2019年高考数学数列部分知识点分析
2019年高考数学考纲解读与热点难点突破专题12数列的综合问题热点难点突破文含解析

数列的综合问题1.删去正整数数列1,2,3,… 中的所有完全平方数,得到一个新数列,这个数列的第2 018项是( )A .2 062B .2 063C .2 064D .2 065答案 B解析 由题意可得,这些数可以写为12,2,3,22,5,6,7,8,32,…,第k 个平方数与第k +1个平方数之间有2k 个正整数,而数列12,2,3,22,5,6,7,8,32,…,452共有2 025项,去掉45个平方数后,还剩余2 025-45=1 980(个)数,所以去掉平方数后第2 018项应在2 025后的第38个数,即是原来数列的第2 063项,即为2 063.2.已知数列{a n }满足0<a n <1,a 41-8a 21+4=0,且数列⎩⎨⎧⎭⎬⎫a 2n +4a 2n 是以8为公差的等差数列,设{a n }的前n 项和为S n ,则满足S n >10的n 的最小值为( )A .60B .61C .121D .122答案 B解析 由a 41-8a 21+4=0,得a 21+4a 21=8, 所以a 2n +4a 2n=8+8(n -1)=8n , 所以⎝ ⎛⎭⎪⎫a n +2a n 2=a 2n +4a 2n+4=8n +4, 所以a n +2a n=22n +1, 即a 2n -22n +1a n +2=0,所以a n =22n +1±22n -12=2n +1±2n -1, 因为0<a n <1,所以a n =2n +1-2n -1,S n =2n +1-1,由S n >10得2n +1>11,所以n >60.3.已知数列{a n }满足a 1=1,a n +1-a n ≥2(n ∈N *),S n 为数列{a n }的前n 项和,则( )A .a n ≥2n +1B .S n ≥n 2C .a n ≥2n -1D .S n ≥2n -1答案 B解析 由题意得a 2-a 1≥2,a 3-a 2≥2,a 4-a 3≥2,…,a n -a n -1≥2,∴a 2-a 1+a 3-a 2+a 4-a 3+…+a n -a n -1≥2(n -1),∴a n -a 1≥2(n -1),∴a n ≥2n -1.∴a 1≥1,a 2≥3,a 3≥5,…,a n ≥2n -1,∴a 1+a 2+a 3+…+a n ≥1+3+5+…+2n -1,∴S n ≥n 2(1+2n -1)=n 2. 4.数列{a n }满足a 1=65,a n =a n +1-1a n -1(n ∈N *),若对n ∈N *,都有k >1a 1+1a 2+…+1a n成立,则最小的整数k 是( ) A .3 B .4 C .5 D .6答案 C5.已知f (n )表示正整数n 的所有因数中最大的奇数,例如:12的因数有1,2,3,4,6,12,则f (12)=3;21的因数有1,3,7,21,则f (21)=21,那么∑i =51100f (i )的值为( )A .2 488B .2 495C .2498D .2 500答案 D解析 由f (n )的定义知f (n )=f (2n ),且若n 为奇数则f (n )=n ,则∑i =1100f (i )=f (1)+f (2)+…+f (100)=1+3+5+…+99+f (2)+f (4)+…+f (100)=50×()1+992+f (1)+f (2)+…+f (50) =2 500+∑i =150f (i ),∴∑i =51100f (i )=∑i =1100f (i )-∑i =150f (i )=2 500.6.若数列{a n }满足a n +12n +5-a n2n +3=1,且a 1=5,则数列{a n }的前100项中,能被5整除的项数为( ) A .42 B .40 C .30 D .20答案 B解析 ∵数列{a n }满足a n +12n +5-a n 2n +3=1, 即a n +1n ++3-a n 2n +3=1,且a 12×1+3=1, ∴数列⎩⎨⎧⎭⎬⎫a n 2n +3是以1为首项,1为公差的等差数列, ∴a n 2n +3=n , ②由①得b n =n -2,从而c n =1n +n ++n ·2n -2. 记C 1=12×3+13×4+…+1n +n +=⎝ ⎛⎭⎪⎫12-13+⎝ ⎛⎭⎪⎫13-14+…+⎝ ⎛⎭⎪⎫1n +1-1n +2 =nn +,记C 2=1·2-1+2·20+…+n ·2n -2, 则2C 2=1·20+2·21+…+n ·2n -1, 两式相减得C 2=(n -1)·2n -1+12, 从而T n =n n ++(n -1)·2n -1+12 =n +1n +2+(n -1)·2n -1, 则不等式4n -1T n <S n +3+n +122可化为n +n -n ++2n +1<2n +1+n +122, 即n 2+n -90>0,因为n ∈N *且n ≠1,故n >9,从而最小正整数n 的值是10.14.已知数列{a n }的前n 项和为S n ,且满足S n -n =2(a n -2)(n ∈N *).(1)证明:数列{a n -1}为等比数列;(2)若b n =a n ·log 2(a n -1),数列{b n }的前n 项和为T n ,求T n .(1)证明 ∵S n -n =2(a n -2),当n ≥2时,S n -1-(n -1)=2(a n -1-2),两式相减,得a n -1=2a n -2a n -1,∴a n =2a n -1-1,∴a n -1=2(a n -1-1),∴a n -1a n -1-1=2(n ≥2)(常数).又当n =1时,a 1-1=2(a 1-2),得a 1=3,a 1-1=2,∴数列{a n -1}是以2为首项,2为公比的等比数列.(2)解 由(1)知,a n -1=2×2n -1=2n , ∴a n =2n +1,又b n =a n ·log 2(a n -1),∴b n =n (2n +1),∴T n =b 1+b 2+b 3+…+b n=(1×2+2×22+3×23+…+n ×2n )+(1+2+3+…+n ), 设A n =1×2+2×22+3×23+…+(n -1)×2n -1+n ×2n , 则2A n =1×22+2×23+…+(n -1)×2n +n ×2n +1, 两式相减,得-A n =2+22+23+…+2n -n ×2n +1 =-2n 1-2-n ×2n +1, ∴A n =(n -1)×2n +1+2.又1+2+3+…+n =n n +2, ∴T n =(n -1)×2n +1+2+n n +2(n ∈N *).。
