通过分解两相水解反应单步高品质超细金属氧化物半导体纳米晶体的可控合成
科学家借助硅纳米晶体制造出不合重金属的高效硅基LED

异形 体开启 了碳 材料 的新 纪元 ,其性质及 应用依赖于 其结构 参数 。虽然碳纳米管通过可控合成可 以实现直径 的精确可调 , 但是其轴 向长度 的控制却 非常 困难。然而碳 纳米管 的长度将 显著影 响其宏观性 能。例如超 长碳 纳米管 能够 在宏观尺度上 体现其独 特的材料性 能 ,超短碳纳 米管则提供 了高密度 的活 性位点 ,使其 在生物 药物、催化和 能源存储方 面有 着极其广
在外。
阴离子进 行补偿 ,通 过插层的 阴离 子及层 间的相互作 用 ,获
此 外 ,新 型 L E D惹人注 目的方面亦在于其 发光 区域 的同 得 L D H 单片层 间的受限空间 。利用 L D H 进行空 间限域 ,进 质性 。研究 人员表示 ,随着液态处理的硅基 L E D 或能以低 成 而催化生 长碳纳米环 为超短碳纳 米管的研究提 供 了新思路 。 本大 批量制成 ,纳米粒 子 “ 群体 ”也将 进入新 的领域 ,相 关 可 以想象 的是 ,通过 调变 L DH 中插层 阴离子 的种类 以及层 潜力将 难 以估 计 ,而教科 书上有关半 导体元件 的描述或许 也 间碳源 的量 ,可 以获得 一系列有着不 同长度和壁 数的碳纳米
该研 究 工 作 的另一 项 难 点是 如何 实 现层 数 可控 的石 墨 烯制 备 。刘 教授 指 出 : “ 通 过改 变条 件 将石 墨烯 的层数 控 制地 越来 越 少 ,但依 然未 能 实现 大量 单层 石 墨烯 的可控 制 备 。进 一 步 ,我们 希望 寻 找 到更合 适 的催 化剂 来 实 现这 一 目标 ” 。 除了上述刘教 授提到 的层数可控 制备外 ,他 还计划将该 项 工 作与 化学 气 相沉 积法 相 结合 ,结合 电弧 的大 批量 与化 学气相 沉积法 的可控制备 上的优势 ,发展一种 “ 电弧二 . 。 化学
CuO纳米材料的可控合成初

CuO纳米材料的可控合成作者:刘欢指导教师:刘小娣摘要:纳米CuO 由于具有独特的电、磁和催化等特性, 受到了广泛关注。
本文综述了近年来纳米CuO 的制备方法及应用技术进展, 具体介绍了纳米CuO 的液相法、固相法和气相法制备技术; 同时, 还研究了纳米CuO 在不同领域的性质和应用;展望了今后的研究方向和前景。
关键词:纳米CuO;制备;性质;应用0 引言铜是与人类关系非常密切的有色金属,其氧化物——CuO有着广泛的应用,除作为制铜盐的原料外,它还广泛应用于其他领域:如在催化领域,它对高氯酸铵的分解,一氧化碳、乙醇、乙酸乙酯以及甲苯的完全氧化都具有较高的催化活性;在传感器方面,用CuO作传感器的包覆膜,能够大大提高传感器对CO的选择性和灵敏度;近年来,由于含铜氧化物在高温超导领域的异常特性,使CuO又成为重要的模型化合物,用于解释复杂氧化物的光谱特征。
纳米CuO因具有表面效应、量子尺寸效应和久保效应使其在电、磁、催化等领域表现出不寻常的特性。
如表面效应使其催化活性大大增强,量子尺寸效应使纳米CuO的红外光谱宽化、蓝移和分裂。
因此,纳米CuO的制备和应用研究近年受到广泛关注。
1纳米CuO 的制备方法纳米材料的制备方法根据物料状态可分为:固相法、气相法和液相法。
目前纳米CuO的制备方法已开发的主要有固相法和液相法,其中对液相法研究得较多。
1.1固相法1.1.1室温固相反应法固相反应法是指将金属盐或金属氧化物按照一定比例充分混合研磨后进行煅烧,直接制得纳米CuO粉体的方法。
洪伟良等[1]以醋酸铜和草酸为原料,采用低温固相配位化学反应法先合成出了前驱配合物草酸铜,再将前驱物高温热分解,得到粒径为20~30nm的纳米氧化铜粉体,但团聚较严重。
李东升等[2]以硝酸铜和碳酸氢铵为原料,利用室温固相反应制备出纳米级碱式碳酸铜粉体,经230℃焙烧后制得平均粒径为28nm的氧化铜纳米球,该产品大小均匀,但是纯度不高。
紧跟研究热点,一大波顶刊g-C3N4光催化优质工作来袭

紧跟研究热点,一大波顶刊g-C3N4光催化优质工作来袭在众多光催化剂中,具有独特结构的石墨相氮化碳g-C3N4由于其良好的光催化性能,成为了目前研究的热点。
相比于其他的光催化剂,它的优点十分突出:能够吸收可见光、热稳定性和化学稳定性良好,并且无毒、来源丰富、制备成型工艺也简单。
我们特地为大家整理了24篇g-C3N4光催化优质工作,点击小标题可以直接跳转资讯详情。
1. 碳点/氮化碳实现析氢-降解双同步Adv.Funct. Mater.-清华大学李景虹教授和刘会娟教授通过超声空蚀效应设计了均匀“局部加热”方法,用以在2D C3N4纳米片中嵌入高度结晶的碳量子点(CQD)。
基于密度泛函理论计算和电化学测试,研究人员发现在C3N4中引入CQDs不仅可以拓展光吸收谱区段,而且还可以减小电子的有效质量(e-),从而降低与空穴复合的几率,促进光生载流子转移。
此外,高度有序的CQDs 具有优异的过氧化物酶模拟活性,能够逐步通过以下过程提高催化产氢效率:(i)2H2O → H2O2 + H2;(ii)H2O2→ 2·OH;(iii)·OH + 双酚A →最终产物,其产氢率可达152 μmol g-1h-1,为纯C3N4的数倍之高。
2. 石墨炔助力g-C3N4提高其空穴迁移率Adv. Energy Mater.-天津理工大学卢秀利和鲁统部首次报道了一种简单的超薄二维g-C3N4/graphdiyne——石墨炔(GDY)异质结构建方法,通过在N-甲基吡咯烷酮(NMP)溶液中发生溶剂热反应,成功将2D g-C3N4负载在2D GDY的3D纳米片阵列上,并将其用作光电阴极,成功提高了g-C3N4的空穴传输速率。
合成的g-C3N4/GDY异质结为光生空穴提供了丰富的传输通道,由于GDY具备较高的空穴迁移率,从g-C3N4注入到GDY中的光生空穴在其内部快速转移,从而在0.1 M Na2SO4溶液中0 V vs. NHE偏压下,具有-98 μA cm-2的优异光电流,比单纯的 g-C3N4光电阴极(相同条件下,-32 μA cm-2)高出三倍。
2023-2024学年江苏省无锡市高三上学期期终教学质量调研测试化学卷含详解

无锡市2023年秋学期高三期终教学质量调研测试化学2024.1注意事项:1.本试卷分选择题和非选择题两部分,共100分。
考试时间75分钟。
2.答案全部写在答题卡上,写在试卷纸上一律无效。
3.可能用到的相对原子质量:H1Li7C12N14O16Na23S32K39Fe56I127一、单项选择题:共13题,每题3分,共39分。
每题只有一个选项最符合题意。
1.江南大学科学家利用双点位催化剂实现由二氧化碳和氢气一步合成乙醇。
下列说法正确的是A.该反应有利于实现碳中和 B.该反应中C 的化合价不变C.与氢能相比乙醇不易储存D.乙醇的结构简式为26C H O2.碳化钙的晶胞如图所示,反应22222CaC 2H O C H Ca(OH)+=+↑常用于制备22C H 。
下列有关说法正确的是A.1个22C H 中含1个π键B.22C -的电子式为C.碳化钙晶胞中含4个22C -D.2Ca(OH)属于共价晶体3.实验室拟制取少量液氯。
干冰、液氯和氯化氢的沸点分别为78.5C 34C -︒-︒、和85.1C -︒,下列实验装置或操作不能..达到实验目的的是A.用装置甲制取氯气B.用装置乙干燥氯气C.用装置丙液化氯气D.用装置丁吸收尾气4.古太古代地球大气中含有大量34NH CH 、和2H O 蒸气等气体。
下列说法正确的是A.原子半径:()()()r O >r N >r C B.第一电离能:()()()111I O >I N >I CC.热稳定性:432CH NH H O >>D.分子中键角:432CH NH H O>>阅读下列材料,完成有关问题:硫(S )元素约占地球总质量的1.9%,广泛分布并循环于大气圈、水圈、生物圈、岩石圈以及地球内部各圈层。
硫有32S (占95.04%)、34S (占4.20%)、33S (占0.75%)和36S (占0.01%)四种同位素。
硫元素主要以氢化物、硫化物、含氧酸和含氧酸盐等主要形式存在。
纳米晶体材料的制备与应用

纳米晶体材料的制备与应用纳米材料是指具有至少一个纬度在100纳米以内的结晶或非晶材料。
与传统的宏观材料相比,纳米材料具有较大的比表面积和更多的表面能量,具有很多奇特的物理、化学性质和应用特性。
尤其是纳米晶体材料,由于具有结晶短程有序性、断裂韧性等优秀性能,因此具有广阔的应用前景。
