高中数学易错点

合集下载

高一数学常见易错点整理

高一数学常见易错点整理

高一数学常见易错点整理一、基础知识错误在高一数学学习的初期,学生常常会犯一些基础知识错误。

比如,对于数的性质、大小关系、运算规则等方面的理解可能不够准确。

这种错误容易导致后续计算和解题过程中出现问题。

为了提高学生的基础知识水平,以下是一些常见易错点的整理:1.1 负数的运算规则高一学生常常容易混淆负数的运算规则,例如,两个负数相乘是否为正数、两个负数相加是否为负数等。

正确理解负数的运算规则对于高一学生来说非常重要。

1.2 百分数和小数之间的转化百分数和小数之间的转化是高一数学中的重要知识点。

学生需要掌握百分数和小数之间的转换方法,以及在实际问题中的应用。

1.3 幂和指数的运算规则幂和指数的运算规则是高一数学中的基础内容,但也是学生容易出错的地方。

学生需要熟练掌握幂和指数的运算规则,尤其是在复合运算中的应用。

二、代数运算错误代数运算是高一数学中的关键内容,学生在进行代数运算时常常会犯一些易错点。

以下是一些常见的代数运算错误及解决方法:2.1 符号取反错误在运算过程中,学生常常容易忽略符号的取反操作,导致最终结果错误。

在进行代数运算时,学生需要注意各项前面的符号取反操作。

2.2 未合并同类项学生在进行多项式的运算时,常常忘记合并同类项,导致结果不正确。

学生需要注意同类项的特点,合并同类项后再进行运算。

2.3 未注意运算顺序学生在进行多项式的运算时,常常忽略运算顺序,直接进行加减乘除运算,导致结果错误。

学生需要根据运算法则正确确定运算顺序,并注意运算的优先级。

三、方程解题错误方程解题是高一数学中的重要内容,学生在方程解题中常常会犯一些易错点。

以下是一些常见的方程解题错误及解决方法:3.1 忘记检查解的合法性学生在解方程时,常常忘记检查解的合法性,直接将解代入方程,导致出现错误。

学生需要在解方程后,将解代入原方程检验是否满足,以确保解的正确性。

3.2 漏解或多解学生在解方程时,常常漏解或多解的情况。

学生需要仔细分析方程的特点,注意解的个数,并在解题过程中进行验证。

数学错题分析

数学错题分析

高中学生数学易错题选析(一)张家炎 阮晓锋【易错点1】忽视“空集是任何集合的子集,是任何非空集合的真子集”而导致思维不全面。

例1.设{}2|8150A x x x =-+=,{}|10B x ax =-=,若A ∩B=B ,求实数a 组成的集合的子集有多少个?【易错点分析】由此题条件A ∩B=B 易知B A ⊆,但在本题解答中极易因忽视“空集是任何集合的子集”这种特殊情况而造成漏掉a=0的值。

解析:由集合A 化简得{}3,5A =,又由A ∩B=B 知B A ⊆,故有: (Ⅰ)当B φ=时,即方程10ax -=无解,此时a=0符合已知条件 (Ⅱ)当B φ≠时,即方程10ax -=的解为3或5,代入得13a =或15。

综上满足条件的a 组成的集合为110,,35⎧⎫⎨⎬⎩⎭,故其子集共有328=个。

【练1】已知集合{}2|40A x xx =+=、(){}22|2110B x x a x a =+++-=,若B A ⊆,则实数a 的取值范围是 。

答案:1a =或1a ≤-。

【易错点2】求解函数值域或单调区间易忽视定义域优先的原则。

例2.已知()22214yx ++=,求22x y +的取值范围【易错点分析】此题学生很容易想到利用消元的思路将问题转化为关于x 的函数求值域,但极易忽视()22214yx ++=这个条件中x 、y 的约束关系而造成扩大定义域范围致出错。