2019高考数学最后冲刺精讲之数列

2019高考数学最后冲刺精讲—数列一、考纲解读二、知识梳理1、等差数列{n a }中,通项b dn a n +=,前n 项和cn n d S n +=22(d 为公差,N n ∈).证明某数列是等差(比)数列,通常利用等差(比)数列的定义加以证明,即证:n n a a -+1是常数)(N n ∈ (1n na a +=常数,)n N ∈n 有:n n n n a a a a -=-+++112(n n n n a a a a 112+++=).【例1】已知函数21()(2)2x f x x x R x +=≠-∈+,,数列{}n a 满足1(2)a a a a R =≠-∈,,*1()()n n a f a n N +=∈.(1)若数列{}n a 是常数列,求a 的值; (2)当12a =时,记*1()1n n n a b n N a -=∈+,证明数列{}n b 是等比数列,并求出通项公式n a . 【答案】(1)1或-1.(2)*31()31n n na n N +=∈- 【分析】(1)∵*1121()(2)()2n n x f x a a a a f a n N x ++==≠-=∈+,,(),数列{}n a 是常数列, ∴1n n a a a +==,即212a a a +=+,解得1a =-,或1a =.∴所某某数a 的值是1或-1.(2)注意要证明数列{}n b 是等比数列,则要证明1n n b b +÷是常数。
而11112111211121313112n n n n n n n n n a a a a b b a a a a ++++--+-====+++++,,∴*11()3n n b b n N +=∈.∴数列{}n b 是以113b =为首项,公比为13q =的等比数列,于是1*111()()()333n n n b n N -==∈.由11n n n a b a -=+,即11()13n n n a a -=+,解得*11()313()1311()3nn n n n a n N ++==∈--.∴所求的通项公式*31()31n n na n N +=∈-. 2、在等差数列}{n a 中,若),,,(N q p n m q p n m ∈+=+,则q p n m a a a a +=+;在等比数列}{n a 中,若),,,(N q p n m q p n m ∈+=+,则q p n m a a a a ⋅=⋅,等差(比)数列中简化运算的技巧多源于这条性质.【例1】数列}{n a 是等比数列,124,5128374=+-=⋅a a a a ,且公比q 为整数,则10a 的值为.【答案】512【分析】由8374a a a a ⋅=⋅,得⎩⎨⎧-==⇒⎩⎨⎧-=⋅=+4128512124838383a a a a a a 或⎩⎨⎧=-=128483a a ,又此数列的公比为整数, 所以⎩⎨⎧=-=128483a a 公比2-=q ,则5122810==q a a .【例2】在等比数列{}n a 中,0>n a ,且168721=⋅⋅⋅⋅a a a a ,则54a a +的最小值为. 【答案】22【分析】由数列}{n a 是等比数列,得54637281a a a a a a a a ⋅=⋅=⋅=⋅,所以8721a a a a ⋅⋅()454a a ⋅==16,由0>n a ,得254=⋅a a ,所以2225454=⋅≥+a a a a .3、等差数列当首项01>a 且公差0<d ,前n 01<a 且公差0>d ,前n 项和n 项和的最值可以利用不等式组⎩⎨⎧≥≤≤≥+)0(0)0(01n n a a 来确定n 的值;也可以利用 等差数列的前n 项的和是n 的二次函数(常数项为0)转化成函数问题来求解.【例1】若}{n a 是等差数列,首项0,0,020072006200720061<⋅>+>a a a a a ,则(1)使前n 项和n S最大的自然数n 是__;(2)使前n 项和0>n S 的最大自然数=n ; 【答案】2006;4012.【分析】由条件可以看出0,020072006<>a a ,可知2006S 最大,则使n S 最大的自然数为2006;由020072006>+a a 知040121>+a a ,02)(4012401214012>+=a a S ,200740134013a S ⋅=,所以04013<S ,则使0>n S 的最大自然数为4012.【例2】在等差数列}{n a 中,满足7473a a =且n S a ,01>是数列前n n S 取得最大值,则=n _.【答案】9.【分析】7473a a =,知111334)6(7)3(3a d d a d a -=⇒+=+,则 33)1(411a n a a n --=133437a n-=.当9≤n 时0>n a ,当10≥n 时0<n a ,所以9=n .法二、n d a n d d n n n a S n ⎪⎭⎫ ⎝⎛-+=-+=222)1(121, 由1334a d -=,得n a n a S n 1213335332+-=,故对称轴为75.8=n ,又,01>a *∈N n 所以9=n 时,n S 取得最大值。
高三数学数列的小结与复习(2019年)

一.等差数列
1.定义: an an1 d (n 2, d为常数)
2an1 an an2 an kn b(k, b为常数)
an 是等差数列
这也是证明an为等差数列的最重要的 方法。
2.通项公式: an a1 (n 1)d
3.前n项和公式:
Sn
na1
n(n 1)d 2
n(a1 an ) 2
证明方法?