一、纳米晶体材料的制备制备纳米晶体材料的方法非常多样,可以按照材料的来源、制备方法、所用设备等不同方面进行分类。
以下是主要的制备方法。
1.气相沉积法该方法是通过化学气相沉积(CVD)、物理气相沉积(PVD)等方法,使一定的金属、非金属等原子或分子在特定条件下沉积到固定基底上,形成纳米晶体材料。
该方法简单易操作,制备效率高,但需要掌握好参数条件,如工作压力、气体流量等。
2.湿法制备法湿法制备法又称为化学合成法,是利用水溶液或有机溶液中的化学反应,在液体中形成纳米晶体。
其具体方法有溶胶-凝胶法、反相微乳液法、沉淀法、水热法等。
这些方法普遍用于制备金属氧化物、金属复合物、半导体量子点等复杂形状的纳米晶体材料。
3.机械制备法机械制备法是指通过机械力学的方法制备纳米晶体材料,常见的方法有球磨法、高能球磨法、剪切法等。
该方法操作简单,成本较低,但制备时间较长,对设备有一定的要求,同时会带来机械能的消耗和磨损。
二、纳米晶体材料的应用1.制备催化剂纳米晶体材料具有较大的比表面积,使其在催化反应中具有更高的活性,可以提高催化效率,降低反应温度和反应时间。
目前,利用纳米晶体材料制备催化剂已成为当代重要的研究方向之一。
常见的纳米晶体催化剂有金属氧化物、金属复合物、碳材料等。
2.制备水净化材料水净化领域开发出了很多可控合成的纳米晶体材料,并取得了很好的应用效果。
其中,具有高效去除重金属离子、有机物、杂质离子等能力,且对水质不影响的纳米晶体材料越来越受到研究者的关注。
可用于饮用水净化、污水处理等环境水处理。
3.制备电子材料纳米晶体材料在电子材料领域的应用有着广阔的前景。
《2024年基于CeO2的金属纳米催化剂设计合成及其在光催化甲酸产氢中的应用》范文

《基于CeO2的金属纳米催化剂设计合成及其在光催化甲酸产氢中的应用》篇一一、引言随着环境问题的日益严重和能源需求的持续增长,寻找高效、环保的能源转换和存储技术已成为科研领域的热点。
光催化技术以其独特的优势,如可在温和条件下实现反应,为解决能源和环境问题提供了新的途径。
在众多光催化剂中,基于CeO2的金属纳米催化剂因其良好的氧化还原性能、高的光催化活性及稳定性而备受关注。
本文将详细介绍基于CeO2的金属纳米催化剂的设计合成及其在光催化甲酸产氢中的应用。
二、CeO2基金属纳米催化剂的设计合成1. 材料选择与制备方法CeO2作为一种重要的稀土氧化物,具有优异的储氧能力和良好的氧化还原性能。
为了进一步提高其光催化性能,通常将其他金属(如Pt、Au、Ag等)引入CeO2体系中,形成复合型纳米催化剂。
制备方法主要包括溶胶-凝胶法、水热法、化学气相沉积法等。
2. 结构设计与性能优化针对不同的应用需求,可通过调整催化剂的组成、形貌、尺寸等参数,优化其光催化性能。
例如,通过控制合成条件,可制备出具有高比表面积的多孔结构、暴露更多活性位点的特定晶面结构等,从而提高催化剂的光吸收能力和反应活性。
三、光催化甲酸产氢的应用1. 反应原理在光催化甲酸产氢过程中,CeO2基金属纳米催化剂扮演着关键角色。
当光照在催化剂上时,催化剂吸收光能,产生光生电子和空穴。
这些光生载流子能够与甲酸发生氧化还原反应,从而实现产氢。
2. 催化剂性能评价催化剂的性能评价主要依据其产氢速率、稳定性、选择性等指标。
通过对比不同催化剂在相同条件下的产氢性能,可以评估其优劣。
此外,还可以通过表征手段(如XRD、SEM、TEM等)对催化剂的形貌、结构等进行分析,以揭示其性能优劣的原因。
四、实验结果与讨论1. 实验结果通过设计合成不同组成的CeO2基金属纳米催化剂,并在光催化甲酸产氢实验中对比其性能,我们发现,某些催化剂表现出较高的产氢速率和稳定性。
例如,某款Pt-CeO2催化剂在光照条件下,能够在较短的时间内实现较高的产氢量。
纳米精选材料制备方法

纳米资料的制备方法一、前言纳米资料和纳米科技被宽泛认为是二十一世纪最重要的新式资料和科技领域之一。
早在二十世纪 60 年代,英国化学家 Thomas就使用“胶体”来描述悬浮液中直径为1nm-100nm的颗粒物。
纳米资料是指任意一维的尺度小于100nm的晶体、非晶体、准晶体以及界面层结构的资料。
当粒子尺寸小至纳米级时,其自己将拥有表面与界面效应、量子尺寸效应、小尺寸效应和宏观量子地道效应,这些效应使得纳米资料拥有好多奇怪的性能。
自1991 年Iijima 首次制备了碳纳米管以来,一维纳米资料由于拥有好多独到的性质和广阔的应用远景而引起了人们的宽泛关注。
纳米结构无机资料因拥有特其他电、光、机械和热性质而碰到人们越来越多的重视。
应用纳米技术制成超细或纳米晶粒资料时,其韧性、强度、硬度大幅提高,使其在难以加薪资料刀具等领域据有了主导地位。
使用纳米技术制成的陶瓷、纤维宽泛地应用于航空、航天、航海、石油钻探等恶劣环境下使用。
纳米资料的比热和热膨胀系数都大于同类粗晶资料和非晶体资料的值,这是由于界面原子排列较为凌乱、原子密度低、界面原子耦合作用变弱的结果。
所以在储热资料、纳米复合资料的机械耦合性能应用方面有其宽泛的应用远景。
由于晶界面上原子体积分数增大,纳米资料的电阻高于同类粗晶资料,甚至发生尺寸引诱金属——绝缘体转变(SIMIT)。
利用纳米粒子的地道量子效应和库仑拥堵效应制成的纳米电子器件拥有超高速、超容量、超微型低能耗的特点,有可能在不久的将来全面取代当前的老例半导体器件。
纳米巨磁电阻资料的磁电阻与外磁场间存在近似线性的关系,所以也能够用作新式的磁传感资料。
高分子复合纳米资料对可见光拥有优异的透射率,对可见光的吸取系数比传统粗晶资料低得多,而且对红外波段的吸取系数最少比传统粗晶资料低 3 个数量级,磁性比 FeBO3和 FeF3 透明体最少高 1 个数量级,从而在光磁系统、光磁资料中有着宽泛的应用。
二、纳米资料的制备方法(一)、机械法机械法有机械球磨法、机械粉碎法以及超重力技术。
费托合成联产高碳醇高分散负载型cu-fe双金属纳米催化剂的可控制备及反应机理

费托合成联产高碳醇高分散负载型cu-fe双金属纳米催化剂的
可控制备及反应机理
费托合成是一种重要的工业化学反应,用于将碳气化产物转化为高碳醇燃料。
然而,传统的费托合成催化剂存在一些问题,如活性低、选择性差和催化剂寿命短等。
为了改善传统催化剂的性能,研究人员开始开发高分散负载型双金属纳米催化剂。
这些催化剂以纳米尺度的金属颗粒为基础,通过合理的负载方法将其固定在载体上。
其中,Cu-Fe双金属
纳米催化剂受到广泛关注,因为Cu和Fe都是费托合成反应
中常用的催化剂。
可控制备高分散负载型Cu-Fe双金属纳米催化剂是实现其优异性能的关键。
首先,需要选择合适的负载材料,并通过适当的方法将Cu和Fe离子负载在载体上。
常用的载体材料包括氧
化物、炭材料和纳米碳管等。
其次,需要控制负载过程中的温度、时间和溶剂等参数,以确保金属颗粒的高度分散性。
最后,通过适当的还原处理,将离子还原为金属颗粒。
Cu-Fe双金属纳米催化剂的反应机理尚不完全清楚,但已有一
些研究取得了进展。
一种可能的机理是,Cu和Fe之间存在协
同效应,Cu提供了活性位点来吸附和激活气体分子,而Fe则
参与生成反应中间体和产物。
另外,还有研究表明,Cu和Fe
的相互作用可以调控费托合成反应的选择性,提高所需产物的选择性。
总的来说,可控制备高分散负载型Cu-Fe双金属纳米催化剂是
一种潜在的费托合成催化剂,它可以提高反应的活性和选择性。
然而,仍然需要进一步研究来深入理解其制备过程和反应机理,并进一步优化其性能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
