湖北省武汉市2020年九年级元月调考数学模拟试卷(4) 含解析

合集下载

湖北省武汉市2020届九年级四月模拟检测数学试卷

湖北省武汉市2020届九年级四月模拟检测数学试卷

A.0
B.1
C.2
D.3
9.已知整数 a1,a2,a3,a4,…满足下列条件:a1=0,a2=-|a1+1|,a3=-|a2+2|,
a4=-|a3+3|,…依此类推,则 a2020 的值为
A.﹣1008
B.﹣1009
C.﹣1010
D.﹣1011
10.如图,PA、PB 是⊙O 的切线,A、B 为切点,C 是劣弧 AB 的中点,连接 BC 并延长交
根据所给信息,解答以下问题: (1)在扇形统计图中,C 级对应的扇形的圆心角是_______度; (2)补全条形统计图; (3)所抽取学生的足球运球测试成绩的中位数会落在_______等级; (4)若成绩达到 A 等级的学生可以选为志愿者,请估计该校八年级 600 名学生中可以选 为志愿者学生有多少人?
下列各题需要在答题卡指定位置写出文字说明、证明过程、演算步骤或画出图形.
17.(本题 8 分)计算:a2a4-a8÷a2+(3a3)2
18.(本题 8 分)如图, AC⊥AE,BD⊥BF,∠1=∠2,求证:AE∥BF.
19.(本题 8 分)2020 年 2 月 10 日,光明中学团委利用网络平台组织八年级 600 名学生参加 “全民抗疫”知识大赛.为了了解本次大赛的成绩,随机抽取了部分学生的成绩作为样 本,按 A,B,C,D 四个等级进行统计,制成如下不完整的统计图. (说明:A 级 80 分- 100 分,B 级 70 分-79 分,C 级 60-69 分,D 级 0 分-59 分)
第3页共6页
20.(本题 8 分)请仅用无刻度直尺完成下列画图,不写画法,保留画图痕迹. (1)如图 1,在 7×7 的正方形网格中,每个小正方形的边长为 1,小正方形的顶点叫做格点. △ABC 的顶点在格点上,过点 A 画一条直.线.平分△ABC 的面积; (2)如图 2,点 E 在正方形 ABCD 的内部,且 EB=EC,过点 E 画一条射.线.平分∠BEC; (3)如图 3,点 A、B、C 均在⊙O 上,且∠BAC=120°,在优弧 BC 上画 M、N 两.点., 使∠MAN=60°.

2020年湖北省武汉市硚口区九年级元月调考数学模拟试卷及答案解析

2020年湖北省武汉市硚口区九年级元月调考数学模拟试卷及答案解析

2020年湖北省武汉市硚口区九年级元月调考数学模拟试卷一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答卷上将正确答案的字母代考涂黑.1.(3分)将方程x2+5x=7化为一元二次方程的一般形式,其中二次项系数为1,则一次项系数、常数项分别为()A.5,﹣7B.5,7C.﹣5,7D.﹣5,﹣7 2.(3分)下列图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.3.(3分)下列事件中,是随机事件的是()A.任意抛一枚图钉,钉尖着地B.任意画一个三角形,其内角和是180oC.通常加热到100℃时,水沸腾D.太阳从东方升起4.(3分)抛物线y=x2+1先向左平移2个单位长度,再向下平移5个单位长度所得抛物线的解析式是()A.y=(x+2)2+4B.y=(x+2)2﹣4C.y=(x﹣2)2+4D.y=(x﹣2)2﹣4 5.(3分)用频率估计概率,可以发现,某种幼树在一定条件下移植成活的概率为0.8,下列说法正确的是()A.种植10棵幼树,结果一定是“有8棵幼树成活”B.种植1000棵幼树,结果一定是“800操幼树成活“和“200棵幼树不成活”C.种植10n棵幼树,恰好有“2n棵幼树不成活”D.种植n棵幼树,当n越来越大时,种植成活幼树的频率会越来越稳定于0.86.(3分)如图,AB是⊙O的直径,点C,D在⊙O上,若∠DCB=110°,则∠AED的度数为()A.15°B.20°C.25°D.30°7.(3分)平面直角坐标系中,M点坐标为(﹣2,3),以2为半径画⊙M,则以下结论正确的是()A.⊙M与x轴相交,与y轴相切B.⊙M与x轴相切,与y轴相离C.⊙M与x轴相离,与y轴相交D.⊙M与x轴相离,与y轴相切8.(3分)如图,将△ABC绕顶点C旋转得到△DEC,点A对应点D,点B对应点E,且点B刚好落在DE边上,∠A=24°,∠BCD=48°,则∠ABD等于()A.30°B.38°C.36°D.45°9.(3分)如图,在€O中,=,BC=6.AC=3,I是△ABC的内心,则线段OI 的值为()A.1B.﹣3C.5﹣D.10.(3分)二次函数y=x2+bx的对称轴为直线x=1,若关于x的方程x2+bx﹣t=0(t为实。