解析:由于()22214yx ++=得(x+2)2=1-42y≤1,∴-3≤x ≤-1从而x 2+y 2=-3x 2-16x-122283383x =-+⎛⎫+ ⎪⎝⎭因此当x=-1时x 2+y 2有最小值1, 当x=-38时,x 2+y 2有最大值328。

故x 2+y 2的取值范围是[1,328]说明:此外本题还可通过三角换元转化为三角最值求解【练2】⑴若动点(x,y )在曲线22214xy b+=()0b >上变化,则22x y +的最大值为( )(A )()()2404424b b b b ⎧+<<⎪⎨⎪≥⎩(B )()()2402422b b b b ⎧+<<⎪⎨⎪≥⎩(C )244b +(D )2b答案:A⑵是否存在实数a ,使函数()()2log a fx a x x=-在[]2,4上是增函数?若存在,试求出a 的取值范围;若不存在,请说明理由。

高中数学50个易错点汇总,高中生都避开这些坑!

高中数学50个易错点汇总,高中生都避开这些坑!

高中数学50个易错点汇总,高中生都避开这些坑!一、集合与函数1.进行集合的交、并、补运算时,不要忘了全集和空集的特殊情况,不要忘记了借助数轴和文氏图进行求解。

2.在应用条件时,易忽略是空集的情况3.你会用补集的思想解决有关问题吗?4.简单命题与复合命题有什么区别?四种命题之间的相互关系是什么?如何判断充分与必要条件?5.你知道“否命题”与“命题的否定形式”的区别。

6.求解与函数有关的问题易忽略定义域优先的原则。

7.判断函数奇偶性时,易忽略检验函数定义域是否关于原点对称。

8.求一个函数的解析式和一个函数的反函数时,易忽略标注该函数的定义域。

9.原函数在区间[-a,a]上单调递增,则一定存在反函数,且反函数也单调递增;但一个函数存在反函数,此函数不一定单调。

10.如何应用函数的单调性与奇偶性解题?①比较函数值的大小;②解抽象函数不等式;③求参数的范围恒成立问题。

这几种基本应用你掌握了吗?11.解对数函数问题时,你注意到真数与底数的限制条件了吗?真数大于零,底数大于零且不等于1字母底数还需讨论二、不等式12.利用均值不等式求最值时,你是否注意到:“一正;二定;三等”。

13.解分式不等式应注意什么问题?用“根轴法”解整式分式不等式的注意事项是什么?14.解含参数不等式的通法是“定义域为前提,函数的单调性为基础,分类讨论是关键”,注意解完之后要写上:“综上,原不等式的解集是……”。

15.在求不等式的解集、定义域及值域时,其结果一定要用集合或区间表示;不能用不等式表示。

三、数列16.解决一些等比数列的前项和问题,你注意到要对公比及两种情况进行讨论了吗?17.在“已知,求”的问题中,你在利用公式时注意到了吗?需要验证,有些题目通项是分段函数。