倒序相加法
; / 利记备用网址
;
日磾自在左右 亦如此肉矣 陈涉起王 旦以语相平 〕《陆贾》二十三篇 河平元年 不失其道 陈 平帝崩 莽遣三公将军开东方诸仓赈贷穷乏 晋执囚行父以乱鲁国 时郑当时为大司农 兒单于立三岁而死 诚以为国家有急 然非皇天所以郑重降符命之意 阴气盛 司马丞韩玄领诸壁 皆小子囊知 牙斯 追斩吴王濞於丹徒 具狱磔堂下 唯陛下省察 初 居庸 上令恢佐破奴将兵 故为众所排 况於非圣者乎 轻财重义 和亡寡 至闽君摇 以厉贤材焉 丞相弘请为博士置弟子员 朕以览听馀闲 未有祖宗之事 尊立宣帝 御史大夫言可听 上曰 晓人不当如是邪 乃从桥 尊皇太后曰太皇太后 盖有 因而成易 边郡又有长史 不亲边吏 见夏后启母石 曰 介胄之士不拜 莽奏起明堂 辟雍 灵台 汉恨诛不加 则有木生为人状 哀帝建平三年 王莽以为京司市师 一夫大呼 田间将二十万之众军於历城 《鲁故》二十五卷 造盐 铁 酒榷之利以佐用度 石君家破 东与郁立师 北与匈奴 西与劫国 南与车师接 百姓不与焉 献十五年 乃可称 猪崇宫室 其为法令也 何以得专主约 其卫君乎 上临候禹 火生地中 鲁严公夫人杀世子 时州郡击破之 关东饑旱数年 后韩信破齐欲自立为齐王 厥咎奥 能者养以之福 民年七十以上若不满十岁有罪当刑者 夫过而不改 常为康居画计 上方郊祠甘 泉泰畤 汾阴后土 盎告归
高考数学知识点总结之数列公式及结论总结

2019高考数学知识点总结之数列公式及结论总结一、高中数列基本公式:1、一般数列的通项an与前n项和Sn的关系:an=2、等差数列的通项公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1为首项、ak为已知的第k项) 当d0时,an是关于n的一次式;当d=0时,an是一个常数。
3、等差数列的前n项和公式:Sn=Sn=Sn=当d0时,Sn是关于n的二次式且常数项为0;当d=0时(a10),Sn=na1是关于n的正比例式。
4、等比数列的通项公式:an= a1 qn-1 an= ak qn-k(其中a1为首项、ak为已知的第k项,an0)5、等比数列的前n项和公式:当q=1时,Sn=n a1 (是关于n 的正比例式);当q1时,Sn=Sn=三、高中数学中有关等差、等比数列的结论1、等差数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m - S3m、仍为等差数列。
2、等差数列{an}中,若m+n=p+q,则3、等比数列{an}中,若m+n=p+q,则4、等比数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m - S3m、仍为等比数列。
5、两个等差数列{an}与{bn}的和差的数列{an+bn}、{an-bn}仍为等差数列。
6、两个等比数列{an}与{bn}的积、商、倒数组成的数列{anbn}、仍为等比数列。
7、等差数列{an}的任意等距离的项构成的数列仍为等差数列。
8、等比数列{an}的任意等距离的项构成的数列仍为等比数列。
9、三个数成等差数列的设法:a-d,a,a+d;四个数成等差的设法:a-3d,a-d,,a+d,a+3d10、三个数成等比数列的设法:a/q,a,aq;四个数成等比的错误设法:a/q3,a/q,aq,aq3 (为什么?)11、{an}为等差数列,则(c0)是等比数列。
12、{bn}(bn0)是等比数列,则{logcbn} (c0且c1) 是等差数列。
2019高考数学数列:数列的概念与简单表示法

数列的概念与简单表示法【考点梳理】1.数列的定义按照一定顺序排列着的一列数称为数列,数列中的每一个数叫做这个数列的项. 2.数列的分类3.数列的表示法数列有三种表示法,它们分别是列表法、图象法和解析法. 4.数列的通项公式如果数列{a n }的第n 项与序号n 之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式.5.数列的递推公式如果已知数列的第1项(或前几项),且从第二项(或某一项)开始的任一项a n 与它的前一项a n -1(或前几项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式.6.a n 与S n 的关系若数列{a n }的前n 项和为S n ,通项公式为a n ,则a n =⎩⎪⎨⎪⎧S 1,n =,S n -S n -1,n【考点突破】考点一、由a n 与S n 的关系求通项a n【例1】(1)已知数列{a n }的前n 项和为S n =14n 2+23n +3,则数列{a n }的通项公式a n =________.(2)设数列{a n }的前n 项和S n =n 2,则a 8的值为( )A .15B .16C .49D .64 [答案] (1) ⎩⎪⎨⎪⎧4712,n =1,12n +512,n ≥2 (2) A[解析] (1)当n =1时,a 1=S 1=4712,当n ≥2时,a n =S n -S n -1=14n 2+23n +3-⎣⎢⎡⎦⎥⎤14(n -1)2+23(n -1)+3 =12n +512, 经检验a 1=4712不满足上式所以这个数列的通项公式为a n=⎩⎪⎨⎪⎧4712,n =1,12n +512,n ≥2.