sin ⎝⎛⎭⎫2x +π3≤1, 因此当x =π12时,f (x )的最大值为1, 当x =-π4时,f (x )的最小值为-12. 3.(2018·浙江省台州中学模拟)在△ABC 中,cos B =-513,cos C =45. (1)求sin A 的值;(2)设△ABC 的面积S △ABC =332,求BC 的长. 解 (1)由cos B =-513,得sin B =1213, 由cos C =45,得sin C =35, sin A =sin(B +C )=sin B cos C +cos B sin C =3365. (2)由S △ABC =332,得12AB ·AC ·sin A =332, ∴AB ·AC =65.又AC =AB ·sin B sin C =2013AB , ∴AB =132,BC =AB ·sin A sin C =112. 4.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足23a sin C sin B =a sin A +b sin B -c sin C .(1)求角C 的大小;(2)若a cos ⎝⎛⎭⎫π2-B =b cos(2k π+A )(k ∈Z )且a =2,求△ABC 的面积. 解 (1)由23a sin C sin B =a sin A +b sin B -c sin C 及正弦定理得,23ab sin C =a 2+b 2-c 2, ∴3sin C =a 2+b 2-c 22ab ,∴3sin C =cos C , ∴tan C =33,又0<C <π,∴C =π6. (2)由a cos ⎝⎛⎭⎫π2-B =b cos(2k π+A )(k ∈Z ),得a sin B =b cos A .由正弦定理得sin A sin B =sin B cos A ,又sin B ≠0,∴sin A =cos A ,∴A =π4, 根据正弦定理可得2sin π4=c sin π6,解得c =2, ∴S △ABC =12ac sin B =12×2×2sin(π-A -C ) =2sin ⎝⎛⎭⎫π4+π6=3+12.5.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知sin A +sin B =3sin C .(1)若cos 2A =sin 2B +cos 2C +sin A sin B ,求sin A +sin B 的值;(2)若c =2,求△ABC 面积的最大值.解 (1)∵cos 2A =sin 2B +cos 2C +sin A sin B ,∴1-sin 2A =sin 2B +1-sin 2C +sin A sin B ,∴sin 2A +sin 2B -sin 2C =-sin A sin B ,∴由正弦定理,得a 2+b 2-c 2=-ab ,∴由余弦定理,得cos C =a 2+b 2-c 22ab =-12, 又0<C <π,∴C =2π3, ∴sin A +sin B =3sin C =3sin2π3=32. (2)当c =2,a +b =3c =23,∴cos C =a 2+b 2-c 22ab =(a +b )2-2ab -c 22ab =4ab-1, ∴sin C =1-cos 2C =1-⎝⎛⎭⎫4ab -12 =-⎝⎛⎭⎫4ab 2+8ab ,∴S =12ab sin C =12ab -⎝⎛⎭⎫4ab 2+8ab =12-16+8ab . ∵a +b =23≥2ab ,即0<ab ≤3,当且仅当a =b =3时等号成立,∴S =12-16+8ab ≤12-16+8×3=2, ∴△ABC 面积的最大值为 2.6.已知m =(3sin ωx ,cos ωx ),n =(cos ωx ,-cos ωx )(ω>0,x ∈R ),f (x )=m·n -12且f (x )的图象上相邻两条对称轴之间的距离为π2. (1)求函数f (x )的单调递增区间;(2)若△ABC 中内角A ,B ,C 的对边分别为a ,b ,c 且b =7,f (B )=0,sin A =3sin C ,求a ,c 的值及△ABC 的面积. 解 (1)f (x )=m·n -12=3sin ωx cos ωx -cos 2ωx -12 =32sin 2ωx -12cos 2ωx -1=sin ⎝⎛⎭⎫2ωx -π6-1. ∵相邻两条对称轴之间的距离为π2, ∴T =2π2ω=π,∴ω=1,∴f (x )=sin ⎝⎛⎭⎫2x -π6-1, 令2k π-π2≤2x -π6≤2k π+π2,k ∈Z , 则k π-π6≤x ≤k π+π3,k ∈Z , ∴f (x )的单调递增区间为⎣⎡⎦⎤k π-π6,k π+π3,k ∈Z . (2)由(1)知,f (B )=sin ⎝⎛⎭⎫2B -π6-1=0, ∵0<B <π,∴-π6<2B -π6<11π6, ∴2B -π6=π2,∴B =π3, 由sin A =3sin C 及正弦定理,得a =3c ,在△ABC 中,由余弦定理,可得cos B =a 2+c 2-b 22ac =9c 2+c 2-76c 2=10c 2-76c 2=12, ∴c =1,a =3,∴S △ABC =12ac sin B =12×3×1×32=334. (二)立体几何1.(2018·浙江省金丽衢十二校联考)如图,四棱锥S -ABCD 的底面是边长为1的正方形,侧棱SB 垂直于底面.(1)求证:平面SBD ⊥平面SAC ;(2)若SA 与平面SCD 所成的角为30°,求SB 的长.(1)证明 连接AC ,BD ,因为四边形ABCD 为正方形,所以AC ⊥BD .又因为SB ⊥底面ABCD ,所以AC ⊥SB ,因为BD ∩SB =B ,BD ,SB ⊂平面SBD ,所以AC ⊥平面SBD .又因为AC ⊂平面SAC ,所以平面SAC ⊥平面SBD .(2)解 将四棱锥补形成正四棱柱ABCD -A ′SC ′D ′,连接A ′D ,作AE ⊥A ′D ,垂足为点E ,连接SE .由SA ′∥CD 可知,平面SCD 即为平面SCDA ′.因为CD ⊥侧面ADD ′A ′,AE ⊂侧面ADD ′A ′,所以CD ⊥AE ,又因为AE ⊥A ′D ,A ′D ∩CD =D ,A ′D ,CD ⊂平面SCD ,所以AE ⊥平面SCD ,于是∠ASE 即为SA 与平面SCD 所成的角.设SB =x ,在Rt △ABS 中,SA =1+x 2,在Rt △DAA ′中,AE =x 1+x 2 . 因为∠ASE =30°,所以1+x 2=2x 1+x 2, 解得x =1,即SB 的长为1.2.(2018·浙江省金华十校模拟)如图,在几何体ABCDE 中,CD ∥AE ,∠EAC =90°,平面EACD ⊥平面ABC ,CD =2EA =2,AB =AC =2,BC =23,F 为BD 的中点.(1)证明:EF ∥平面ABC ;(2)求直线AB 与平面BDE 所成角的正弦值.(1)证明 取BC 的中点G ,连接FG ,AG ,∵F 为BD 的中点,CD =2EA ,CD ∥AE ,∴FG =12CD =EA ,且FG ∥AE , ∴四边形AGFE 是平行四边形,∴EF ∥AG ,∵EF ⊄平面ABC ,AG ⊂平面ABC ,∴EF ∥平面ABC .(2)解 ∵∠EAC =90°,平面EACD ⊥平面ABC ,且平面EACD ∩平面ABC =AC ,EA ⊂平面EACD , ∴EA ⊥平面ABC ,由(1)知FG ∥AE ,∴FG ⊥平面ABC ,又∵AB =AC ,G 为BC 的中点,∴AG ⊥BC ,如图,以G 为坐标原点,分别以GA ,GB ,GF 所在直线为x ,y ,z 轴建立空间直角坐标系,则A (1,0,0),B (0,3,0),D (0,-3,2),E (1,0,1), ∴AB →=(-1,3,0),BD →=(0,-23,2),BE →=(1,-3,1),设平面BDE 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧ n ·BD →=0,n ·BE →=0,即⎩⎨⎧z -3y =0,x -3y +z =0, 令y =1,得n =(0,1,3),∴直线AB 与平面BDE 所成角的正弦值为|AB →·n ||AB →||n |=34. 3.在三棱锥D —ABC 中,DA =DB =DC ,D 在底面ABC 上的射影为E ,AB ⊥BC ,DF ⊥AB 于F .(1)求证:平面ABD ⊥平面DEF ;(2)若AD ⊥DC ,AC =4,∠BAC =60°,求直线BE 与平面DAB 所成角的正弦值.(1)证明 由题意知DE ⊥平面ABC ,所以AB ⊥DE ,又AB ⊥DF ,且DE ∩DF =D ,所以AB ⊥平面DEF ,又AB ⊂平面ABD ,所以平面ABD ⊥平面DEF .(2)解 方法一 由DA =DB =DC ,知EA =EB =EC ,所以E 是△ABC 的外心.又AB ⊥BC ,所以E 为AC 的中点,如图所示.过E 作EH ⊥DF 于H ,连接BH ,则由(1)知EH ⊥平面DAB ,所以∠EBH 即为BE 与平面DAB 所成的角.由AC =4,∠BAC =60°,得AB =AE =BE =2,所以EF =3,又DE =2,所以DF =DE 2+EF 2=7,EH =237,所以sin ∠EBH =EH BE =217.方法二 如图建系,则A (0,-2,0),D (0,0,2),B (3,-1,0),所以DA →=(0,-2,-2),DB →=(3,-1,-2).设平面DAB 的法向量为n =(x ,y ,z ),由⎩⎪⎨⎪⎧n ·DA →=0,n ·DB →=0,得⎩⎨⎧ -2y -2z =0,3x -y -2z =0,取z =1,得n =⎝⎛⎭⎫33,-1,1.设EB →与n 的夹角为θ,则cos θ=EB →·n |EB →|·|n |=2273=217,所以BE 与平面DAB 所成角的正弦值为217. 4.如图,在矩形ABCD 中,已知AB =2,AD =4,点E ,F 分别在AD ,BC 上,且AE =1,BF =3,将四边形AEFB 沿EF 折起,使点B 在平面CDEF 上的射影H 在直线DE 上.(1)求证:CD ⊥BE ;(2)求线段BH 的长度;(3)求直线AF 与平面EFCD 所成角的正弦值.(1)证明 ∵BH ⊥平面CDEF ,∴BH ⊥CD ,又CD ⊥DE ,BH ∩DE =H ,BH ,DE ⊂平面DBE ,∴CD ⊥平面DBE ,∴CD ⊥BE .(2)解 方法一 设BH =h ,EH =k ,过F 作FG 垂直ED 于点G ,∵线段BE ,BF 在翻折过程中长度不变,根据勾股定理得⎩⎪⎨⎪⎧ BE 2=BH 2+EH 2,BF 2=BH 2+FH 2=BH 2+FG 2+GH 2, 即⎩⎪⎨⎪⎧ 5=h 2+k 2,9=22+h 2+(2-k )2,解得⎩⎪⎨⎪⎧h =2,k =1, ∴线段BH 的长度为2.方法二 如图,过点E 作ER ∥DC ,过点E 作ES ⊥平面EFCD ,以点E 为坐标原点,分别以ER ,ED ,ES 所在直线为x ,y ,z 轴建立空间直角坐标系,设点B (0,y ,z )(y >0,z >0),由于F (2,2,0),BE =5,BF =3,∴⎩⎪⎨⎪⎧y 2+z 2=5,4+(y -2)2+z 2=9, 解得⎩⎪⎨⎪⎧y =1,z =2,于是B (0,1,2), ∴线段BH 的长度为2.(3)解 方法一 延长BA 交EF 于点M ,∵AE ∶BF =MA ∶MB =1∶3,∴点A 到平面EFCD 的距离为点B 到平面EFCD 距离的13, ∴点A 到平面EFCD 的距离为23,而AF =13, 故直线AF 与平面EFCD 所成角的正弦值为21339. 方法二 由(2)方法二知FB →=(-2,-1,2), 故EA →=13FB →=⎝⎛⎭⎫-23,-13,23, F A →=FE →+EA →=⎝⎛⎭⎫-83,-73,23,设平面EFCD 的一个法向量为n =(0,0,1),直线AF 与平面EFCD 所成角的大小为θ,则sin θ=|F A →·n ||F A →||n |=21339. 5.在如图所示的几何体中,EA ⊥平面ABC ,DB ⊥平面ABC ,AC ⊥BC ,且AC =BC =BD =2AE ,M 是AB 的中点.(1)求证:CM ⊥EM ;(2)求CM 与平面CDE 所成的角.方法一 (1)证明 因为AC =BC ,M 是AB 的中点,所以CM ⊥AB .又EA ⊥平面ABC ,CM ⊂平面ABC ,所以EA ⊥CM ,因为AB ∩EA =A ,AB ,EA ⊂平面ABDE ,所以CM ⊥平面ABDE ,又因为EM ⊂平面ABDE ,所以CM ⊥EM .(2)解 过点M 作MH ⊥平面CDE ,垂足为H ,连接CH 并延长交ED 于点F ,连接MF ,MD ,∠FCM 是直线CM 和平面CDE 所成的角.因为MH ⊥平面CDE ,ED ⊂平面CDE ,所以MH ⊥ED ,又因为CM ⊥平面EDM ,ED ⊂平面EDM ,所以CM ⊥ED ,因为MH ∩CM =M ,MH ,CM ⊂平面CMF ,所以ED ⊥平面CMF ,因为MF ⊂平面CMF ,所以ED ⊥MF .