One-Step Controllable Synthesis for High-Quality UltrafineMetal Oxide Semiconductor Nanocrystals via a SeparatedTwo-Phase Hydrolysis ReactionKangjian Tang,†,‡Jianan Zhang,|Wenfu Yan,|Zhonghua Li,|Yangdong Wang,‡Weimin Yang,‡Zaiku Xie,‡Taolei Sun,*,†,§and Harald Fuchs†,§Physikalisches Institut,Muenster Uni V ersity,Muenster48149,Germany,Center for Nanotechnology,Muenster48151,Germany,Shanghai Research Institute of PetrochemicalTechnology,SINOPEC,Shanghai201208,P.R.China,and State Key Laboratory of InorganicSynthesis and Preparati V e Chemistry,College of Chemistry,Jilin Uni V ersity,Changchun130012P.R.ChinaReceived October31,2007;E-mail:Sunt@uni-mienster.deAbstract:A one-step synthesis method is described to prepare high-quality ultrafine inorganic semiconductor nanocrystals via a two-phase interface hydrolysis reaction under hydrothermal conditions.With the synthesis of ZrO2quantum dots as an example,we show that the prepared nanocrystals have good monodispersity and high crystallinity,as well as other related superior properties,e.g.,strong photoluminescence and excellent photocatalytic activities.Also the crystal size can be conveniently adjusted in the range below10 nm through controlling the reaction temperature.Besides that,this method also shows other distinct advantages compared with other methods reported previously.First,the preparation process is simple and cheap and does not contain any complicated posttreatment procedure.Second,products(without coating)can be collected from the organic phase which effectively avoids grain aggregation induced by the capillary concentration in the water environment.Third,the production yield is very high(almost100%) and the organic and water phases after reaction can be easily recycled for next reaction.Therefore,it provides a promising strategy for the large-scale industrial production of different kinds of high-quality inorganic nanocrystals.IntroductionInorganic semiconductor nanocrystals1-3have attracted great interest in recent decades due to their importance in a wide variety of applications including photocatalysis,4-6electric devices,7light-emitting devices,8,9solar cells,10bioimaging, biosensors,11,12etc.Although numerous methods have been developed to fabricate these kinds of materials,13such as the sol technique,14,15micelles or emulsion method,16sol-gel process,17,18hydrothermal synthesis,19,20pyrolysis,21,22chemical vapor deposition,23etc.,they usually suffer from complicated preparation and posttreatment procedures or problems of ag-gregation or poor monodispersity,which greatly influence their properties and restrict their large-scale production and successful applications in industry.Simple methods that are suitable for industrial production to prepare monodispersed semiconductor nanocrystals with tunable size(especially under10nm)still remain a big challenge.†Muenster University.‡SINOPEC.§Center for Nanotechnology. |Jilin University.(1)Wang,Y.;Herron,N.J.Phys.Chem.1991,95,525-532.(2)Fernandez-Garcia,M.;Martinez-Arias,A.;Hanson,J.C.;Rodriguez,J.A.Chem.Re V.2004,104,4063-4104.(3)Kong,X.Y.;Ding,Y.;Yang,R.;Wang,Z.L.Science2004,303,1348-1351.(4)Kalyanasundaram,K.Photochemistry in Microheterogeneous Systems;Academic Press:New York,1987.(5)Gratzel,M.Heterogeneous Photochemical Electron Transfer;CRC Press:Boca Raton,FL,1989.(6)Lewis,L.N.Chem.Re V.1993,93,2693-2730.(7)Kamat,P.V.;Meisel,D.Semiconductor Nanoclusters-Physical,Chemical,and Catalytic Aspects;Elsevier Science:New York,1997.(8)Wang,Y.Acc.Chem.Res.1991,24,133-139.(9)Gaponik,N.P.;Talapin,D.V.;Rogach,A.L.Phys.Chem.Chem.Phys.1999,1,1787-1789.(10)Gur,I.;Fromer,N.A.;Geier,M.L.;Alivisatos,A.P.Science2005,310,462-465.(11)Bruchez,M.;Moronne,M.;Gin,P.;Weiss,S.;Alivisatos,A.P.Science1998,281,2013-2016.(12)Alivisatos,A.P.;Gu,W.;Larabell,C.Annu.Re V.Biol.Eng.2005,7,55-76.(13)Burda,C.;Chen,X.;Narayanan,R.;El-Sayed,M.A.Chem.Re V.2005,105,1025-1102.(14)Murray,C.B.;Norris,D.J.;Bawendi,M.G.J.Am.Chem.Soc.1993,115,8706-8715.(15)Yin,M.;O’Brien,S.J.Am.Chem.Soc.2003,125,10180-10186.(16)Murray,C.B.;Norris,D.J.;Bawendi,M.G.J.Am.Chem.Soc.1993,115,8706-8715.