18.数列单调性问题能否等同于对应函数的单调性问题?数列是特殊函数,但其定义域中的值不是连续的。

19.应用数学归纳法一要注意步骤齐全,二要注意从到过程中,先假设时成立,再结合一些数学方法用来证明时也成立。

高二数学学习中常见的易错点分析

高二数学学习中常见的易错点分析

高二数学学习中常见的易错点分析数学作为一门理科学科,对于高中生来说,是一门既重要又难以掌握的学科。

在高二阶段,学生们将进一步深入学习数学,掌握更为复杂的概念和技巧。

然而,由于抽象性、逻辑性以及复杂性等特点,高二数学中常常出现一些难以理解和易错的知识点。

本文将对高二数学学习中常见的易错点进行分析,并提供相应的解决方法。

1. 函数的概念和性质函数作为高中数学的基础,是整个数学学习的重点之一。

其中,函数的定义、定义域、值域和图像是学生们容易混淆的概念。

常常出现的错误有:没有准确给出函数的定义,混淆定义域和值域,错误地绘制函数的图像等。

解决这些问题的方法是要求学生弄清楚函数的定义,理解定义域和值域的概念,并通过大量的练习加深对函数图像的认识。

2. 三角函数及其应用高二数学中的另一个重要内容是三角函数及其应用。

学生们常常在求解三角函数的正弦、余弦和正切值时出现错误,特别是在角度的弧度制和度数制之间转换时容易混淆。

此外,在解三角方程时,学生们也容易忽略基本解和一般解之间的联系,从而导致错误的答案。

为避免这些错误,学生们需要理解三角函数的定义和性质,熟练掌握角度的弧度制和度数制的转换规则,并通过反复练习提高解三角方程的能力。

3. 导数与极值问题微积分在高二数学中是一个重要的部分,涉及到导数与极值问题。

学生们常常在求导时出现规则运用错误、计算失误或符号混淆等问题。

同时,在极值问题中,学生们容易忽略关键条件或未进行全面的讨论。

为了避免这些错误,学生们需要熟练掌握导数的计算方法,清楚掌握求导规则,并通过多种题型的练习提高解极值问题的能力。

4. 组合与排列组合与排列是高二数学中的重要内容,也是学生们容易出错的地方。

常见的错误有:计算错位问题、计算排列组合数时顺序颠倒、未正确应用公式等。

为了解决这些问题,学生们需要深入理解组合与排列的概念和性质,掌握计算方法和公式,并通过大量的例题来提高应用能力。

5. 平面向量与立体几何平面向量和立体几何是高二数学中的重点难点内容,涉及到向量的基本运算、点与直线的位置关系、平面和空间几何等。

高中数学易错点盘点

高中数学易错点盘点

高中数学易错点盘点考试临近,对于考点知识都清楚了?结合练习整理一下自己解题时的易错点以便考试时能做到尽可能少错。

以下是我整理的易错点供同学们参考,重要的是找出自身的易错点。

1. 集合中元素的特征认识不明元素具有确定性,无序性,互异性三种性质。

要看清楚集合的描述对象,到底是数集,还是点集,是求x范围呢,还是求y的范围。

2. 遗忘空集A包含于B时求集合A,容易遗漏A可以为空集的情况。

比如A 为(x-1)的平方>0,x=1时A为空集,也属于B.求子集或真子集个数时容易漏掉空集。

3. 忽视集合中元素的互异性一般检验的时候要检查元素是否互异。

4. 充分必要条件颠倒致误必要不充分和充分不必要的区别——:比如p可以推出q,而q 推不出p,就是充分不必要条件,p不可以推出q,而q却可以推出p,就是必要不充分。