设EA =a ,BD =BC =AC =2a ,在直角梯形ABDE 中,AB =22a ,M 是AB 的中点,所以DE =3a ,EM =3a ,MD =6a ,所以EM 2+MD 2=ED 2,所以△EMD 是直角三角形,其中∠EMD =90°,所以MF =EM ·MD DE=2a . 在Rt △CMF 中,tan ∠FCM =MF MC=1, 又因为∠FCM ∈(0°,90°),所以∠FCM =45°,故CM 与平面CDE 所成的角是45°.方法二 如图,以点C 为坐标原点,CA ,CB 所在直线分别作为x 轴和y 轴,过点C 作与平面ABC 垂直的直线为z 轴,建立直角坐标系,设EA =a ,则A (2a,0,0),B (0,2a,0),E (2a,0,a ),D (0,2a,2a ),M (a ,a,0).(1)证明 因为EM →=(-a ,a ,-a ),CM →=(a ,a,0),所以EM →·CM →=0,故EM ⊥CM .(2)解 设向量n =(1,y 0,z 0)为平面CDE 的一个法向量,则n ⊥CE →,n ⊥CD →,即n ·CE →=0,n ·CD →=0.因为CE →=(2a,0,a ),CD →=(0,2a,2a ),所以⎩⎪⎨⎪⎧ 2a +az 0=0,2ay 0+2az 0=0,解得⎩⎪⎨⎪⎧y 0=2,z 0=-2, 即n =(1,2,-2),cos 〈n ,CM →〉=CM →·n |CM →|·|n |=22, 因为〈n ,CM →〉∈[0°,180°],所以〈n ,CM →〉=45°.直线CM 与平面CDE 所成的角θ是n 与CM →夹角的余角,所以θ=45°,因此直线CM 与平面CDE 所成的角是45°.6.如图,在三棱台ABCDEF 中,平面BCFE ⊥平面ABC ,∠ACB =90°,BE =EF =FC =1,BC =2,AC =3.(1)求证:BF ⊥平面ACFD ;(2)求直线BD 与平面ACFD 所成角的余弦值.(1)证明 延长AD ,BE ,CF 相交于一点K ,如图所示,因为平面BCFE ⊥平面ABC ,且AC ⊥BC ,所以AC ⊥平面BCK ,因此BF ⊥AC .又因为EF ∥BC ,BE =EF =FC =1,BC =2,所以△BCK 为等边三角形,且F 为CK 的中点,则BF ⊥CK .所以BF ⊥平面ACFD .(2)解 因为BF ⊥平面ACK ,所以∠BDF 是直线BD 与平面ACFD 所成的角.在Rt △BFD 中,BF =3,DF =32, 得cos ∠BDF =217. 所以直线BD 与平面ACFD 所成角的余弦值为217. (三)数 列1.已知正项数列{a n }的前n 项和为S n ,a 1=1,且(t +1)S n =a 2n +3a n +2(t ∈R ).(1)求数列{a n }的通项公式;(2)若数列{b n }满足b 1=1,b n +1-b n =a n +1,求数列⎩⎨⎧⎭⎬⎫12b n +7n 的前n 项和T n . 解 (1)因为a 1=S 1=1,且(t +1)S n =a 2n +3a n+2,所以(t +1)S 1=a 21+3a 1+2,所以t =5.所以6S n =a 2n +3a n +2.①当n ≥2时,有6S n -1=a 2n -1+3a n -1+2,②①-②得6a n =a 2n +3a n -a 2n -1-3a n -1,所以(a n +a n -1)(a n -a n -1-3)=0,因为a n >0,所以a n -a n -1=3,又因为a 1=1,所以{a n }是首项a 1=1,公差d =3的等差数列,所以a n =3n -2(n ∈N *).(2)因为b n +1-b n =a n +1,b 1=1,所以b n -b n -1=a n (n ≥2,n ∈N *),所以当n ≥2时,b n =(b n -b n -1)+(b n -1-b n -2)+…+(b 2-b 1)+b 1=a n +a n -1+…+a 2+b 1=3n 2-n 2. 又b 1=1也适合上式,所以b n =3n 2-n 2(n ∈N *). 所以12b n +7n =13n 2-n +7n=13·1n (n +2)=16·⎝⎛⎭⎫1n -1n +2, 所以T n =16·⎝⎛⎭⎫1-13+12-14+…+1n -1n +2 =16·⎝⎛⎭⎫32-1n +1-1n +2=3n 2+5n 12(n +1)(n +2).2.设等差数列{a n }的前n 项和为S n ,且S 3,S 52,S 4成等差数列,a 5=3a 2+2a 1-2. (1)求数列{a n }的通项公式;(2)设b n =2n -1,求数列⎩⎨⎧⎭⎬⎫a n b n 的前n 项和T n . 解 (1)设等差数列{a n }的首项为a 1,公差为d ,由S 3,S 52,S 4成等差数列, 可知S 3+S 4=S 5,得2a 1-d =0,①由a 5=3a 2+2a 1-2,②得4a 1-d -2=0,由①②,解得a 1=1,d =2,因此,a n =2n -1(n ∈N *).(2)令c n =a n b n=(2n -1)⎝⎛⎭⎫12n -1,则T n =c 1+c 2+…+c n ,∴T n =1·1+3·12+5·⎝⎛⎭⎫122+…+(2n -1)·⎝⎛⎭⎫12n -1,③ 12T n =1·12+3·⎝⎛⎭⎫122+5·⎝⎛⎭⎫123+…+(2n -1)·⎝⎛⎭⎫12n ,④ ③-④,得12T n =1+2⎣⎡⎦⎤12+⎝⎛⎭⎫122+…+⎝⎛⎭⎫12n -1-(2n -1)·⎝⎛⎭⎫12n =1+2⎣⎡⎦⎤1-⎝⎛⎭⎫12n -1 -(2n -1)·⎝⎛⎭⎫12n = 3-2n +32n , ∴T n =6-2n +32n -1(n ∈N *). 3.已知等差数列{a n }满足(n +1)a n =2n 2+n +k ,k ∈R .(1)求数列{a n }的通项公式;(2)设b n =4n 2a n a n +1,求数列{b n }的前n 项和S n . 解 (1)方法一 由(n +1)a n =2n 2+n +k ,令n =1,2,3,得到a 1=3+k 2,a 2=10+k 3,a 3=21+k 4, ∵{a n }是等差数列,∴2a 2=a 1+a 3,即20+2k 3=3+k 2+21+k 4, 解得k =-1.由于(n +1)a n =2n 2+n -1=(2n -1)(n +1),又∵n +1≠0,∴a n =2n -1(n ∈N *).方法二 ∵{a n }是等差数列,设公差为d ,则a n =a 1+d (n -1)=dn +(a 1-d ),∴(n +1)a n =(n +1)(dn +a 1-d )=dn 2+a 1n +a 1-d ,∴dn 2+a 1n +a 1-d =2n 2+n +k 对于任意n ∈N *均成立,则⎩⎪⎨⎪⎧ d =2,a 1=1,a 1-d =k ,解得k =-1,∴a n =2n -1(n ∈N *).(2)由b n =4n 2a n a n +1=4n 2(2n -1)(2n +1)=4n 24n 2-1=1+14n 2-1=1+1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1+1, 得S n =b 1+b 2+b 3+…+b n=12⎝⎛⎭⎫1-13+1+12⎝⎛⎭⎫13-15+1+12⎝⎛⎭⎫15-17+1+…+12⎝⎛⎭⎫12n -1-12n +1+1 =12⎝⎛⎭⎫1-13+13-15+15-17+…+12n -1-12n +1+n =12⎝⎛⎭⎫1-12n +1+n =n 2n +1+n =2n 2+2n 2n +1(n ∈N *). 4.(2018·绍兴市柯桥区模拟)已知数列{a n }满足:x 1=1,x n =x n +1+1en x +-1,证明:当n ∈N *时, (1)0<x n +1<x n ;(2)x n x n +1>x n -2x n +1;(3)⎝⎛⎭⎫12n ≤x n ≤⎝⎛⎭⎫12n -1. 证明 (1)用数学归纳法证明x n >0,当n =1时,x 1=1>0,假设x k >0,k ∈N *,k ≥1,成立,当n =k +1时,若x k +1≤0,则x k =x k +1+1e k x +-1≤0,矛盾,故x k +1>0,因此x n >0(n ∈N *),所以x n =x n +1+1e n x +-1>x n +1+e 0-1=x n +1,综上,x n >x n +1>0.(2)x n +1x n +2x n +1-x n =x n +1(x n +1+1en x +-1)+2x n +1-x n +1-1e n x ++1=x 2n +1+1e n x +(x n +1-1)+1, 设f (x )=x 2+e x (x -1)+1(x ≥0),则f ′(x )=2x +e x ·x ≥0,所以f (x )在[0,+∞)上单调递增,因此f (x )≥f (0)=0,因此x 2n +1+1e n x +(x n +1-1)+1=f (x n +1)>f (0)=0,故x n x n +1>x n -2x n +1.(3)由(2)得1x n +1+1<2⎝⎛⎭⎫1x n +1,所以当n >1时, 1x n +1<2⎝⎛⎭⎫1x n -1+1<…<2n -1⎝⎛⎭⎫1x 1+1=2n , 当n =1时,1x n +1=2n ,所以1x n ≤2n ,即x n ≥12n , 又由于x n =x n +1+1e n x +-1≥x n +1+(x n +1+1)-1=2x n +1,x n +1≤12x n ,所以易知x n ≤12n -1, 综上,⎝⎛⎭⎫12n ≤x n ≤⎝⎛⎭⎫12n -1.5.(2018·浙江省台州中学模拟)已知数列{a n }的首项a 1=35,a n +1=3a n 2a n +1,n =1,2,…. (1)求{a n }的通项公式;(2)证明:对任意的x >0,a n ≥11+x -1(1+x )2·⎝⎛⎭⎫23n -x ,n =1,2,…; (3)证明:a 1+a 2+…+a n >n 2n +1. (1)解 ∵a n +1=3a n 2a n +1,∴1a n +1-1=13⎝⎛⎭⎫1a n -1, ∴1a n -1=23·13n 1=23,∴a n =3n3n +2(n ∈N *). (2)证明 由(1)知a n =3n3n +2>0, 11+x -1(1+x )2⎝⎛⎭⎫23n -x =11+x -1(1+x )2⎝⎛⎭⎫23n +1-1-x =11+x -1(1+x )2⎣⎡⎦⎤1a n -(1+x ) =-1a n ·1(1+x )2+21+x =-1a n ⎝⎛⎭⎫11+x -a n 2+a n ≤a n , ∴原不等式成立.(3)证明 由(2)知,对任意的x >0,有a 1+a 2+…a n ≥11+x -1(1+x )2⎝⎛⎭⎫23-x +11+x -1(1+x )2⎝⎛⎭⎫23-x +…+11+x -1(1+x )2⎝⎛⎭⎫23-x =n 1+x -1(1+x )2⎝⎛⎭⎫23+232+…+23n -nx , ∴取x =1n ⎝⎛⎭⎫23+23+…+23=1n ⎝⎛⎭⎫1-13, 则a 1+a 2…+a n ≥n1+1n ⎝⎛⎭⎫1-13n =n 2n +1-13n >n 2n +1, ∴原不等式成立.6.已知在数列{a n }中,满足a 1=12,a n +1=a n +12,记S n 为a n 的前n 项和. (1)证明:a n +1>a n ;(2)证明:a n =cos π3·2n -1; (3)证明:S n >n -27+π254. 证明 (1)由题意知{a n }的各项均为正数,因为2a 2n +1-2a 2n =a n +1-2a 2n =(1-a n )(1+2a n). 所以,要证a n +1>a n ,只需要证明a n <1即可.下面用数学归纳法证明a n <1.①当n =1时,a 1=12<1成立, ②假设当n =k 时,a k <1成立,那么当n =k +1时,a k +1=a k +12<1+12=1. 综上所述,a n <1成立,所以a n +1>a n .(2)用数学归纳法证明a n =cos π3·2n -1. ①当n =1时,a 1=12=cos π3成立, ②假设当n =k 时,a k =cos π3·2k -1. 那么当n =k +1时,a k +1=a k +12=cos π3·2k -1+12=cos π3·2k , 综上所述,a n =cosπ3·2n -1. (3)由题意及(2)知, 1-a n -12=1-a n -1+12=1-a 2n =1-cos 2π3·2n 1=sin 2π3·2n -1<⎝⎛⎭⎫π3·2n -12(n ≥2), 得a n -1>1-2π29·4n -1(n ≥2), 故当n =1时,S 1=12>1-27+π254; 当n ≥2时,S n >∑n i =2 ⎝⎛⎭⎫1-2π29·4i +12 =n -12-2π29×43×116⎝⎛⎭⎫1-14n -1 >n -27+π254. 综上所述,S n >n -27+π254. (四)解析几何1.