2013年中考数学模拟卷

合集下载

备考2023年中考数学一轮复习-函数_一次函数_一次函数的性质-单选题专训及答案

备考2023年中考数学一轮复习-函数_一次函数_一次函数的性质-单选题专训及答案

备考2023年中考数学一轮复习-函数_一次函数_一次函数的性质-单选题专训及答案一次函数的性质单选题专训1、(2013徐州.中考真卷) 下列函数中,y随x的增大而减小的函数是()A . y=2x+8B . y=﹣2+4xC . y=﹣2x+8D . y=4x2、(2016无锡.中考真卷) 一次函数y= x﹣b与y= x﹣1的图象之间的距离等于3,则b的值为()A . ﹣2或4B . 2或﹣4C . 4或﹣6D . ﹣4或63、(2017红桥.中考模拟) 如图,点E(x1, y1),F(x2, y2)在抛物线y=ax2+bx+c上,且在该抛物线对称轴的同侧(点E在点F的左侧),过点E、F分别作x轴的垂线,分别交x轴于点B、D,交直线y=2ax+b于点A、C.设S为四边形ABDC 的面积.则下列关系正确的是()A . S=y2+y1B . S=y2+2y1C . S=y2﹣y1D . S=y2﹣2y14、(2018吉林.中考模拟) 下列函数中,当x>0时,y随x的增大而减小的是()A . y=B . y=-C . y=3x+2D . y=x2-35、(2018肇源.中考模拟) 对于函数y=-2x+1,下列结论正确的是( )A . 它的图象必经过点(-1,2)B . 它的图象经过第一、二、三象限C . 当x >1时,y<0D . y的值随x值的增大而增大6、(2019通州.中考模拟) 已知直线y=﹣x+2与直线y=2x+6相交于点A,与x轴分别交于B,C两点,若点D(a,a+1)落在△ABC内部(不含边界),则a 的取值范围是()A . ﹣3<a<2B .C .D . ﹣2<a<27、(2019.中考模拟) 如图,直线l是一次函数y=kx+b的图象,若点A(3,m)在直线l上,则m的值是()A . ﹣5B .C .D . 78、(2013湖州.中考真卷) 若正比例函数y=kx的图象经过点(1,2),则k的值为()A . ﹣B . ﹣2C .D . 29、(2018莱芜.中考模拟) 记max{x,y}表示x,y两个数中的最大值,例如max{1,2}=2,max{7,7}=7,则关于x的一次函数y=max{2x,x+1}可以表示为()A . y=2xB . y=x+1C .D .10、(2018平顶山.中考模拟) 已知一次函数y=(k+1)x+b的图象与x轴负半轴相交,且函数值y随自变量x的增大而增大,则k,b的取值情况为()A . k>−1,b>0B . k>−1,b<0C . k<−1,b>0D . k<−1,b<011、(2019鄂州.中考真卷) 在同一平面直角坐标系中,函数与(k 为常数,且k≠0)的图象大致是()A .B .C .D .12、(2017怀化.中考真卷) 一次函数y=﹣2x+m的图象经过点P(﹣2,3),且与x 轴、y轴分别交于点A、B,则△AOB的面积是()A .B .C . 4D . 813、(2018潮州.中考模拟) 下列说法错误的是()A . 抛物线y=﹣x2+x的开口向下B . 两点之间线段最短C . 角平分线上的点到角两边的距离相等D . 一次函数y=﹣x+1的函数值随自变量的增大而增大14、(2018天河.中考模拟) 若y=kx-4的函数值y随x的增大而增大,则k的值可能是下列的()A . -2B . -C . 0D . 215、(2017福田.中考模拟) 一次函数y=kx+b图象如图所示,则关于x的不等式kx+b<0的解集为()A . x<-5B . x>-5C . x≥-5D . x≤-516、(2017柳州.中考模拟) 已知一次函数y=﹣x+2,当1≤x≤4时,y的最大值是()A . 2B .C .D . ﹣617、(2017百色.中考真卷) 以坐标原点O为圆心,作半径为2的圆,若直线y=﹣x+b 与⊙O相交,则b的取值范围是()A . 0≤b<2B . ﹣2C . ﹣2 2D . ﹣2 <b<218、(2014崇左.中考真卷) 若点A(2,4)在函数y=kx的图象上,则下列各点在此函数图象上的是()A . (1,2)B . (﹣2,﹣1)C . (﹣1,2)D . (2,﹣4)19、(2016达州.中考真卷) 下列说法中不正确的是()A . 函数y=2x的图象经过原点B . 函数y= 的图象位于第一、三象限C . 函数y=3x﹣1的图象不经过第二象限 D . 函数y=﹣的值随x的值的增大而增大20、(2018遵义.中考模拟) 已知点A(x1, y1)、B(x2, y2)是直线y=-x+2上不同的两点,且x1<x2,若m=(x1-x2)(y1-y2)则()A . m=0B . m<0C . m>0D . 不能比较21、(2011遵义.中考真卷) 若一次函数y=(2﹣m)x﹣2的函数值y随x的增大而减小,则m的取值范围是()A . m<0B . m>0C . m<2D . m>222、(2019陕西.中考模拟) 若一次函数y=(a+1)x+a的图象过第一、三、四象限,则二次函数()A . 有最大值B . 有最大值﹣C . 有最小值D . 有最小值﹣23、(2017渭滨.中考模拟) 一次函数y= x﹣b与y= x﹣1的图象之间的距离等于3,则b的值为()A . ﹣2或4B . 2或﹣4C . 4或﹣6D . ﹣4或624、(2019越秀.中考模拟) 在一次函数中,若y随x的增大而增大,则它的图象不经过第()象限.A . 一B . 二C . 三D . 四25、(2020新北.中考模拟) 一次函数y=kx+b的图像经过点(-1,2),则k-b的值是()A . -1B . 2C . 1D . -226、(2020太仓.中考模拟) 若点Α 在一次函数y=3x+b的图象上,且3m-n>2,则b的取值范围为()A . b>2B . b>-2C . b<2D . b<-227、(2020无锡.中考模拟) 已知一次函数经过P(a,b),则的值为( )A . 1B .C . 2D .28、(2020天门.中考真卷) 对于一次函数,下列说法不正确的是()A . 图象经过点 B . 图象与x轴交于点 C . 图象不经过第四象限 D . 当时,29、如图,在平面直角坐标系xOy中,直线经过点A,作AB⊥x轴于点B,将△ABO绕点B顺时针旋转60°得到△BCD,若点B的坐标为(2,0),则点C的坐标为()A . (5,)B . (5,1)C . (6,)D . (6,1)30、在平面直角坐标系中,对于点,若,则称点为“同号点”.下列函数的图象不存在“同号点”的是()A .B .C .D .一次函数的性质单选题答案1.答案:C2.答案:D3.答案:C4.答案:A5.答案:C6.答案:B7.答案:C8.答案:D9.答案:D10.答案:A11.答案:C12.答案:B13.答案:D14.答案:D15.答案:A16.答案:B17.答案:D18.答案:A19.答案:D20.答案:B21.答案:D22.答案:B23.答案:D24.答案:D25.答案:26.答案:27.答案:28.答案:29.答案:30.答案:。

备考2023年中考数学一轮复习-图形的性质_四边形_矩形的判定-解答题专训及答案

备考2023年中考数学一轮复习-图形的性质_四边形_矩形的判定-解答题专训及答案

备考2023年中考数学一轮复习-图形的性质_四边形_矩形的判定-解答题专训及答案矩形的判定解答题专训1、(2013南通.中考真卷) 如图,AB=AC,AD=AE,DE=BC,且∠BAD=∠CAE.求证:四边形BCDE是矩形.2、(2017梁溪.中考模拟) 如图,在△ABC中,AB=AC,D为BC的中点,AE∥BC,DE∥AB.求证:四边形ADCE为矩形.3、(2019乐清.中考模拟) 如图,在□ABCD中,DE平分∠ADB,交AB于E,A。