2020年湖北省武汉市硚口区部分学校九年级四月调考数学模拟试卷答案解析

2020年湖北省武汉市硚口区部分学校九年级四月调考数学模拟试卷答案解析

2020年湖北省武汉市硚口区部分学校九年级四月调考数学模拟试卷答案解析一、选择题1.计算的结果是()A.±6B.6C.﹣6D.【解答】解:=6,故选:B.2.分式﹣有意义,则x的取值范围是()A.x>1B.x=1C.x≠1D.x<1【解答】解:由题意,得1﹣x≠0,解得x≠1.故选:C.3.下列式子计算结果为2x2的是()A.x+x B.x•2x C.(2x)2D.2x6÷x3【解答】解:(A)原式=2x,故A不正确;(B)原式=2x2,故B正确;(C)原式=4x2,故C不正确;(D)原式=2x3,故D不正确;故选:B.4.下列事件是随机事件的是()A.从装有2个红球、2个黄球的袋中摸出3个球,它们的颜色全不相同B.通常温度降到0℃以下,纯净的水结冰C.任意画一个三角形,其内角和是360°D.随意翻到一本书的某页,这页的页码是奇数【解答】解:A、从装有22个红球、2个黄球的袋中摸出3个球,它们的颜色全不相同是不可能事件,故A不符合题意;B、通常温度降到0℃以下,纯净的水结冰是必然事件,故B不符合题意;C、任意画一个三角形,其内角和是360°是不可能事件,故C不符合题意;D、随意翻到一本书的某页,这页的页码是奇数是随机事件,故D符合题意.故选:D.5.运用乘法公式计算(4+x)(x﹣4)的结果是()A.x2﹣16B.16﹣x2C.x2+16D.x2﹣8x+16【解答】解:原式=(x+4)(x﹣4)=x2﹣16故选:A.6.已知点A(a,2)与点B(3,b)关于x轴对称,则实数a,b的值是()A.a=3,b=2B.a=﹣3,b=2C.a=3,b=﹣2D.a=﹣3,b=﹣2【解答】解:∵点A(a,2)与点B(3,b)关于x轴对称,∴a=3,b=﹣2.故选:C.7.下列如图表示一个由若干相同小立方块搭成的几何体的俯视图,小正方形的数字表示该位置上小立方块的个数,则该几何体的主视图为()A.B.C.D.【解答】解:主视图应有2列,左边一列有2个立方块,右侧有3个立方块,B选项符合要求,故选:B.8.国家实行一系列“三农”优惠政策后,农民收入大幅增加.某乡所辖村庄去年的月人均收入(单位:百元)情况如下表:.年人均收入23456村庄个数21231该乡去年各村庄年人均收入的中位数、平均数分别是()A.4、3B.4、4C.5、4D.5、5【解答】解:由表可知共有2+1+2+3+1=9个数据,则其中位数为4,其平均数为=4,故选:B.9.如图,由25个点构成的5×5的正方形点阵中,横、纵方向相邻的两点之间的距离都是1个单位.定义:由点阵中的四个点为顶点的平行四边形叫做阵点平行四边形,图中以A、B为顶点,面积为4的阵点平行四边形的个数有()A.6个B.7个C.9个D.11个【解答】解:根据题意得:一共11个面积为4的阵点平行四边形.故选:D.10.如图,BC是⊙O的直径,BC=4,M、N是半圆上不与B、C重合的两点,且∠MON =120°,△ABC的内心为E点,当点A在上从点M运动到点N时,点E运动的路径长是()A.B.C.D.【解答】解:如图,连接BE、CE,∵∠BAC=90°,E是内心,∴∠BEC=135°,∴点E在以P为圆心的PC为半径的圆上运动(轨迹是),在⊙P上取一点M′,连接BM′、CM′,则∠M′=180°﹣135°=45°,∠BPC=2∠M′=90°,∴△BCP是等腰直角三角形,∵BC=4,∴PB=PC=4,∵∠HPC=2∠HBC=∠NBC=∠NOC,同理∠GPB=∠MOB,∴∠HPC+∠GPB=(∠NOC+∠MOB)=30°,∴∠GPH=60°,∴点E运动的路径长是=π,故选:B.1.计算的结果是()A.±6B.6C.﹣6D.【解答】解:=6,故选:B.2.分式﹣有意义,则x的取值范围是()A.x>1B.x=1C.x≠1D.x<1【解答】解:由题意,得1﹣x≠0,解得x≠1.故选:C.3.下列式子计算结果为2x2的是()A.x+x B.x•2x C.(2x)2D.2x6÷x3【解答】解:(A)原式=2x,故A不正确;(B)原式=2x2,故B正确;(C)原式=4x2,故C不正确;(D)原式=2x3,故D不正确;故选:B.4.下列事件是随机事件的是()A.从装有2个红球、2个黄球的袋中摸出3个球,它们的颜色全不相同B.通常温度降到0℃以下,纯净的水结冰C.任意画一个三角形,其内角和是360°D.随意翻到一本书的某页,这页的页码是奇数【解答】解:A、从装有22个红球、2个黄球的袋中摸出3个球,它们的颜色全不相同是不可能事件,故A不符合题意;B、通常温度降到0℃以下,纯净的水结冰是必然事件,故B不符合题意;C、任意画一个三角形,其内角和是360°是不可能事件,故C不符合题意;D、随意翻到一本书的某页,这页的页码是奇数是随机事件,故D符合题意.故选:D.5.运用乘法公式计算(4+x)(x﹣4)的结果是()A.x2﹣16B.16﹣x2C.x2+16D.x2﹣8x+16【解答】解:原式=(x+4)(x﹣4)=x2﹣16故选:A.6.已知点A(a,2)与点B(3,b)关于x轴对称,则实数a,b的值是()A.a=3,b=2B.a=﹣3,b=2C.a=3,b=﹣2D.a=﹣3,b=﹣2【解答】解:∵点A(a,2)与点B(3,b)关于x轴对称,∴a=3,b=﹣2.故选:C.7.下列如图表示一个由若干相同小立方块搭成的几何体的俯视图,小正方形的数字表示该位置上小立方块的个数,则该几何体的主视图为()A.B.C.D.【解答】解:主视图应有2列,左边一列有2个立方块,右侧有3个立方块,B选项符合要求,故选:B.8.国家实行一系列“三农”优惠政策后,农民收入大幅增加.某乡所辖村庄去年的月人均收入(单位:百元)情况如下表:.年人均收入23456村庄个数21231该乡去年各村庄年人均收入的中位数、平均数分别是()A.4、3B.4、4C.5、4D.5、5【解答】解:由表可知共有2+1+2+3+1=9个数据,则其中位数为4,其平均数为=4,故选:B.9.如图,由25个点构成的5×5的正方形点阵中,横、纵方向相邻的两点之间的距离都是1个单位.定义:由点阵中的四个点为顶点的平行四边形叫做阵点平行四边形,图中以A、B为顶点,面积为4的阵点平行四边形的个数有()A.6个B.7个C.9个D.11个【解答】解:根据题意得:一共11个面积为4的阵点平行四边形.故选:D.10.如图,BC是⊙O的直径,BC=4,M、N是半圆上不与B、C重合的两点,且∠MON =120°,△ABC的内心为E点,当点A在上从点M运动到点N时,点E运动的路径长是()A.B.C.D.【解答】解:如图,连接BE、CE,∵∠BAC=90°,E是内心,∴∠BEC=135°,∴点E在以P为圆心的PC为半径的圆上运动(轨迹是),在⊙P上取一点M′,连接BM′、CM′,则∠M′=180°﹣135°=45°,∠BPC=2∠M′=90°,∴△BCP是等腰直角三角形,∵BC=4,∴PB=PC=4,∵∠HPC=2∠HBC=∠NBC=∠NOC,同理∠GPB=∠MOB,∴∠HPC+∠GPB=(∠NOC+∠MOB)=30°,∴∠GPH=60°,∴点E运动的路径长是=π,故选:B.二、选择题11.计算:2+(﹣3)的结果为﹣1.【解答】解:2+(﹣3)=﹣1.故答案为:﹣1.12.计算:﹣=.【解答】解:原式==故答案为:13.一个口袋中有三个完全相同的小球,把它们分别标号为123,随机地摸出一个小球,然后放回,再随机摸出一个小球,则两次摸出的小球标号的和等于4的概率是.【解答】解:根据题意,画树状图如下:共有9种等可能结果,其中两次摸出的小球标号的和为4的有3种,∴两次摸出的小球标号的和等于4的概率是=,故答案为:.14.如图,在矩形ABCD中,把∠A沿DF折叠,点A恰好落在矩形的对称中心E处,则tan∠ADF=.【解答】解:∵把∠A沿DF折叠,点A恰好落在矩形的对称中心E处,∴AD=ED=AE,∠ADF=∠EDF=ADE,∴△DAE的等边三角形,∴∠ADE=60°,∴∠ADF=30°,∴tan∠ADF=,故答案为:.15.已知抛物线C1:y=x2﹣3x﹣10及抛物线C2:y=x2﹣(2a+2)x+a2+2a(其中a为常数).当﹣2<x<a+2时,C1、C2的图象都在x轴下方,则a的取值范围是﹣4<a≤﹣2.【解答】解:在y=x2﹣3x﹣10中,令y=0,则x2﹣3x﹣10=0,解得:x1=﹣2,x2=5,∴抛物线C1与x轴的交点坐标为(﹣2,0),(5,0),在y=x2﹣(2a+2)x+a2+2a中,令y=0,则x2﹣(2a+2)x+a2+2a=0,解得:x1=a,x2=a+2,∵当﹣2<x<a+2时,C1、C2的图象都在x轴下方,∴,解得:﹣4<a≤﹣2,∴a的取值范围是:﹣4<a≤﹣2.16.