(2018·浙江省台州中学模拟)过抛物线E :x 2=2py (p >0)的焦点F 作斜率分别为k 1,k 2的两条不同直线l 1,l 2且k 1+k 2=2,l 1与E 相交于点A ,B ,l 2与E 相交于点C ,D ,以AB ,CD 为直径的圆M ,圆N (M ,N 为圆心)的公共弦所在直线记为l .(1)若k 1>0,k 2>0,证明:FM →·FN →<2p 2;(2)若点M 到直线l 的距离的最小值为755,求抛物线E 的方程. (1)证明 由题意知,抛物线E 的焦点为F ⎝⎛⎭⎫0,p 2, 直线l 1的方程为y =k 1x +p 2. 由⎩⎪⎨⎪⎧y =k 1x +p 2,x 2=2py ,得x 2-2pk 1x -p 2=0. 设A ,B 两点的坐标分别为(x 1,y 1),(x 2,y 2),则x 1,x 2是上述方程的两个实数根,从而x 1+x 2=2pk 1,y 1+y 2=2pk 21+p ,∴点M 的坐标为⎝⎛⎭⎫pk 1,pk 21+p 2,FM →=(pk 1,pk 21). 同理可得点N 的坐标为⎝⎛⎫pk 2,pk 22+p 2, FN →=(pk 2,pk 22),于是FM →·FN →=p 2(k 1k 2+k 21k 22).∵k 1+k 2=2,k 1>0,k 2>0,k 1≠k 2,∴0<k 1k 2<1,故FM →·FN →<p 2(1+1)=2p 2.(2)解 由抛物线的定义得|F A |=y 1+p 2,|FB |=y 2+p 2, ∴|AB |=y 1+y 2+p =2pk 21+2p ,从而圆M 的半径r 1=pk 21+p .故圆M 的方程为x 2+y 2-2pk 1x -p (2k 21+1)y -34p 2=0, 同理可得圆N 的方程为x 2+y 2-2pk 2x -p (2k 22+1)y -34p 2=0, ∴直线l 的方程为(k 2-k 1)x +(k 22-k 21)y =0, 即x +2y =0.∴点M 到直线l 的距离为d =p |2k 21+k 1+1|5. 故当k 1=-14时,d 取最小值7p 85. 由已知得7p 85=755,解得p =8. 故所求抛物线E 的方程为x 2=16y .2.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的两焦点分别是F 1()-2,0,F 2()2,0,点E ⎝⎛⎭⎫2,322在椭圆C 上. (1)求椭圆C 的方程;(2)设P 是y 轴上的一点,若椭圆C 上存在两点M ,N ,使得MP →=2PN →,求以F 1P 为直径的圆面积的取值范围.解 (1)由已知,得半焦距c =2,2a =|EF 1|+|EF 2|=8+92+322=42, 所以a =22,所以b 2=a 2-c 2=8-2=6, 所以椭圆C 的方程是x 28+y 26=1. (2)设点P 的坐标为(0,t ),当直线MN 斜率不存在时,可得M ,N 分别是短轴的两端点,得到t =±63,t 2=23. 当直线MN 斜率存在时,设直线MN 的方程为y =kx +t ,M (x 1,y 1),N (x 2,y 2),则由MP →=2PN →得x 1=-2x 2,①联立⎩⎪⎨⎪⎧y =kx +t ,x 28+y 26=1, 得(3+4k 2)x 2+8ktx +4t 2-24=0,由题意,得Δ=64k 2t 2-4(3+4k 2)(4t 2-24)>0,整理得t 2<8k 2+6,由根与系数的关系得x 1+x 2=-8kt 3+4k 2, x 1·x 2=4t 2-243+4k 2,② 由①②,消去x 1,x 2得k 2=-t 2+612t 2-8, 由⎩⎪⎨⎪⎧ -t 2+612t 2-8≥0,t 2<8·-t 2+612t 2-8+6,解得23<t 2<6, 综上23≤t 2<6, 又因为以F 1P 为直径的圆面积S =π·2+t 24,所以S 的取值范围是⎣⎡⎭⎫2π3,2π. 3.(2018·浙江“超级全能生”联考)如图,已知直线y =-2mx -2m 2+m 与抛物线C :x 2=y 相交于A ,B 两点,定点M ⎝⎛⎭⎫-12,1. (1)证明:线段AB 被直线y =-x 平分;(2)求△MAB 面积取得最大值时m 的值.(1)证明 设A (x 1,y 1),B (x 2,y 2),联立方程组⎩⎪⎨⎪⎧y =-2mx -2m 2+m ,y =x 2, 得x 2+2mx +2m 2-m =0,∴x 1+x 2=-2m ,x 1·x 2=2m 2-m ,则x 1+x 22=-m , y 1+y 22=x 21+x 222=(x 1+x 2)2-2x 1x 22=m , ∴线段AB 的中点坐标为(-m ,m ),∴线段AB 被直线y =-x 平分.(2)解 ∵|AB |=(x 1-x 2)2+(y 1-y 2)2 =1+4m 2-4m 2+4m (0<m <1),点M 到直线AB 的距离为d =|1+2m 2-2m |1+4m 2, ∴△MAB 的面积S =12|AB |d =-m 2+m |1-2(-m 2+m )|(0<m <1),令-m 2+m =t ,则S =t |1-2t 2|,又∵0<t ≤12,∴S =t -2t 3⎝⎛⎭⎫0<t ≤12, 令f (t )=t -2t 3⎝⎛⎭⎫0<t ≤12,则f ′(t )=1-6t 2, 则f (t )在⎝⎛⎭⎫0,66上单调递增,在⎝⎛⎦⎤66,12上单调递减,故当t =66时,f (t )取得最大值,即△MAB 面积取得最大值,此时有-m 2+m =66,解得m =3±36. 4.已知椭圆C :x 2a 2+y 2b2=1(a >b >0),A ,B 是椭圆与x 轴的两个交点,M 为椭圆C 的上顶点,设直线MA 的斜率为k 1,直线MB 的斜率为k 2,k 1k 2=-23. (1)求椭圆C 的离心率;(2)设直线l 与x 轴交于点D (-3,0),交椭圆于P ,Q 两点,且满足DP →=3QD →,当△OPQ 的面积最大时,求椭圆C 的方程.解 (1)M (0,b ),A (-a,0),B (a,0),k 1=b a ,k 2=-b a, k 1k 2=-b a ·b a =-b 2a 2=-23,e =c a =33. (2)由(1)知e =c a =33, 得a 2=3c 2,b 2=2c 2,可设椭圆C 的方程为2x 2+3y 2=6c 2,设直线l 的方程为x =my -3,由⎩⎨⎧2x 2+3y 2=6c 2,x =my -3,得(2m 2+3)y 2-43my +6-6c 2=0,因为直线l 与椭圆C 相交于P (x 1,y 1),Q (x 2,y 2)两点,所以Δ=48m 2-4(2m 2+3)(6-6c 2)>0,由根与系数的关系得,y 1+y 2=43m 2m 2+3,y 1y 2=6-6c 22m 2+3. 又DP →=3QD →,所以y 1=-3y 2,代入上述两式得6-6c 2=-36m 22m 2+3, 所以S △OPQ =12|OD ||y 1-y 2|=32⎪⎪⎪⎪⎪⎪83m 2m 2+3 =12|m |2|m |2+3=122|m |+3|m |≤6, 当且仅当m 2=32时,等号成立,此时c 2=52, 代入Δ,此时Δ>0成立,所以椭圆C 的方程为2x 215+y 25=1. 5.已知在平面直角坐标系中,动点P (x ,y )(x ≥0)到点N (1,0)的距离比到y 轴的距离大1.(1)求动点P 的轨迹C 的方程;(2)若过点M (2,0)的直线与轨迹C 相交于A ,B 两点,设点Q 在直线x +y -1=0上,且满足OA →+OB →=tOQ→(O 为坐标原点),求实数t 的最小值.解 (1)方法一 因为点P (x ,y )(x ≥0)到点N (1,0)的距离比到y 轴的距离大1,所以|PN |-1=|x |,将点N 的坐标代入,并整理得y 2=4x .故点P 的轨迹C 的方程是y 2=4x .方法二 因为平面上动点P 到点N (1,0)的距离比到y 轴的距离大1,所以点P 到点N (1,0)的距离与点P 到直线x =-1的距离相等,即点P 的轨迹是以原点为顶点,焦点到准线的距离为2,并且为开口向右的抛物线,所以点P 的轨迹C 的方程为y 2=4x .(2)由题意知直线AB 的斜率存在且斜率不为0且与抛物线y 2=4x 有两个交点,设直线AB :y =k (x -2),A (x 1,y 1),B (x 2,y 2),Q (x ,y ),由⎩⎪⎨⎪⎧y =k (x -2),y 2=4x ,得k 2x 2-4(k 2+1)x +4k 2=0(k ≠0). Δ=16(2k 2+1)>0恒成立,所以x 1+x 2=4(k 2+1)k 2,x 1·x 2=4, 因为OA →+OB →=tOQ →,所以(x 1+x 2,y 1+y 2)=t (x ,y ),即x =x 1+x 2t =4(k 2+1)k 2t ,y =y 1+y 2t =k (x 1-2)+k (x 2-2)t =k (x 1+x 2)-4k t =4tk, 又点Q 在x +y -1=0上,所以4(k 2+1)k 2t +4tk-1=0. 所以t =4⎝⎛⎭⎫1k 2+1k +1=4⎝⎛⎭⎫1k +122+3≥3.故实数t 的最小值为3.6.如图,过椭圆M :x 22+y 2=1的右焦点F 作直线交椭圆于A ,C 两点.(1)当A ,C 变化时,在x 轴上求定点Q ,使得∠AQF =∠CQF ;(2)设直线QA 交椭圆M 的另一个交点为B ,连接BF 并延长交椭圆于点D ,当四边形ABCD 的面积取得最大值时,求直线AC 的方程.解 (1)设A (x 1,y 1),C (x 2,y 2),Q (q,0),当A ,C 不在x 轴上时,设直线AC 的方程为x =ty +1,代入椭圆M 的方程,可得(2+t 2)y 2+2ty -1=0.则y 1+y 2=-2t 2+t 2,y 1y 2=-12+t 2, 由意题知k AQ +k CQ =y 1x 1-q +y 2x 2-q=y 1(x 2-q )+y 2(x 1-q )(x 1-q )(x 2-q ) =y 1(ty 2+1-q )+y 2(ty 1+1-q )(x 1-q )(x 2-q ) =2ty 1y 2+(1-q )(y 1+y 2)(x 1-q )(x 2-q )=0, 即2ty 1y 2+(1-q )(y 1+y 2)=0,整理得-2t -2t (1-q )=0,由题知无论t 取何值,上式恒成立,则q =2,当A ,C 在x 轴上时,定点Q (2,0)依然可使∠AQF =∠CQF 成立,所以点Q 的坐标是(2,0).(2)由(1)知∠AQF =∠CQF ,∠BQF =∠DQF .所以B ,C 关于x 轴对称,A ,D 关于x 轴对称,所以四边形ABCD 是一个等腰梯形.则四边形ABCD 的面积S (t )=|x 1-x 2|·|y 1-y 2|=|t |·|y 1-y 2|2=8·(t 2+1)|t |(t 2+2)2. 由对称性不妨设t >0,求导可得S ′(t )=-8·t 4-3t 2-2(t 2+2)3, 令S ′(t )=0,可得t 2=3+172, 由于S (t )在⎝ ⎛⎭⎪⎫0,3+172上单调递增, 在⎝ ⎛⎭⎪⎫3+172,+∞上单调递减,所以当t 2=3+172时,四边形ABCD 的面积S 取得最大值. 此时,直线AC 的方程是x =±3+172y +1. (五)函数与导数1.(2018·浙江省台州中学模拟)设函数f (x )=ax 2+bx +c (a ≠0),曲线y =f (x )过点(0,2a +3),且在点(-1,f (-1))处的切线垂直于y 轴.(1)用a 分别表示b 和c ;(2)当bc 取得最小值时,求函数g (x )=-f (x )e -x 的单调区间.解 (1)f ′(x )=2ax +b ,由题意得⎩⎪⎨⎪⎧2a +3=c ,2a ·(-1)+b =0,则b =2a ,c =2a +3. (2)由(1)得bc =2a (2a +3)=4⎝⎛⎭⎫a +342-94, 故当a =-34时,bc 取得最小值-94, 此时有b =-32,c =32, 从而f (x )=-34x 2-32x +32,f ′(x )=-32x -32, g (x )=-f (x )e -x =⎝⎛⎭⎫34x 2+32x -32e -x ,所以g ′(x )=-34(x 2-4)e -x , 令g ′(x )=0,解得x 1=-2,x 2=2.当x ∈(-∞,-2)时,g ′(x )<0,故g (x )在(-∞,-2)上为减函数;当x ∈(-2,2)时,g ′(x )>0,故g (x )在(-2,2)上为增函数;当x ∈(2,+∞)时,g ′(x )<0,故g (x )在(2,+∞)上为减函数.由此可见,函数g (x )的单调递减区间为(-∞,-2),(2,+∞),单调递增区间为(-2,2).2.(2018·浙江省温州六校协作体联考)已知函数f (x )=e kx (k -x )(k ≠0).(1)当k =2时,求y =f (x )在x =1处的切线方程;(2)对任意x ∈R ,f (x )≤1k恒成立,求实数k 的取值范围. 解 (1)当k =2时,f (x )=e 2x (2-x ).∵f ′(x )=2e 2x (2-x )-e 2x =e 2x (3-2x ),∴f ′(1)=e 2,又∵f (1)=e 2,∴所求的切线方程为y -e 2=e 2(x -1).