BF 平分∠CBD,交CD于点F.(1)求证:△ADB≌△CBF(2)当AD与BD满足什么数量关系时,四边形DEBF是矩形?请说明理由。

4、(2017绍兴.中考模拟) 如图,在矩形ABCO中,点O为坐标原点,点A、C在坐标轴上,点B的坐标为(7,3),点D在y轴上,且D与A关于原点对称,直线与x轴交于点E,点F(m,-4)在直线上, 连结DE、DF.(1)请直接写出F的坐标和△DEF的形状;答:、.(2)若点P在矩形ABCO的边BC上,过F作FG⊥x轴于G.若线段EF上有一点M,使∠MDF=∠GFE,请求出M的坐标;(3)若直线EF上有一点Q,使△APQ是等腰直角三角形,请直接写出满足条件的Q 的坐标.答:.5、(2017浙江.中考模拟) 如图,在平面直角坐标系xOy中,二次函数y=﹣+bx+c的图象经过点A(1,0),且当x=0和x=5时所对应的函数值相等.一次函数y=﹣x+3与二次函数y=﹣+bx+c的图象分别交于B,C两点,点B在第一象限.(1)求二次函数y=﹣+bx+c的表达式;(2)连接AB,求AB的长;(3)连接AC,M是线段AC的中点,将点B绕点M旋转180°得到点N,连接AN,CN,判断四边形ABCN的形状,并证明你的结论.6、(2016鄞州.中考模拟) 如图,在平行四边形ABCD中,对角线AC,BD并于点O,经过点O的直线交AB于E,交CD于F.(1)求证:OE=OF.(2)连接DE,BF,则EF与BD满足什么条件时,四边形DEBF是矩形?请说明理由.7、(2018漳州.中考模拟) 求证:对角线相等的平行四边形是矩形.(要求:画出图形,写出已知和求证,并给予证明)8、(2015厦门.中考真卷) 如图,在平面直角坐标系中,点A(2,n),B(m,n)(m>2),D(p,q)(q<n),点B,D在直线y=x+1上.四边形ABCD的对角线AC,BD相交于点E,且AB∥CD,CD=4,BE=DE,△AEB的面积是2.求证:四边形ABCD是矩形.9、(2019茂南.中考模拟) 如图,适当地改变方格图中的平行四边形的部分位置,并保持面积不变,先使其为矩形,再将矩形向下平移3个格后,继续改变其中某些部分的位置并保持面积不变,使其成为菱形.说明在变化过程中所运用的图形变换.10、(2019合肥.中考模拟) 合肥地铁一号线与地铁二号线在A站交汇,且两条地铁线互相垂直如图所示,学校P到地铁一号线B站的距离PB=2km,到地铁二号线C站的距离PC为4km,PB与一号线的夹角为30°,PC与二号线的夹角为60°.求学校P到A站的距离(结果保留根号)11、(2019三明.中考模拟) 菱形ABCD的对角线交于O点,DE∥AC,CE∥BD,求证:四边形OCED是矩形.12、(2020藤.中考模拟) 如图,点E是平行四边形ABCD的边DC延长线上一点,连接AC、AE、BE,AE交BC于F,CE=DC,CF=EF.求证:四边形ABEC是矩形.13、(2020柳州.中考模拟) 求证:四个角都相等的四边形是矩形.14、(2020镇江.中考模拟) 已知:如图,在△ABC中,AB=AC,AD是△ABC的中线,AN为△ABC的外角∠CAM的平分线,CE∥AD,交AN于点E.求证:四边形ADCE 是矩形.15、(2022宿迁.中考模拟) 如图,△ABC中,点D是边AC的中点,过D作直线PQ∥BC,∠BCA的平分线交直线PQ于点E,点G是△ABC的边BC延长线上的点,∠ACG的平分线交直线PQ于点F.求证:四边形AECF是矩形.矩形的判定解答题答案1.答案:2.答案:3.答案:4.答案:5.答案:6.答案:7.答案:8.答案:9.答案:10.答案:11.答案:12.答案:13.答案:14.答案:15.答案:。

备考2023年中考数学二轮复习-数与式_有理数_有理数大小比较-单选题专训及答案

备考2023年中考数学二轮复习-数与式_有理数_有理数大小比较-单选题专训及答案

备考2023年中考数学二轮复习-数与式_有理数_有理数大小比较-单选题专训及答案有理数大小比较单选题专训1、(2013淮安.中考真卷) 在﹣1,0,﹣2,1四个数中,最小的数是()A . ﹣1B . 0C . ﹣2D . 12、(2016淮安.中考真卷) 下列四个数中最大的数是()A . ﹣2B . ﹣1C . 0D . 13、(2017红桥.中考模拟) 有理数a在数轴上的位置如图所示,则关于a,﹣a,1的大小关系表示正确的是()A . a<1<﹣aB . a<﹣a<1C . 1<﹣a<aD . ﹣a<a<14、(2017石家庄.中考模拟) 已知a、b、c三个数在数轴上对应点的位置如图所示,下列几个判断:①a<c<b;②﹣a<b;③a+b>0;④c﹣a<0中,错误的个数是()个.A . 1B . 2C . 3D . 45、(2017枣阳.中考模拟) 下列各数中,最小的数是()A . 5B . ﹣3C . 0D . 26、(2017于洪.中考模拟) 下列各数中,最小的数是()A . ﹣4B . 3C . 0D . ﹣27、(2018朝阳.中考模拟) 在0,-2,,1这四个数中,最小的数是()A . 0B . -2C .D . 18、(2017冠.中考模拟) 下列四个选项中,计算结果最大的是()A . (﹣6)0B . |﹣6|C . ﹣6D .9、(2015丽水.中考真卷) 在数﹣3,﹣2,0,3中,大小在﹣1和2之间的数是()A . ﹣3B . ﹣2C . 0D . 310、(2016台州.中考真卷) 下列各数中,比﹣2小的数是()A . ﹣3B . ﹣1C . 0D . 211、(2015三明.中考真卷) 下列各数中,绝对值最大的数是()A . 5B . -3C . 0D . -212、(2019泰山.中考模拟) 下列实数中,最大的数是()A . -|-4|B . 0C . 1D . -(-3)13、(2017开封.中考模拟) 下列四个数中,最小的数是()A . 0B . 1C . ﹣D . ﹣114、(2016孝感.中考真卷) 下列各数中,最小的数是()A . 5B . ﹣3C . 0D . 215、(2015随州.中考真卷) 在﹣1,﹣2,0,1四个数中最小的数是()A . ﹣1B . -2C . 0D . -116、(2017衡阳.中考模拟) 在3,﹣1,0,﹣2这四个数中,最大的数是()A . 0B . 6C . ﹣2D . 317、(2013湛江.中考真卷) 下列各数中,最小的数是()A . 1B .C . 0D . ﹣118、(2012桂林.中考真卷) 下面是几个城市某年一月份的平均温度,其中平均温度最低的城市是()A . 桂林11.2℃B . 广州13.5℃C . 北京﹣4.8℃D . 南京3.4℃19、(2013桂林.中考真卷) 在 0,2,﹣2,这四个数中,最大的数是()A . 2B . 0C . ﹣2D .20、(2016成都.中考真卷) 在﹣3,﹣1,1,3四个数中,比﹣2小的数是()A . ﹣3B . ﹣1C . 1D . 321、(2019毕节.中考模拟) 四个实数0、、、2中,最小的数是A . 0B .C .D . 222、(2020贵州.中考模拟) 下列各组数中不相等的是( ).A . (-2)2与-22B . (-2)2与22C . (-2)3与-23D . |-2|3与|-23|23、(2020滨州.中考模拟) 下列数中,倒数最小的是()A . -2B . 0.5C . -3D . 124、(2021开江.中考模拟) 下列各数中,数值最大的是()A . 5:9B . 55%C . 0.555D .25、(2021芜湖.中考模拟) 在3,﹣3,0,﹣2这四个数中,最小的数是()A . 3B . ﹣3C . 0D . ﹣226、(2021永嘉.中考模拟) 数0,﹣2,,2中最小的是()A . 0B . ﹣2C .D . 227、(2021成华.中考模拟) 在﹣3,3,0,﹣1四个数中,最小的数是()A . ﹣3B . 3C . 0D . ﹣128、在5,0、-3、-5四个数中最小的数是()A . 5B . 0C . -3D . -529、在﹣1、8、0、﹣2这四个数中,最小的数是()A . ﹣1B . 8C . 0D . ﹣230、在0.5,0,-1,-2这四个数中,相反数的倒数最大的数是()A . 0.5B . 0C . -1D . -2有理数大小比较单选题答案1.答案:C2.答案:D3.答案:A4.答案:C5.答案:B6.答案:A7.答案:B8.答案:B9.答案:C10.答案:A11.答案:A12.答案:D13.答案:D14.答案:B15.答案:B16.答案:D17.答案:D18.答案:C19.答案:A20.答案:A21.答案:C22.答案:A23.答案:24.答案:25.答案:26.答案:27.答案:28.答案:29.答案:30.答案:。