如图,在△ABC中,AB=5,AC=3,BC=4,D是BC边上一动点,BE⊥AD,交其延长线于点E,EF⊥AC,交其延长线于点F,则AF的最大值为4.【解答】解:∵AB=5,AC=3,BC=4,∴AB2=AC2+BC2,∴∠ACB=90°.以AB为直径作⊙O,则点C、E在圆上,作BC的平行线切⊙O于点E,过点E作EF⊥AC的延长线于点F,此时AF最长,连接OE,过点O作OM⊥AC于点M,如图所示.∵OM⊥AC,∠ACB=90°,∴OM∥BC.∵点O为AB的中点,∴点M为AC的中点,∴AM=AC=.∵EF切⊙O为点E,∴OE⊥EF,∴OE∥MF,∴四边形OEFM为矩形,∴MF=OE=AB=,∴AF=AM+ME=4.故答案为:4.三、解答题17.解方程:3(2x+3)=11x﹣6.【解答】解:3(2x+3)=11x﹣6,6x+9=11x﹣6,9+6=11x﹣6x,15=5x,x=3.18.如图,点D在AB上,点E在AC上,AB=AC,∠B=∠C,求证:BD=CE.【解答】证明:在△ABE与△ACD中,∴△ABE≌△ACD.∴AD=AE.∴BD=CE.19.某区八年级有3000名学生参加“爱我中华”知识竞赛活动,为了了解本次知识竞赛的成绩分布情况,从中抽取了部分学生的得分进行统计:成绩x(分)频数频率50≤x<6010a60≤x<70160.0870≤x<80b0.20请你根据以上的信息,回答下列问题:(1)a=0.05,b=40.(2)在扇形统计图中,“成绩x满足50≤x<60“对应扇形的圆心角度数是18°;(3)若将得分转化为等级,规定:50≤x<60评为D,60≤x<70评为C,70≤x<90评为B,90≤x<100评为A.这次全区八年级参加竞赛的学生约有1530人参赛成绩被评为“B”.【解答】解:(1)本次调查的总人数为16÷0.08=200,则a=10÷200=0.05,b=200×0.2=40,故答案为:0.05,40;(2)“成绩x满足50≤x<60“对应扇形的圆心角度数是360°×0.05=18°,故答案为:18°;(3)3000×=1530,即全区八年级参加竞赛的学生约有1530人参赛成绩被评为“B”,故答案为:1530.20.为了抓住武汉园博园元宵灯会的商机,某商店决定购进A、B两种艺术纪念品.若购进A种纪念品8件,B种纪念品3件,需要95元,若购进A种纪念品5件,B种纪念品6件,需要80元.(1)求购进A,B两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于750元,但不超过765元,那么该商店共有几种进货方案?【解答】解:(1)设A、B两种纪念品的价格分别为x元和y元,则,解得.答:A、B两种纪念品的价格分别为10元和5元.(2)设购买A种纪念品t件,则购买B种纪念品(100﹣t)件,则750≤5t+500≤765,解得50≤t≤53,∵t为正整数,∴t=50,51,52,53,即有四种方案.第一种方案:购A种纪念品50件,B种纪念品50件;第二种方案:购A种纪念品51件,B种纪念品49件;第三种方案:购A种纪念品52件,B种纪念品48件;第四种方案:购A种纪念品53件,B种纪念品47件.21.如图,⊙O是△ABC的外接圆,AC为直径,=,BE⊥DC交DC的延长线于点E.(1)求证:∠1=∠BCE;(2)求证:BE是⊙O的切线;(3)若EC=1,CD=3,求cos∠DBA.【解答】解:(1)过点B作BF⊥AC于点F,在△ABF与△DBE中,∴△ABF≌△DBE(AAS)∴BF=BE,∴∠1=∠BCE(2)连接OB,∵AC是⊙O的直径,∴∠ABC=90°,即∠1+∠BAC=90°,∵∠BCE+∠EBC=90°,且∠1=∠BCE,∴∠BAC=∠EBC,∵OA=OB,∴∠BAC=∠OBA,∴∠EBC=∠OBA,∴∠EBC+∠CBO=∠OBA+∠CBO=90°,∴BE是⊙O的切线;(3)由(2)可知:∠EBC=∠CBF=∠BAC,在△EBC与△FBC中,,∴△EBC≌△FBC(AAS),∴CF=CE=1,由(1)可知:AF=DE=1+3=4,∴AC=CF+AF=1+4=5,∴cos∠DBA=cos∠DCA==22.如图1,A(﹣4,)、B(﹣1,2)是一次函数y=kx+b与反比例函数y=(m<0)图象的两个交点.(1)根据图象回答:当x满足x<﹣4或﹣1<x<0,一次函数的值小于反比例函数的值;(2)将直线AB沿y轴方向,向下平移n个单位,与双曲线有唯一的公共点时,求n的值;(3)如图2,P点在y=的图象上,矩形OCPD的两边OD、OC在坐标轴上,且OC =2OD,M、N分别为OC、OD的中点,PN与DM交于点E,直接写出四边形EMON 的面积为.【解答】解:(1)一次函数的值小于反比例函数的值即直线在反比例函数图象的下方时对应的x的取值范围,由图象可知x的取值范围为x<﹣4或﹣1<x<0,故答案为:x<﹣4或﹣1<x<0;(2)把A、B两点坐标代入y=kx+b可得,解得,∴直线AB解析式为y=x+,把B点坐标代入反比例函数解析式可得m=﹣2,∴反比例函数解析式为y=﹣,设平移后的直线解析式为y=x+﹣n,联立该直线与反比例函数解析式可得,消去y整理可得x2+(5﹣2n)x+4=0,∵直线与双曲线有唯一的公共点,∴△=0,即(5﹣2n)2﹣16=0,解得n=或n=;(3)∵点P在y=﹣上,∴OC•OD=2,∵OC=2OD,∴OC=2,OD=1,∴P(﹣2,1),D(0,1),∵M、N分别为OC、OD的中点,∴M(﹣1,0),N(0,),由待定系数法可求得直线PN的解析式为y=﹣x+,直线DM的解析式为y=x+1,联立两直线解析式可得,解得,∴E(﹣,),过E作EG⊥x轴于点G,如图,∴S四边形EMON=S△MEG+S梯形ONEG=MG•EG+(EG+ON)•OG=××+×(+)×=+=,故答案为:.23.如图,正方形ABCD,∠EAF=45°.交BC、CD于E、F,交BD于H、G.(1)求证:AD2=BG•DH;(2)求证:CE=DG;(3)求证:EF=HG.【解答】证明:(1)∵四边形ABCD为正方形∴∠ABD=∠ADB=45°,AB=AD,∵∠EAF=45°∴∠BAG=45°+∠BAH,∠AHD=45°+∠BAH,∴∠BAG=∠AHD,又∵∠ABD=∠ADB=45°,∴△ABG∽△HDA,∴,∴BG•DH=AB•AD=AD2;(2)如图,连接AC,∵四边形ABCD是正方形∴∠ACE=∠ADB=∠CAD=45°,∴AC=AD,∵∠EAF=45°,∴∠EAF=∠CAD,∴∠EAF﹣∠CAF=∠CAD﹣∠CAF,∴∠EAC=∠GAD,∴△EAC∽△GAD,∴,∴CE=DG;(3)由(2)得:△EAC∽△GAD,∴,同理得:△AFC∽△AHB,∴,∴,∴,∵∠GAH=∠EAF,∴△GAH∽△EAF,∴,∴EF=GH.24.如图,抛物线y=x2+bx+c与x轴交于点A(﹣2,0),交y轴于点B(0,﹣),直线y=kx+过点A与y轴交于点C,与抛物线的另一交点是D(1)求抛物线y=x2+bx+c与直线y=kx+的解析式;(2)①点P是抛物线上A、D间的一个动点,过P点作PM∥y轴交线段AD于M点,过D点作DE⊥y轴于点E,问是否存在P点使得四边形PMEC为平行四边形?若存在,请求出点P的坐标;若不存在,请说明理由②作PN⊥AD于点N,设△PMN的周长为m,点P的横坐标为t,求m与t的函数关系式,并求出m的最大值.【解答】解:(1)把A(﹣2,0),B(0,﹣)代入y=x2+bx+c得,解得,所以抛物线解析式为y=x2﹣x﹣;把A(﹣2,0)代入y=kx+得﹣2k+=0,解得k=,所以一次函数解析式为y=x+;(2)存在.解方程组得或,则D(8,),当x=0时,y=x+=+,则C(0,),∵DE⊥y轴,∴E(0,),∴CE=OE﹣OC=6,设(x,x2﹣x﹣),则M(x,+),∴MN=+﹣(x2﹣x﹣)=﹣x2+x+4,∵CE∥PM,∴当PM=CE时,四边形PMEC为平行四边形,即﹣x2+x+4=6,解得x1=2,x2=4,∴此时P点坐标为(2,﹣3),(4,﹣);(3)在Rt△CDE中,∵CE=6,DE=8,∴CD=10,设(t,t2﹣t﹣),则M(t,t+),∴MN=t+﹣(t2﹣t﹣)=﹣t2+t+4,∵PM∥CE,∴∠ECD=∠PMN,∴Rt△PMN∽Rt△DCE,∴==,∴MN=(﹣t2+t+4),PN=(﹣t2+t+4),∴m=PM+MN+PN=(﹣t2+t+4)=﹣(t﹣3)2+15,当t=3时,m有最大值,最大值为15.。