即y =e 2x .(2)方法一 ∵e kx (k -x )≤1k, ∴当x =k 时,0≤1k,即k >0, ∴对任意x ∈R ,k (k -x )≤e-kx 恒成立, 设g (x )=e -kx +kx -k 2,g ′(x )=-k e -kx +k =k (1-e -kx ),当x <0时,g ′(x )<0,当x >0时,g ′(x )>0,∴g (x )在(-∞,0)上是减函数,在(0,+∞)上是增函数,∴g (x )min =g (0)=1-k 2≥0,又k >0,∴0<k ≤1.方法二 对任意x ∈R ,f (x )≤1k 恒成立⇔f (x )max ≤1k,x ∈R . ∵f ′(x )=k e kx (k -x )-e kx =e kx (k 2-kx -1),当k <0,x ≥k -1k 时,f ′(x )≥0;x <k -1k时,f ′(x )<0, ∴f (x )在⎝⎛⎭⎫-∞,k -1k 上是减函数,在⎣⎡⎭⎫k -1k ,+∞上是增函数. 又当x →-∞时,f (x )→+∞,而1k<0, ∴与f (x )≤1k恒成立矛盾,∴k <0不满足条件; 当k >0,x ≤k -1k 时,f ′(x )≥0;x >k -1k时,f ′(x )<0, ∴f (x )在⎝⎛⎦⎤-∞,k -1k 上是增函数,在⎝⎛⎭⎫k -1k ,+∞上是减函数. ∴f (x )max =f ⎝⎛⎭⎫k -1k =21e k -·1k ≤1k,∴k 2-1≤0,即-1≤k ≤1,又k >0,∴0<k ≤1,综上所述,实数k 的取值范围是(0,1].3.设函数f (x )=x ln x -ax 2+(b -1)x ,g (x )=e x -e x .(1)当b =0时,函数f (x )有两个极值点,求实数a 的取值范围;(2)若y =f (x )在点(1,f (1))处的切线与x 轴平行,且函数h (x )=f (x )+g (x )在x ∈(1,+∞)时,其图象上每一点处切线的倾斜角均为锐角,求实数a 的取值范围.解 (1)当b =0时,f (x )=x ln x -ax 2-x ,f ′(x )=ln x -2ax ,∴f (x )=x ln x -ax 2-x 有2个极值点就是方程ln x -2ax =0有2个不同的解,即y =2a 与m (x )=ln x x的图象的交点有2个. ∵m ′(x )=1-ln x x 2, 当x ∈(0,e)时,m ′(x )>0,m (x )单调递增;当x ∈(e ,+∞)时,m ′(x )<0,m (x )单调递减.∴m (x )有极大值1e, 又∵x ∈(0,1]时,m (x )≤0;当x ∈(1,+∞)时,0<m (x )<1e. 当a ∈⎝⎛⎭⎫12e ,+∞时,y =2a 与m (x )=ln x x的图象的交点有0个; 当a ∈(-∞,0]或a =12e 时,y =2a 与m (x )=ln x x的图象的交点有1个; 当a ∈⎝⎛⎭⎫0,12e 时,y =2a 与m (x )=ln x x的图象的交点有2个. 综上,实数a 的取值范围为⎝⎛⎭⎫0,12e . (2)函数y =f (x )在点(1,f (1))处的切线与x 轴平行,∴f ′(1)=0且f (1)≠0,∵f ′(x )=ln x -2ax +b ,∴b =2a 且a ≠1.h (x )=x ln x -ax 2+(b -1)x +e x -e x 在x ∈(1,+∞)时,其图象的每一点处的切线的倾斜角均为锐角,即当x >1时,h ′(x )=f ′(x )+g ′(x )>0恒成立,即ln x +e x -2ax +2a -e>0恒成立,令t (x )=ln x +e x -2ax +2a -e ,∴t ′(x )=1x+e x -2a ,设φ(x )=1x +e x -2a ,φ′(x )=e x -1x 2, ∵x >1,∴e x >e ,1x 2<1, ∴φ′(x )>0,∴φ(x )在(1,+∞)上单调递增,即t ′(x )在(1,+∞)上单调递增,∴t ′(x )>t ′(1)=1+e -2a ,当a ≤1+e 2且a ≠1时,t ′(x )≥0, ∴t (x )=ln x +e x -2ax +2a -e 在(1,+∞)上单调递增,∴t (x )>t (1)=0成立,当a >1+e 2时, ∵t ′(1)=1+e -2a <0,t ′(ln 2a )=1ln 2a+2a -2a >0, ∴存在x 0∈(1,ln 2a ),满足t ′(x 0)=0.∵t ′(x )在(1,+∞)上单调递增,∴当x ∈(1,x 0)时,t ′(x )<0,t (x )单调递减,∴t (x 0)<t (1)=0,t (x )>0不恒成立.∴实数a 的取值范围为(-∞,1)∪⎝⎛⎦⎤1,1+e 2. 4.已知函数f (x )=x -1+a e x .(1)讨论f (x )的单调性;(2)设x 1,x 2是f (x )的两个零点,证明:x 1+x 2>4.(1)解 f ′(x )=1+a e x ,当a ≥0时,f ′(x )>0,则f (x )在R 上单调递增.当a <0时,令f ′(x )>0,得x <ln ⎝⎛⎭⎫-1a , 则f (x )的单调递增区间为⎝⎛⎭⎫-∞,ln ⎝⎛⎭⎫-1a , 令f ′(x )<0,得x >ln ⎝⎛⎭⎫-1a , 则f (x )的单调递减区间为⎝⎛⎭⎫ln ⎝⎛⎭⎫-1a ,+∞. (2)证明 由f (x )=0得a =1-x e x , 设g (x )=1-x e x ,则g ′(x )=x -2e x . 由g ′(x )<0,得x <2;由g ′(x )>0,得x >2.故g (x )min =g (2)=-1e 2<0. 当x >1时,g (x )<0,当x <1时,g (x )>0,不妨设x 1<x 2,则x 1∈(1,2),x 2∈(2,+∞),x 1+x 2>4等价于x 2>4-x 1,∵4-x 1>2且g (x )在(2,+∞)上单调递增,∴要证x 1+x 2>4,只需证g (x 2)>g (4-x 1),∵g (x 1)=g (x 2)=a ,∴只需证g (x 1)>g (4-x 1),即1-x 11e x >x 1-314e x −, 即证124e x −(x 1-3)+x 1-1<0;设h (x )=e 2x -4(x -3)+x -1,x ∈(1,2),则h ′(x )=e 2x -4(2x -5)+1,令m (x )=h ′(x ),则m ′(x )=4e 2x -4(x -2),∵x ∈(1,2),∴m ′(x )<0,∴m (x )在(1,2)上单调递减,即h ′(x )在(1,2)上单调递减,∴h ′(x )>h ′(2)=0,∴h (x )在(1,2)上单调递增,∴h (x )<h (2)=0,∴124e x −()x 1-3+x 1-1<0,从而x 1+x 2>4得证.5.已知函数f (x )=a +ln x x,g (x )=mx . (1)求函数f (x )的单调区间;(2)当a =0时,f (x )≤g (x )恒成立,求实数m 的取值范围;(3)当a =1时,求证:当x >1时,(x +1)⎝⎛⎭⎫x +1e x f (x )>2⎝⎛⎭⎫1+1e . (1)解 f (x )=a +ln x x的定义域为(0,+∞), 且f ′(x )=1-(a +ln x )x 2=1-ln x -a x 2. 由f ′(x )>0得1-ln x -a >0,即ln x <1-a ,解得0<x <e 1-a ,∴f (x )在(0,e 1-a )上单调递增,在(e 1-a ,+∞)上单调递减.(2)解 a =0,f (x )=ln x x,∴f (x )≤g (x )⇔ln x x ≤mx ⇔m ≥ln x x 2, 令u (x )=ln x x 2,∴u ′(x )=1-2ln x x 3, 由u ′(x )>0得0<x <e ,∴u (x )在(0,e)上单调递增,在(e ,+∞)上单调递减,∴u (x )max =u (e)=ln e e =12e ,∴m ≥12e. (3)证明 (x +1)⎝⎛⎭⎫x +1e x f (x )>2⎝⎛⎭⎫1+1e , 等价于1e +1·(x +1)(ln x +1)x >2e x -1x e x +1. 令p (x )=(x +1)(ln x +1)x ,则p ′(x )=x -ln x x 2, 令φ(x )=x -ln x ,则φ′(x )=1-1x =x -1x, ∵x >1,∴φ′(x )>0,∴φ(x )在(1,+∞)上单调递增,φ(x )>φ(1)=1>0,p ′(x )>0,∴p (x )在(1,+∞)上单调递增,∴p (x )>p (1)=2,∴p (x )e +1>2e +1, 令h (x )=2e x -1x e x +1, 则h ′(x )=2e x -1(1-e x )(x e x +1)2, ∵x >1,∴1-e x <0,∴h ′(x )<0,h (x )在(1,+∞)上单调递减,∴当x >1时,h (x )<h (1)=2e +1, ∴p (x )e +1>2e +1>h (x ), 即(x +1)⎝⎛⎭⎫x +1e x f (x )>2⎝⎛⎭⎫1+1e ,x >1. 6.已知函数f (x )=x 3+|ax -3|-2,a >0.(1)求函数y =f (x )的单调区间;(2)当a ∈(0,5)时,对于任意x 1∈[0,1],总存在x 2∈[0,1],使得f (x 1)+f (x 2)=0,求实数a 的值. 解 (1)f (x )=x 3+|ax -3|-2(a >0)=⎩⎨⎧ x 3+ax -5,x ≥3a ,x 3-ax +1,x <3a .则f ′(x )=⎩⎨⎧ 3x 2+a ,x ≥3a ,3x 2-a ,x <3a . 当a 3≥3a,即a ≥3时, 函数y =f (x )的单调递减区间为⎝⎛⎭⎫-a 3,3a ,单调递增区间为⎝⎛⎭⎫-∞,-a 3,⎝⎛⎭⎫3a ,+∞; 当a 3<3a,即0<a <3时, 函数y =f (x )的单调递减区间为⎝⎛⎭⎫-a 3,a 3, 单调递增区间为⎝⎛⎭⎫-∞,-a 3,⎝⎛⎭⎫a 3,+∞. (2)由题意知,对于任意x 1∈[0,1],总存在x 2∈[0,1],使得f (x 1)+f (x 2)=0,等价于当x ∈[0,1]时,f (x )min +f (x )max =0,由(1)得当3≤a <5时,y =f (x )在⎣⎡⎭⎫0,3a 上单调递减,在⎝⎛⎦⎤3a ,1上单调递增, 所以f (x )min =f ⎝⎛⎭⎫3a =27a 3-2,f (x )max =max{f (0),f (1)}=max{1,a -4}=1,所以27a3-2+1=0,解得a =3; 当0<a <3时,y =f (x )在⎣⎡⎭⎫0,a 3上单调递减, 在⎝⎛⎦⎤a 3,1上单调递增, 所以f (x )min =f ⎝⎛⎭⎫a 3=1-2a 3a 3, f (x )max =max{f (0),f (1)}=max{1,2-a },当1<a <3时,f (x )max =1,则1-2a 3a 3+1=0,得a =3(舍去); 当0<a ≤1时,f (x )max =2-a ,则1-2a 3a 3+2-a =0, 即3-a =2a 3a 3,其中3-a ≥2,而2a 3a 3<2,所以无解,舍去. 综上所述,a =3.。
2019高考数学总复习优编增分练中档大题规范练(一)三角函数与解三角形理

(一)三角函数与解三角形.已知函数()=·( + ).()求()的最小正周期;()若关于的方程()=在区间内有两个不相等的实数解,求实数的取值范围.解()()=+=+(- )=-+=+.所以()的最小正周期==π.()因为∈,所以-∈.令=-,因为=在上是增函数,在上是减函数,令=-=,则=,所以()在上是增函数,在上是减函数.由题意知,关于的方程()=在区间内有两个不相等的实数解,等价于=()与=的图象在区间内有两个不同的交点,又因为()=,=+,=,所以≤<+,即的取值范围是..在△中,角,,的对边分别为,,,已知=-,=,=.()求;()求(-)的值.解()在△中,由余弦定理得,=+-=+-×××=,∴=(舍负).()在△中,由=-,得∈,∴ ===.在△中,由正弦定理得)=),即=),∴ =,又∈,故∈,∴ ===.∴(-)=+=×+×=..(·河北省衡水中学模拟)在△中,角,,所对的边分别为,,,且-=-· . ()求角;()若=,△的面积为,为的中点,求的长.解()由-=-,得-=- .由正弦定理,得-=-,即+-=.又由余弦定理,得===.因为<<π,所以=.()因为==,所以△为等腰三角形,且顶角=.故△===,所以=(舍负).在△中,由余弦定理,得=+-·=++×××=,解得=..(·重庆市綦江区调研)已知=( ),=,函数()=〈,〉.()求函数()的零点;()若锐角△的三个内角,,的对边分别是,,,且()=,求的取值范围.解()由条件可知,·=·+·=,∴()=〈,〉===.由-=π,∈,解得=+,∈,即函数()的零点为=+,∈.()由正弦定理得=+ ),由()知,()=,又()=,得=,∴-=π+,∈,又∈(,π),得=,。