(17)Li,Y.;White,T.;Lim,S.H.Re V.Ad V.Mater.Sci.2003,5,211-215.(18)Mondelaers,D.;Vanhoyland,G.;Van den Rul,H.;D’Haen,J.;Van Bael,M.K.;Mullens,J.;Van Poucke,L.C.Mater.Res.Bull.2002,37,901-914.(19)Wang,X.;Zhuang,J.;Peng,Q.;Li,Y.Nature2005,437,121-124.(20)Liao,Q.L.;Tannenbaum,R.;Wang,Z.L.J.Phys.Chem.B2006,110,14262-14265.(21)Depero,L.E.;Bonzi,P.;Musci,M.;Casale,C.J.Solid State Chem.1994,111,247-252.(22)Li,W.;Gao,L.;Guo,J.Nanostruct.Mater.1998,10,1043-1049.(23)Gao,P.;Ding,Y.;Wang,Z.Nano Lett.2003,3,1315-1320.(24)Parthasarathy,R.;Martin,C.R.Nature1994,369,298-301.(25)Miao,Z.;Xu,D.;Ouyang,J.;Guo,G.;Zhao,X.;Tang,Y.Nano Lett.2002,2,717-720.Published on Web02/07/200826769J.AM.CHEM.SOC.2008,130,2676-268010.1021/ja0778702CCC:$40.75©2008American Chemical SocietyIn this contribution,we report a novel simple one-step controllable preparation method for high-quality ultrafine metal oxide semiconductor nanocrystals via the two-phase hydrolysis reaction under hydrothermal conditions.With an example of sub-10nm ZrO 2quantum dots (qdots),we show that the products have good monodispersity and high crystallinity,as well as other related superior properties,e.g.,strong photolu-minescence,excellent photocatalytic activities,etc.More in-terestingly,the crystal size can be conveniently adjusted in the range below 10nm through controlling the reaction temperature.Besides that,this method also shows other distinct advantages compared with other methods reported previously.First,the preparation process is simple and cheap and does not contain any complicated posttreatment procedure.Second,products (without coating)can be collected from the organic phase which effectively avoids grain aggregation induced by the capillary concentration in water environment.Third,the production yield is very high (almost 100%)and the organic and water phases after reaction can be easily recycled for the next reaction.It would be especially beneficial for industrial production and help to largely reduce production costs.Therefore,it provides a promising strategy for large-scale industrial production of different kinds of high-quality inorganic nanocrystals,provided that an appropriate two-phase reaction can be found.Results and DiscussionThe essence of our method is the combination of the interface hydrolysis and nucleation process in the confined nanoscale organic matrix and the crystallization process under hydrother-mal conditions.Scheme 1shows the preparation process of ZrO 2qdots as an example.The water phase and the organic phase (toluene,bp 110°C)containing a metal alkyl oxide precursor (Zr(OC 4H 9)4(TBZ))were placed separately in the same Teflon-lined hydrothermal chamber.Under hydrothermal temperatures (100-240°C),the water and organic phases are much different from those at normal conditions because of the autogenous high pressure when the temperature exceeds the boiling points of water and toluene.It is a nonliquid and nongas state,and the two phases may exist as tiny droplets that diffuse gradually to the other side to form an interface.The hydrolysis reaction between TBZ and water will occur immediately when the water and toluene droplets meet and collide with each other,and the crystal nucleus will form simultaneously in this way.At thesame time,the hydrothermal conditions also provides a stable environment for further crystallization.The tiny toluene droplets can act as nanoreactors with uniform sizes which confine the further growth of the nanocrystals.It is a dynamic process that the droplet sizes and the collisions between different droplets largely depend on the reaction