湖北省武汉市2020年九年级下学期四调模拟试题数学试卷

湖北省武汉市2020年九年级下学期四调模拟试题数学试卷

x + 2D.A. B. C. 武汉市九年级 2019—2020 数学四调模拟试卷一、选择题1. 实数 2020 的相反数是A.2020B.-2020C.1 D. - 2020120202. 式子 在实数范围内有意义,则 x 的取值范围是A. x > 2B. x ≥ 2C. x > -2D. x ≥ -23. 不透明的袋子中只有 3 个黑球和 4 个白球,这些球除颜色外无其他差别,随机从袋子中一次摸出 4 个球,下列事件是不可能事件的是A.摸出的全部是黑球B.摸出 2 个黑球,2 个白球C.摸出的全部是白球D.摸出的有 3 个白球 4. 中国汉字博大精深,下列汉字是(近似于)轴对称图形的是 A.富B.强C.民D.主5. 如图是一个圆柱,它的左视图是A.B.C.D.6. 如图,矩形 ABCD 中,AB =3.BC =5.点边上的一个动点(点 P 不与 B ,C 重合),现将△PCD 沿直线 P D 折叠,使点 C 落在点 C ’处,作∠BPC ’的角平分线交 A B 于点 E ,设 B P =x .BE =y .则下列图像中能表示 y 是 x 的函数关系式的是7. 从 1,2,3,4 四个数字中随机选出两个不同的数,分别记作 b , c ,则关于 x 的一元二次方程 y = x 2 + bx + c 只有一个实数根的概率为A. 1B. 1C. 1D.12 3 6 12 8. 如图, ∆DEF 的三个顶点分别在反比例函数 xy = n 与 xy = m (x > 0, m > n > 0) 的图像上,若 DB ⊥ x 轴于 B 点,FE ⊥ x 轴于C 点,若 B 为OC 的中点,∆DEF 的面积为 2,则 m , n 的关系式是 A. m - n = 8B. m + n = 8D. 2m - n = 8D. 2m + n = 39. 如图,在等腰直角∆ABC 中,斜边 AB 的长度为 8,以 AC 为直径作圆,点 P 为半圆上的动点,连接BP ,取BP 的中点M ,则CM 的最小值为A. 3B. 2 5 -5B. 2 5 -32D. 3 2 -510. 观察等式:1+2+22=23-1;1+2+22+23=24-1;1+2+22+23+24=25-1;若 1+2+22+…+29=210 -1=m ,则用含 m 的式子表示 211+212 + …+218+219 的结果是 A.m 2 + m B .m 2+m -2 C .m 2-1 D .m 2 + 2m 二、填空题11.计算64的平方根为12.一组数据:2,3,4,5,x ,6,3,3,中的中位数是 3,则 x 的值为13.计算: 的值为14.如图,四边形 ABCD 为矩形,点 E 为 BC 上的一点,满足 AB ⋅ CF = BE⋅ CE ,连接 DE ,延长 EF 交 A D 于 M 点,若 A E 2 + FD 2 = AF 2 , ∠DEF = 15 ,则∠M 的度数为15.方程 7x 2 - (k +13)x - k - 2 = 0 ( k 是实数)有两个实数跟 a , b ,且 0 < a < 1 < b < 2 ,那么 k 的取值范围是16.【新知探究】新定义:平面内两定点 A , B ,所有满足 PA= k ( k 为定值)的 P 点形成的图形是PB圆,我们把这种圆称之为“阿氏圆”【问题解决】如图,在∆ABC 中,CB = 4 , A B = 2 A C ,则∆ABC 面积的最大值为二、解答题17. (本题 8 分)计算: m 4 n 2 + 2m 2 ⋅ m 4 + (m 2 )3 - (m 2 n )218.(本题 8 分)如图,已知 CD 平分∠ACB ,∠1=∠2.若∠3=30°,∠B =25°,求∠BDE 度数.19.(本题 8 分)某公司共有 A 、B 、C 三个部门,根据每个部门的员工人数和相应每人所创的年利润绘制成如下的统计表和扇形图各部门人数及每人所创年利润统计表 各部门人数分布扇形图部门所对应的圆心角的度数为② 在统计表中,b = ,c = (2) 求这个公司平均每人所创年利润20.(本题 8 分)如图,在由边长为 1 个单位长度的小正方形组成的网格中,建立平面直角坐标系 A (-1, 7), B (-6, 3),C (-2, 3) . (1)将∆ABC 绕格点 P (1,1) 顺时针旋转90︒,得到△ A 'B 'C ', 画出△ A 'B 'C ',并写出下列各点坐标: A '(,),B '(,), C '(,);(2)找格点 M ,连CM ,使CM ⊥ AB ,则点 M 的坐标为();(3)找格点 N ,连 B N ,使 B N ⊥ AC ,则点 N 的坐标为( ).21. (本题 8 分)如图,四边形 ABCD 为正方形,取 AB 中点O ,以 AB 为直径, O 圆心作圆. (1) 如图 1,取CD 的中点 P ,连接 BP 交⊙ O 于Q ,连接 DQ 并延长交AB 的延长线于 E,求证: QE 2 = BE ⋅ AE ;(2) 如图 2,连接 CO 并延长交⊙ O 于 M 点,求 tan M 的值.22.(本题 10 分)某品牌服装公司经过市场调査,得到某种运动服的月销量 y (件)是售价 x (元/ 件)的一次函数,其售价、月销售量、月销售利润 w (元)的三组对应值如下表: 注:月销售利润=月销售量×(售价一进价)(1)求y 关于x 的函数解析式(不要求写出自变量的取值范围);(2)当售价是多少时,月销售利润最大?最大利润是多少元?(3)为响应号召,该公司决定每售出1 件服装,就捐赠a 元(a > 0),商家规定该服装售价不得超过200 元,月销售量仍满足上关系,若此时月销售最大利润仍可达9600 元,求a 的值.23.(本题10 分)如图1,在直角三角形ABC 中,∠BAC = 90 , AD 为斜边BC 上的高线.(1)求证:AD 2 =BD ⋅C D ;(2)如图2,过A 分别作∠BAD,∠DAC 的角平分线,交BC 于E, M 两点,过E 作AE 的垂线,交AM 于F .①当tan C =3时,求4ED的值;DM②如图 3 ,过 C 作AF 的垂线CG ,过G 点作GN // AD 交AC 于M 点,连接MN . 若∠EAD = 5 - 2 ,AB = 1 ,直接写出MN 的长度.24.(本题12 分)如图,在平面直角坐标系中是抛物线的图像(1)求抛物线交x 轴的坐标(用含m 的式子表示);(2)如图1,当m = 1 时,点C 的横坐标为-1且在抛物线上,过C 点的直线交抛物线的另一点A 2点,过C 作x 轴的平行线交抛物线于B 点,取AB 的中点P ,以P 为圆心,AB 为直径作圆,交直线AC 于D 点,连接BD ,当AD =BD 时,求AC 的解析式;(3)将(2)中的抛物线平移到顶点为O 的时候,直线AB 交抛物线于A, B 两点,使得∠AOB = 90 .作直线l:x = 1 过A, B 作l 的垂线AM ,BN∠BAM =∠HAM 时,求GH 得长度.,直线l 交AB 于G ,交抛物线于H 点,当。