2019高考数学总复习优编增分练:中档大题规范练(二)数列理

(二)数 列1.(2018·三明质检)已知正项数列{a n }的前n 项和为S n ,a 1=1,且(t +1)S n =a 2n +3a n +2(t ∈R ).(1)求数列{a n }的通项公式;(2)若数列{b n }满足b 1=1,b n +1-b n =a n +1,求数列⎩⎨⎧⎭⎬⎫12b n +7n 的前n 项和T n .解 (1)因为a 1=1,且(t +1)S n =a 2n +3a n +2, 所以(t +1)S 1=a 21+3a 1+2,所以t =5. 所以6S n =a 2n +3a n +2.①当n ≥2时,有6S n -1=a 2n -1+3a n -1+2,② ①-②得6a n =a 2n +3a n -a 2n -1-3a n -1, 所以(a n +a n -1)(a n -a n -1-3)=0, 因为a n >0,所以a n -a n -1=3, 又因为a 1=1,所以{a n }是首项a 1=1,公差d =3的等差数列, 所以a n =3n -2(n ∈N *). (2)因为b n +1-b n =a n +1,b 1=1, 所以b n -b n -1=a n (n ≥2,n ∈N *), 所以当n ≥2时,b n =(b n -b n -1)+(b n -1-b n -2)+…+(b 2-b 1)+b 1=a n +a n -1+…+a 2+b 1=3n 2-n2.又b 1=1也适合上式,所以b n =3n 2-n 2(n ∈N *).所以12b n +7n =13n 2-n +7n=13·1n (n +2)=16·⎝ ⎛⎭⎪⎫1n -1n +2, 所以T n =16·⎝ ⎛⎭⎪⎫1-13+12-14+…+1n -1n +2=16·⎝ ⎛⎭⎪⎫32-1n +1-1n +2,=3n 2+5n 12(n +1)(n +2).2.(2018·葫芦岛模拟)设等差数列{a n }的前n 项和为S n ,且S 3,S 52,S 4成等差数列,a 5=3a 2+2a 1-2.(1)求数列{a n }的通项公式; (2)设b n =2n -1,求数列⎩⎨⎧⎭⎬⎫a nb n 的前n 项和T n .解 (1)设等差数列{a n }的首项为a 1,公差为d , 由S 3,S 52,S 4成等差数列,可知S 3+S 4=S 5,得2a 1-d =0,① 由a 5=3a 2+2a 1-2,② 得4a 1-d -2=0,由①②,解得a 1=1,d =2, 因此,a n =2n -1(n ∈N *).(2)令c n =a n b n =(2n -1)⎝ ⎛⎭⎪⎫12n -1,则T n =c 1+c 2+…+c n ,∴T n =1·1+3·12+5·⎝ ⎛⎭⎪⎫122+…+(2n -1)·⎝ ⎛⎭⎪⎫12n -1,③12T n =1·12+3·⎝ ⎛⎭⎪⎫122+5·⎝ ⎛⎭⎪⎫123+…+(2n -1)·⎝ ⎛⎭⎪⎫12n ,④③-④,得12T n =1+2⎣⎢⎡⎦⎥⎤12+⎝ ⎛⎭⎪⎫122+…+⎝ ⎛⎭⎪⎫12n -1-(2n -1)·⎝ ⎛⎭⎪⎫12n=1+2⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n -1 -(2n -1)·⎝ ⎛⎭⎪⎫12n= 3-2n +32n ,∴T n =6-2n +32n -1(n ∈N *).3.(2018·厦门质检)已知等差数列{a n }满足(n +1)a n =2n 2+n +k ,k ∈R . (1)求数列{a n }的通项公式; (2)设b n =4n2a n a n +1,求数列{b n }的前n 项和S n .解 (1)方法一 由(n +1)a n =2n 2+n +k , 令n =1,2,3,得到a 1=3+k 2,a 2=10+k 3,a 3=21+k4,∵{a n }是等差数列,∴2a 2=a 1+a 3,即20+2k 3=3+k 2+21+k4, 解得k =-1.由于(n +1)a n =2n 2+n -1=(2n -1)(n +1), 又∵n +1≠0,∴a n =2n -1(n ∈N *). 方法二 ∵{a n }是等差数列,设公差为d , 则a n =a 1+d (n -1)=dn +(a 1-d ), ∴(n +1)a n =(n +1)(dn +a 1-d ) =dn 2+a 1n +a 1-d ,∴dn 2+a 1n +a 1-d =2n 2+n +k 对于∀n ∈N *均成立,则⎩⎪⎨⎪⎧d =2,a 1=1,a 1-d =k ,解得k =-1,∴a n =2n -1(n ∈N *).(2)由b n =4n2a n a n +1=4n 2(2n -1)(2n +1)=4n 24n 2-1=1+14n 2-1=1+1(2n -1)(2n +1)=12⎝ ⎛⎭⎪⎫12n -1-12n +1+1,得S n =b 1+b 2+b 3+…+b n=12⎝ ⎛⎭⎪⎫1-13+1+12⎝ ⎛⎭⎪⎫13-15+1+12⎝ ⎛⎭⎪⎫15-17+1+…+12⎝ ⎛⎭⎪⎫12n -1-12n +1+1 =12⎝ ⎛⎭⎪⎫1-13+13-15+15-17+…+12n -1-12n +1+n=12⎝ ⎛⎭⎪⎫1-12n +1+n=n 2n +1+n =2n 2+2n 2n +1(n ∈N *). 4.(2018·天津河东区模拟)已知等比数列{a n }满足条件a 2+a 4=3(a 1+a 3),a 2n =3a 2n ,n ∈N *. (1)求数列{a n }的通项公式;(2)数列{b n }满足b 1a 1+b 2a 2+…+b n a n=n 2,n ∈N *,求{b n }的前n 项和T n . 解 (1)设{a n }的通项公式为a n =a 1q n -1(n ∈N *),由已知a 2+a 4=3(a 1+a 3),得a 1q +a 1q 3=3(a 1+a 1q 2),所以q =3. 又由已知a 2n =3a 2n ,得a 1q2n -1=3a 21q2n -2,所以q =3a 1,所以a 1=1,所以{a n }的通项公式为a n =3n -1(n ∈N *).(2)当n =1时,b 1a 1=1,b 1=1, 当n ≥2时,b 1a 1+b 2a 2+…+b n a n=n 2,① 所以b 1a 1+b 2a 2+…+b n -1a n -1=(n -1)2,② 由①-②得b n a n=2n -1, 所以b n =(2n -1)3n -1,b 1=1也符合, 综上,b n =(2n -1)3n -1(n ∈N *).所以T n =1×30+3×31+…+(2n -3)3n -2+(2n -1)·3n -1,①3T n =1×31+3×32+…+(2n -3)3n -1+(2n -1)3n,②由①-②得-2T n =1×30+2(31+32+…+3n -1)-(2n -1)·3n=1×30+2×3×3n -1-13-1-(2n -1)·3n=1+3n-3-(2n -1)3n=(2-2n )3n-2, 所以T n =1+(n -1)3n (n ∈N *).5.(2018·宿州模拟)已知数列{a n }的前n 项和为S n ,数列{S n }的前n 项和为T n ,满足T n =2S n -n 2.(1)证明数列{a n +2}是等比数列,并求出数列{a n }的通项公式; (2)设b n =n ·a n ,求数列{b n }的前n 项和K n . 解 (1)由T n =2S n -n 2,得a 1=S 1=T 1=2S 1-1, 解得a 1=S 1=1,由S 1+S 2=2S 2-4,解得a 2=4.当n ≥2时,S n =T n -T n -1 =2S n -n 2-2S n -1+(n -1)2, 即S n =2S n -1+2n -1,①S n +1=2S n +2n +1,②由②-①得a n +1=2a n +2, ∴a n +1+2=2(a n +2), 又a 2+2=2(a 1+2),∴数列{a n +2}是以a 1+2=3为首项,2为公比的等比数列, ∴a n +2=3·2n -1,最新中小学教案、试题、试卷即a n=3·2n-1-2(n∈N*).(2)∵b n=3n·2n-1-2n,∴K n=3(1·20+2·21+…+n·2n-1)-2(1+2+…+n)=3(1·20+2·21+…+n·2n-1)-n2-n.记R n=1·20+2·21+…+n·2n-1,③2R n=1·21+2·22+…+(n-1)·2n-1+n·2n,④由③-④,得-R n=20+21+22+…+2n-1-n·2n=1-2n1-2-n·2n=(1-n)·2n-1,∴R n=(n-1)·2n+1.∴K n=3(n-1)2n-n2-n+3(n∈N*).。
(京津专用)2019高考数学总复习 优编增分练(70分)8+6标准练4 理

[70分] 8+6标准练41.已知全集U ={1,2,3,4},若A ={1,3},B ={3},则(∁U A )∩(∁U B )等于( ) A .{1,2} B .{1,4} C .{2,3} D .{2,4} 答案 D解析 根据题意得∁U A ={2,4},∁U B ={1,2,4}, 故(∁U A )∩(∁U B )={2,4}.2.设i 是虚数单位,若复数z =i1+i ,则z 的共轭复数为( )A.12+12i B .1+12i C .1-12i D.12-12i 答案 D 解析 复数z =i 1+i =i (1-i )(1+i )(1-i )=i +12, 根据共轭复数的概念得,z 的共轭复数为12-12i.3.从某校高三年级随机抽取一个班,对该班50名学生的高校招生体检表中视力情况进行统计,其结果的频率分布直方图如图所示.若某高校A 专业对视力的要求在0.9以上,则该班学生中能报A 专业的人数为( )A .30B .25C .22D .20 答案 D解析 50×(1.00+0.75+0.25)×0.2=20.4.一个几何体的三视图如图所示,则该几何体的体积为( )A.83B.163C.203 D .8 答案 B解析 由三视图可知,该几何体是底面积为8,高为2的四棱锥,如图所示.∴该几何体的体积V =13×8×2=163.5.《九章算术》中的“两鼠穿墙”问题为“今有垣厚五尺,两鼠对穿,大鼠日一尺,小鼠也日一尺,大鼠日自倍,小鼠日自半,问何日相逢?”,可用如图所示的程序框图解决此类问题.现执行该程序框图,输入的d 的值为33,则输出的i 的值为( )A .4B .5C .6D .7 答案 C解析 i =0,S =0,x =1,y =1,开始执行程序框图,i =1,S =1+1,x =2,y =12;i =2,S =1+2+1+12,x =4,y =14;…;i =5,S =(1+2+4+8+16)+⎝⎛⎭⎪⎫1+12+14+18+116<33,x =32,y =132,再执行一次,S >d 退出循环,输出i =6,故选C.6.在△ABC 中,tan A +B2=sin C ,若AB =2,则△ABC 的周长的取值范围是( )A .(2,22]B .(22,4]C .(4,2+22]D .(2+22,6]答案 C解析 由题意可得tan A +B 2=tan ⎝ ⎛⎭⎪⎫π2-C 2=cosC2sinC 2=2sin C 2cos C2,则sin 2C 2=12,即1-cos C 2=12, ∴cos C =0,C =π2.据此可得△ABC 是以点C 为直角顶点的直角三角形, 则4=a 2+b 2=(a +b )2-2ab ≥(a +b )2-2×⎝ ⎛⎭⎪⎫a +b 22,据此有a +b ≤22,∴△ABC 的周长a +b +c ≤2+2 2. 三角形满足两边之和大于第三边, 则a +b >2,∴a +b +c >4.综上可得,△ABC 周长的取值范围是(4,2+22].7.设等差数列{a n }的前n 项和为S n ,S m -1=13,S m =0,S m +1=-15.其中m ∈N *且m ≥2,则数列⎩⎨⎧⎭⎬⎫1a n a n +1的前n 项和的最大值为( )A.24143B.1143C.2413D.613答案 D解析 ∵S m -1=13,S m =0,S m +1=-15, ∴a m =S m -S m -1=0-13=-13,a m +1=S m +1-S m =-15-0=-15,又∵数列{a n }为等差数列,∴公差d =a m +1-a m =-15-(-13)=-2, ∴⎩⎪⎨⎪⎧(m -1)a 1+(m -1)(m -2)2×(-2)=13,ma 1+m (m -1)2×(-2)=0,解得a 1=13,∴a n =a 1+(n -1)d =13-2(n -1)=15-2n , 当a n ≥0时,n ≤7.5, 当a n +1≤0时,n ≥6.5, ∴数列的前7项为正数, ∴1a n a n +1=1(15-2n )(13-2n ) =12⎝ ⎛⎭⎪⎫113-2n -115-2n∴数列⎩⎨⎧⎭⎬⎫1a n a n +1的前n 项和的最大值为12⎝ ⎛⎭⎪⎫111-113+19-111+17-19+…+1-13 =12⎝⎛⎭⎪⎫1-113=613.故选D.8.