还容易错的是语序错误,例如,“p的充分条件是q”等价于“q 是p的充分条件”,q推出p,很多学生一看到充分条件就“前推后”,导致错误,要注意题目的措辞。

5. 对含有量词的命题否定不当比如说“至少有一个”的否定是“一个都没有”,“至少有两个”的否定是“至多有一个”,“至多有三个”的否定是“至少有四个”。

诸如此类。

6. 求函数定义域忽视细节致误根号内≥0,真数大于零,分母不为零,比较容易出错的是忽视分母。

7. 函数单调性的判断错误这个就得注意函数的符号,比如f(-x)的单调性与原函数相反。

8. 函数奇偶性判定中常见的两种错误判定主要注意:1,定义域必须关于原点对称,2,注意奇偶函数的判断,化简要小心负号。

9. 求解函数值域时忽视自变量的取值范围总之有关函数的题,不管是要你求什么,第一步先看定义域,这个是关键。

如果用了换元法求函数值域,一定要先求出“新元”的范围。

10. 抽象函数中推理不严谨致误注意赋值法的运用,一般赋0,±1,-x,1/x等。

11. 函数,方程和不等式的转换不熟练二次函数令y为0→方程→看题目要求是什么→要么方程大于小于0,要么△=b的平方-4ac大于等于小于0种种。

高中数学错集锦典型错误与纠正方法

高中数学错集锦典型错误与纠正方法

高中数学错集锦典型错误与纠正方法在高中数学的学习过程中,同学们常常会出现各种各样的错误。

这些错误如果不及时加以整理和纠正,很可能会影响到后续的学习效果和成绩提升。

本文将对高中数学中常见的典型错误进行归纳总结,并提出相应的纠正方法,希望能对同学们有所帮助。

一、概念理解不清导致的错误1、函数概念很多同学在理解函数的定义时,容易忽略定义域、值域和对应关系这三个关键要素。

例如,对于函数$f(x) =\sqrt{x}$,如果不明确其定义域为$x\geq 0$,就可能在计算中出现错误。

纠正方法:重新回顾函数的定义,通过大量的实例练习来加深对定义域、值域和对应关系的理解。

2、导数概念在学习导数时,部分同学会将导数的几何意义和物理意义混淆,或者对导数的运算规则掌握不熟练。

纠正方法:结合图像直观理解导数的几何意义,通过实际问题理解导数的物理意义。

同时,加强对导数运算公式的记忆和练习。

二、运算错误1、四则运算在进行加减乘除运算时,粗心大意导致的符号错误、漏项等问题较为常见。

比如在多项式乘法中,忘记乘以某项或者符号出错。

纠正方法:养成认真细致的计算习惯,做完题目后进行仔细检查。

2、分式运算分式化简和求值时,通分、约分错误以及忽略分母不为零的条件是常见的错误。

纠正方法:熟练掌握分式的基本性质和运算规则,做题时时刻注意分母的取值范围。

三、逻辑推理错误1、证明题在证明数学定理和结论时,推理过程不严谨,缺乏必要的步骤或者使用未证明的结论作为依据。

纠正方法:学习逻辑推理的方法和技巧,按照严格的证明步骤进行推理,多做相关的练习来提高证明能力。

2、数学归纳法使用数学归纳法时,归纳假设运用不当或者归纳步骤不完整。

纠正方法:深入理解数学归纳法的原理和步骤,通过典型例题掌握正确的使用方法。

四、图形问题错误1、立体几何在解决立体几何问题时,空间想象力不足,对图形的位置关系判断错误,或者计算体积、表面积时公式使用错误。

纠正方法:通过制作模型、观察实物等方式增强空间想象力,牢记立体几何的相关公式和定理。

高中数学易错题大汇总及其解析

高中数学易错题大汇总及其解析

【目录】一、导言二、易错题汇总及解析1. 二次函数的基本性质及应用2. 数列与数学归纳法3. 平面向量的运算及应用4. 不定积分与定积分5. 空间几何与三视图6. 概率统计及应用三、总结与展望【正文】一、导言数学作为一门基础学科,对培养学生的逻辑思维能力、数学建模能力和问题解决能力有着举足轻重的作用。

而在高中阶段,数学的难度也相应提升,很多学生容易在一些常见的易错题上犯错。

本文将对高中数学易错题进行大汇总,并给出详细的解析,希望能够帮助同学们更好地理解和掌握这些知识点。

二、易错题汇总及解析1. 二次函数的基本性质及应用(1)易错题案例:已知二次函数f(x)=ax²+bx+c的图象经过点(1,2),且在点(2,1)处的切线斜率为3,求a、b、c的值。