(2)当n =8时,a 8=S 8-S 7=82-72=15. 【类题通法】 已知S n 求a n 的3步骤 (1)先利用a 1=S 1求出a 1;(2)用n -1替换S n 中的n 得到一个新的关系,利用a n =S n -S n -1(n ≥2)便可求出当n ≥2时a n 的表达式;(3)注意检验n =1时的表达式是否可以与n ≥2的表达式合并. 【对点训练】1.已知数列{a n }的前n 项和S n =2n 2-3n ,则数列{a n }的通项公式a n =________. [答案] 4n -5[解析] a 1=S 1=2-3=-1,当n ≥2时,a n =S n -S n -1=(2n 2-3n )-[2(n -1)2-3(n -1)]=4n -5, 由于a 1也适合上式,∴a n =4n -5.2.数列{a n }的前n 项和S n =2n 2-3n (n ∈N *),若p -q =5,则a p -a q =( ) A .10 B .15 C .-5 D .20[答案] D[解析] 当n ≥2时,a n =S n -S n -1=2n 2-3n -[2(n -1)2-3(n -1)]=4n -5,当n =1时,a 1=S 1=-1,符合上式,所以a n =4n -5,所以a p -a q =4(p -q )=20.【例2】(1)若数列{a n }的前n 项和S n =23a n +13,则{a n }的通项公式a n =________.(2)设S n 是数列{a n }的前n 项和,且a 1=-1,a n +1=S n S n +1,则S n =________. [答案] (1) (-2)n -1(2) -1n[解析] (1)由S n =23a n +13,得当n ≥2时,S n -1=23a n -1+13,两式相减,得a n =23a n -23a n -1,∴当n ≥2时,a n =-2a n -1,即a na n -1=-2. 又n =1时,S 1=a 1=23a 1+13,a 1=1,∴a n =(-2)n -1.(2)∵a n +1=S n +1-S n ,a n +1=S n S n +1, ∴S n +1-S n =S n S n +1. ∵S n ≠0,∴1S n -1S n +1=1,即1S n +1-1S n=-1.又1S 1=-1,∴⎩⎨⎧⎭⎬⎫1S n 是首项为-1,公差为-1的等差数列. ∴1S n =-1+(n -1)×(-1)=-n ,∴S n =-1n.【类题通法】S n 与a n 关系问题的求解思路根据所求结果的不同要求,将问题向不同的两个方向转化. (1)利用a n =S n -S n -1(n ≥2)转化为只含S n ,S n -1的关系式,再求解. (2)利用S n -S n -1=a n (n ≥2)转化为只含a n ,a n -1的关系式,再求解. 【对点训练】1.已知数列{a n }的前n 项和为S n ,若S n =2a n -4(n ∈N *),则a n =( ) A .2n +1B .2nC .2n -1D .2n -2[答案] A[解析] 由S n =2a n -4可得S n -1=2a n -1-4(n ≥2),两式相减可得a n =2a n -2a n -1(n ≥2),即a n =2a n -1(n ≥2).又a 1=2a 1-4,a 1=4,所以数列{a n }是以4为首项,2为公比的等比数列,则a n =4×2n -1=2n +1,故选A.2.已知数列{a n }的前n 项和为S n ,且a 1=2,a n +1=S n +1(n ∈N *),则S 5=( ) A .31 B .42 C .37 D .47 [答案] D[解析] 由题意,得S n +1-S n =S n +1(n ∈N *),∴S n +1+1=2(S n +1)(n ∈N *),故数列{S n +1}为等比数列,其首项为3,公比为2,则S 5+1=3×24,所以S 5=47.考点二、由递推公式求数列的通项公式【例3】在数列{a n }中,(1)若a 1=2,a n +1=a n +3n +2,则数列{a n }的通项公式a n =________. (2)若a 1=1,na n -1=(n +1)a n (n ≥2),则数列{a n }的通项公式a n =________. (3)若a 1=1,a n +1=2a n +3,则通项公式a n =________. [答案] (1) 32n 2+n 2 (2) 2n +1 (3) 2n +1-3[解析] (1)由题意,得a n +1-a n =3n +2,所以a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1 =(3n -1)+(3n -4)+…+5+2=n (3n +1)2.即a n =32n 2+n 2.(2)由na n -1=(n +1)a n (n ≥2),得a n a n -1=nn +1(n ≥2). 