temperature.Therefore,it provides a convenient approach to control the nanocrystal size through adjusting the reaction temperature.The nanocrystals will deposit in the organic phase because toluene has a higher boiling point than water and thus the interface may locate at the organic phase side.The separation of the water and organic phases can efficiently prevent further growth of the nanocrystals during the remaining hydrothermal period because the hydrolysis reaction can only occur at the interface area,which is especially helpful to prepare the monodispersed ultrafine (e.g.,<10nm)nanocrystals.Product Characterizations.The ZrO 2samples collected from the organic phase are all fine white powders with a yield higher than 99.9%(only very small amount (less than 0.1%)of product can be found in water phase).1H NMR (Supporting Information Figure S1)study reveals that there is no unreacted TBZ and only an amount of n -butanol (the resultant of the hydrolysis reaction)exists in the organic phase,indicating that the reaction is very complete.And the chemical analysis on the organic and water phases further shows that there is only a trace amount of water in the organic phase and negligible toluene in the water phase.The above obsevations show that the resultant solutions can be easily recycled for the next reaction,and thus,this method is environmental friendly and has great potential for large-scale production in industry.Figure 1a shows the typical transmission electron microscope (TEM)image for a product prepared with hydrothermal tem-perature of 160°C.The product shows excellent dispersity although there is no organic coating (as the reaction system only contains the reactant,water,and toluene)on the particle surface.This is much different from the phenomena observed for other methods to prepare the uncoated inorganic nanocrystals,in which serious aggregation will usually be observed due to theScheme 1.Diagram for the Preparation Process with ZrO 2as an ExampleaaKey:(1)Evaporation and diffusion of two phases in the autoclave is shown.(2)Hydrolysis reaction occurs at the interface area of two phases.(3)Shown are zro 2qdots formation and crystallization by the hydrolysis and hydrothermal reactions,which will mainly deposit into the organic phase.(4)After the separation of solid products,the organic phase could be easily recycled for the next reaction by the fractionationmethod.Figure 1.(a)Low-resolution TEM and (b)corresponding high-resolution TEM images of ZrO 2qdots prepared at 160°C.Further magnified images show the coexistence of the (c)tetragonal and (d)monoclinic ZrO 2qdots in the samples.Metal Oxide Semiconductor NanocrystalsA R T I C L E SJ.AM.CHEM.SOC.9VOL.130,NO.8,20082677capillary condensation induced by water evaporation.This reveals that the collection in a suitable organic phase may serve as an efficient strategy to solve such a kind of problem.The corresponding high-resolution TEM image (Figure 1b)shows that the samples are well crystallized round qdots with good monodispersity and particle size of ∼4.4nm,the crystal lattice of which can be clearly observed in further magnified images (Figure 1c,d).Meanwhile,the orthogonal lattice (D 1≈0.296nm,Figure 1c)and the parallel lattice (D 2≈0.318nm,Figure 1d)for different particles can be indexed to the (111)plane of the tetragonal and the (1h 11)plane of the monoclinic ZrO 2structure,respectively.This implies the coexistence of the tetragonal and monoclinic ZrO 2qdots in the samples.The particle sizes of the ZrO 2qdots prepared under different hydrothermal temperatures were further investigated by the small-angle X-ray scattering (SAXS)technique.26The curves of the distribution function (Figure 2a)that calculated from the SAXS patterns (see Supporting Information)show a good monodispersity for all the samples that were prepared at different temperatures,and their average sizes increase monotonously from ∼1.0to ∼6.1nm when the temperature increases from 110to 240°C (Figure 2b).This indicates an excellent controllability over the grain size of the nanocrystals through adjusting the reaction temperature,which may be due to the thermodynamic reasons of the hydrolysis reaction.To confirm this effect,we used the same method to prepare TiO 2nanocrystals (precursor:Ti(OC 4H 9)4),which show good crystallinity and monodispersity similar to those of the ZrO 2material reported above.The grain size also increases regularly from ∼6.7to ∼22.1nm (Table 1)when the reaction temperature changes from 100to 220°C.As indicated by the X-ray line profile analysis (Supporting Information Figure S2),the as-prepared TiO 2nanocrystals have approximate sizesat different dimensions (e.g.,[101],[200],[105],[211];see Table 1),indicating a proximately spherical morphology of the nanocrystals.The crystallinity is further investigated by powder X-ray diffraction (XRD)measurement (Figure 3),in which charac-teristic peaks of monoclinic ZrO 2can all be found in the XRD patterns for different samples.At the same time,the broadening and the overlapping of the 2θpeaks after 30°also cover all the typical peaks of the tetragonal phase.Although the tetragonal phase is thermodynamically unstable at room temperature,and the corresponding bulk material can only exist at a temperature higher than 1170°C,Garvie 27theoretically predicted that pure tetragonal ZrO 2can be stable at room temperature when the particle size is less than 30nm.28Therefore,these data also support the existence of the tetragonal ZrO 2qdots.It can also be observed that the products prepared at 100°C show very broad XRD peaks,which may be because of the very small particle size (the nanocrystals can only be called as quasi-crystal),and the peaks become much sharper with the increase of the preparation temperature,indicating an crystallinity increase with the increase of the crystal size.Further analysis of the XRD patterns indicates that the samples prepared at 100°C (Figure 3a)and 110°C are mainly composed of(26)Schomaker,V.;Glauber,R.Nature 1952,290-291.(27)Garvie,R.C.J.Phys.Chem.1978,82,218-224.(28)Xie,S.;Iglesia,E.;Bell,A.T.Chem.Mater.2000,12,2442-2447.Figure 2.(a)Size distribution function of ZrO 2qdots that calculated from the SAXS data.(b)Relationship between the particle size (maximum probability of diameter)and the hydrothermal temperature.Table 1.Average Sizes of the TiO 2Nanocrystals Prepared at Different TemperaturesD ([hkl ]a /nmtemp/°C[101][200][105][211]av size/nm1007.0 5.98.0 6.0 6.712010.98.010.07.08.914014.213.913.912.213.518015.515.717.315.516.022020.922.624.320.722.1aD is the size in different crystal dimensions [hkl ]that calculated from the profile analysis of the corresponding powder XRD peaks (see Supporting Information).Figure 3.XRD patterns for ZrO 2qdots that were prepared at different temperatures:(a)100°C;(b)120°C;(c)140°C;(d)160°C;(e)180°C;(f)200°C.Red lines:characteristic peaks for the tetragonal phase.Blue lines:characteristic peaks for the monoclinic phase.A R T I C L E S Tang et al.2678J.AM.CHEM.SOC.9VOL.130,NO.8,2008tetragonal ZrO 2nanocrystals,and there is almost no monoclinic phase because of the lack of the corresponding characteristic peaks before 30°.However,the characteristic peaks of the monoclinic phase begin to appear at 120°C and their relative