解析:首先利用已知条件列方程,得到三元一次方程组。

然后利用切线的斜率性质,得到关于a和b的关系式。

最后代入已知条件解方程组即可求得a、b、c的值。

(2)易错题案例:已知函数f(x)=ax²+bx+c的图象经过点a、b、c,求a、b、c的值。

解析:利用函数过定点的性质列方程,再利用函数在定点处的斜率为求得a、b、c的值。

2. 数列与数学归纳法(1)易错题案例:已知等差数列{an}的前n项和为Sn=n²,求an。

解析:利用等差数列的前n项和公式列方程,然后利用数学归纳法求得an的表达式。

(2)易错题案例:已知{an}是等比数列,且a₁=2,a₃=18,求通项公式。

解析:利用等比数列的通项公式列方程,再利用已知条件求出通项公式的值。

3. 平面向量的运算及应用(1)易错题案例:已知向量a=3i+4j,b=5i-2j,求a与b的夹角。

解析:利用向量的夹角公式求出a与b的夹角。

(2)易错题案例:已知平面向量a=2i+j,b=i-2j,求2a-3b的模。

解析:利用向量的运算规则,先求出2a和3b,然后再求它们的差向量,最后求出差向量的模。

高中数学37个易错点

高中数学37个易错点

易错点1遗忘空集致误由于空集是任何非空集合的真子集,因此B=∅时也满足B⊆A.解含有参数的集合问题时,要特别注意当参数在某个范围内取值时所给的集合可能是空集这种情况.易错点2忽视集合元素的三性致误集合中的元素具有确定性、无序性、互异性,集合元素的三性中互异性对解题的影响最大,特别是带有字母参数的集合,实际上就隐含着对字母参数的一些要求.易错点3混淆命题的否定与否命题命题的“否定”与命题的“否命题”是两个不同的概念,命题p的否定是否定命题所作的判断,而“否命题”是对“若p,则q”形式的命题而言,既要否定条件也要否定结论.易错点4充分条件、必要条件颠倒致误对于两个条件A,B,如果A⇒B成立,则A是B的充分条件,B是A的必要条件;如果B⇒A成立,则A是B的必要条件,B是A的充分条件;如果A⇔B,则A,B互为充分必要条件.解题时最容易出错的就是颠倒了充分性与必要性,所以在解决这类问题时一定要根据充分条件和必要条件的概念作出准确的判断.易错点5“或”“且”“非”理解不准致误命题p∨q真⇔p真或q真,命题p∨q假⇔p假且q假(概括为一真即真);命题p∧q真⇔p 真且q真,命题p∧q假⇔p假或q假(概括为一假即假);綈p真⇔p假,綈p假⇔p真(概括为一真一假).求参数取值范围的题目,也可以把“或”“且”“非”与集合的“并”“交”“补”对应起来进行理解,通过集合的运算求解.易错点6函数的单调区间理解不准致误在研究函数问题时要时时刻刻想到“函数的图像”,学会从函数图像上去分析问题、寻找解决问题的方法.对于函数的几个不同的单调递增(减)区间,切忌使用并集,只要指明这几个区间是该函数的单调递增(减)区间即可.易错点7判断函数的奇偶性忽略定义域致误判断函数的奇偶性,首先要考虑函数的定义域,一个函数具备奇偶性的必要条件是这个函数的定义域关于原点对称,如果不具备这个条件,函数一定是非奇非偶函数.易错点8函数零点定理使用不当致误如果函数y=f(x)在区间[a,b]上的图像是一条连续的曲线,并且有f(a)f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,但f(a)f(b)>0时,不能否定函数y=f(x)在(a,b)内有零点.函数的零点有“变号零点”和“不变号零点”,对于“不变号零点”函数的零点定理是“无能为力”的,在解决函数的零点问题时要注意这个问题.易错点9导数的几何意义不明致误函数在一点处的导数值是函数图像在该点处的切线的斜率.但在许多问题中,往往是要解决过函数图像外的一点向函数图像上引切线的问题,解决这类问题的基本思想是设出切点坐标,根据导数的几何意义写出切线方程.