2020年湖北省武汉市九年级元月调考数学复习试卷(4)

2020年湖北省武汉市九年级元月调考数学复习试卷(4)

2020年湖北省武汉市九年级元月调考数学复习试卷(4)一、选择题(本大题共8小题,共24.0分)1.将方程x2−8x=10化为一元二次方程的一般形式,其中二次项系数为1,一次项系数、常数项分别是()A. −8、−10B. −8、10C. 8、−10D. 8、102.如图汽车标志中不是中心对称图形的是()A. B. C. D.3.抛物线y=−3(x−1)2+2的对称轴是()A. x=1B. x=−1C. x=2D. x=−24.一个十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒.当你抬头看信号灯时,是绿灯的概率是()A. 112B. 13C. 512D. 125.如图,四边形ABCD为⊙O的内接四边形,已知∠BOD=100°,则∠BCD的度数为()A. 50°B. 80°C. 100°D. 130°6.圆的直径为10cm,如果点P到圆心O的距离是d,则()A. 当d=8cm时,点P在⊙O内B. 当d=10cm时,点P在⊙O上C. 当d=5cm时,点P在⊙O上D. 当d=6cm时,点P在⊙O内7.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是13,则每个支干长出()A. 2根小分支B. 3根小分支C. 4根小分支D. 5根小分支8.关于x的方程(m−2)x2+2x+1=0有实数根,则m的取值范围是()A. m≤3B. m≥3C. m≤3且m≠2D. m<3二、填空题(本大题共5小题,共15.0分)9.在平面直角坐标系中,点(−3,2)关于原点对称的点的坐标是______.10.如图,PA,PB分别与⊙O相切于A,B两点,∠P=70°,点C在劣弧AB上,则∠C=______.11.某村种的水稻前年平均每公顷产7 200kg,今年平均每公顷产8 450kg.设这两年该村水稻每公顷产量的年平均增长率为x,根据题意,所列方程为______.12.在直角坐标系中,将抛物线y=−x2−2x先向下平移一个单位,再向右平移一个单位,所得新抛物线的解析式为______.13.用一个半径为10cm半圆纸片围成一个圆锥的侧面(接缝忽略不计),则该圆锥的高为______ .三、计算题(本大题共1小题,共6.0分)14.已知3是一元二次方程x2−2x+a=0的一个根,求a的值和方程的另一根.四、解答题(本大题共4小题,共32.0分)15.有6张看上去无差别的卡片,上面分别写着1、2、3、4、5、6(1)一次性随机抽取2张卡片,用列表或画树状图的方法求出“两张卡片上的数都是偶数”的概率(2)随机摸取1张后,放回并混在一起,再随机抽取1张,直接写出“第二次取出的数字小于第一次取出的数字”的概率.16.如图,正方形ABCD和直角△ABE,∠AEB=90°,将△ABE绕点O旋转180°得到△CDF.(1)在图中画出点O和△CDF,并简要说明作图过程;(2)若AE=12,AB=13,求EF的长.17.如图,在平面直角坐标系中,点A的坐标为(−3,4),点C与点A关于原点O对称.(1)直接写出点C的坐标;(2)若正方形ABCD的顶点B在y轴左侧.①在坐标系中画出正方形ABCD;②直接写出边AB与x轴交点M的坐标.18.如图,已知直线PA交⊙O于A、B两点,AE是⊙O的直径,点C为⊙O上一点,且AC平分∠PAE,过C作CD⊥PA,垂足为D.(1)求证:CD为⊙O的切线;(2)若DC+DA=6,⊙O的直径为10,求AB的长度.答案和解析1.【答案】A【解析】解:x2−8x=10,x2−8x−10=0,所以一次项系数、常数项分别为−8、−10,故选A.先化成一元二次方程的一般形式,再根据方程的特点得出一次项系数和常数项即可.本题考查了对一元二次方程的一般形式的应用,把方程换成一般形式是解此题的关键,注意:说各个项的系数带着前面的符号.2.【答案】B【解析】解:A、是中心对称图形.故错误;B、不是中心对称图形.故正确;C、是中心对称图形.故错误;D、是中心对称图形.故错误.故选:B.根据中心对称图形的概念求解.本题考查了中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.【答案】A【解析】解:令x−1=0,则x=1.故选A.根据二次函数的顶点式直接进行解答即可.本题考查的是二次函数的性质,熟知二次函数的顶点式是解答此题的关键.4.【答案】C【解析】解:一共是60秒,绿的是25秒,所以绿灯的概率是2560=512.故选:C.让绿灯亮的时间除以时间总数60即为所求的概率.本题考查概率的基本计算,用到的知识点为:概率等于所求情况数与总情况数之比.5.【答案】D【解析】解:∵∠BOD=100°,∴∠BAD=100°÷2=50°,∴∠BCD=180°−∠BAD=180°−50°=130°故选:D.首先根据圆周角与圆心角的关系,求出∠BAD的度数;然后根据圆内接四边形的对角互补,用180°减去∠BAD的度数,求出∠BCD的度数是多少即可.此题主要考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半,此题还考查了圆内接四边形的性质:圆内接四边形的对角互补.6.【答案】C【解析】解:∵圆的直径为10cm,∴圆的半径为5cm,∴当d>5cm时,点P在⊙O外;当d=5cm时,点P在⊙O上;当d<5cm时,点P在⊙O内.故选:C.先得到圆的半径为5cm,根据点与圆的位置关系的判定方法得到当d>5cm时,点P在⊙O外;当d=5cm时,点P在⊙O上;当d<5cm时,点P在⊙O内,然后对各选项进行判断.本题考查了点与圆的位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.7.【答案】B【解析】解:设每个支干长出x个小分支,根据题意得1+x+x⋅x=13,整理得x2+x−12=0,解得x1=3,x2=−4(舍去).答:每个支干长出3个小分支.故选:B.设每个支干长出x个小分支,利用主干、支干和小分支的总数是13列方程得到1+x+ x⋅x=13,整理得x2+x−12=0,再利用因式分解法解方程求出x,然后检验即可得到x的值.本题考查了一元二次方程的应用:列方程解决实际问题的一般步骤是:审清题意设未知数,列出方程,解所列方程求所列方程的解,检验和作答.8.【答案】A【解析】解:当m−2=0,即m=2时,方程变形为2x+1=0,解得x=−1;2当m−2≠0,则Δ=22−4(m−2)≥0,解得m≤3且m≠2,综上所述,m的范围为m≤3.故选:A.讨论:当m−2=0,方程变形为2x+1=0,此一元一次方程有解;当m−2≠0,方程为一元二次方程,利用判别式的意义得到则Δ=22−4(m−2)≥0,解得m≤3且m≠2,然后综合两种情况即可得到m的范围.本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2−4ac有如下关系:当Δ>0时,方程有两个不相等的两个实数根;当Δ=0时,方程有两个相等的两个实数根;当Δ<0时,方程无实数根.9.【答案】(3,−2)【解析】解:根据平面直角坐标系内两点关于原点对称横纵坐标互为相反数,∴点(−3,2)关于原点对称的点的坐标是(3,−2),故答案为(3,−2).根据平面直角坐标系内两点关于原点对称横纵坐标互为相反数,即可得出答案.本题主要考查了平面直角坐标系内两点关于原点对称横纵坐标互为相反数,难度较小.10.【答案】125°【解析】解:连结OA、OB,∠ADB为弧AB所对的圆周角,如图,∵PA,PB分别与⊙O相切于A,B两点,∴OA⊥PA,OB⊥PB,∴∠OAP=∠OBP=90°,∴∠AOB+∠P=180°,∴∠AOB=180°−70°=110°,∴∠D=1∠AOB=55°,2∴∠ACB=180°−∠D=125°.故答案为:125°.连结OA、OB,∠ADB为弧AB所对的圆周角,如图,根据切线的性质得∠OAP=∠OBP= 90°,再利用四边形内角和可计算出∠AOB=110°,接着根据圆周角定理得到∠D=1∠AOB=55°,然后根据圆内接四边形的性质计算∠ACB的度数.2本题考查了切线的性质:圆的切线垂直于经过切点的半径.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.也考查了圆周角定理.11.【答案】7200(1+x)2=8450【解析】解:设这两年该村水稻每公顷产量的年平均增长率为x,根据题意得:7200(1+x)2=8450,故答案为:7200(1+x)2=8450.由题意得:第一年水稻产量7200(1+x),第二年水稻产量:7200(1+x)(1+x),进而可得方程7200(1+x)2=8450.此题主要考查了由实际问题抽象出一元二次方程,关键是掌握求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.12.【答案】y=−x2【解析】解:抛物线y=−x2−2x=−(x+1)2+1,它的顶点坐标为(−1,1),把点(−1,1)先向下平移一个单位,再向右平移一个单位得到对应点的坐标为(0,0),所以新的抛物线解析式是y=−x2.故答案为y=−x2.先利用配方法得到抛物线y=−x2−2x的顶点坐标为(−1,1),再根据点利用的规律得到点(−1,1)平移后所得对应点的坐标为(0,0),然后根据顶点式写出平移后抛物线的解析式.本题考查了二次函数与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.13.【答案】5√3【解析】解:圆锥的侧面展开图的弧长为2π×10÷2=10π(cm),∴圆锥的底面半径为10π÷2π=5(cm),∴圆锥的高为:√102−52=5√3(cm).故答案是:5√3.易得圆锥的母线长为10cm,以及圆锥的侧面展开图的弧长,也就是圆锥的底面周长,除以2π即为圆锥的底面半径,进而利用勾股定理即可求得圆锥的高.本题考查了圆锥的计算.用到的知识点为:圆锥的弧长等于底面周长;圆锥的高,母线长,底面半径组成直角三角形.14.【答案】解:将x=3代入x2−2x+a=0中得32−6+a=0,解得a=−3,将a=−3代入x2−2x+a=0中得:x2−2x−3=0,解得x1=3,x2=−1,所以a=−3,方程的另一根为−1.【解析】根据一元二次方程的解的定义把x=3代入x2−2x+a=0可求出a的值,然后把a的值代入方程得到x2−2x−3=0,再利用因式分解法解方程即可得到方程的另一根.本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.15.【答案】解:(1)依题意列表如下:12345612,13,14,15,16,121,23,24,25,26,231,32,34,35,36,341,42,43,45,46,451,52,53,54,56,561,62,63,64,65,6由上表可知,随机抽取2张卡片可能出现的结果有15个,它们出现的可能性相等,其中“两张卡片上的数都是偶数”的结果有3个,所以P(两张卡片上的数都是偶数)=15;(2)画树形图得:随机抽取2张卡片可能出现的结果有36个,第二次取出的数字小于第一次取出的数字有15种,所以其概率=1536=512.【解析】(1)用列表法举出所有情况,看两张卡片上的数都是偶数的情况占总情况的多少即可;(2)画出树形图即可求出第二次取出的数字小于第一次取出的数字的概率.此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.16.【答案】解:(1)如图所示:连接AC,BD,交于点O.连接EO并延长到点F,使OF=OE,连接DF,CF,(2)如图所示:过点O作OG⊥OE与EB的延长线交于点G,∵四边形ABCD为正方形∴OA=OB,∠AOB=∠EOG=90°∴∠AOE=∠BOG在四边形AEBO中∠AEB=∠AOB=90°∴∠EAO+∠EBO=180°=∠EBO+∠GBO∴∠GBO=∠EAO,∴在△EAO和△GBO中,∵{∠EAO=∠GBO OA=OB∠AOE=∠BOG∴△EAO≌△GBO(ASA),∴AE=BG,OE=OG.∴△GEO为等腰直角三角形,∴OE=√22EG=√22(EB+BG)=√22(EB+AE)=17√22∴EF=17√2.【解析】(1)利用旋转的性质分别得出对应点位置进而得出答案;(2)首先过点O作OG⊥OE与EB的延长线交于点G,利用正方形的性质结合全等三角形的判定方法得出△EAO≌△GBO(ASA),得出△GEO为等腰直角三角形,进而得出答案.此题主要考查了旋转变换以及全等三角形的判定与性质以及等腰直角三角形的性质等知识,得出△GEO为等腰直角三角形是解题关键.17.【答案】解:(1)点C的坐标为(3,−4);(2)①如图,正方形ABCD为所作;②设直线AB 的解析式为y =kx +b ,把A(−3,4),B(−4,−3)代入得{−3k +b =4−4k +b =−3,解得{k =7b =25, 所以直线AB 的解析式为y =7x +25,当y =0时,7x +25=0,解得x =−257,所以M 点的坐标为(−257,0).【解析】(1)利用关于原点对称的点的坐标特征写出C 点坐标;(2)①把A 点绕原点逆时针旋转90°得到点B ,再确定B 点关于原点的对称点D ,则四边形ABCD 为所作;②利用待定系数法求出AB 的解析式,然后利用x 轴上点的坐标特征求M 点的坐标. 本题考查了作图−旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了正方形的性质. 18.【答案】(1)证明:连接OC ,∵OA =OC ,∴∠OCA =∠OAC ,∵AC 平分∠PAE ,∴∠DAC =∠CAO ,∴∠DAC =∠OCA ,∴PB//OC ,∵CD ⊥PA ,∴CD ⊥OC ,∵CO 为⊙O 半径,∴CD为⊙O的切线;(2)解:过O作OF⊥AB,垂足为F,∴∠OCD=∠CDA=∠OFD=90°,∴四边形DCOF为矩形,∴OC=FD,OF=CD.∵DC+DA=6,设AD=x,则OF=CD=6−x,∵⊙O的直径为10,∴DF=OC=5,∴AF=5−x,在Rt△AOF中,由勾股定理得AF2+OF2=OA2.即(5−x)2+(6−x)2=25,化简得x2−11x+18=0,解得x1=2,x2=9.∵CD=6−x大于0,故x=9舍去,∴x=2,从而AD=2,AF=5−2=3,∵OF⊥AB,由垂径定理知,F为AB的中点,∴AB=2AF=6.【解析】本题考查了切线的判定和性质、勾股定理、矩形的判定和性质以及垂径定理,是基础知识,要熟练掌握.(1)连接OC,根据题意可证得PB//OC,再根据平行线的性质,得∠DCO=90°,则CD 为⊙O的切线;(2)过O作OF⊥AB,则∠OCD=∠CDA=∠OFD=90°,得四边形OCDF为矩形,设AD= x,在Rt△AOF中,由勾股定理得(5−x)2+(6−x)2=25,从而求得x的值,由勾股定理得出AB的长.。

湖北省武汉市2020年九年级数学四月模拟试卷(含答案)