intensities increase with the increase of preparation temperature,indicating the appearance and the content increase of the monoclinic nanocrystals.29,30For samples prepared at temper-atures higher than 200°C (Figure 3f),the monoclinic phase becomes the main component and the content of the tetragonal phase is very small,which is consistent with the high-resolution TEM observation.This indicates an interesting nanosize-dependent phase transition from tetragonal to monoclinic nanocrystals at low temperatures,which will be examined in detail in further research.Photoluminescent and Photocatalytic Activities of the Samples.ZrO 230is a classic material that has been widely applied in many industrial fields,such as advanced ceramicstechnology,31etc.Moreover,as an n-type semiconductor,it is also widely used as photocatalyst in photochemical reactions,such as photocatalytic oxidation of propene,photoreduction of carbon dioxide,etc.,33,34and the nanosized particles are reported to possess excellent properties because of the large specific surface area and other effects.35,36When the size decreases to a value that is comparable to the Bohr exciton radius of the material, e.g.,10nm or less,it will exhibit some unique properties because of the nanosize effect,such as photolumi-nescence,etc.To check the performance of the as-prepared ZrO 2qdots,the luminescent and photocatalytic properties were further investigated.As shown in the excitation spectra (Figure 4a),the absorption peaks for the ZrO 2qdots exhibit obvious red-shift from ∼278.0-284.0to ∼288.5nm when the size of the qdots increases from ∼1.0nm (prepared at T )110°C)to ∼6.1nm (T )240°C),indicating a distinct quantum size effect.The emission spectra (Figure 4b)show four emission peaks in the blue light region for all the samples.As a result,strong blue light emission (inset of Figure 4b)when samples are irradiated by a UV-light lamp (365nm)can be clearly observed even at daytime.These features are related to the near band-edge transitions and a midgap trap state that results from incomplete surface passivation such as surface defects and oxygen vacancies,15,37and the change of the corresponding band gap with the decrease of the nanocrystal size.Significantly,the as-prepared ZrO 2qdots also show excellent and size-dependent photocatalytic activity.Figure 5shows the relationship between the particle size and the photocatalytic efficiency of the ZrO 2qdots (as denoted by the hydrogen output in the photocatalytic hydrogen production experiment).It can be observed that the photocatalytic efficiency increases first with the increase of crystal size and reaches a maximum value of 1676µmol ‚g -1‚h -1at the size of ∼5.5nm (prepared at 210°C)and then decreases dramatically when the size increases further.Because the specific surface area (SSA)is an important factor influencing the photocatalytic efficiency,we measured the SSA values of the samples prepared at different tempera-tures.As shown in Table 2,the SSA values increase significantly(29)Noh,H.-J.;Seo,S.-S.;Kim,H.;Lee,J.-K.Mater.Lett.2003,57,2425-2431.(30)Zhao,N.;Pan,D.;Nie,W.;Ji,X.J.Am.Chem.Soc.2006,128,10118-10124.(31)Cahn,R.W.Nature 1988,332,112-113.(32)Corma,A.Chem.Re V .1995,95,559-614.(33)Witko,M.J.Mol.Catal.1991,70,277-333.(34)Wang,C.-M.;Fan,K.-N.;Liu,Z.-P.J.Am.Chem.Soc.2007,129,2642-2647.(35)Edelstein,A.S.;Cammaratra,R.C.Nanomaterials:Synthesis,Propertiesand Applications ;Institute of Physics Publishing:London,1998.(36)Sun,T.;Tan,H.;Han,D.;Fu,Q.;Jiang,L.Small 2005,1,959-963.