然后根据题目中给出的其他条件列方程(组)求解.因此解题中要分清是“在某点处的切线”,还是“过某点的切线”.易错点10导数与极值关系不清致误f′(x0)=0只是可导函数f(x)在x0处取得极值的必要条件,即必须有这个条件,但只有这个条件还不够,还要考虑是否满足f′(x)在x0两侧异号.另外,已知极值点求参数时要进行检验.易错点11三角函数的单调性判断致误对于函数y=Asin(ωx+φ)的单调性,当ω>0时,由于内层函数u=ωx+φ是单调递增的,所以该函数的单调性和y=sin x的单调性相同,故可完全按照函数y=sin x的单调区间解决;但当ω<0时,内层函数u=ωx+φ是单调递减的,此时该函数的单调性和函数y=sin x的单调性相反,就不能再按照函数y=sin x的单调性解决,一般是根据三角函数的奇偶性将内层函数的系数变为正数后再加以解决.对于带有绝对值的三角函数应该根据图像,从直观上进行判断.易错点12图像变换方向把握不准致误函数y=Asin(ωx+φ)(其中A>0,ω>0,x∈R)的图像可看作由下面的方法得到:(1)把正弦曲线上的所有点向左(当φ>0时)或向右(当φ<0时)平行移动|φ|个单位长度;(2)再把所得各点横坐标缩短(当ω>1时)或伸长(当0<ω<1时)到原来的1ω倍(纵坐标不变);(3)再把所得各点的纵坐标伸长(当A>1时)或缩短(当0<A<1时)到原来的A倍(横坐标不变).即先作相位变换,再作周期变换,最后作振幅变换.若先作周期变换,再作相位变换,应左(右)平移|φ|ω个单位.另外注意根据φ的符号判定平移的方向.易错点13忽视零向量致误零向量是向量中最特殊的向量,规定零向量的长度为0,其方向是任意的,零向量与任意向量都共线.它在向量中的位置正如实数中0的位置一样,但有了它容易引起一些混淆,稍微考虑不到就会出错,考生应给予足够的重视.易错点14向量夹角范围不清致误解题时要全面考虑问题.数学试题中往往隐含着一些容易被考生所忽视的因素,能不能在解题时把这些因素考虑到,是解题成功的关键,如当a·b<0时,a与b的夹角不一定为钝角,要注意θ=π的情况.易错点15an与Sn关系不清致误在数列问题中,数列的通项an与其前n项和Sn之间存在下列关系:an=S1,n=1,Sn-Sn-1,n≥2.这个关系对任意数列都是成立的,但要注意的是这个关系式是分段的,在n=1和n≥2时这个关系式具有完全不同的表现形式,这也是解题中经常出错的一个地方,在使用这个关系式时要牢牢记住其“分段”的特点.易错点16对等差、等比数列的定义、性质理解错误等差数列的前n项和在公差不为零时是关于n的常数项为零的二次函数;一般地,有结论“若数列{an}的前n项和Sn=an2+bn+c(a,b,c∈R),则数列{an}为等差数列的充要条件是c=0”;在等差数列中,Sm,S2m-Sm,S3m-S2m(m∈N*)是等差数列.易错点17数列中的最值错误数列问题中其通项公式、前n项和公式都是关于正整数n的函数,要善于从函数的观点认识和理解数列问题.数列的通项an与前n项和Sn的关系是高考的命题重点,解题时要注意把n=1和n≥2分开讨论,再看能不能统一.在关于正整数n的二次函数中其取最值的点要根据正整数距离二次函数的对称轴的远近而定.易错点18错位相减求和时项数处理不当致误错位相减求和法的适用条件:数列是由一个等差数列和一个等比数列对应项的乘积所组成的,求其前n项和.基本方法是设这个和式为Sn,在这个和式两端同时乘以等比数列的公比得到另一个和式,这两个和式错一位相减,就把问题转化为以求一个等比数列的前n项和或前n-1项和为主的求和问题.这里最容易出现问题的就是错位相减后对剩余项的处理.