江苏省淮安市中考数学模拟卷解析版

江苏省淮安市中考数学模拟卷解析版

江苏省淮安市中考数学模拟卷一、单选题(每题3分,共24分)1.在-3,0.3,0,-这四个数中,绝对值最小的数是()A.-3B.0.3C.0D.-2.今年的春晚继续拓展中央广播电视总台全媒体融合传播优势,刷新了跨媒体传播纪录.数据显示,春晚跨媒体受众总规模达12.72亿人.其中数据12.72亿用科学记数法表示为()A.B.C.D.3.下列计算正确的是()A.B.C.D.4.在下面的四个几何体中,主视图是三角形的是()A.圆锥B.正方体C.三棱柱D.圆柱5.下列事件中,属于必然事件的是()A.任意抛掷一只纸杯,杯口朝下B.a为实数,|a|<0C.打开电视,正在播放动画片D.任选三角形的两边,其差小于第三边6.下面命题中,为真命题的是()A.内错角相等B.一组对边平行,另一组对边相等的四边形是平行四边形C.弧长相等的弧是等弧D.平行于同一直线的两直线平行7.如图,矩形ABCD中,AB=8cm,AD=6cm,EF是对角线BD的垂直平分线,则EF的长为()cm.A.B.5C.D.88.我国古代数学著作《增删算法统宗》中有这么一首诗:“今有布绢三十疋,共卖价钞五百七.四疋绢价九十贯,三疋布价该五十.欲问绢布各几何?价钞各该分端的.若人算得无差讹,堪把芳名题郡邑.”其大意是:今有绵与布30疋,卖得570贯钱,4疋绢价90贯,3疋布价50贯,欲问绢布有多少,分开把价算,若人算得无差错,你的名字城镇到处扬.设有绢疋,布疋,依据题意可列方程组为()A.B.C.D.二、填空题(每题3分,共24分)9.分解因式:a2﹣ab=;10.某校数学课外兴趣小组10个同学数学素养测试成绩如图所示,则该兴趣小组10个同学的数学素养测试成绩的众数是分.11.分式方程的解是.12.已知圆锥的底面半径为5cm,母线长为13cm,则这个圆锥的侧面积是.13.已知三角形两边长分别是2和9,第三边的长为一元二次方程x2-14x+48=0的一个根,则这个三角形的周长为14.正比例函数和反比例函数的图象都经过点A(-1, 2),若,则x的取值范围是.15.如图,已知⊙O是⊙ABD的外接圆,AB是⊙O的直径,CD是⊙O的弦,⊙ABD=56°,则⊙BCD 等于.16.如图,点D为边长是的等边⊙ABC边AB左侧一动点,不与点A,B重合的动点D在运动过程中始终保持⊙ADB=120°不变,则四边形ADBC的面积S的最大值是.三、解答题(共11题,共102分)17.计算或解方程(1).(2)(配方法)18.先化简,再求值:(1,其中x=3.19.如图,四边形ABCD是平行四边形,E为BC的中点,连接AE交DC延长线于点F.求证:DC=CF.20.某校要加强中小学生作业、睡眠、手机、读物、体质管理.数学社团成员采用随机抽样的方法,抽取了七年级若干名学生,对他们一周内平均每天的睡眠时间t(单位:h)进行了调查,将数据整理后得到下列不完整的统计图表和扇形统计图:请根据图表信息回答下列问题:(1)本次被抽取的七年级学生共有名;(2)统计图表中,m=;(3)扇形统计图中,C组所在扇形的圆心角的度数是°;(4)请估计该校800名七年级学生中睡眠不足7小时的人数.21.现有三张完全相同的不透明卡片。

中考数学:二次函数的推理计算与证明综合问题真题+模拟(原卷版北京专用)

中考数学:二次函数的推理计算与证明综合问题真题+模拟(原卷版北京专用)