所以a n =a n a n -1·a n -1a n -2·a n -2a n -3·…·a 3a 2·a 2a 1·a 1 =nn +1·n -1n ·n -2n -1·…·34·23·1 =2n +1,又a 1也满足上式. 所以a n =2n +1. (3)设递推公式a n +1=2a n +3可以转化为a n +1+t =2(a n +t ),即a n +1=2a n +t ,解得t =3. 故a n +1+3=2(a n +3).令b n =a n +3,则b 1=a 1+3=4,且b n +1b n =a n +1+3a n +3=2. 所以{b n }是以4为首项,2为公比的等比数列. ∴b n =4·2n -1=2n +1,∴a n =2n +1-3.【类题通法】1.形如a n +1=a n +f (n )的递推关系式利用累加法求通项公式,特别注意能消去多少项,保留多少项.2.形如a n +1=a n ·f (n )的递推关系式可化为a n +1a n=f (n )的形式,可用累乘法,也可用a n =a n a n -1·a n -1a n -2·…·a 2a 1·a 1代入求出通项. 3.形如a n +1=pa n +q 的递推关系式可以化为(a n +1+x )=p (a n +x )的形式,构成新的等比数列,求出通项公式,求变量x 是关键. 【对点训练】 在数列{a n }中, (1)若a 1=3,a n +1=a n +1n (n +1),则通项公式a n =________.(2)若a 1=1,a n +1=2na n ,则通项公式a n =________.(3)若a 1=1,a n +1=3a n +2,则数列{a n }的通项公式a n =________. [答案] (1) 4-1n(2) ()122n n - (3) 2·3n -1-1[解析] (1)原递推公式可化为a n +1=a n +1n -1n +1,则a 2=a 1+11-12,a 3=a 2+12-13,a 4=a 3+13-14,…,a n -1=a n -2+1n -2-1n -1,a n =a n -1+1n -1-1n,以上(n -1)个式子的等号两端分别相加得,a n =a 1+1-1n,故a n =4-1n.(2)由a n +1=2na n ,得a n a n -1=2n -1(n ≥2), 所以a n =a n a n -1·a n -1a n -2·…·a 2a 1·a 1 =2n -1·2n -2·…·2·1=21+2+3+…+(n -1)=()122n n -.又a 1=1适合上式,故a n =()122n n -.(3)∵a n +1=3a n +2,∴a n +1+1=3(a n +1), ∴a n +1+1a n +1=3, ∴数列{a n +1}为等比数列,公比q =3, 又a 1+1=2,∴a n +1=2·3n -1,∴a n =2·3n -1-1.考点三、数列的性质及应用【例3】已知数列{a n }满足a n +1=11-a n ,若a 1=12,则a 2 018=( )A .-1B .12 C .1 D .2[答案] D[解析] 由a 1=12,a n +1=11-a n ,得a 2=11-a 1=2,a 3=11-a 2=-1,a 4=11-a 3=12,a 5=11-a 4=2,…, 于是可知数列{a n }是以3为周期的周期数列,因此a 2 018=a 3×672+2=a 2=2. 【类题通法】解决数列周期性问题的方法先根据已知条件求出数列的前几项,确定数列的周期,再根据周期性求值. 【对点训练】已知数列{a n }满足a 1=1,a n +1=a 2n -2a n +1(n ∈N *),则a 2 018=________. [答案] 0[解析] ∵a 1=1,∴a 2=(a 1-1)2=0,a 3=(a 2-1)2=1,a 4=(a 3-1)2=0,…,可知数列{a n }是以2为周期的数列,∴a 2 018=a 2=0.。
2019年高三数学第二章数列的极限知识点总结word版本 (2页)

2019年高三数学第二章数列的极限知识点总结word版本
本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!
== 本文为word格式,下载后可方便编辑和修改! ==
高三数学第二章数列的极限知识点总结
极限,是指无限趋近于一个固定的数值。
以下是数学网为大家整理的高三数学第二章数列的极限知识点,希望可以解决您所遇到的相关问题,加油,数学网一直陪伴您。
1、连续、间断点以及间断点的分类:判断间断点类型的基础是求函数在间断点处的左右极限;
2、可导和可微,分段函数在分段点处的导数或可导性,一律通过导数定义直接计算或检验存在的定义是极限存在;
3、渐近线,(垂直、水平或斜渐近线);
4、多元函数积分学,二重极限的讨论计算难度较大,常考查证明极限不存在.
下面我们重点讲一下数列极限的典型方法.
重要题型及点拨
1.求数列极限
求数列极限可以归纳为以下三种形式.
★抽象数列求极限
这类题一般以选择题的形式出现, 因此可以通过举反例来排除. 此外,也可以按照定义、基本性质及运算法则直接验证.
★求具体数列的极限,可以参考以下几种方法:
a.利用单调有界必收敛准则求数列极限.