湖北省武汉市2020年九年级数学四月模拟试卷(含答案)

v t湖北省武汉市 2020 年九年级数学四月模拟试卷一.选择题(每题 3 分,满分 30 分)1.﹣ 的绝对值是( )A .﹣2019B .2019C .﹣D .2.若在实数范围内有意义,则 x 的取值范围是()A .x >5B .x ≥5C .x ≤5D .x ≠5 3.“投掷一枚硬币,正面朝上”这一事件是()A .必然事件B .随机事件C .不可能事件D .确定事件4.下列图形中,既是轴对称图形,又是中心对称图形的是()A .B .C .D .5.下列几何体中,俯视图为三角形的是()A .B .C .D .6.小明乘车从南充到成都,行车的速度 (km /h )和行车时间 (h )之间的函数图象是(A .B .)C .D .7.在一只不透明的口袋中放入只有颜色不同的白球6个,黑球8个,黄球n个,搅匀后随机从中摸取一个恰好是黄球的概率为,则放入的黄球个数=()A.4B.5C.6D.78.如图,在平面直角坐标系中,点P(2,5)、Q(a,b)(a>2)在“函数y=(x>0)的图象上,过点P分别作x轴、y轴的垂线,垂足为A、B;过点Q分别作x轴、y轴的垂线,垂足为C、D.QD交PA于点E,随着a的增大,四边形ACQE的面积()A.增大C.先减小后增大9.如图所示,A(1,),A(12B.减小D.先增大后减小),A(2,),A(3,0).作折线A A A A 341234关于点A的中心对称图形,再做出新的折线关于与x轴的下一个交点的中心对称图形……4以此类推,得到一个大的折线.现有一动点P从原点O出发,沿着折线一每秒1个单位的速度移动,设运动时间为t.当t=2020时,点P的坐标为()A.(1010,)B.(2020,)C.(2016,0)D.(1010,)10.如图,D是等腰△ABC外接圆弧AC上的点,AB=AC且∠CAB=56°,则∠ADC的度数为()A.116°B.118°C.122°D.126°二.填空题(满分18分,每小题3分)11.计算12.计算﹣=.的结果是.13.如图是甲、乙两名射击运动员10次射击成绩的统计表和折线统计图.甲乙平均数88中位数88众数88你认为甲、乙两名运动员,的射击成绩更稳定.(填甲或乙)14.如图,在ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上,连接EF、CF,则下列结论中一定成立的是(把所有正确结论的序号部填在横线上).①∠AEF=∠DFE;②=2;③EF=CF;④∠BCD=2∠DCF.△S BEC△S CEF15.抛物线y=x2﹣2x﹣3的顶点坐标是.16.已知:如图,四边形ABCD中,AD∥BC,AB=BC=4,∠B=60°,∠C=105°,点E为BC的中点,以CE为弦作圆,设该圆与四边形ABCD的一边的交点为P,若∠CPE=30°,则EP的长为.三.解答题17.(8分)计算:(﹣a2)3+a2a3+a8÷(﹣a2)18.(8分)如图,要在长方形钢板ABCD的边AB上找一点E,使∠AEC=150°,应怎样确定点E的位置?为什么?19.(8分)中华文明,源远流长,中华汉字,寓意深广,为传承中华优秀传统文化,某中学德育处组织了一次全校2000名学生参加的“汉字听写”大赛,为了解本次大赛的成绩,学校德育处随机抽取了其中200名学生的成绩作为样本进行统计,制成如下不完整的统计图表:成绩x(分)50≤x<60 60≤x<70 70≤x<80 80≤x<90频数(人)103040m频率0.050.150.20.3590≤x≤100根据所给的信息,回答下列问题:(1)m=,n=.50n(2)补全频数分布直方图.(3)这200名学生成绩的中位数会落在分数段;(4)若成绩在90分以上为“优”等,请你估计该校参加本次比赛的2000名学生中成绩是“优”等的约有多少人?20.(8分)如图是由边长为1的小正方形构成的网格,每个小正方形的顶点叫做格点.△ABC的顶点在格点上,A(1,0)、C(0,7).(1)在方格纸中画出平面直角坐标系,写出B点的坐标:B;(2)直接写出△ABC的形状:,直接写出△ABC的面积;(3)若D(﹣1,4),连接BD交AC于E,则=.21.(8分)如图,已知直线AB经过⊙O上的点C,并且OA=OB,CA=CB.(1)求证:直线AB是⊙O的切线;(2)OA,OB分别交⊙O于点D,E,AO的延长线交⊙O于点F,若AB=4AD,求sin∠CFE 的值.22.(10分)为迎接“五一”国际劳动节,某商场计划购进甲、乙两种品牌的T恤衫共100件,已知乙品牌每件的进价比甲品牌每件的进价贵30元,且用120元购买甲品牌的件数恰好是购买乙品牌件数的2倍.(1)求甲、乙两种品牌每件的进价分别是多少元?(2)商场决定甲品牌以每件50元出售,乙品牌以每件100元出售.为满足市场需求,购进甲种品牌的数量不少于乙种品牌数量的4倍,请你确定获利最大的进货方案,并求出最大利润.23.(10分)定义:连结菱形的一边中点与对边的两端点的线段把它分成三个三角形,如果其中有两个三角形相似,那么称这样的菱形为自相似菱形.(1)判断下列命题是真命题,还是假命题?①正方形是自相似菱形;②有一个内角为60°的菱形是自相似菱形.③如图1,若菱形ABCD是自相似菱形,∠ABC=α(0°<α<90°),E为BC中点,则在△ABE,△AED,△EDC中,相似的三角形只有△ABE与△AED.(2)如图2,菱形ABCD是自相似菱形,∠ABC是锐角,边长为4,E为BC中点.①求AE,DE的长;②AC,BD交于点O,求tan∠DBC的值.24.(12分)已知抛物线y=x2+bx+c经过点A(4,﹣5).(1)如图,过点A分别向x轴、y轴作垂线,垂足分别为B、C,得到矩形ABOC,且抛物线经过点C.①求抛物线的解析式.(2)将抛物线旋转 180°,使点 A 的对应点为 A (m ﹣2,n ﹣4),其中 m ≤2.若旋转后②将抛物线沿直线 x =m (2>m >0)翻折,分别交线段 OB 、AC 于 D ,E 两点.若直线 DE刚好平分矩形 ABOC 的面积,求 m 的值.1的抛物线仍然经过点 A ,求旋转后的抛物线顶点所能达到最低点时的坐标.参考答案一.选择题1.解:||=.故的绝对值是.故选:D.2.解:由题意可知:x﹣5≥0,∴x≥5故选:B.3.解:抛一枚硬币,可能正面朝上,也可能反面朝上,∴“抛一枚硬币,正面朝上”这一事件是随机事件.故选:B.4.解:A、不是轴对称图形,是中心对称图形,故此选项不合题意;B、是轴对称图形,不是中心对称图形,故此选项不合题意;C、是轴对称图形,也是中心对称图形,故此选项符合题意;D、是轴对称图形,不是中心对称图形,故此选项不合题意.故选:C.5.解:根据俯视图的特征,应选C.故选:C.6.解:∵v=(t>0),∴v是t的反比例函数,故选:B.7.解:∵口袋中装有白球6个,黑球8个,黄球n个,∴球的总个数为6+8+n,∵从中随机摸出一个球,摸到黄球的概率为,∴解得,n=7.故选:D.8.解:∵点P(2,5)、Q(a,b)(a>2)∴AC=a﹣2,CQ=b,则S=AC CQ=(a﹣2)b=ab﹣b四边形ACQE∵点P(2,5)、Q(a,b)(a>2)在“函数y=(x>0)的图象上,∴ab=k=10(常数)∴S=10﹣n,四边形ACQE∴当a>2时,b随a的增大而减小,∴S=10﹣b随m的增大而增大四边形ACQE故选:A.9.解:由题意OA=A A=A A=A A=2,A A=A A=A A=A A=1,134457812235667∴点P从O运动到A的路程=2+1+1+2+2+1+1+2=12,8∴t=12,把点P从O运动到A作为一个循环,8∵2020÷12=168余数为4,∴把点A向右平移168×3个单位,可得t=2020时,点P的坐标,3∵A(2,),168×6=1008,1008+2=1010,3),∴t=2020时,点P的坐标(1010,故选:A.10.解:∵AB=AC,∴∠ABC=∠ACB,∵∠CAB=56°,∴∠ABC==62°,∵D是等腰△ABC外接圆弧AC上的点,∴∠ABC+∠ADC=180°,∴∠ADC=118°,故选:B.二.填空11.解:原式=2﹣3=﹣.△S CFM , 故答案为:﹣12.解:原式=.﹣===﹣1,故答案为:﹣1.13.解:由统计表可知,甲和乙的平均数、中位数和众数都相等,由折线统计图可知,乙的波动小,成绩比较稳定,故答案为:乙.14.