中考数学二次函数的推理计算与证明综合问题【方法归纳】据北京历年中考题型来推测,二次函数的压轴题目多数会以参数的形式出现的,难度之大,可想而知。

在解决含参数二次函数的题目时,通常先观察解析式,看能否求出对称轴,图像与坐标轴交点能否用参数来表示?根据设出点的坐标可求出相应的线段,然后观察题意,再考虑我们所学过的知识点(勾股,相似等)能否用上.常用的二次函数的基础知识有:1.几种特殊的二次函数的图象特征如下:2.用待定系数法求二次函数的解析式:(1)一般式:(a≠0).已知图象上三点或三对x 、y 的值,通常选择一般式.(2)顶点式:(a≠0).已知图象的顶点或对称轴,通常选择顶点式. (可以看成的图象平移后所对应的函数.)(3)交点式:已知图象与x 轴的交点坐标x 1、x 2,通常选用交点式:(a≠0).(由此得根与系数的关系:,). 3. 二次函数图象和一元二次方程的关系:【典例剖析】【例1】(2021·北京·中考真题)在平面直角坐标系xOy 中,点(1,m )和点(3,n )在抛物线y=2y ax bx c =++()2y a x h k =-+2y ax =()()12y a x x x x =--12b x x a +=-12c x x a⋅=ax2+bx(a>0)上.(1)若m=3,n=15,求该抛物线的对称轴;(2)已知点(−1,y1),(2,y2),(4,y3)在该抛物线上.若mn<0,比较y1,y2,y3的大小,并说明理由.【例2】(2022·北京·中考真题)在平面直角坐标系xOy中,点(1,m),(3,n)在抛物线y=ax2+ bx+c(a>0)上,设抛物线的对称轴为x=t.(1)当c=2,m=n时,求抛物线与y轴交点的坐标及t的值;(2)点(x0,m)(x0≠1)在抛物线上,若m<n<c,求t的取值范围及x0的取值范围.【真题再现】1.(2013·北京·中考真题)在平面直角坐标系xOy中,抛物线y=mx2-2mx-2(m≠0))与轴交于点A,其对称轴与x轴交于点B.(1)求点A,B的坐标;(2)设直线l与直线AB关于该抛物线的对称轴对称,求直线l的解析式;(3)若该抛物线在-2<x<-1这一段位于直线l的上方,并且在2<x<3这一段位于直线AB的下方,求该抛物线的解析式.2.(2014·北京·中考真题)在平面直角坐标系xOy中,抛物线y=2x2+mx+n经过点A(0,−2),B(3,4).(1)求抛物线的表达式及对称轴;(2)设点B关于原点的对称点为C,点D是抛物线对称轴上一动点,记抛物线在A,B之间的部分为图象G(包含A,B两点)CD与图象G有公共点,结合函数图像,求点D纵坐标t的取值范围.3.(2015·北京·中考真题)在平面直角坐标系xOy中,过点(0,2)且平行于x轴的直线,与直线y=x-1交于点A,点A关于直线x=1的对称点为B,抛物线C1:y=x2+bx+c经过点A,B.(1)求点A,B的坐标;(2)求抛物线C1的表达式及顶点坐标;(3)若拋物线C2:y=ax2(a≠0)与线段AB恰有一个公共点,结合函数的图象,求a的取值范围.4.(2016·北京·中考真题)在平面直角坐标系xOy中,抛物线y=mx2-2mx+m-1(m>0)与x轴的交点为A,B.(1)求抛物线的顶点坐标;(2)横、纵坐标都是整数的点叫做整点.①当m=1时,求线段AB上整点的个数;②若抛物线在点A,B之间的部分与线段AB所围成的区域内(包括边界)恰有6个整点,结合函数的图象,求m的取值范围.5.(2017·北京·中考真题)在平面直角坐标系xOy中,抛物线y=x2-4x+3与x轴交于点A 、B(点A在点B的左侧),与y轴交于点C.(1)求直线BC的表达式;(2)垂直于y轴的直线l与抛物线交于点P(x1,y1),Q(x2,y2),与直线BC交于点N(x3,y3),若x1<x2<x3,结合函数的图象,求x1+x2+x3的取值范围.6.(2018·北京·中考真题)在平面直角坐标系xOy中,直线y=4x+4与x轴、y轴分别交于点A,B,抛物线y=ax2+bx−3a经过点A,将点B向右平移5个单位长度,得到点C.(1)求点C的坐标;(2)求抛物线的对称轴;(3)若抛物线与线段BC恰有一个公共点,结合函数图象,求a的取值范围.7.(2019·北京·中考真题)在平面直角坐标系xOy中,抛物线y=ax2+bx−1a与y轴交于点A,将点A向右平移2个单位长度,得到点B,点B在抛物线上.(1)求点B的坐标(用含a的式子表示);(2)求抛物线的对称轴;(3)已知点P(12,−1a),Q(2,2).若抛物线与线段PQ恰有一个公共点,结合函数图象,求a的取值范围.8.(2020·北京·中考真题)在平面直角坐标系xOy中,M(x1,y1),N(x2,y2)为抛物线y=ax2+ bx+c(a>0)上任意两点,其中x1<x2.(1)若抛物线的对称轴为x=1,当x1,x2为何值时,y1=y2=c;(2)设抛物线的对称轴为x=t.若对于x1+x2>3,都有y1<y2,求t的取值范围.【模拟精练】一、解答题(共30题)1.(2022·北京市广渠门中学模拟预测)已知抛物线y=ax2+2ax+3a2−4(a≠0)(1)该抛物线的对称轴为_____________;(2)若该抛物线的顶点在x轴上,求a的值;(3)设点M(m,y1),N(2,y2)该抛物线上,若y1>y2,求m的取值范围.2.(2022·北京·二模)在平面直角坐标系xOy中,抛物线y=x2−2mx.(1)当抛物线过点(2,0)时,求抛物线的表达式;(2)求这个二次函数的顶点坐标(用含m的式子表示);(3)若抛物线上存在两点A(m−1,y1)和B(m+2,y2),其中m>0.当y1⋅y2>0时,求m的取值范围.3.(2022·北京昌平·二模)在平面直角坐标系xOy中,已知抛物线y=ax2+bx−1(a>0).(1)若抛物线过点(4,−1).①求抛物线的对称轴;②当−1<x<0时,图像在x轴的下方,当5<x<6时,图像在x轴的上方,在平面直角坐标系中画出符合条件的图像,求出这个抛物线的表达式;(2)若(−4,y1),(−2,y2),(1,y3)为抛物线上的三点且y3>y1>y2,设抛物线的对称轴为直线x=t,直接写出t的取值范围.4.(2022·北京房山·二模)在平面直角坐标系xOy中,点A(2,−1)在二次函数y=x2−(2m+ 1)x+m的图象上.(1)直接写出这个二次函数的解析式;(2)当n≤x≤1时,函数值的取值范围是−1≤y≤4−n,求n的值;(3)将此二次函数图象平移,使平移后的图象经过原点O.设平移后的图象对应的函数表达式为y=a(x−ℎ)2+k,当x<2时,y随x的增大而减小,求k的取值范围.5.(2022·北京朝阳·二模)在平面直角坐标系xOy中,已知抛物线y=x2+(a+2)x+2a.(1)求抛物线的对称轴(用含a的式子表示);(2)若点(-1,y1),(a,y2),(1,y3)在抛物线上,且y1<y2<y3,求a的取值范围.6.(2022·北京东城·二模)在平面直角坐标系xOy中,抛物线y=ax2+bx+1(a≠0)的对称轴是直线x=3.(1)直接写出抛物线与y轴的交点坐标;(2)求抛物线的顶点坐标(用含a的式子表示);(3)若抛物线与x轴相交于A,B两点,且AB≤4,求a的取值范围.7.(2022·北京平谷·二模)在平面直角坐标系xOy中,点(−1,y1)、(1,y2)、(3,y3)是抛物线y=x2+bx+1上三个点.(1)直接写出抛物线与y轴的交点坐标;(2)当y1=y3时,求b的值;(3)当y3>y1>1>y2时,求b的取值范围.8.(2022·北京四中模拟预测)在平面直角坐标系xOy中,已知抛物线y=x2−2tx+t2−t.(1)求抛物线的顶点坐标(用含t的代数式表示);(2)点P(x1,y1),Q(x2,y2)在抛物线上,其中t−1≤x1≤t+2,x2=1−t.①若y1的最小值是−2,求y1的最大值;②若对于x1,x2,都有y1<y2,直接写出t的取值范围.9.(2022·北京丰台·二模)在平面直角坐标系xOy中,已知抛物线y=x2−2ax−3.(1)求该抛物线的对称轴(用含a的式子表示)(2)A(x1,y1),B(x2,y2)为该抛物线上的两点,若x1=1−2a,x2=a+1,且y1>y2,求a的取值范围.10.(2022·北京密云·二模)已知二次函数y=ax2+bx+2的图象经过点(1,2).(1)用含a的代数式表示b;(2)若该函数的图象与x轴的一个交点为(−1,0),求二次函数的解析式;(3)当a<0时,该函数图象上的任意两点P(x1,y1)、Q(x2,y2),若满足x1=−2,y1>y2,求x2的取值范围.11.(2022·北京大兴·二模)关于x的二次函数y1=x2+mx的图象过点(−2,0).(1)求二次函数y1=x2+mx的表达式;(2)已知关于x的二次函数y2=−x2+2x,一次函数y3=kx+b(k≠0),在实数范围内,对于x的同一个值,这三个函数所对应的函数值y1≥y3≥y2均成立.①求b的值;②直接写出k的值.12.(2022·北京顺义·xOy中,已知抛物线y=x2+mx+n.(1)当m=−3时,①求抛物线的对称轴;②若点A(1,y1),B(x2,y2)都在抛物线上,且y2<y1,求x2的取值范围;(2)已知点P(−1,1),将点P向右平移3个单位长度,得到点Q.当n=2时,若抛物线与线段PQ恰有一个公共点,结合函数图象,求m的取值范围.13.(2022·北京市十一学校模拟预测)已知二次函数y=ax2−4ax−3的图象与x轴交于A、B两点(点A在点B的左侧),顶点为D.(1)直接写出函数图象的对称轴:_____;(2)若△ABD是等腰直角三角形,求a的值;(3)当−1≤x≤k(2≤k≤6)时,y的最大值m减去y的最小值n的结果不大于3,求a的取值范围.14.(2022·北京房山·二模)已知二次函数y=ax2−4ax.(1)二次函数图象的对称轴是直线x=__________;(2)当0≤x≤5时,y的最大值与最小值的差为9,求该二次函数的表达式;(3)若a<0,对于二次函数图象上的两点P(x1,y1),Q(x2,y2),当t−1≤x1≤t+1,x2≥5时,均满足y1≥y2,请结合函数图象,直接写出t的取值范围.15.(2022·北京海淀·二模)在平面直角坐标系xOy中,点(m – 2, y1),(m, y2),(2- m, y3)在抛物线y = x2-2ax + 1上,其中m≠1且m≠2.(1)直接写出该抛物线的对称轴的表达式(用含a的式子表示);(2)当m = 0时,若y1= y3,比较y1与y2的大小关系,并说明理由;(3)若存在大于1的实数m,使y1>y2>y3,求a的取值范围.16.(2022·北京西城·二模)在平面直角坐标系xOy中,抛物线y=ax2+bx+c经过点(0,−2),(2,−2).(1)直接写出c的值和此抛物线的对称轴;(2)若此抛物线与直线y=−6没有公共点,求a的取值范围;(3)点(t,y1),(t+1,y2)在此抛物线上,且当−2≤t≤4时,都有|y2−y1|<7.直接写出a2的取值范围.17.(2022·北京东城·一模)在平面直角坐标系xOy中,抛物线y=x2−2mx+m2+1与y 轴交于点A.点B(x1,y1)是抛物线上的任意一点,且不与点A重合,直线y=kx+b(k≠0)经过A,B两点.(1)求抛物线的顶点坐标(用含m的式子表示);(2)若点C(m−2,a),D(m+2,b)在抛物线上,则a_______b(用“<”,“=”或“>”填空);(3)若对于x1<−3时,总有k<0,求m的取值范围.18.(2022·北京市十一学校二模)在平面直角坐标系xOy中,点A(t,2)(t≠0)在二次函数y=ax2+bx+2(a≠0)的图象上.(1)当t=4时,求抛物线对称轴的表达式;(2)若点B(5−t,0)也在这个二次函数的图象上.①当这个函数的最小值为0时,求t的值;②若在0≤x≤1时,y随x的增大而增大,求t的取值范围.19.(2022·北京石景山·一模)在平面直角坐标xOy中,点(4,2)在抛物线y=ax2+bx+2(a>0)上.(1)求抛物线的对称轴;(2)抛物线上两点P(x1,y1),Q(x2,y2),且t<x1<t+1,4−t<x2<5−t.①当t=3时,比较y1,y2的大小关系,并说明理由;2②若对于x1,x2,都有y1≠y2,直接写出t的取值范围.20.(2022·北京大兴·一模)在平面直角坐标系xOy中,已知关于x的二次函数y=x2−2ax+ 6.(1)若此二次函数图象的对称轴为x=1.①求此二次函数的解析式;②当x≠1时,函数值y______5(填“>”,“<”,或“≥”或“≤”);(2)若a<−2,当−2≤x≤2时,函数值都大于a,求a的取值范围.21.(2022·北京·东直门中学模拟预测)在平面直角坐标系xOy中,抛物线y=ax2−(a+ 4)x+3经过点(2,m).(1)若m=−3,①求此抛物线的对称轴;②当1<x<5时,直接写出y的取值范围;(2)已知点(x1,y1),(x2,y2)在此抛物线上,其中x1<x2.若m>0,且5x1+5x2≥14,比较y1,y2的大小,并说明理由.22.(2022·北京市燕山教研中心一模)在平面直角坐标系xOy中,抛物线y=ax2+bx+3a(a≠0)与x轴的交点为点A(1,0)和点B.(1)用含a的式子表示b;(2)求抛物线的对称轴和点B的坐标;(3)分别过点P(t,0)和点Q(t+2,0)作x轴的垂线,交抛物线于点M和点N,记抛物线在M,N之间的部分为图象G(包括M,N两点).记图形G上任意一点的纵坐标的最大值是m,最小值为n.①当a=1时,求m−n的最小值;②若存在实数t,使得m−n=1,直接写出a的取值范围.23.(2022·北京平谷·一模)在平面直角坐标系xOy中,抛物线y=x2﹣2bx.(1)当抛物线过点(2,0)时,求抛物线的表达式;(2)求这个二次函数的对称轴(用含b的式子表示);(3)若抛物线上存在两点A(b﹣1,y1)和B(b+2,y2),当y1•y2<0时,求b的取值范围.24.(2022·北京门头沟·一模)在平面直角坐标系xOy中,已知抛物线y=−x2+2mx−m2+ m−2(m是常数).(1)求该抛物线的顶点坐标(用含m代数式表示);(2)如果该抛物线上有且只有两个点到直线y=1的距离为1,直接写出m的取值范围;(3)如果点A(a,y1),B(a+2,y2)都在该抛物线上,当它的顶点在第四象限运动时,总有y1>y2,求a的取值范围.25.(2022·北京房山·一模)已知二次函数y=x2+bx+c(b,c为常数)的图象经过点A(1,0)与点C(0,-3),其顶点为P.(1)求二次函数的解析式及P点坐标;(2)当m≤x≤m+1时,y的取值范围是-4≤y≤2m,求m的值.26.(2022·北京朝阳·一模)在平面直角坐标系xOy中,点(−2,0),(−1,y1),(1,y2),(2,y3)在抛物线y=x2+bx+c上.(1)若y1=y2,求y3的值;(2)若y2<y1<y3,求y3值的取值范围.27.(2022·北京市第一六一中学分校一模)在平面直角坐标系xOy中,直线l1:y=﹣2x+6与y轴交于点A,与x轴交于点B,二次函数的图象过A,B两点,且与x轴的另一交点为点C,BC=2;(1)求点C的坐标;(2)对于该二次函数图象上的任意两点P1(x1,y1),P2(x2,y2),当x1>x2>2时,总有y1>y2.①求二次函数的表达式;②设点A在抛物线上的对称点为点D,记抛物线在C,D之间的部分为图象G(包含C,D 两点).若一次函数y=kx﹣2(k≠0)的图象与图象G有公共点,结合函数图象,求k的取值范围.28.(2022·北京顺义·一模)在平面直角坐标系xOy中,点(2,−2)在抛物线y=ax2+bx−2(a<0)上.(1)求该抛物线的对称轴;(2)已知点(n−2,y1),(n−1,y2),(n+1,y3)在抛物线y=ax2+bx−2(a<0)上.若0<n< 1,比较y1,y2,y3的大小,并说明理由.29.(2022·北京海淀·一模)在平面直角坐标系xOy中,二次函数y=ax2−2ax(a≠0)的图象经过点A(−1,3).(1)求该二次函数的解析式以及图象顶点的坐标;(2)一次函数y=2x+b的图象经过点A,点(m,y1)在一次函数y=2x+b的图象上,点(m+4,y2)在二次函数y=ax2−2ax的图象上.若y1>y2,求m的取值范围.30.(2022·北京市第七中学一模)在平面直角坐标系xOy中,点A(x1,y1),B(x2,y2)在抛物线y=−x2+(2a−2)x−a2+2a上,其中x1<x2.(1)求抛物线的对称轴(用含a的式子表示);(2)①当x=a时,求y的值;②若y1=y2=0,求x1的值(用含a;(3)若对于x1+x2<−5,都有y1<y2,求a的取值范围.。