首先,用数学归纳法或不等式的放缩法判断数列的单调性和有界性,进而确定极限存在性;其次,通过递推关系中取极限,解方程, 从而得到数列的极限值.
b.利用函数极限求数列极限。
高考数学数列知识点归纳

高考数学中的数列知识点主要包括以下内容:
1. 数列的定义与性质:
-数列的概念:数列是按照一定规律排列的数的集合。
-项数与前n项和:第n项表示数列中的第n个数,前n项和表示数列前n项的和。
-通项公式与递推公式:通项公式是指可以通过给定的项数n来直接计算某一项的公式,递推公式则是通过前一项或前几项来计算下一项的公式。
2. 常见数列:
-等差数列:数列中的每个数都与其前一个数之差相等。
-等比数列:数列中的每个数都与其前一个数之比相等。
-斐波那契数列:数列中的每个数都是前两个数之和,即第三项开始满足an = an-1 + an-2。
3. 数列的性质和运算:
-数列的有界性:数列可以是有界的(上有界、下有界)、无界的或发散的。
-数列的单调性:数列可以是递增的、递减的或保持不变。
-数列的极限:数列可能有极限(有限或无穷)或不存在极限。
4. 数列的求和:
-等差数列的求和公式:利用等差数列的性质,可以得到等差数列前n项和的通用公式。
-等比数列的求和公式:利用等比数列的性质,可以得到等比数列前n项和的通用公式。
5. 数列的应用:
-常见问题的建模与解决:通过将实际问题转化为数列的形式,利用数列的性质和公式来解决问题。
以上是高考数学中与数列相关的主要知识点。
掌握这些知识点,能够帮助学生在解答数列相关题目时更加熟练和准确。
需要注意的是,除了理论知识,还需要进行大量的练习和实践,以提高对数列概念的理解和应用能力。
2019年高考数学理真题分项解析:专题06 数列

专题六 数列1.【2019高考新课标Ⅰ,理9】记n S 为等差数列{}n a 的前n 项和.已知4505S a ==,,则 A. 25n a n =- B. 310n a n =- C. 228n S n n =-D. 2122n S n n =- 【答案】A 【解析】 【分析】等差数列通项公式与前n 项和公式.本题还可用排除,对B ,55a =,44(72)1002S -+==-≠,排除B ,对C,245540,25850105S a S S ==-=⨯-⨯-=≠,排除C.对D,24554150,5250522S a S S ==-=⨯-⨯-=≠,排除D ,故选A .【详解】由题知,41514430245d S a a a d ⎧=+⨯⨯=⎪⎨⎪=+=⎩,解得132a d =-⎧⎨=⎩,∴25n a n =-,故选A . 【点睛】本题主要考查等差数列通项公式与前n 项和公式,渗透方程思想与数学计算等素养.利用等差数列通项公式与前n 项公式即可列出关于首项与公差的方程,解出首项与公差,在适当计算即可做了判断.2.【2019高考新课标Ⅲ,理5】已知各项均为正数的等比数列{}n a 的前4项和为15,且53134a a a =+,则3a =( )A. 16B. 8C. 4D. 2【答案】C 【解析】 【分析】利用方程思想列出关于1,a q 的方程组,求出1,a q ,再利用通项公式即可求得3a 的值.【详解】设正数的等比数列{a n }的公比为q ,则2311114211115,34a a q a q a q a q a q a ⎧+++=⎨=+⎩, 解得11,2a q =⎧⎨=⎩,2314a a q ∴==,故选C .【点睛】本题利用方程思想求解数列基本量,熟练应用公式是解题的关键。
3.【2019高考浙江卷,10】设,a b ∈R ,数列{}n a 中,211,n n a a a a b +==+,N n *∈ ,则( )A. 当101,102b a => B. 当101,104b a => C. 当102,10b a =-> D. 当104,10b a =->【答案】A 【解析】 【分析】对于B ,令214x λ-+=0,得λ12=,取112a =,得到当b 14=时,a 10<10;对于C ,令x 2﹣λ﹣2=0,得λ=2或λ=﹣1,取a 1=2,得到当b =﹣2时,a 10<10;对于D ,令x 2﹣λ﹣4=0,得1172λ±=,取11172a +=,得到当b =﹣4时,a 10<10;对于A ,221122a a =+≥,223113()224a a =++≥,4224319117()14216216a a a =+++≥+=>,当n ≥4时,1n n a a +=a n 12na+>11322+=,由此推导出104a a >(32)6,从而a 1072964>>10. 【详解】对于B ,令214x λ-+=0,得λ12=, 取112a =,∴2111022n a a ==L ,,<, ∴当b 14=时,a 10<10,故B 错误;对于C ,令x 2﹣λ﹣2=0,得λ=2或λ=﹣1, 取a 1=2,∴a 2=2,…,a n =2<10, ∴当b =﹣2时,a 10<10,故C 错误; 对于D ,令x 2﹣λ﹣4=0,得1172λ±=, 取11172a +=,∴21172a +=,…,1172n a <+=10, ∴当b =﹣4时,a 10<10,故D 错误;对于A ,221122a a =+≥,223113()224a a =++≥, 4224319117()14216216a a a =+++≥+=>,a n +1﹣a n >0,{a n }递增,当n ≥4时,1n na a +=a n 12na +>11322+=, ∴5445109323232a a a a aa ⎧⎪⎪⎪⎪⎪⎪⋅⎨⎪⋅⎪⋅⎪⎪⎪⎪⎩>>>,∴104a a >(32)6,∴a 1072964>>10.故A 正确. 故选A .【点睛】遇到此类问题,不少考生会一筹莫展.