已知函数f (x )=⎩⎪⎨⎪⎧||log 2x ,0<x <2,sin ⎝ ⎛⎭⎪⎫π4x ,2≤x ≤10,若存在实数x 1,x 2,x 3,x 4满足x 1<x 2<x 3<x 4,且f (x 1)=f (x 2)=f (x 3)=f (x 4),则(x 3-2)(x 4-2)x 1x 2的取值范围是( ) A .(0,12) B .(0,16) C .(9,21) D .(15,25)答案 A解析 函数的图象如图所示,∵f (x 1)=f (x 2),∴-log 2x 1=log 2x 2, ∴log 2x 1x 2=0,∴x 1x 2=1, ∵f (x 3)=f (x 4), 由函数对称性可知,x 3+x 4=12,2<x 3<x 4<10,∴(x 3-2)(x 4-2)x 1x 2=x 3x 4-2(x 3+x 4)+4=x 3x 4-20=x 3(12-x 3)-20=-(x 3-6)2+16, ∵2<x 3<4, ∴(x 3-2)(x 4-2)x 1x 2的取值范围是(0,12).9.已知|a |=1,|b |=2,且a ⊥(a -b ),则向量a 在b 方向上的投影为________. 答案22解析 设a 与b 的夹角为θ, ∵a ⊥(a -b ),∴a ·(a -b )=a 2-a ·b =0,即a 2-|a |·|b |cos θ=0, ∴cos θ=22, ∴向量a 在b 方向上的投影为|a |·cos θ=22. 10.已知函数f (x )=sin(ωx +φ)(ω>0)的图象的一个对称中心为⎝ ⎛⎭⎪⎫π2,0,且f ⎝ ⎛⎭⎪⎫π4=12,则ω的最小值为________. 答案 23解析 方法一 当x =π2时,ωx +φ=π2ω+φ=k 1π,k 1∈Z ,当x =π4时,ωx +φ=π4ω+φ=2k 2π+π6或2k 2π+5π6,k 2∈Z ,两式相减,得π4ω=(k 1-2k 2)π-π6或(k 1-2k 2)π-5π6,k 1,k 2∈Z ,即ω=4(k 1-2k 2)-23或4(k 1-2k 2)-103,k 1,k 2∈Z ,又因为ω>0,所以ω的最小值为4-103=23.方法二 直接令π2ω+φ=π,π4ω+φ=5π6,得π4ω=π6,解得ω=23.11.已知二面角α-l -β为60°,动点P ,Q 分别在平面α,β内,P 到β的距离为3,Q 到α的距离为23,则P ,Q 两点之间距离的最小值为________.答案 2 3解析 如图,分别作QA ⊥α于点A ,AC ⊥l 于点C ,PB ⊥β于点B ,PD ⊥l 于点D ,连接CQ ,BD ,则∠ACQ =∠PDB =60°,AQ =23,BP =3,∴AC =PD =2.又∵PQ =AQ 2+AP 2=12+AP2≥23,当且仅当AP =0,即点A 与点P 重合时取最小值.12.已知正方形的四个顶点A (1,1),B (-1,1),C (-1,-1),D (1,-1)分别在曲线y =x2和y =1-x 2-1上,如图所示,若将一个质点随机投入正方形ABCD 中,则质点落在图中阴影区域的概率是________.答案8+3π24解析 y =x 2与AB 相交的阴影部分面积为2-ʃ1-1x 2d x =2-⎪⎪⎪⎝ ⎛⎭⎪⎫x 331-1=2-23=43, y =1-x 2-1化简得(y +1)2+x 2=1,则y =1-x 2-1与CD 相交的阴影部分的面积为半圆的面积, 即π×122=π2,故质点落在图中阴影区域的概率是43+π24=8+3π24.13.已知实数x ,y 满足约束条件⎩⎪⎨⎪⎧2x -y ≥0,x +2y -5≤0,y ≥1,则u =(x +y )2xy的取值范围为________.答案 ⎣⎢⎡⎦⎥⎤4,163解析 作出可行域如图阴影部分所示(含边界),令t =y x,它表示可行域内的点(x ,y )与原点的斜率,由图联立直线方程可得A (1,2),B (3,1),t ∈⎣⎢⎡⎦⎥⎤13,2. u =(x +y )2xy =x 2+2xy +y 2xy=x y +y x+2=t +1t+2. 易知u =t +1t +2在⎣⎢⎡⎦⎥⎤13,1上单调递减, 在[1,2]上单调递增.当t =13时,u =163;当t =1时,u =4;当t =2时,u =92,所以u ∈⎣⎢⎡⎦⎥⎤4,163.14.已知在等腰梯形ABCD 中,AB ∥CD ,|AB |=2|CD |=4,∠ABC =60°,双曲线以A ,B 为焦点,且与线段AD ,BC (包含端点D ,C )分别有一个交点,则该双曲线的离心率的取值范围是________. 答案 (1,3+1]解析 以线段AB 的中点为坐标原点建立平面直角坐标系如图所示,则在双曲线中c =2,C (1,3).设双曲线方程为x 2a 2-y 2b2=1(a >0,b >0),只需C 点在双曲线右支图象的上方(包括在图象上)即可, 即1a 2-3b2≤1,两边同乘a 2b 2,得b 2-3a 2≤a 2b 2, 由于b 2=c 2-a 2=4-a 2,所以上式化为4-a 2-3a 2≤a 2()4-a 2,解得3-1≤a <2,所以12<1a ≤3+12,故1<ca ≤3+1.。
(京津专用)2019高考数学总复习 优编增分练:中档大题规范练(一)三角函数与解三角形 理

(一)三角函数与解三角形1.已知函数f (x )=sin x ·(cos x +3sin x ).(1)求f (x )的最小正周期;(2)若关于x 的方程f (x )=t 在区间⎣⎢⎡⎦⎥⎤0,π2内有两个不相等的实数解,求实数t 的取值范围. 解 (1)f (x )=sin x cos x +3sin 2x=12sin 2x +32(1-cos 2x ) =12sin 2x -32cos 2x +32=sin ⎝⎛⎭⎪⎫2x -π3+32. 所以f (x )的最小正周期T =2π2=π. (2)因为x ∈⎣⎢⎡⎦⎥⎤0,π2, 所以2x -π3∈⎣⎢⎡⎦⎥⎤-π3,2π3. 令u =2x -π3, 因为y =sin u 在⎣⎢⎡⎦⎥⎤-π3,π2上是增函数, 在⎣⎢⎡⎦⎥⎤π2,2π3上是减函数, 令u =2x -π3=π2,则x =5π12, 所以f (x )在⎣⎢⎡⎦⎥⎤0,5π12上是增函数, 在⎣⎢⎡⎦⎥⎤5π12,π2上是减函数. 由题意知,关于x 的方程f (x )=t 在区间⎣⎢⎡⎦⎥⎤0,π2内有两个不相等的实数解,等价于y =f (x )与y =t 的图象在区间⎣⎢⎡⎦⎥⎤0,π2内有两个不同的交点, 又因为f (0)=0,f ⎝ ⎛⎭⎪⎫5π12=1+32,f ⎝ ⎛⎭⎪⎫π2=3,所以3≤t <1+32, 即t 的取值范围是⎣⎢⎡⎭⎪⎫3,1+32. 2.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知cos A =-1010,b =2,c = 5. (1)求a ;(2)求cos(B -A )的值.解 (1)在△ABC 中,由余弦定理得,a 2=b 2+c 2-2bc cos A=2+5-2×2×5×⎝ ⎛⎭⎪⎫-1010=9, ∴a =3(舍负).(2)在△ABC 中,由cos A =-1010,得A ∈⎝ ⎛⎭⎪⎫π2,π, ∴sin A =1-cos 2A =1-⎝ ⎛⎭⎪⎫-10102=31010. 在△ABC 中,由正弦定理得a sin A =b sin B , 即331010=2sin B,∴sin B =55, 又A ∈⎝ ⎛⎭⎪⎫π2,π,故B ∈⎝⎛⎭⎪⎫0,π2, ∴cos B =1-sin 2B = 1-⎝ ⎛⎭⎪⎫552=255. ∴cos(B -A )=cos B cos A +sin B sin A=255×⎝ ⎛⎭⎪⎫-1010+55×31010=210. 3.(2018·河北省衡水中学模拟)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且cos 2B-cos 2C =sin 2A -3sin A ·sinB .(1)求角C ;(2)若A =π6,△ABC 的面积为43,M 为AB 的中点,求CM 的长. 解 (1)由cos 2B -cos 2C =sin 2A -3sin A sin B , 得sin 2C -sin 2B =sin 2A -3sin A sin B .由正弦定理,得c 2-b 2=a 2-3ab ,即a 2+b 2-c 2=3ab . 又由余弦定理,得cos C =a 2+b 2-c 22ab =3ab 2ab =32. 因为0<C <π,所以C =π6. (2)因为A =C =π6, 所以△ABC 为等腰三角形,且顶角B =2π3. 故S △ABC =12a 2sin B =34a 2=43,所以a =4(舍负). 在△MBC 中,由余弦定理,得CM 2=MB 2+BC 2-2MB ·BC cos B=4+16+2×2×4×12=28, 解得CM =27.4.(2018·重庆市綦江区调研)已知a =(2cos x,2sin x ),b =⎝ ⎛⎭⎪⎫sin ⎝ ⎛⎭⎪⎫x -π6,cos ⎝⎛⎭⎪⎫x -π6,函数f (x )=cos 〈a ,b 〉.(1)求函数f (x )的零点;(2)若锐角△ABC 的三个内角A ,B ,C 的对边分别是a ,b ,c ,且f (A )=1,求b +c a 的取值范围.解 (1)由条件可知,a ·b =2cos x ·sin ⎝ ⎛⎭⎪⎫x -π6+2sin x ·cos ⎝ ⎛⎭⎪⎫x -π6=2sin ⎝⎛⎭⎪⎫2x -π6, ∴f (x )=cos 〈a ,b 〉=a ·b |a ||b |=2sin ⎝ ⎛⎭⎪⎫2x -π62=sin ⎝⎛⎭⎪⎫2x -π6. 由2x -π6=k π,k ∈Z ,解得x =k π2+π12,k ∈Z , 即函数f (x )的零点为x =k π2+π12,k ∈Z . (2)由正弦定理得b +c a =sin B +sin C sin A,由(1)知,f (x )=sin ⎝⎛⎭⎪⎫2x -π6, 又f (A )=1,得sin ⎝⎛⎭⎪⎫2A -π6=1, ∴2A -π6=2k π+π2,k ∈Z , 又A ∈(0,π),得A =π3, ∵A +B +C =π,∴C =2π3-B ,代入上式化简得, b +c a =sin B +sin ⎝ ⎛⎭⎪⎫2π3-B sin A=32sin B +32cos B sin A =3sin ⎝ ⎛⎭⎪⎫B +π6sin A=2sin ⎝⎛⎭⎪⎫B +π6. 又在锐角△ABC 中,有0<B <π2, 0<C =2π3-B <π2, ∴π6<B <π2,∴π3<B +π6<2π3, 则有32<sin ⎝⎛⎭⎪⎫B +π6≤1, 即3<b +c a≤2. 5.(2018·河南省郑州外国语学校调研)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知sin A +sin B =3sin C .(1)若cos 2A =sin 2B +cos 2C +sin A sin B ,求sin A +sin B 的值;(2)若c =2,求△ABC 面积的最大值.解 (1)∵cos 2A =sin 2B +cos 2C +sin A sin B ,∴1-sin 2A =sin 2B +1-sin 2C +sin A sin B ,∴sin 2A +sin 2B -sin 2C =-sin A sin B ,∴由正弦定理,得a 2+b 2-c 2=-ab ,∴由余弦定理,得cos C =a 2+b 2-c 22ab =-12,又0<C <π,∴C =2π3,∴sin A +sin B =3sin C =3sin 2π3=32.(2)当c =2,a +b =3c =23,∴cos C =a 2+b 2-c 22ab =(a +b )2-2ab -c 22ab =4ab -1,∴sin C =1-cos 2C = 1-⎝ ⎛⎭⎪⎫4ab -12= -⎝ ⎛⎭⎪⎫4ab 2+8ab ,∴S =12ab sin C =12ab -⎝ ⎛⎭⎪⎫4ab 2+8ab=12-16+8ab .∵a +b =23≥2ab ,即0<ab ≤3,当且仅当a =b =3时等号成立, ∴S =12-16+8ab ≤12-16+8×3=2,∴△ABC 面积的最大值为 2.。
2019年高考数学总复习优编增分练:高考解答题分项练七)数列A)