备考2023年中考数学一轮复习-图形的变换_平移、旋转变换_坐标与图形变化﹣平移-填空题专训及答案

备考2023年中考数学一轮复习-图形的变换_平移、旋转变换_坐标与图形变化﹣平移-填空题专训及答案

备考2023年中考数学一轮复习-图形的变换_平移、旋转变换_坐标与图形变化﹣平移-填空题专训及答案坐标与图形变化﹣平移填空题专训1、(2016黑龙江.中考真卷) 如图,等边三角形的顶点A(1,1)、B(3,1),规定把等边△ABC“先沿x轴翻折,再向左平移1个单位”为一次変换,如果这样连续经过2016次变换后,等边△ABC的顶点C的坐标为________.2、(2011宿迁.中考真卷) 在平面直角坐标系中,已知点A(﹣4,0)、B(0,2),现将线段AB向右平移,使A与坐标原点O重合,则B平移后的坐标是________.3、(2019海门.中考模拟) 在平面直角坐标系中,将点A(﹣2,3)向右平移2个单位长度得到点B,则点B关于x轴的对称点C的坐标是________.4、(2018江苏.中考模拟) 若将点A(1,3)向左平移2个单位,再向下平移4个单位得到点B,则点B的坐标为________.5、(2018金华.中考模拟) 如图,已知直线与反比例函数()图像交于点A,将直线向右平移4个单位,交反比例函数()图像于点B,交y轴于点C,连结AB、AC,则△ABC的面积为________6、(2022北.中考模拟) 如图,正比例函数y=kx 与反比例函数y= 的图象有一个交点A(2,m),AB⊥x 轴于点B ,平移直线y=kx 使其经过点B ,得到直线l ,则直线l 对应的函数表达式是________ .7、(2019泰安.中考模拟) 如图,单位网格中,将线段AB 先向右平移2个单位,再向上平移2个单位,然后再绕P 点按顺时针方向旋转90°得到A'B',则A 的坐标是________8、(2017东营.中考模拟) 将抛物线y=﹣x 2向左平移2个单位,再向下平移3个单位,所得抛物线的表达式为________.9、(2017常德.中考真卷) 如图,有一条折线A 1B 1A 2B 2A 3B 3A 4B 4…,它是由过A 1(0,0),B 1(2,2),A 2(4,0)组成的折线依次平移4,8,12,…个单位得到的,直线y=kx+2与此折线恰有2n (n≥1,且为整数)个交点,则k 的值为________.10、(2020湖州.中考模拟) 如图,在平面直角坐标系中,反比例y=(k>0)的图象和△ABC都在第一象限内,AB=AC=,BC∥x轴,且BC=4,点A的坐标为(3,5).若将△ABC向下平移m个单位长度,A,C两点同时落在反比例函数图象上,则m的值为________.11、(2014钦州.中考真卷) 如图,△A′B′C′是△ABC经过某种变换后得到的图形,如果△ABC中有一点P的坐标为(a,2),那么变换后它的对应点Q的坐标为________.12、(2017广元.中考真卷) 在平面直角坐标系中,将P(﹣3,2)向右平移2个单位,再向下平移2个单位得点P′,则P′的坐标为________.13、(2013绵阳.中考真卷) 如图,把“QQ”笑脸放在直角坐标系中,已知左眼A的坐标是(﹣2,3),嘴唇C点的坐标为(﹣1,1),则将此“QQ”笑脸向右平移3个单位后,右眼B的坐标是________.14、(2011遵义.中考真卷) 将点P(﹣2,1)先向左平移1个单位长度,再向上平移2个单位长度得到点P′,则点P′的坐标为________.15、(2019青海.中考模拟) 如图,等边三角形的顶点A(1,1),B(3,1),规定把等边△ABC“先沿x轴翻折,再向左平移1个单位”为一次变换,则一次变换后顶点C的坐标为________,如果这样连续经过2017次变换后,等边△ABC的顶点C 的坐标为________.16、(2019朝阳.中考模拟) 如图,在平面直角坐标系中,点A的坐标为(0,6),将△OAB沿x轴向左平移得到△O′A′B′,点A的对应点A′落在直线y=﹣x上,则点B与其对应点B′间的距离为________.17、(2020中宁.中考模拟) 若线段CD是由线段AB平移得到的,点A(﹣2,3)的对应点为C(3,6),则点B(﹣5,﹣2)的对应点D的坐标是________18、(2020通榆.中考模拟) 如图,在平面直角坐标系中,已知点A(2,1),点B(3,-1),平移线段AB,使点A落在点A1(-2,2)处,则点B的对应点B1的坐标为________ 。