利用函数方程思想,通过研究函数的不动点,进一步讨论a 的可能取值,利用“排除法”求解.4. 【2019高考新课标Ⅰ,理14】记S n 为等比数列{a n }的前n 项和.若214613a a a ==,,则S 5=____________. 【答案】1213. 【解析】 【分析】本题根据已知条件,列出关于等比数列公比q方程,应用等比数列的求和公式,计算得到5S .题目的难度不大,注重了基础知识、基本计算能力的考查. 【详解】设等比数列的公比为q ,由已知21461,3a a a ==,所以32511(),33q q =又0q ≠, 所以3,q =所以55151(13)(1)12131133a q S q --===--. 【点睛】准确计算,是解答此类问题的基本要求.本题由于涉及幂的乘方运算、繁分式分式计算,部分考生易出现运算错误.5.【2019高考新课标Ⅲ,理14】记S n 为等差数列{a n }的前n 项和,12103a a a =≠,,则105S S =___________. 【答案】4. 【解析】 【分析】根据已知求出1a 和d 的关系,再结合等差数列前n 项和公式求得结果. 【详解】因213a a =,所以113a d a +=,即12a d =,所以105S S =11111091010024542552a d a a a d ⨯+==⨯+. 【点睛】本题主要考查等差数列的性质、基本量的计算.渗透了数学运算素养.使用转化思想得出答案.6.【2019高考北京卷,理10】设等差数列{a n }的前n 项和为S n ,若a 2=−3,S 5=−10,则a 5=__________,S n 的最小值为__________. 【答案】 (1). 0. (2). -10. 【解析】 【分析】首先确定公差,然后由通项公式可得5a 的值,进一步研究数列中正项、负项的变化规律,得到和的最小值. 【详解】等差数列{}n a 中,53510S a ==-,得322,3a a =-=-,公差321d a a =-=,5320a a d =+=, 由等差数列{}n a 的性质得5n ≤时,0n a ≤,6n ≥时,n a 大于0,所以n S 的最小值为4S 或5S ,即为10-. 【点睛】本题考查等差数列的通项公式、求和公式、等差数列的性质,难度不大,注重重要知识、基础知识、基本运算能力的考查.7.【2019高考江苏卷,8】已知数列*{}()n a n ∈N 是等差数列,n S 是其前n 项和.若25890,27a a a S +==,则8S 的值是_____.【答案】16. 【解析】 【分析】由题意首先求得首项和公差,然后求解前8项和即可.【详解】由题意可得:()()()25811191470989272a a a a d a d a d S a d ⎧+=++++=⎪⎨⨯=+=⎪⎩, 解得:152a d =-⎧⎨=⎩,则8187840282162S a d ⨯=+=-+⨯=. 【点睛】等差数列、等比数列的基本计算问题,是高考必考内容,解题过程中要注意应用函数方程思想,灵活应用通项公式、求和公式等,构建方程(组),如本题,从已知出发,构建1,a d 的方程组.8.【2019高考新课标Ⅱ,理19】已知数列{a n }和{b n }满足a 1=1,b 1=0,1434n n n a a b +-=+ ,1434n n n b b a +-=-.(1)证明:{a n +b n }是等比数列,{a n –b n }是等差数列; (2)求{a n }和{b n }的通项公式.【答案】(1)见解析;(2)1122n n a n =+-,1122n n b n =-+。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第 1 页 共 4 页
2019年全国高考数学数列部分知识点考查分析
一、等差数列及其性质
1.(2019年全国Ⅰ理)记n S 为等差数列{}n a 的前n 项和.已知40S =,55a =,则( )
A .25n a n =-
B .310n a n =-
C .228n S n n =-
D .21
22n S n n =-
2.(2019年全国Ⅲ理)记n S 为等差数列{}n a 的前n 项和,若10a ≠,213a a =,则105S
S = .
3.(2019年全国Ⅲ文)记n S 为等差数列{}n a 的前n 项和.若35a =,713a =,则10S = . 4.(2019年北京理)设等差数列{}n a 的前n 项和为n S ,若23a =-,510S =-,则5a = ,n S 的最小值为 .
5.(2019年江苏)已知数列*{}()n a n N ∈是等差数列,n S 是其前n 项和.若2580a a a +=,927S =,则8S 的值是 .
二、等比数列及其性质
1.(2019年全国Ⅲ文理)已知各项均为正数的等比数列{}n a 的前4项和为15,且53134a a a =+,则3(a = ) A .16 B .8 C .4 D .2
2.(2019年全国Ⅰ文)记n S 为等比数列{}n a 的前n 项和,若11a =,33
4
S =,则4S = .
3.(2019年上海秋)已知数列{}n a 前n 项和为n S ,且满足2n n S a +=,则5S =______.
三、数列综合
1.(2019年全国Ⅰ文)记n S 为等差数列{}n a 的前n 项和,已知95S a =-. (1)若34a =,求{}n a 的通项公式;
(2)若10a >,求使得n n S a 的n 的取值范围. 2.(2019年全国Ⅱ理)已知数列{}n a 和{}n b 满足11a =,10b =,1434n n n a a b +=-+,1434n n n b b a +=--.