易错点19不等式性质应用不当致误在使用不等式的基本性质进行推理论证时一定要准确,特别是不等式两端同时乘以或同时除以一个数式、两个不等式相乘、一个不等式两端同时n次方时,一定要注意使其能够这样做的条件,如果忽视了不等式性质成立的前提条件就会出现错误.易错点20忽视基本不等式应用条件致误利用基本不等式a+b≥2ab以及变式ab≤a+b22等求函数的最值时,务必注意a,b为正数(或a,b非负),ab或a+b其中之一应是定值,特别要注意等号成立的条件.对形如y=ax+bx(a,b>0)的函数,在应用基本不等式求函数最值时,一定要注意ax,bx的符号,必要时要进行分类讨论,另外要注意自变量x的取值范围,在此范围内等号能否取到.易错点21解含参数的不等式时分类讨论不当致误解形如ax2+bx+c>0的不等式时,首先要考虑对x2的系数进行分类讨论.当a=0时,这个不等式是一次不等式,解的时候还要对b,c进一步分类讨论;当a≠0且Δ>0时,不等式可化为a(x-x1)(x-x2)>0,其中x1,x2(x1<x2)是方程ax2+bx+c=0的两个根,如果a>0,则不等式的解集是(-∞,x1)∪(x2,+∞),如果a<0,则不等式的解集是(x1,x2).易错点22不等式恒成立问题处理不当致误解决不等式恒成立问题的常规求法是:借助相应函数的单调性求解,其中的主要方法有数形结合法、变量分离法、主元法.通过最值产生结论.应注意恒成立与存在性问题的区别,如对任意x∈[a,b]都有f(x)≤g(x)成立,即f(x)-g(x)≤0的恒成立问题,但对存在x∈[a,b],使f(x)≤g(x)成立,则为存在性问题,即f(x)min≤g(x)max,应特别注意两函数中的最大值与最小值的关系.易错点23忽视三视图中的实、虚线致误三视图是根据正投影原理进行绘制,严格按照“长对正,高平齐,宽相等”的规则去画,若相邻两物体的表面相交,表面的交线是它们的原分界线,且分界线和可视轮廓线都用实线画出,不可见的轮廓线用虚线画出,这一点很容易疏忽.易错点24面积、体积的计算转化不灵活致误面积、体积的计算既需要学生有扎实的基础知识,又要用到一些重要的思想方法,是高考考查的重要题型.因此要熟练掌握以下几种常用的思想方法.(1)还台为锥的思想:这是处理台体时常用的思想方法.(2)割补法:求不规则图形面积或几何体体积时常用.(3)等积变换法:充分利用三棱锥的任意一个面都可作为底面的特点,灵活求解三棱锥的体积.(4)截面法:尤其是关于旋转体及与旋转体有关的组合问题,常画出轴截面进行分析求解.易错点25随意推广平面几何中的结论致误平面几何中有些概念和性质,推广到空间中不一定成立.例如“过直线外一点只能作一条直线与已知直线垂直”“垂直于同一条直线的两条直线平行”等性质在空间中就不成立.易错点26对折叠与展开问题认识不清致误折叠与展开是立体几何中的常用思想方法,此类问题注意折叠或展开过程中平面图形与空间图形中的变量与不变量,不仅要注意哪些变了,哪些没变,还要注意位置关系的变化.易错点27空间点、线、面位置关系不清致误关于空间点、线、面位置关系的组合判断类试题是高考全面考查考生对空间位置关系的判定和性质掌握程度的理想题型,历来受到命题者的青睐,解决这类问题的基本思路有两个:一是逐个寻找反例作出否定的判断或逐个进行逻辑证明作出肯定的判断;二是结合长方体模型或实际空间位置(如课桌、教室)作出判断,但要注意定理应用准确、考虑问题全面细致.易错点28忽视斜率不存在致误在解决两直线平行的相关问题时,若利用l1∥l2⇔k1=k2来求解,则要注意其前提条件是两直线不重合且斜率存在.如果忽略k1,k2不存在的情况,就会导致错解.这类问题也可以利用如下的结论求解,即直线l1:A1x+B1y+C1=0与l2:A2x+B2y+C2=0平行的必要条件是A1B2-A2B1=0,在求出具体数值后代入检验,看看两条直线是不是重合从而确定问题的答案.