(七)数列(A)1.已知数列{a n }的前n 项和为S n ,且S n +a n =4,n ∈N *. (1)求数列{a n }的通项公式;(2)已知c n =2n +3(n ∈N *),记d n =c n +log C a n (C >0且C ≠1),是否存在这样的常数C ,使得数列{d n }是常数列,若存在,求出C 的值;若不存在,请说明理由;(3)若对于数列{b n }及任意的正整数n ,均有b 1a n +b 2a n -1+b 3a n -2+…+b n a 1=⎝ ⎛⎭⎪⎫12n -n +22成立,求证:数列{b n }是等差数列. (1)解 a 1=4-a 1,所以a 1=2,由S n +a n =4,得当n ≥2时,S n -1+a n -1=4, 两式相减,得2a n =a n -1,所以a n a n -1=12, 数列{a n }是以2为首项,12为公比的等比数列,所以a n =22-n(n ∈N *).(2)解 由于数列{d n }是常数列,d n =c n +log C a n =2n +3+(2-n )log C 2=2n +3+2log C 2-n log C 2=(2-log C 2)n +3+2log C 2为常数, 则2-log C 2=0, 由C >0且C ≠1, 解得C =2,此时d n =7.(3)证明 b 1a n +b 2a n -1+b 3a n -2+…+b n a 1=⎝ ⎛⎭⎪⎫12n -n +22,① 当n =1时,b 1a 1=12-32=-1,其中a 1=2,所以b 1=-12.当n ≥2时,b 1a n -1+b 2a n -2+b 3a n -3+…+b n -1a 1=⎝ ⎛⎭⎪⎫12n -1-n +12,②②式两边同时乘以12,得b 1a n +b 2a n -1+b 3a n -2+…+b n -1a 2=⎝ ⎛⎭⎪⎫12n -n +14,③由①-③,得b n a 1=-n -34,所以b n =-n 8-38(n ∈N *,n ≥2),且b n +1-b n =-18,又b 1=-12=-18-38,所以数列{b n }是以-12为首项,-18为公差的等差数列.2.在数列{a n }中,已知a 1=13,a n +1=13a n -23n +1,n ∈N *,设S n 为{a n }的前n 项和.(1)求证:数列{3na n }是等差数列; (2)求S n ;(3)是否存在正整数p ,q ,r (p <q <r ),使S p ,S q ,S r 成等差数列?若存在,求出p ,q ,r 的值;若不存在,说明理由.(1)证明 因为a n +1=13a n -23n +1,所以3n +1a n +1-3n a n =-2.又因为a 1=13,所以31·a 1=1,所以{3na n }是首项为1,公差为-2的等差数列. (2)解 由(1)知3na n =1+(n -1)·(-2)=3-2n ,所以a n =(3-2n )⎝ ⎛⎭⎪⎫13n,所以S n =1·⎝ ⎛⎭⎪⎫131+(-1)·⎝ ⎛⎭⎪⎫132+(-3)·⎝ ⎛⎭⎪⎫133+…+(3-2n )·⎝ ⎛⎭⎪⎫13n,所以13S n =1·⎝ ⎛⎭⎪⎫132+(-1)·⎝ ⎛⎭⎪⎫133+…+(5-2n )·⎝ ⎛⎭⎪⎫13n +(3-2n )·⎝ ⎛⎭⎪⎫13n +1,两式相减,得23S n =13-2⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫132+⎝ ⎛⎭⎪⎫133+…+⎝ ⎛⎭⎪⎫13n -(3-2n )·⎝ ⎛⎭⎪⎫13n +1=13-2⎣⎢⎡⎦⎥⎤19×1-⎝ ⎛⎭⎪⎫13n -11-13+(2n -3)·⎝ ⎛⎭⎪⎫13n +1=2n ·⎝ ⎛⎭⎪⎫13n +1,所以S n =n3n .(3)解 假设存在正整数p ,q ,r (p <q <r ),使S p ,S q ,S r 成等差数列,则2S q =S p +S r ,即2q3q =p 3p+r3r . 当n ≥2时,a n =(3-2n )⎝ ⎛⎭⎪⎫13n<0,所以数列{S n }单调递减.又p <q ,所以p ≤q -1且q 至少为2,所以p 3p ≥q -13q -1,q -13q -1-2q 3q =q -33q .①当q ≥3时,p 3p ≥q -13q -1≥2q 3q ,又r 3r >0,所以p 3p +r 3r >2q3q ,等式不成立. ②当q =2时,p =1,所以49=13+r 3r ,所以r 3r =19,所以r =3({S n }单调递减,解唯一确定).综上可知,存在正整数p =1,q =2,r =3,使得S p ,S q ,S r 成等差数列. 3.设S n 为数列{a n }的前n 项和,若S 2n S n(n ∈N *)是非零常数,则称该数列为“和等比数列”. (1)若数列{2b n }是首项为2,公比为4的等比数列,试判断数列{b n }是否为“和等比数列”,并给出证明;(2)若数列{c n }是首项为c 1,公差为d (d ≠0)的等差数列,且数列{c n }是“和等比数列”,试探究d 与c 1之间的等量关系.解 (1)数列{b n }为“和等比数列”,证明如下: 因为数列{2b n }是首项为2,公比为4的等比数列, 所以2b n =2·4n -1=22n -1,因此b n =2n -1.设数列{b n }的前n 项和为T n ,则T n =n 2,T 2n =4n 2, 所以T 2nT n=4, 因此数列{b n }为“和等比数列”. (2)设数列{c n }的前n 项和为R n ,且R 2nR n=k (k ≠0). 因为数列{c n }是等差数列,所以R n =nc 1+n (n -1)2d ,R 2n =2nc 1+2n (2n -1)2d , 所以R 2n R n =2nc 1+2n (2n -1)2dnc 1+n (n -1)2d=k 对于n ∈N *都成立,化简,得(k -4)dn +(k -2)(2c 1-d )=0,则⎩⎪⎨⎪⎧(k -4)d =0,(k -2)(2c 1-d )=0,因为d ≠0,所以k =4,d =2c 1, 因此d 与c 1之间的等量关系为d =2c 1.。
2019高考数学(理)优编增分练通用版:中档大题规范练(三)概率与统计+Word版含解析

1 2019高考数学(理)优编增分练通用版
中档大题规范练
(三)概率与统计
1.某大学志愿者协会有6名男同学,4名女同学.在这10名同学中,3名同学来自数学学院,其余7名同学来自物理、化学等其他互不相同的七个学院.现从这10名同学中随机选取3名同学,到希望小学进行支教活动(每位同学被选到的可能性相同).
(1)求选出的3名同学是来自互不相同学院的概率;
(2)设X 为选出的3名同学中女同学的人数,求随机变量X 的分布列和期望.
解 (1)设“选出的3名同学是来自互不相同的学院”为事件A ,则P (A )=C 13·C 27+C 03·C 37C 310=4960
. 所以,选出的3名同学是来自互不相同学院的概率为
4960
. (2)随机变量X 的所有可能取值为0,1,2,3.
P (X =k )=C k 4·C 3-k 6C 310(k =0,1,2,3). 所以,随机变量X 的分布列是
随机变量X 的期望
E (X )=0×16+1×12+2×310+3×130=65
. 2.(2018·安徽省“皖江八校”联考)某市为制定合理的节电方案,对居民用电情况进行了调查,通过抽样,获得了某年200户居民每户的月均用电量(单位:百度),将数据按照[0,1),[1,2),
[2,3),[3,4),[4,5),[5,6),[6,7),[7,8),[8,9]分成9组,制成了如图所示的频率分布直方图:。
(京津专用)2019高考数学总复习 优编增分练:中档大题规范练(三)概率与统计 文

(三)概率与统计1.某高职院校进行自主招生文化素质考试,考试内容为语文、数学、英语三科,总分为200分.现从上线的考生中随机抽取20人,将其成绩用茎叶图记录如下:(1)计算上线考生中抽取的男生成绩的方差s 2;(结果精确到小数点后一位)(2)从上述茎叶图180分以上的考生中任选2人作为考生代表出席座谈会,求所选考生恰为一男一女的概率.解 (1)依题意:样本中男生共6人,成绩分别为164,165,172,178,185,186, ∴他们的总分为1 050,平均分为175.∴s 2=16[(-11)2+(-10)2+(-3)2+32+102+112]≈76.7.(2)样本中180分以上的考生有男生2人,记为A ,B ,女生4人,记为a ,b ,c ,d , 从中任选2人,有AB ,Aa ,Ab ,Ac ,Ad ,Ba ,Bb ,Bc ,Bd ,ab ,ac ,ad ,bc ,bd ,cd 共15种,符合条件的有Aa ,Ab ,Ac ,Ad ,Ba ,Bb ,Bc ,Bd 共8种, 故所求概率P =815.2.(2018·葫芦岛模拟)海水养殖场使用网箱养殖的方法,收获时随机抽取了100个网箱,测量各网箱水产品的产量(单位:kg),其产量都属于区间[25,50],按如下形式分成5组,第一组:[25,30),第二组:[30,35),第三组:[35,40),第四组:[40,45),第五组:[45,50],得到频率分布直方图如图:定义箱产量在[25,30)(单位:kg)的网箱为“低产网箱”,箱产量在区间[45,50]的网箱为“高产网箱”.(1)若同一组中的每个数据可用该组区间的中点值代替,试计算样本中的100个网箱的产量的平均数;(2)按照分层抽样的方法,从这100个样本中抽取25个网箱,试计算各组中抽取的网箱数;(3)若在(2)抽取到的“低产网箱”及“高产网箱”中再抽取2箱,记其产量分别为m,n,求|m-n|>10的概率.解(1)样本中的100个网箱的产量的平均数x=(27.5×0.024+32.5×0.040+37.5×0.064+42.5×0.056+47.5×0.016)×5=37.5.(2)各组网箱数分别为:12,20,32,28,8,要在此100 箱中抽取25箱,则分层抽样各组应抽数3,5,8,7,2.(3)由(2)知,从低产网箱3箱和高产网箱2箱共5箱中要抽取2箱,设低产网箱中3箱编号为1,2,3,高产网箱中2箱编号为4,5,则一共有10种抽法,基本事件为:(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5),满足条件|m-n|>10的情况为从高、低产网箱中各取1箱,基本事件为(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),共6种,所以满足事件A:|m-n|>10的概率为P(A)=610=35.3.(2016·四川)我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了调查,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…,[4,4.5]分成9组,制成了如图所示的频率分布直方图.(1)求直方图中a的值;(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,说明理由;(3)估计居民月均用水量的中位数.解(1)由频率分布直方图可知,月均用水量在[0,0.5)的频率为0.08×0.5=0.04.同理,在[0.5,1),[1.5,2),[2,2.5),[3,3.5),[3.5,4),[4,4.5]等组的频率分别为0.08,0.21,0.25,0.06,0.04,0.02.由1-(0.04+0.08+0.21+0.25+0.06+0.04+0.02)=0.5×a+0.5×a,解得a=0.30.(2)估计全市居民中月均用水量不低于3吨的人数为3.6万.理由如下:由(1)知,100位居民中月均用水量不低于3吨的频率为0.06+0.04+0.02=0.12.由以上样本的频率分布,可以估计30万居民中月均用水量不低于3吨的人数为300 000×0.12=36 000.(3)设中位数为x 吨.因为前5组的频率之和为0.04+0.08+0.15+0.21+0.25=0.73>0.5. 而前4组的频率之和为0.04+0.08+0.15+0.21=0.48<0.5.所以2≤x <2.5. 由0.50×(x -2)=0.5-0.48,解得x =2.04. 故可估计居民月均用水量的中位数为2.04吨.4.(2018·宁夏银川一中模拟)为了参加某数学竞赛,某高级中学对高二年级理科、文科两个数学兴趣小组的同学进行了赛前模拟测试,成绩(单位:分)记录如下: 理科:79,81,81,79,94,92,85,89. 文科:94,80,90,81,73,84,90,80.(1)画出理科、文科两组同学成绩的茎叶图;(2)计算理科、文科两组同学成绩的平均数和方差,并从统计学的角度分析,哪组同学在此次模拟测试中发挥比较好;(3)若在成绩不低于90分的同学中随机抽出3人进行培训,求抽出的3人中既有理科组同学又有文科组同学的概率.(参考公式:样本数据x 1,x 2,…,x n 的方差:s 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2],其中x 为样本平均数).解 (1)理科、文科两组同学成绩的茎叶图如下:(2)从平均数和方差的角度看,理科组同学在此次模拟测试中发挥比较好.理由如下: 理科同学成绩的平均数x 1=18×(79+79+81+81+85+89+92+94)=85,方差是s 21=18×[(79-85)2+(79-85)2+(81-85)2+(81-85)2+(85-85)2+(89-85)2+(92-85)2+(94-85)2]=31.25;文科同学成绩的平均数x 2=18×(73+80+80+81+84+90+90+94)=84.方差是s 22=18×[(73-84)2+(80-84)2+(80-84)2+(81-84)2+(84-84)2+(90-84)2+(90-84)2+(94-84)2]=41.75;由于x 1>x 2,s 21<s 22,所以理科组同学在此次模拟测试中发挥比较好.