解:延长 EF ,交 CD 延长线于 M ,如图所示:∵四边形 ABCD 是平行四边形,∴AB ∥CD ,∴∠A =∠MDF ,∵F 为 AD 中点,∴AF =FD ,在△AEF 和△DFM 中,∴△AEF ≌△DMF (ASA ),∴EF =MF ,∠AEF =∠M ,∵CE ⊥AB ,∴∠AEC =90°,∴∠AEC =∠ECD =90°,∵FM =EF ,∴CF = EM =EF ,故③正确;∵EF =FM ,△S EFC ∴ =∵MC >BE ,,△S CEF 错误;△S BEC △S EFC ∴ ≤2△S BEC 故②=2设∠FEC =x ,则∠FCE =x ,∴∠DCF =∠DFC =90°﹣x ,∴∠EFC =180°﹣2x ,∴∠EFD =90°﹣x +180°﹣2x =270°﹣3x ,∵∠AEF =90°﹣x ,∴∠DFE =3∠AEF ,∴∠AEF = ∠DFE ,①正确;∵F 是 AD 的中点,∴AF =FD ,∵在 ABCD 中,AD =2AB ,∴AF =FD =CD ,∴∠DFC =∠DCF ,∵AD ∥BC ,∴∠DFC =∠FCB ,∴∠DCF =∠BCF ,∴2∠DCF =∠BCD ,④正确;故答案为:①③④.15.解:∵原抛物线可化为:y =(x ﹣1)2﹣4,∴其顶点坐标为(1,﹣4).故答案为:(1,﹣4).16.解:如图,连接 AC ,AE ,∵AB =BC =4,∠B =60°,∴△ABC 是等边三角形,∵点 E 为 BC 的中点,∴BE =CE =2,AE ⊥BC ,∠EAC =30°,∴AC 是以 CE 为弦的圆的直径,设圆心为 O ,当⊙O 与 CD 边交于 P ,则∠EP C =30°,1 1∵∠ECP =105°,1∴∠P EC =45°,1过 C 作 CH ⊥P E 于 H ,1∴EH =CH = CE = ,∴P H = 1 ∴P E = 1HC =+ ;,当⊙O 与 AD 交于 P ,A (P ),2 3∵AD ∥CE ,∴∠ECP =∠AP C =90°,2 2∴四边形 AECP 是矩形,2∴P E =AC =4,P E =P C =2 2 3 2,当⊙O 与 AB 交于 P , 4 ∵∠AP C =90°,∠EP C =30°, 4 4 ∴∠BP E =60°, 4∴ △B P E 是等边三角形, 4 ∴P E =BE =2, 4 综上所述,若∠CPE =30°,则 EP 的长为故答案为: 或4或2 或 2.或4或2或 2,三.解答17.解:原式=﹣a6+a5﹣a6=﹣2a6+a5.18.解:以CD为始边,在长方形的内部,利用量角器作∠DCF=30°,射线CF与AB交于点E,则点E为所找的点;理由如下:如图所示:∵四边形ABCD是长方形,∴AB∥CD,∴∠DCE+∠AEC=180°,∵∠DCE=∠DCF=30°,∴∠AEC=180°﹣∠DCE=180°﹣30°=150°.19.解:(1)样本容量为10÷0.05=200,则m=200×0.35=70,n=50÷200=0.25,故答案为:70、50;(2)补全直方图如下:(3)这200名学生成绩的中位数会落在80≤x<90分数段,故答案为:80≤x<90;(4)该校参加本次比赛的2000名学生中成绩是“优”等的约有:2000×0.25=500(人).20.解:(1)如图,建立如图所示的平面直角坐标系,则B点的坐标为(6,5),故答案为:(6,5);(2)∵AC==5,AB==5,∴AC=AB,∴△ABC是等腰三角形;△ABC的面积=6×7﹣(×1×7+×2×6+×5×5)=20;故答案为:等腰三角形;20;(3)设BD与y轴交于H,过B作BF⊥y轴于F,连接CD,∵CD2=10,BC2=40,BD2=50,∴CD2+BC2=BD2,∴∠DCB=90°,∵∠ACO=∠DBF,∠DBF+∠BHF=90°,∴∠CEH=90°,∴CE⊥BC,∴CD2=DE BD,∴DE=∴BE=4=,,∴=,故答案为:.21.(1)证明:连接OC,如图1,∵OA=OB,AC=BC,∴OC⊥AB,∵OC过O,∴直线AB是⊙O的切线;(2)解:连接OC、DC,如图2,∵AB=4AD,∴设AD=x,则AB=4x,AC=BC=2x,∵DF为直径,∴∠DCF=90°,∵OC⊥AB,∴∠ACO=∠DCF=90°,∴∠OCF=∠ACD=90°﹣∠DCO,∵OF=OC,∴∠AFC=∠OCF,∴∠ACD=∠AFC,∵∠A=∠A,∴△ADC∽△ACF,∴====,∴AF=2AC=4x,FC=2DC,∵AD=x,∴DF=4x﹣x=3x,在Rt△DCF中,(3x)2=DC2+(2DC)2,解得:DC=x,∵OA=OB,AC=BC,∴∠AOC=∠BOC,∴=,∴∠CFE=∠AFC,∴sin∠CFE=sin∠AFC===.22.解:(1)设甲品牌每件的进价为x元,则乙品牌每件的进价为(x+30)元,,解得,x=30经检验,x=30是原分式方程的解,∴x+30=60,答:甲品牌每件的进价为30元,则乙品牌每件的进价为60元;(2)设该商场购进甲品牌T恤衫a件,则购进乙品牌T恤衫(100﹣a)件,利润为w元,∵购进甲种品牌的数量不少于乙种品牌数量的4倍,∴a≥4(100﹣a)解得,a≥80w=(50﹣30)a+(100﹣60)(100﹣a)=﹣20a+4000,∵a≥80,∴当y=80时,w取得最大值,此时w=2400元,100﹣a=20,答:获利最大的进货方案是:购进甲品牌T恤衫80件,购进乙品牌T恤衫20件,最大利润是2400元.23.解:(1)①正方形是自相似菱形,是真命题;理由如下:如图3所示:∵四边形ABCD是正方形,点E是BC的中点,∴AB=CD,BE=CE,∠ABE=∠DCE=90°,在△ABE和△DCE中,,∴△ABE≌△DCE(SAS),∴△ABE∽△DCE,∴正方形是自相似菱形;②有一个内角为60°的菱形是自相似菱形,是假命题;理由如下:如图4所示:连接AC,∵四边形ABCD是菱形,∴AB=BC=CD,AD∥BC,AB∥CD,∵∠B=60°,∴△ABC是等边三角形,∠DCE=120°,∵点E是BC的中点,∴AE⊥BC,∴∠AEB=∠DAE=90°,∴只能△AEB与△DAE相似,∵AB∥CD,∴只能∠B=∠AED,若∠AED=∠B=60°,则∠CED=180°﹣90°﹣60°=30°,∴∠CDE=180°﹣120°﹣30°=30°,∴∠CED=∠CDE,∴CD=CE,不成立,∴有一个内角为60°的菱形不是自相似菱形;③若菱形ABCD是自相似菱形,∠ABC=α(0°<α<90°),E为BC中点,则在△ABE,△AED,△EDC中,相似的三角形只有△ABE与△AED,是真命题;理由如下:∵∠ABC=α(0°<α<90°),∴∠C>90°,且∠ABC+∠△C=180°,ABE与△EDC不能相似,同理△AED与△EDC也不能相似,∵四边形ABCD是菱形,∴AD∥BC,∴∠AEB=∠DAE,当∠AED=∠B时,△ABE∽△DEA,∴若菱形ABCD是自相似菱形,∠ABC=α(0°<α<90°),E为BC中点,则在△ABE,△AED,△EDC中,相似的三角形只有△ABE与△AED;(2)①∵菱形ABCD是自相似菱形,∠ABC是锐角,边长为4,E为BC中点,∴BE=2,AB=AD=4,由(1)③得:△ABE∽△DEA,∴==,∴AE2=BE AD=2×4=8,∴AE=2,DE===4,②过E作EM⊥AD于M,过D作DN⊥BC于N,如图2所示:则四边形DMEN是矩形,∴DN=EM,DM=EN,∠M=∠N=90°,设AM=x,则EN=DM=x+4,由勾股定理得:EM2=DE2﹣DM2=AE2﹣AM2,即(4)2﹣(x+4)2=(2)2﹣x2,解得:x=1,∴AM=1,EN=DM=5,∴DN=EM===,在Rt△BDN中,∵BN=BE+EN=2+5=7,∴tan∠DBC==.24.解:(1)①∵点A(4,﹣5),且四边形ABOC为矩形,∴C(0,﹣5),∴抛物线的解析式为y=x2+bx﹣5,将点A(4,﹣5)代入y=x2+bx﹣5,得,b=﹣4,∴抛物线的解析式为y=x2﹣4x﹣5;②在抛物线y=x2﹣4x﹣5中,对称轴为直线x=﹣=2,∵抛物线y=x2﹣4x﹣5沿直线x=m(2>m>0)翻折,∴设翻折后的抛物线对称轴为直线x=a,∴=m,∴n=2m﹣2,∴翻折后的抛物线为y=[x﹣(2m﹣2)]2﹣9,在y=[x﹣(2m﹣2)]2﹣9中,当y=0时,x=2m+1,x=2m﹣5;当y=﹣5时,x=2m,121x=2m﹣4;2∵如右图,抛物线y=[x﹣(2m﹣2)]2﹣9分别交线段OB、AC于D,E两点,∴D(2m+1,0),E(2m,﹣5),直线DE刚好平分矩形ABOC的面积,则必过矩形对角线的交点Q(2,﹣),即=2,∴m=;(2)∵将抛物线旋转180°,使点A的对应点为A(m﹣2,n﹣4),其中m≤2,1∵A(4,﹣5),∴旋转中心为(,),∴原顶点的对称点为(m,n),∴旋转后的抛物线为y=﹣(x﹣m)2+n,∵旋转后的抛物线仍然经过点A,∴﹣5=﹣(4﹣m)2+n,∵m≤2,∴当m=2时,n=﹣1,∴旋转后的抛物线顶点所能达到最低点时的坐标(2,﹣1).。