备考2023年中考数学一轮复习-图形的性质_尺规作图_作图—基本作图

备考2023年中考数学一轮复习-图形的性质_尺规作图_作图—基本作图

备考2023年中考数学一轮复习-图形的性质_尺规作图_作图—基本作图作图—基本作图专训单选题:1、(2013南通.中考真卷) 如图,用尺规作出∠OBF=∠AOB,作图痕迹是()A . 以点B为圆心,OD为半径的圆B . 以点B为圆心,DC为半径的圆C . 以点E为圆心,OD为半径的圆D . 以点E为圆心,DC为半径的圆2、(2017古冶.中考模拟) 如图,在已知的△ABC中,按以下步骤作图:①分别以B、C为圆心,以大于BC的长为半径作弧,两弧相交于两点M、N;②作直线MN交AB于点D,连接CD,若CD=AC,∠A=50°,则∠B=()A . 50°B . 45°C . 30°D . 25°3、(2017承德.中考模拟) 如图,在已知的△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于BC的长为半径作弧,两弧相交于两点M,N;②作直线MN交AB于点D,连接CD.若CD=AC,∠B=25°,则∠ACB的度数为()A . 90°B . 95°C . 100°D . 105°4、(2019二道.中考模拟) 已知:线段AB,BC,∠ABC=90°.求作:矩形ABCD.以下是甲、乙两同学的作业:甲:1.以点C为圆心,AB长为半径画弧;2.以点A为圆心,BC长为半径画弧;3.两弧在BC上方交于点D,连接AD,CD,四边形ABCD即为所求(如图1).乙:1.连接AC,作线段AC的垂直平分线,交AC于点M;2.连接BM并延长,在延长线上取一点D,使MD=MB,连接AD,CD,四边形ABCD即为所求(如图2).对于两人的作业,下列说法正确的是()A . 两人都对B . 两人都不对C . 甲对,乙不对D . 甲不对,乙对5、(2018.中考模拟) 数学活动课上,四位同学围绕作图问题:“如图,已知直线l 和l外一点P,用直尺和圆规作直线PQ,使PQ⊥l于点Q.”分别作出了下列四个图形.其中作法错误的是()A .B .C .D .6、(2018舟山.中考模拟) 如图,点C在∠AOB的边OB上,用尺规作出了∠BCN=∠AOC,作图痕迹中,弧FG是()A . 以点C为圆心,OD为半径的弧B . 以点C为圆心,DM为半径的弧C . 以点E为圆心,OD为半径的弧D . 以点E为圆心,DM为半径的弧7、(2017福田.中考模拟) 如图,在△ABC中,∠C=90°,AB=8,AC=4,以点A为圆心,小于AC长为半径画弧,分别交AB、AC于点E、F,再分别以点E、F为圆心,大于EF长为半径画弧,两弧交于点G,作射线AG,交BC于点D,则D到AB的距离为()A . 2B . 4C .D .8、(2016宝安.中考模拟) 如图,在△ABC中,AB=8,BC=10,以B为圆心,任意长为半径画弧分别交BA、BC于点M和N,再分别以M、N为圆心,大于MN长为半径画弧,两弧交于点P,连结BP并延长交AC于点D,若△BDC的面积为20,则△ABD的面积为()A . 20B . 18C . 16D . 129、(2014崇左.中考真卷) 如图,下面是利用尺规作∠AOB的角平分线OC的作法,在用尺规作角平分线过程中,用到的三角形全等的判定方法是()作法:①以O为圆心,适当长为半径画弧,分别交OA,OB于点D,E;②分别以D,E为圆心,大于DE的长为半径画弧,两弧在∠AOB内交于一点C;③画射线OC,射线OC就是∠AOB的角平分线.A . ASAB . SASC . SSSD . AAS10、(2020四川.中考真卷) 如图所示,的顶点在正方形网格的格点上,则的值为()A .B .C . 2D .填空题:11、(2015北京.中考真卷) 阅读下面材料:在数学课上,老师提出如下问题:小芸的作法如下:老师说:“小芸的作法正确.”请回答:小芸的作图依据是________ .12、(2018葫芦岛.中考真卷) 如图,OP平分∠MON,A是边OM上一点,以点A为圆心、大于点A到ON的距离为半径作弧,交ON于点B、C,再分别以点B、C为圆心,大于BC的长为半径作弧,两弧交于点D、作直线AD分别交OP、ON于点E、F.若∠MON=60°,EF=1,则OA=________.13、(2017昌平.中考模拟) 如图,已知钝角△ABC,老师按照如下步骤尺规作图:步骤1:以C为圆心,CA为半径画弧①;步骤2:以B为圆心,BA为半径画弧②,交弧①于点D;步骤3:连接AD,交BC延长线于点H.小明说:图中的BH⊥AD且平分AD.小丽说:图中AC平分∠BAD.小强说:图中点C为BH的中点.他们的说法中正确的是________.他的依据是________.14、(2017建昌.中考模拟) 如图,已知在Rt△ABC中,∠ABC=90°,点D是BC边的中点,分别以B、C为圆心,大于线段BC长度一半的长为半径作弧,两弧在直线BC上方的交点为P,直线PD交AC于点E,连接BE.若AB=6,BC=8,则△ABE 的周长为________.15、(2019朝阳.中考模拟) 在数学课上,老师提出如下问题:己知:直线l和直线外的一点P.求作:过点P作直线于点Q.己知:直线l和直线外的一点P.求作:过点P作直线于点Q.小华的作法如下:如图,第一步:以点P为圆心,适当长度为半径作弧,交直线于A,B两点;第二步:连接PA、PB,作的平分线,交直线l于点Q.直线PQ即为所求作.如图,第一步:以点P为圆心,适当长度为半径作弧,交直线于A,B两点;第二步:连接PA、PB,作的平分线,交直线l于点Q.直线PQ即为所求作.老师说:“小华的作法正确”.请回答:小华第二步作图的依据是________.16、(2019台州.中考模拟) 如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P,若点P的坐标为(2a,b+1),则a与b 的数量关系为________ .17、(2017郑州.中考模拟) 如图,在平行四边形ABCD中,连接AC,按一下步骤作图,分别以点A,点C为圆心,以大于AC的长为半径画弧,两弧分别相交于点M、N,作直线MN交CD于点E,交AB于点F,若AB=5,BC=3,则△ADE的周长为________.18、(2019青羊.中考模拟) 如图,在Rt△ABC中,∠C=90°,AC=3,BC=5,分别以点A、B为圆心,大于AB的长为半径画弧,两弧交点分别为点P、Q,过P、Q 两点作直线交BC于点D,则CD的长是________.解答题:19、(2017东城.中考模拟) 如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC、AB于点M、N,再分别以点M、N为圆心,大于MN 的长为半径画弧,两弧交于点P,作射线AP交变BC于点D,若CD=4,AB=15,求△ABD的面积.20、(2018定兴.中考模拟) 阅读以下作图过程:第一步:在数轴上,点O表示数0,点A表示数1,点B表示数5,以AB为直径作半圆(如图);第二步:以B点为圆心,1为半径作弧交半圆于点C(如图);第三步:以A点为圆心,AC为半径作弧交数轴的正半轴于点M.请你在下面的数轴中完成第三步的画图(保留作图痕迹,不写画法),并写出点M表示的数21、(2017滨州.中考真卷) 如图,在▱ABCD中,以点A为圆心,AB长为半径画弧交AD于点F,再分别以点B、F为圆心,大于BF的相同长为半径画弧,两弧交于点P;连接AP并延长交BC于点E,连接EF,则所得四边形ABEF是菱形.(Ⅰ)根据以上尺规作图的过程,求证:四边形ABEF是菱形;(Ⅱ)若菱形ABEF的周长为16,AE=4 ,求∠C的大小.22、(2018东莞.中考模拟) 如图,在Rt△ABC中,∠C=90°.作∠BAC的平分线AP交边BC于点D. (保留作图痕迹,不写作法);若∠BAC=28°,求∠ADB的度数.23、(2019盘龙.中考模拟) 如图,以点B为圆心,适当长为半径画弧,交BA于点D,交BC于点E;分别以点D,E为圆心,大于DE的长为半径画弧,两弧在∠ABC 的内部相交于点F;画射线BF,过点F作FG⊥AB于点G,作FH⊥BC于点H求证:BG=BH.24、(2016孝义.中考模拟) 如图,Rt△ABC中,∠C=90°,∠A=30°,BC=6.(1)实践操作:尺规作图,不写作法,保留作图痕迹.①作∠ABC的角平分线交AC于点D.②作线段BD的垂直平分线,交AB于点E,交BC于点F,连接DE、DF.(2)推理计算:四边形BFDE的面积为25、(2018东莞.中考模拟) 如图,已知△ABC中,D为AB的中点.(1)请用尺规作图法作边AC的中点E,并连接DE(保留作图痕迹,不要求写作法);(2)在(1)条件下,若DE=4,求BC的长.作图—基本作图答案1.答案:D2.答案:D3.答案:D4.答案:A5.答案:A6.答案:D7.答案:C8.答案:C9.答案:C10.答案:11.答案:12.答案:13.答案:14.答案:15.答案:16.答案:17.答案:18.答案:19.答案:20.答案:21.答案:22.答案:23.答案:24.答案:25.答案:。