(37)Liang,J.;Deng,Z.;Jiang,X.;Li,F.;Li,Y.Inorg.Chem.2002,41,3602-3604.Figure 4.Fluorescence spectra of the ZrO 2qdots prepared at different temperatures (T )and dispersed in chloroform:(a)excitation spectra,in which an obvious red-shift of the absorption peaks can be observed;(b)emission spectra (excitation wavelength:285nm).Four main peaks located at 331,344,401,and 423nm in the blue-light region can be observed.Inset:blue-light emission of ZrO 2qdots dispersed in chloroform (recorded by a CCD camera in a dark room,irradiated by a black-light lamp (365nm))(left tube,with ZrO 2qdots;right tube,without ZrO 2qdots).Figure 5.Photocatalytic properties of the ZrO 2qdots with different particle sizes:(O )hydrogen output efficiency;(0)specific reaction rate considering the specific surface area of the nanocrystals.Metal Oxide Semiconductor Nanocrystals A R T I C L E SJ.AM.CHEM.SOC.9VOL.130,NO.8,20082679with the decrease of the reaction temperatures.38The specific reaction rate of the photocatalytic reaction after considering the SSA values is also included in Figure5.It can be observed that5.5nm also shows the highest specific reaction rate,which indicates that the crystallinity is another important factor influencing the photocatalytic efficiency of ZrO2nanocrystals. To make a comparison,we further investigated the photocata-lytic activity of the commercial ZrO2(Beijing Chemical Plant, Beijing,China)and TiO2(p25,Degussa)powders,which show hydrogen output efficiencies of about673and300µmol‚g-1h-1, respectively.This indicates that the as-prepared ZrO2qdots have excellent photocatalytic activity that are much superior to that of the the commercial products.ConclusionsIn summary,a simple one-step synthesis method is described to fabricate high-quality metal oxide semiconductor nanocrystals via a two-phase interface hydrolysis reaction under hydrothermal conditions.Due to the confined nucleation and the hydrothermal crystallization processes,as well as the advantages of the interface reaction,which efficiently prevents the further growth of the crystals,we show that this method is very suitable to prepare monodispersed,highly crystallized,ultrafine(typically 10nm or less)nanocrystals.The collection in the organic phase can efficiently prevent nanocrystal aggregation,although there is no organic coating on their surface.The size of the nano-crystals can be conveniently adjusted through controlling the reaction temperature.Moreover,other advantages,e.g.,simple and low cost,high production yield,highly recyclable reaction solutions,etc.,make them easy to be industrialized.It is also considered that this method can be easily extended to the synthesis of other high-quality inorganic nanocrystals,e.g., metals,39metal sulfides,metal selenides,40etc.,if only suitable interface reactions could be found.Acknowledgment.We thank the partially financial support from the SINOPEC and the Federal Ministry of Education and Research of Germany(BMBF).Supporting Information Available:Experimental details,1-HNMR analysis of the organic phase after reaction,calculation method for the size distribution function of ZrO2qdots by SAXS analysis,and XRD patterns of the TiO2nanocrystals.This material is available free of charge via the Internet at .JA0778702(38)Kawaguchi,H.Prog.Polym.Sci.2000,25,1171-1210.(39)Jana,N.R.;Peng,X.J.Am.Chem.Soc.2003,125,14280-14281.(40)Pradha,N.;Xu,H.;Peng,X.Nano Lett.2006,6,720-724.Table2.Average Particle Size and Specific Surface Area(BET) of the ZrO2Nanocrystals Prepared at Different Temperaturestemp/°Cparam110130150170190210240 av particle size/nm 1.3 2.1 3.4 4.3 4.9 5.5 6.1specific surf area/ m2g-1273.3209.1177.3182.8153.8168.3124.1A R T I C L E S Tang et al. 2680J.AM.CHEM.SOC.9VOL.130,NO.8,2008。