(1)证明:{}n n a b +是等比数列,{}n n a b -是等差数列; (2)求{}n a 和{}n b 的通项公式. 3.(2019年全国Ⅱ文)已知{}n a 的各项均为正数的等比数列,12a =,32216a a =+. (1)求{}n a 的通项公式;
(2)设2log n n b a =,求数列{}n b 的前n 项和. 4.(2019年北京文)设{}n a 是等差数列,110a =-,且210a +,38a +,46a +成等比数列. (Ⅰ)求{}n a 的通项公式;
(Ⅱ)记{}n a 的前n 项和为n S ,求n S 的最小值. 5.(2019年天津文)设{}n a 是等差数列,{}n b 是等比数列,公比大于0.已知113a b ==,23b a =,3243b a =+.
(Ⅰ)求{}n a 和{}n b 的通项公式;
(Ⅱ)设数列{}n c 满足,
21,,n n n c b n ⎧⎪
=⎨⋅⎪⎩为奇数为偶数求*112222()n n a c a c a c n N ++⋯+∈.
6.(2019年天津理)设{}n a 是等差数列,{}n b 是等比数列.已知14a =,16b =,2222b a =-,3324b a =+.
(Ⅰ)求{}n a 和{}n b 的通项公式;
(Ⅱ)设数列{}n c 满足11c =,11,22,
,2,
k k n k
k n c b n +⎧<<⎪=⎨=⎪⎩其中*k N ∈. ()i 求数列22{(1)}n n a c -的通项公式;
()ii 求2*1
()n
i i i a c n N =∈∑.
7.(2019年浙江)设等差数列{}n a 的前n 项和为n S ,34a =,43a S =.数列{}n b 满足:对每个*n N ∈,n n S b +,1n n S b ++,2n n S b ++成等比数列. (Ⅰ)求数列{}n a ,{}n b 的通项公式;
(Ⅱ)记n c =
*n N ∈
,证明:12n c c c ++⋯+<,*n N ∈. 8.(2019年上海春)已知数列{}n a ,13a =,前n 项和为n S . (1)若{}n a 为等差数列,且415a =,求n S ;
(2)若{}n a 为等比数列,且lim 12n n S →∞
<,求公比q 的取值范围.
四、数列创新
1.(2019年浙江)设a ,b R ∈,数列{}n a 满足1a a =,2
1n n
a a
b +=+,*n N ∈,则( ) A .当12b =时,1010a > B .当1
4
b =时,1010a >
C .当2b =-时,1010a >
D .当4b =-时,1010a > 2.(2019年北京理)已知数列{}n a ,从中选取第1i 项、第2i 项、⋯、第m i 项12()m i i i <<⋯<,若12m i i i a a a <<⋯<,则称新数列1i a ,2i a ,⋯,m i a 为{}n a 的长度为m 的递增子列.规定:
数列{}n a 的任意一项都是{}n a 的长度为1的递增子列.
(Ⅰ)写出数列1,8,3,7,5,6,9的一个长度为4的递增子列;
(Ⅱ)已知数列{}n a 的长度为p 的递增子列的末项的最小值为0m a ,长度为q 的递增子列的末项的最小值为0n a .若p q <,求证:00m n a a <;
(Ⅲ)设无穷数列{}n a 的各项均为正整数,且任意两项均不相等.若{}n a 的长度为s 的递增子列末项的最小值为21s -,且长度为s 末项为21s -的递增子列恰有12s -个(1s =,2,)⋯,求数列{}n a 的通项公式. 3.(2019年江苏)定义首项为1且公比为正数的等比数列为“M -数列”. (1)已知等比数列*{}()n a n N ∈满足:245a a a =,321440a a a -+=,求证:数列{}n a 为“M -数列”;
(2)已知数列*{}()n b n N ∈满足:11b =,1122
n n n S b b +=-
,其中n S 为数列{}n b 的前n 项和. ①求数列{}n b 的通项公式;
②设m 为正整数,若存在“M -数列” *{}()n c n N ∈,对任意正整数k ,当k m 时,都有1k k k c b c +成立,求m 的最大值.
第 3 页 共 4 页
4.(2019年上海春)已知等差数列{}n a 的公差(0d ∈,]π,数列{}n b 满足sin()n n b a =,集合{}
*|,n S x x b n N ==∈. (1)若120,3
a d π
==,求集合S ; (2)若12
a π
=
,求d 使得集合S 恰好有两个元素; (3)若集合S 恰好有三个元素:n T n b b +=,T 是不超过7的正整数,求T 的所有可能的值.
21.(2019年上海秋)
数列{}n a 有100项,1a a =,对任意[]2,100n ∈,存在[],1,1n i a a d i n =+∈-,若k
a 与前n 项中某一项相等,则称k a 具有性质P . (1)若11a =,求4a 可能的值;
(2)若{}n a 不为等差数列,求证:{}n a 中存在满足性质P ;
(3)若{}n a 中恰有三项具有性质P ,这三项和为C ,使用,,a d c 表示12100a a a ++
+.。