中考仿真模拟考试《数学卷》附答案解析

中考仿真模拟考试《数学卷》附答案解析
【详解】设生产1t甲种药品成本的年平均下降率为x,由题意得:
6000(1﹣x)2=3600
解得:x1= ,x2= (不合题意,舍去),
∴生产1t甲种药品成本的年平均下降率为 .
故选:A.
【点睛】本题主要考查了一元二次方程的实际应用,熟练掌握相关方法是解题关键.
9.如图,已知△ABC中,∠C=90°,AC=BC= ,将△ABC绕点A顺时针方向旋转60°得到△A′B′C′的位置,连接C′B,则C′B的长为( )
A.2- B. C. D.1
10.设函数y=x2+2kx+k﹣1(k为常数),下列说法正确的个数是( )
(1)对任意实数k,函数与x轴有两个交点
(2)当x≥﹣k时,函数y的值都随x的增大而增大
(3)k取不同的值时,二次函数y的顶点始终在同一条抛物线上
(4)对任意实数k,抛物线y=x2+2kx+k﹣1都必定经过唯一定点
22.阅读下列材料:若关于x的一元二次方程ax2+bx+c=0的两个非零实数根分别为x1,x2,则x1+x2=﹣ ,x1x2= .
解决下列问题:已知关于x的一元二次方程(x+n)2=6x有两个非零不等实数根x1,x2,设m= ,
(Ⅰ)当n=1时,求m的值;
(Ⅱ)是否存在这样的n值,使m的值等于 ?若存在,求出所有满足条件的n的值;若不存在,请说明理由.
6.抛物线y=2(x﹣2)2+5向左平移3个单位长度,再向下平移2个单位长度,此时抛物线的对称轴是()
A.x=2B.x=﹣1C.x=5D.x=0
7.已知点A(﹣1,2),O是坐标原点,将线段OA绕点O逆时针旋转90°,点A旋转后的对应点是A1,则点A1的坐标是( )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013年中考数学模拟卷(一)(时间:120分 满分:120分)一、选择题(本大题共8小题,每小题3分,共24分) 1.下列实际问题中的数据是近似数的有【 】①我国人口总数为:122389万人,②.某本书共有304页,③.九年级某班学生共有53人,④.圆周率 3.14π≈ ⑤.若干千克苹果平均分给若干个人,每人大约得3.33千克 A .①④⑤ B.②⑤ C.③④ D.① ② 2.下列各式运算正确的是【 】A. 235a a a +=B. 235a a a = C.235()a a = D .1025a a a ÷= 3. 把点1(23)P -,向右平移3个单位长度再向下平移2个单位长度到达点2P 处,则2P 的坐标是 【 】A.(51)-, B.(15)--, C.(55)-, D.(11)--, 4. 已知线段a 、b 、c 并有a>b>c,则组成三角形满足的条件是 【 】A .a+b>c B.a+c>b C.a-b<c D .b-c<a5.如图,为测楼房BC 的高,在距离楼房30米的A 处,测得楼顶的仰角为α,则楼高BC 的高为 【 】 A.30tan α米; B.30tan α米; C.30sin α米; D.30sin α米.6.下图是同一副扑克中的4张扑克牌的正面,将它们正面朝下洗匀后放在桌上,小明从中抽出一张,则抽到偶数的概率是 【 】 A .13 B .12 C .34 D .237.形状相同、大小相等的两个小木块放置于桌面,其俯视图如下图所示,则其主视图是【 】8. 如图,一张矩形纸片,沿折痕CE 分别作两次不同情况的折叠,①顶点B 落在AD 边上(如图1);②顶点B 落在矩形ABCD 的内部(如图2).那么∠1+∠2与∠3+∠4的大小 关系是【 】A .∠1+∠2=∠3+∠4 B.∠1+∠2<∠3+∠4 C .∠1+∠2>∠3+∠4 D.不能确定二、填空题 (本大题共8小题,每小题3分,共24分)9. ( 在下面(Ⅰ)、(Ⅱ)两题中任选一题,若两题都做按第(Ⅰ)题计分)(Ⅰ).2sin60°·tan30°=(Ⅱ).利用计算器计算:2sin42°≈ (保留4个有效数字) 10.不等式x -3<0的最大整数解是11.如图,在△ABC 中,E 、F 分别是AB 、AC 上点,当∠1+∠2+∠B+∠C=300°时,∠A= 度.12.如图.AB 是⊙O 的切线,∠B=30°,则 OA ︰OB= 13. 写一个不等式(组),使它的整数解有且仅有:-1、-2,则这个不等式(组)可以是__________________.14. 观察下列各直角坐标系中的正方形ABCD ,点P(x,y)是四条边上的点,且x ,y 都是整数,由图中所包含的规律,可得第n 个图中满足条件的点P 个数是_____________(用含n 的代数式表示).15.如图:已知直线AB ∥y 轴,且直线AB 分别与函数2y x = (x>0)、ky x= (x>0)的图象交于A 、B 两点,并知△AOB 的面积2.5,则k=16.如图中,∠ABC=60,∠B DE=∠C=45,DF=1, AB=1+3,DE ⊥AB,分别交AB 于F,BC 于E,则下列结论: ①AF =EF ;②△ADF ≌△EBF ;③21=AE BD ; ④△DBE ∽△CEA 中,正确结论的序号.......是 (多填或错填得0分,少填酌情给分) . 三、(本大题共3小题,第17题6分,第18、19均为7分,共20分).17. 求代数式的值:)2422(4222+---÷--x x x x x x ,其中22+=x18.如图,在△ABC 中,AB=5,AD=4,BD=DC=3,且DE AB 于E ,DF ⊥AC 于F.(1)请你写出图中与A 点有关的三个不同类型的正确结论; (2)DE 与DF 在数量上有何关系?并证明之.19.某班同学上学期全部参加了捐款献爱心活动,个人捐款额见 如下统计图,资助对象金额分配情况见如下统计表(1)补填统计表中的空白;(2)求该班学生个人捐款额的中位数和众数;(3)求捐款额多于15元的学生数占全班人数的百分数; (4)根据统计表中的数据画出扇形统计图.四、(本大题共2小题,每小题8分,共16分)20. 在平行四边形ABCD 中,对角线AC ,BD 交于O 点(BD>AC ),E 、F 是BD 上的两点. (1) 当点E 、F 满足条件: 时,四边形AECF 是平行四边形(不必证明); (2)当点E 、F 满足条件: 时,四边形AECF 是矩形,并加以证明.21.现有三个数:1、3、5,要添加一数,使得它们的平均数增大,平均数增大多少,只能通过如图所示的自由转盘来决定,你认为添加一个什么数可能性较大?五、(本大题共2小题,第22题8分,第23题9分,共17分)22.在⊙O中,AB是非直径弦,弦CD⊥AB,(1)当CD经过圆心时(如图1)∠AOC+∠DOB= 度;(2)当CD不经过圆心时(如图2), ∠AOC+∠DOB的度数与(1)的情况相同吗?试说明你的理由.23. 在购买课桌椅时,设购买套数为x(套),总费用为y(元).现有两种购买方案:方案一:若学校赞助出售单位10000元,则该校所购课桌椅的价格为每套40元;(总费用=赞助费+课桌椅费)方案二:购买课桌椅方式如图所示.解答下列问题:(1)方案一中,y与x的函数关系式为;方案二中,当0≤x≤200时,y与x的函数关系式为;当x>200时,y与x的函数关系式为;(2)如果购买课桌椅超过200套,你将选择哪一种方案,使总费用最省?请说明理由;(3)甲、乙两校分别采用方案一、方案二购买课桌椅共500套,花去总费用计40000元,求甲、乙两校各购买课桌椅多少套.六、(本大题共2小题,第24题9分,第25题10分,共19分)24.有一张梯形纸片ABCD,DC∥AB,∠DAB=90°,将△ADC沿AC折叠,点D恰好落在BC的中点E上(如图1)(1)求证:∠DAC=∠EAB;(2)当上底DC=10cm时,求梯形两腰AD、BC的长;(3)若过E作EF⊥AB于F,现将这张梯形纸片沿AE、EF剪成三块,然后按如图2所示拼成四边形HDAE(对应部分有相同的编号),那么四边形HDAE是什么特殊四边形(不证明)?并请你在图3中画出两条分割线(虚线),同样将梯形纸分成三块,然后拼成一个正六边形,要求仿图2方法画出拼图.25.在直角坐标系中,△ABC 的顶点坐标为A (4,6),B (2,3),C (5,3).将△ABC 绕点C 顺时针旋转180°后得到△11CB A .(1)求A 1,B 1的坐标;(2)已知坐标系中有抛物线y=ax 2-10ax+24a (a ≠0) ①求该抛物线与x 轴的交点坐标,并说明这两交点分别与A 点有何位置关系(从对称角度来说明)?②当抛物线经过点B 时,能否确定一定经过点B 1,说说你的理由;③若点P 是该抛物线的顶点,是否存在一个实数a,使△BPB 1与△BAC 相似,若存在,求出P 点坐标,若不存在,说明其理由.2013年中考数学模拟卷(一)参考答案一、选择题(本大题共8小题,每小题3分,共24分)1. A,2. B,3. C4. C,5. A ,6. C7. D ,8. A 二、填空题 (本大题共8小题,每小题3分,共24分)9. (Ⅰ). 1,(Ⅱ) 1.338 10. 2 11. 30 12. 1︰2 13.如:10250x x +≤⎧⎨+>⎩14. 4n , 15. -3 16.①②④三、(本大题共3小题,第17题6分,第18、19均为7分,共20分).17. 解: 原式=2242222+-÷--x xx x x x =错误!不能通过编辑域代码创建对象。