(3)设理科组同学中成绩不低于90分的2人分别为A ,B ,文科组同学中成绩不低于90分的3人分别为a ,b ,c ,则从他们中随机抽出3人有以下10种可能:ABa ,ABb ,ABc ,Aab ,Aac ,Abc ,Bab ,Bac ,Bbc ,abc .其中全是文科组同学的情况只有1种是abc ,没有全是理科组同学的情况,记“抽出的3人中既有理科组同学又有文科组同学”为事件M ,则P (M )=1-110=910.5.2018年6月14日,第二十一届世界杯足球赛在俄罗斯拉开帷幕.为了了解喜爱足球运动是否与性别有关,某体育台随机抽取100名观众进行统计,得到如下2×2列联表.(1)将2×2列联表补充完整,并判断能否在犯错误的概率不超过0.001的前提下认为喜爱足球运动与性别有关?(2)在不喜爱足球运动的观众中,按性别用分层抽样的方式抽取6人,再从这6人中随机抽取2人参加一台访谈节目,求这2人至少有一位男性的概率.附:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),其中n =a +b +c +d .解 (1)补充列联表如下:由列联表知K 2=100×(30×40-10×20)250×50×40×60≈16.667>10.828.故可以在犯错误的概率不超过0.001的前提下认为喜爱足球运动与性别有关.(2)由分层抽样知,从不喜爱足球运动的观众中抽取6人,其中男性有6×2060=2(人),女性有6×4060=4(人).记男性观众分别为a 1,a 2,女性观众分别为b 1,b 2,b 3,b 4,随机抽取2人,基本事件有(b 1,b 2),(b 1,b 3),(b 1,b 4),(b 2,b 3),(b 2,b 4),(b 3,b 4),(b 1,a 1),(b 1,a 2),(b 2,a 1),(b 2,a 2),(b 3,a 1),(b 3,a 2),(b 4,a 1),(b 4,a 2),(a 1,a 2),共15种.记至少有一位男性观众为事件A ,则事件A 包含(b 1,a 1),(b 1,a 2),(b 2,a 1),(b 2,a 2),(b 3,a 1),(b 3,a 2),(b 4,a 1),(b 4,a 2),(a 1,a 2),共9个基本事件,由古典概型,知P (A )=915=35.6.(2016·全国Ⅲ改编)下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.注:年份代码1~7分别对应年份2008~2014.(1)由折线图看出,可用线性回归模型拟合y 与t 的关系,请用相关系数加以说明; (2)建立y 关于t 的回归方程(系数精确到0.01),预测2019年我国生活垃圾无害化处理量. 附注:参考数据:∑i =17y i =9.32,∑i =17t i y i =40.17,∑i =17(y i -y)2=0.55,7≈2.646.参考公式:相关系数r =∑i =1n(t i -t )(y i -y)∑i =1n(t i -t )2∑i =1n(y i -y)2,回归方程y ^=a ^+b ^t 中斜率和截距的最小二乘估计公式分别为:b ^=∑i =1n(t i -t )(y i -y)∑i =1n(t i -t)2,a ^=y -b ^t .解 (1)由折线图中数据和附注中参考数据得t =4,∑i =17(t i -t )2=28,∑i =17(y i -y)2=0.55.∑i =17 (t i -t )(y i -y )=∑i =17t i y i -t ∑i =17y i =40.17-4×9.32=2.89,所以r ≈ 2.890.55×2×2.646≈0.99.因为y 与t 的相关系数近似为0.99,说明y 与t 的线性相关程度相当高,从而可以用线性回归模型拟合y 与t 的关系. (2)由y =9.327≈1.331及(1)得b ^=∑i =17(t i -t )(y i -y)∑i =17(t i -t)2=2.8928≈0.10, a ^=y -b ^t ≈1.331-0.103×4≈0.92.所以y 关于t 的线性回归方程为y ^=0.10t +0.92. 将2019年对应的t =12代入线性回归方程,得y ^=0.92+0.10×12=2.12.所以预测2019年我国生活垃圾无害化处理量将约为2.12亿吨.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(二)数 列
1.(2018·三明质检)已知正项数列{a n }的前n 项和为S n ,a 1=1,且(t +1)S n =a 2n +3a n +2(t ∈R ).
(1)求数列{a n }的通项公式;
(2)若数列{b n }满足b 1=1,b n +1-b n =a n +1,求数列⎩⎨⎧⎭
⎬⎫12bn +7n 的前n 项和T n . 解 (1)因为a 1=1,且(t +1)S n =a 2n +3a n +2,
所以(t +1)S 1=a 21+3a 1+2,所以t =5.
所以6S n =a 2n +3a n +2.①
当n ≥2时,有6S n -1=a 2n -1+3a n -1+2,②
①-②得6a n =a 2n +3a n -a 2n -1-3a n -1,
所以(a n +a n -1)(a n -a n -1-3)=0,
因为a n >0,所以a n -a n -1=3,
又因为a 1=1,
所以{a n }是首项a 1=1,公差d =3的等差数列,
所以a n =3n -2(n ∈N *
).
(2)因为b n +1-b n =a n +1,b 1=1,
所以b n -b n -1=a n (n ≥2,n ∈N *),
所以当n ≥2时, b n =(b n -b n -1)+(b n -1-b n -2)+…+(b 2-b 1)+b 1
=a n +a n -1+…+a 2+b 1=3n2-n 2
. 又b 1=1也适合上式,所以b n =3n2-n 2
(n ∈N *). 所以12bn +7n =13n2-n +7n
=13
·错误!=错误!·错误!, 所以T n =16·⎝
⎛⎭⎪⎫1-13+12-14+…+1n -1n +2 =16·⎝ ⎛⎭
⎪⎫32-1n +1-1n +2, =错误!.
2.(2018·葫芦岛模拟)设等差数列{a n }的前n 项和为S n ,且S 3,S52
,S 4成等差数列,a 5=3a 2+2a 1-2. (1)求数列{a n }的通项公式;
(2)设b n =2n -1,求数列⎩⎨⎧⎭
⎬⎫an bn 的前n 项和T n . 解 (1)设等差数列{a n }的首项为a 1,公差为d ,
由S 3,S52
,S 4成等差数列, 可知S 3+S 4=S 5,得2a 1-d =0,①
由a 5=3a 2+2a 1-2,②
得4a 1-d -2=0,
由①②,解得a 1=1,d =2,
因此,a n =2n -1(n ∈N *
).
(2)令c n =an bn =(2n -1)⎝ ⎛⎭
⎪⎫12n -1, 则T n =c 1+c 2+…+c n ,
∴T n =1·1+3·12+5·⎝ ⎛⎭⎪⎫122+…+(2n -1)·⎝ ⎛⎭
⎪⎫12n -1,③ 12T n =1·12+3·⎝ ⎛⎭⎪⎫122+5·⎝ ⎛⎭⎪⎫123+…+(2n -1)·⎝ ⎛⎭
⎪⎫12n ,④ ③-④,得12T n =1+2⎣⎢⎡⎦
⎥⎤12+⎝ ⎛⎭⎪⎫122+…+⎝ ⎛⎭⎪⎫12n -1-(2n -1)·⎝ ⎛⎭⎪⎫12n =1+2⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n -1 -(2n -1)·⎝ ⎛⎭
⎪⎫12n = 3-2n +32n , ∴T n =6-2n +32n -1
(n ∈N *). 3.(2018·厦门质检)已知等差数列{a n }满足(n +1)a n =2n 2+n +k ,k ∈R .
(1)求数列{a n }的通项公式;
(2)设b n =4n2anan +1
,求数列{b n }的前n 项和S n . 解 (1)方法一 由(n +1)a n =2n 2+n +k ,
令n =1,2,3,
得到a 1=3+k 2,a 2=10+k 3,a 3=21+k 4
, ∵{a n }是等差数列,∴2a 2=a 1+a 3,
即20+2k 3=3+k 2+21+k 4
, 解得k =-1.
由于(n +1)a n =2n 2+n -1=(2n -1)(n +1),
又∵n +1≠0,∴a n =2n -1(n ∈N *).
方法二 ∵{a n }是等差数列,设公差为d ,
则a n =a 1+d (n -1)=dn +(a 1-d ),
∴(n +1)a n =(n +1)(dn +a 1-d )
=dn 2+a 1n +a 1-d ,
∴dn 2+a 1n +a 1-d =2n 2+n +k 对于∀n ∈N *均成立,
则⎩⎪⎨⎪⎧ d =2,a1=1,
a1-d =k ,解得k =-1,∴a n =2n -1(n ∈N *
). (2)由b n =4n2anan +1
=错误! =4n24n2-1=1+14n2-1
=1+错误!=错误!错误!+1,
得S n =b 1+b 2+b 3+…+b n
=12⎝ ⎛⎭⎪⎫1-13+1+12⎝ ⎛⎭⎪⎫13-15+1+12⎝ ⎛⎭⎪⎫15-17+1+…+12⎝ ⎛⎭
⎪⎫12n -1-12n +1+1 =12⎝ ⎛⎭
⎪⎫1-13+13-15+15-17+…+12n -1-12n +1+n =12⎝ ⎛⎭
⎪⎫1-12n +1+n =n 2n +1+n =2n2+2n 2n +1
(n ∈N *). 4.(2018·天津河东区模拟)已知等比数列{a n }满足条件a 2+a 4=3(a 1+a 3),a 2n =3a 2n ,n ∈N *.
(1)求数列{a n }的通项公式;
(2)数列{b n }满足b1a1+b2a2+…+bn an
=n 2,n ∈N *,求{b n }的前n 项和T n . 解 (1)设{a n }的通项公式为a n =a 1q
n -1(n ∈N *
), 由已知a 2+a 4=3(a 1+a 3),
得a 1q +a 1q 3=3(a 1+a 1q 2),所以q =3.
又由已知a 2n =3a 2n ,
得a 1q 2n -1=3a 21q 2n -2,所以q =3a 1,
所以a 1=1,所以{a n }的通项公式为a n =3
n -1(n ∈N *). (2)当n =1时,b1a1
=1,b 1=1, 当n ≥2时,b1a1+b2a2+…+bn an
=n 2,① 所以b1a1+b2a2+…+bn -1an -1
=(n -1)2,② 由①-②得bn an
=2n -1, 所以b n =(2n -1)3n -1,b 1=1也符合,
综上,b n =(2n -1)3n -1(n ∈N *).
所以T n =1×30+3×31+…+(2n -3)3
n -2+(2n -1)·3n -1,① 3T n =1×31+3×32+…+(2n -3)3
n -1+(2n -1)3n ,② 由①-②得
-2T n =1×30+2(31+32+…+3n -1)-(2n -1)·3n
=1×30+2×3×3n -1-13-1
-(2n -1)·3n =1+3n -3-(2n -1)3n =(2-2n )3n -2,
所以T n =1+(n -1)3n (n ∈N *
).
5.(2018·宿州模拟)已知数列{a n }的前n 项和为S n ,数列{S n }的前n 项和为T n ,满足T n =2S n -n 2.
(1)证明数列{a n +2}是等比数列,并求出数列{a n }的通项公式;
(2)设b n =n ·a n ,求数列{b n }的前n 项和K n .
解 (1)由T n =2S n -n 2,得a 1=S 1=T 1=2S 1-1, 解得a 1=S 1=1,
由S 1+S 2=2S 2-4,解得a 2=4.
当n ≥2时,S n =T n -T n -1 =2S n -n 2-2S n -1+(n -1)2, 即S n =2S n -1+2n -1,① S n +1=2S n +2n +1,②
由②-①得a n +1=2a n +2,
∴a n +1+2=2(a n +2),
又a 2+2=2(a 1+2),
∴数列{a n +2}是以a 1+2=3为首项,2为公比的等比数列, ∴a n +2=3·2
n -1, 即a n =3·2n -1-2(n ∈N *).
(2)∵b n =3n ·2n -1-2n ,
∴K n=3(1·20+2·21+…+n·2n-1)-2(1+2+…+n) =3(1·20+2·21+…+n·2n-1)-n2-n.
记R n=1·20+2·21+…+n·2n-1,③
2R n=1·21+2·22+…+(n-1)·2n-1+n·2n,④
由③-④,得
-R n=20+21+22+…+2n-1-n·2n
=1-2n
1-2
-n·2n=(1-n)·2n-1,
∴R n=(n-1)·2n+1.
∴K n=3(n-1)2n-n2-n+3(n∈N*).。