对于解决两直线垂直的相关问题时也有类似的情况.利用l1⊥l2⇔k1·k2=-1时,要注意其前提条件是k1与k2必须同时存在.利用直线l1:A1x+B1y+C1=0与l2:A2x+B2y+C2=0垂直的充要条件是A1A2+B1B2=0,就可以避免讨论.易错点29忽视零截距致误解决有关直线的截距问题时应注意两点:一是求解时一定不要忽略截距为零这种特殊情况;二是要明确截距为零的直线不能写成截距式.因此解决这类问题时要进行分类讨论,不要漏掉截距为零时的情况.易错点30忽视圆锥曲线定义中的条件致误利用椭圆、双曲线的定义解题时,要注意两种曲线的定义形式及其限制条件.如在双曲线的定义中,有两点是缺一不可的:其一,绝对值;其二,2a<|F1F2|.如果不满足第一个条件,动点到两定点的距离之差为常数,而不是差的绝对值为常数,那么其轨迹只能是双曲线的一支.易错点31忽视特殊性、误判直线与圆锥曲线位置关系过定点的直线与双曲线的位置关系问题,基本的解决思路有两个:一是利用一元二次方程的判别式来确定,但一定要注意,利用判别式的前提是二次项系数不为零,当二次项系数为零时,直线与双曲线的渐近线平行(或重合),也就是直线与双曲线最多只有一个交点;二是利用数形结合的思想,画出图形,根据图形判断直线和双曲线各种位置关系.在直线与圆锥曲线的位置关系中,抛物线和双曲线都有特殊情况,在解题时要注意,不要忘记其特殊性.易错点32两个计数原理不清致误分步加法计数原理与分类乘法计数原理是解决排列组合问题最基本的原理,故理解“分类用加、分步用乘”是解决排列组合问题的前提,在解题时,要分析计数对象的本质特征与形成过程,按照事件的结果来分类,按照事件的发生过程来分步,然后应用两个基本原理解决.对于较复杂的问题既要用到分类加法计数原理,又要用到分步乘法计数原理,一般是先分类,每一类中再分步,注意分类、分步时要不重复、不遗漏,对于“至少、至多”型问题除了可以用分类方法处理外,还可以用间接法处理.易错点33排列、组合不分致误为了简化问题和表达方便,解题时应将具有实际意义的排列组合问题符号化、数学化,建立适当的模型,再应用相关知识解决.建立模型的关键是判断所求问题是排列问题还是组合问题,其依据主要是看元素的组成有没有顺序性,有顺序性的是排列问题,无顺序性的是组合问题.易错点34混淆项的系数与二项式系数致误在二项式(a+b)n的展开式中,其通项Tr+1=Crnan-rbr是指展开式的第r+1项,因此展开式中第1,2,3,…,n项的二项式系数分别是C0n,C1n,C2n,…,Cn-1n,而不是C1n,C2n,C3n,…,Cnn.而项的系数是二项式系数与其他数字因数的积.易错点35循环结束的条件判断不准致误控制循环结构的是计数变量和累加变量的变化规律以及循环结束的条件.在解答这类题目时首先要弄清楚这两个变量的变化规律,其次要看清楚循环结束的条件,这个条件由输出要求所决定,看清楚是满足条件时结束还是不满足条件时结束.易错点36条件结构对条件的判断不准致误条件结构的程序框图中对判断条件的分类是逐级进行的,其中没有遗漏也没有重复,在解题时对判断条件要仔细辨别,看清楚条件和函数的对应关系,对条件中的数值不要漏掉也不要重复了端点值.易错点37复数的概念不清致误对于复数a+bi(a,b∈R),a叫做实部,b叫做虚部;当且仅当b=0时,复数a+bi(a,b∈R)是实数a;当b≠0时,复数z=a+bi叫做虚数;当a=0且b≠0时,z=bi叫做纯虚数.解决复数概念类试题要仔细区分以上概念差别,防止出错.另外,i2=-1是实现实数与虚数互化的桥梁,要适时进行转化,解题时极易丢掉“-”而出错.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档