=21-x ………4分 将2=x +2 代入21-x 得:22………………………………6分 18.解:(1).如:∠BAD=CAD ,AB=AC ,222AB AD BD =+,……………………………3分(2)证明:∵BD=DC=3 222222435AD BD AB ∴+=+==∴AD 是BC 的中垂线, ∴AB=AC , AD 是BAC ∠的平分线又∵,DE AB DF AC ⊥⊥, ∴DE=DF …………………………………………………7分 19.解:(1)216;………………………………………………1分 (2)总人数40人, 中位数101512.52+=(元), 众数为10元;……………………………4分 (3)1025%40=;……………………5分 (4)扇形统计图如图所示.…………7分四、(本大题共2小题,每小题8分,共16分) 20.解:(1)BE=DF 或OE=OF ,………………………………3分(2)OE=OF=OA 或OE=OF=OC 或OE=OF 且AC=EF ,…………5分略证:因为OA=OE=OF=OC则,EF=AC 所以四边形AECF 是矩形…………………8分 21.解;由于平均数增加2的区域的最大,∴转盘转动时,指针落在这一区域的可能性最大,……………………3分 设应添加的数为x, 则得方程:135135243x +++++=+,………………………………7分解之得:x=11∴添加11的可能性最大.…………………………………………………9分 五、(本大题共2小题,第22题8分,第23题9分,共17分)22.解:(1)180……………………2分 (2)相同………………………3分 理由:连结BC∵∠AOC=2∠CBA, ∠DOB=2∠BCD ∴∠AOC+∠DOB=2(∠CBA+∠BCD) 又 ∵ AB ⊥CD∴∠CBA+∠BCD=90°∴∠AOC+∠DOB=2×90°=180°…………8分 23.解:(1) 方案一: y=40x+10000 ;当0≤x ≤200时,y=80x ;当x >200时,y=60x+4000 ;…………………3分(2)因为方案一: y 与x 的函数关系式为y=40x+10000,∵x >200,方案二的y 与x 的函数关系式为y=60x+4000;当40x+10000>60x+4000时,即x <300时,选方案二进行购买,当40x+10000=60x+4000时,即x=300时,两种方案都可以,当40x+10000<60x+4000时,即x >300时,选方案一进行购买;…………6分(3) 设甲、乙两校购买课桌椅分别为a 套、b 套;∵甲、乙两校分别采用方案一和方案二购买课桌椅,∴乙校购买课桌椅有两种情况:b ≤200或b >200.① 当b ≤200时,乙校购买课桌椅费用为80b ,500,40100008040000,a b a b +=⎧⎨++=⎩解得250,250,a b =⎧⎨=⎩不符合题意,舍去; ② 当b >200时,乙校购买课桌椅费用为60b+4000,500,401000060400040000,a b a b +=⎧⎨+++=⎩ 解得200,300,a b =⎧⎨=⎩符合题意答:甲、乙两校购买课桌椅分别为200套、300套. ……………9分六、(本大题共2小题,第24题9分,第25题10分,共19分)24.(1)∵E是BC的中点,∠CDA=90°∴∠CEA=90°则AE是BC的中垂线,AC=AB,∴∠BAE=∠CAE=∠DAC∴∠DAC=∠BAE………………………………………3分(2)∵DC∥AB,∠DAB=∠CDA=90°,∴∠DAC=30°,在Rt△ADC中,AC=20,又∵∠CAB=60°,∴△ABC是等边三角形,BC=AC=20cm…………………………………………6分(3)四边形HDAE是菱形,拼图如下:…………9分25. 解:(1)A1(6,0), B1(8,3) ………………3分(2) ①ax2-10ax+24a=0, ∴x1=4, 或x2=6………………6分与x轴的交点坐标为E(4,0),A1(6,0),A与E关于BC轴对称,A与A1关于C对称;…(5分)②由于抛物线y=ax2-10ax+24a的对称轴为为x=5,而B与B1关于直线x=5轴对称,所以当抛物线经过B必经过B1………………………………8分③不存在,……………………………………………………9分抛物线顶点P一定在对称轴上, ∴PB=PB1,不论a取什么实数(a≠0),△BPB1都是等腰三角形,而==, BC=3, AB≠AC≠BC,∴△ABC与△BPB1不可能相似……………………………10分。

相关文档
最新文档