湖北省武汉市新观察2020年九年级数学元月调考复习交流卷(四) (解析版)

湖北省武汉市新观察2020年九年级数学元月调考复习交流卷(四) (解析版)

湖北省武汉市新观察2020年九年级数学元月调考复习交流卷(四)一.选择题(共10小题)1.一元二次方程(3x﹣1)2=5x化简成一般式后,二次项系数为9,其一次项系数为()A.1 B.﹣1 C.﹣11 D.112.下列图形中,是中心对称图形的是()A.B.C.D.3.若将抛物线y=(2x﹣1)2先向右平移个单位长度,就得到抛物线()A.y=(2x﹣1)2﹣1 B.C.y=4x2D.y=4(x﹣1)24.军运会设计运动中,运动员每次射击击中靶的环数为1到10,不考虑脱靶的情况下,下列事件为随机事件的是()A.某运动员两次射击总环数大于1B.某运动员两次射击总环数等于1C.某运动员两次射击总环数大于20D.某运动员两次涉及总环数等于205.直角△ABC,∠BAC=90°,AB=8,AC=6,以A为圆心,4.8长度为半径的圆与直线BC 的公共点的个数为()A.0 B.1 C.2 D.不能确定6.小名同学响应学习号召,在实际生活中发现问题,并利用所学的数学知识解决问题,他将汽车轮胎如图放置在地面台阶直角处,他测量了台阶高a为160mm,直角顶点到轮胎与底面接触点AB长为320mm,请帮小名计算轮胎的直径为()mm.A.350 B.700 C.800 D.4007.某单行道路的路口,只能直行或右转,任意一辆车通过路口时直行或右转的概率相同.有3辆车通过路口.恰好有2辆车直行的概率是()A.B.C.D.8.有5人患了流感,经过两轮传染后共有605人患流感,则第一轮后患流感的人数为()A.10 B.50 C.55 D.459.如图,AB为半圆⊙O的直径,AB=10,AC为⊙O的弦,AC=8,D为的中点,DM⊥AC 于M,则DM的长为()A.B.C.1 D.10.在平面直角坐标系中,已知m≠n,函数y=x2+(m+n)x+mn的图象与x轴有a个交点,函数y=mnx2+(m+n)x+1的图象与x轴有b个交点,则a与b的数量关系是()A.a=b B.a=b﹣1 C.a=b或a=b+1 D.a=b或a=b﹣1 二.填空题(共6小题)11.已知1是一元二次方程x2﹣3x+p=0的一个根,则p=.12.在平面直角坐标系中,点P(4,1)关于点(2,0)中心对称的点的坐标是.13.用数字1、2、3随机组成一个三位数,那么组成的三位数是2的倍数的概率是.14.如图,正六边形ABCDEF,连接AE,CF,则=.15.航天飞机从某个时间t秒开始,其飞行高度为h=﹣10t2+700t+21000(单位:英尺),对人而言不低于31000英尺时会感觉到失重,则整个过程中能体会到失重感觉的时间为秒.16.如图,⊙O的半径为1,点D为优弧上一动点,AC⊥AB交直线BD于C,且∠B=30°,当△ACD的面积最大时,∠BAD的度数为.三.解答题(共8小题)17.解方程:2x2﹣5x﹣3=0.18.如图,已知AB=AC,BD=CD,点D在BC上,以A为圆心的圆恰好经过点D,求证:BC 为⊙A的切线.19.九年级某班联欢会上,节目组设计了一个即兴表演节目游戏,在一个不透明的盒子里,放有五个完全相同的乒乓球,乒乓球上分别标有数字1、2、3、4、5,游戏规则是参加联欢会的50名同学,每人同时从众里一次摸出两个乒乓球,若两球上的数字之和是偶数就给大家即兴表演一个节目;否则,下一个同学依次进行,直至50名同学都摸完.(1)若小朱是该班同学,用列表法或画树状图法求小朱同学表演即兴节目的概率;(2)若参加联欢会的同学每人都有一次摸球的机会,请估计本次联欢会上有多少个同学表演即兴节目?20.如图,在边长为1的正方形网格中,已知A(0,0),B(8,6),C(8,0),要求用无刻度直尺作图,画出△ABC的内心.(1)在AC上找一格点D,使得BD平分∠ABC,则D(,);(2)在BD上找一格点I使得CI平分∠ACB,则I点即为△ABC的内心,I (,);(3)直接写出△ABC内切圆半径为.21.点A,B在⊙O上,∠ABO的平分线交⊙O于点C.(1)如图1,连接CO,证明:CO∥AB;(2)如图2,过点C作CE⊥AO于E,若AE=2,AB=6,求CB的长.22.科幻小说《实验室的故事》中,有这样一个情节,科学家把一种珍奇的植物分别放在不同温度的环境中,经过一天后,测试出这种植物高度的增长情况(如表):温度x/℃……﹣4 ﹣2 0 2 4 4.5 ……植物每天高度增长量y/mm……41 49 49 41 25 19.75 ……由这些数据,科学家推测出植物每天高度增长量y是温度x的函数,且这种函数是一次函数和二次函数中的一种.(1)请你选择一种适当的函数,求出它的函数关系式,并简要说明不选择另外一种函数的理由;(2)温度为多少时,这种植物每天高度的增长量最大?(3)如果实验室温度保持不变,在10天内要使该植物高度增长量的总和超过250mm,那么实验室的温度x应该在哪个范围内选择?请直接写出结果.23.已知△ACB和△ADE都是等腰直角三角形,∠ACB=∠ADE=90°,以CE、BC为边作平行四边形CEFB,连CD、CF.(1)如图1,当E、D分别在AC和AB上时,求证:CD=CF;(2)如图2,△ADE绕点A旋转一定角度,判断(1)中CD与CF的数量关系是否依然成立,并加以证明;(3)如图3,AE=,AB=,将△ADE绕A点旋转一周,当四边形CEFB为菱形时,直接写出CF的长.24.已知,抛物线y=m与y轴交于点C,与x轴交于点A和点B(其中点A在y轴左侧,点B在y轴右侧).(1)若抛物线y=m的对称轴为直线x=1,求抛物线的解析式;(2)如图1,∠ACB=90°,点P是抛物线y=m上的一点,若S△BCP =,求点P的坐标;(3)如图2,过点A作AD∥BC交抛物线于点D,若点D的纵坐标为﹣m,求直线AD 的解析式.参考答案与试题解析一.选择题(共10小题)1.一元二次方程(3x﹣1)2=5x化简成一般式后,二次项系数为9,其一次项系数为()A.1 B.﹣1 C.﹣11 D.11【分析】一元二次方程ax2+bx+c=0(a,b,c是常数且a≠0)的a、b、c分别是二次项系数、一次项系数、常数项.【解答】解:一元二次方程(3x﹣1)2=5x的一般形式9x2﹣11x+1=0,其中二次项系数9,一次项系数﹣11,常数项是1,故选:C.2.下列图形中,是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的概念求解.【解答】解:A、不是中心对称图形,故此选项不符合题意;B、是中心对称图形,故此选项符合题意;C、不是中心对称图形,故此选项不符合题意;D、不是中心对称图形,故此选项不符合题意;故选:B.3.若将抛物线y=(2x﹣1)2先向右平移个单位长度,就得到抛物线()A.y=(2x﹣1)2﹣1 B.C.y=4x2D.y=4(x﹣1)2【分析】先求出抛物线的顶点坐标,再根据向右平移横坐标加,向上平移纵坐标加求出平移后的抛物线的顶点坐标即可.【解答】解:抛物线y=(2x﹣1)2=4(x﹣)2的顶点坐标为(,0),∵向右平移个单位长度,∴平移后的抛物线的顶点坐标为(1,0).∴平移后得到新抛物线的解析式是:y=4(x﹣1)2故选:D.4.军运会设计运动中,运动员每次射击击中靶的环数为1到10,不考虑脱靶的情况下,下列事件为随机事件的是()A.某运动员两次射击总环数大于1B.某运动员两次射击总环数等于1C.某运动员两次射击总环数大于20D.某运动员两次涉及总环数等于20【分析】直接利用随机事件以及必然事件的定义分别分析得出答案.【解答】解:A、某运动员两次射击总环数大于1,是必然事件,不合题意;B、某运动员两次射击总环数等于1,是不可能事件,不合题意;C、某运动员两次射击总环数大于20,是不可能事件,不合题意;D、某运动员两次涉及总环数等于20,是随机事件.故选:D.5.直角△ABC,∠BAC=90°,AB=8,AC=6,以A为圆心,4.8长度为半径的圆与直线BC 的公共点的个数为()A.0 B.1 C.2 D.不能确定【分析】根据直线和圆的位置关系与数量之间的联系进行判断.若d<r,则直线与圆相交;若d=r,则直线于圆相切;若d>r,则直线与圆相离.【解答】解:∵∠BAC=90°,AB=8,AC=6,∴BC=10,∴斜边上的高为:=4.8,∴d=4.8cm=r=4.8cm,∴圆与该直线AB的位置关系是相切,交点个数为1,故选:B.6.小名同学响应学习号召,在实际生活中发现问题,并利用所学的数学知识解决问题,他将汽车轮胎如图放置在地面台阶直角处,他测量了台阶高a为160mm,直角顶点到轮胎与底面接触点AB长为320mm,请帮小名计算轮胎的直径为()mm.A.350 B.700 C.800 D.400【分析】如图,连接OB,OC,作CD⊥OB于D.⊙O半径为xmm,在Rt△OCD中,由勾股定理得方程,(x﹣160)2+3202=x2,求出x即可.【解答】解:如图,连接OB,OC,作CD⊥OB于D.设⊙O半径为xmm,在Rt△OCD中,由勾股定理得方程,(x﹣160)2+3202=x2,解得,x=400,∴2x=800,答:车轱辘的直径为800mm.故选:C.7.某单行道路的路口,只能直行或右转,任意一辆车通过路口时直行或右转的概率相同.有3辆车通过路口.恰好有2辆车直行的概率是()A.B.C.D.【分析】根据题意画出树状图得出所有等情况数和恰好有2辆车直行的情况数,再根据概率公式即可得出答案.【解答】解:根据题意画图如下:共有8种等情况数,其中恰好有2辆车直行的有3种,则恰好有2辆车直行的概率是;故选:B.8.有5人患了流感,经过两轮传染后共有605人患流感,则第一轮后患流感的人数为()A.10 B.50 C.55 D.45【分析】设每轮传染中每人传染x人,根据经过两轮传染后共有605人患流感,即可得出关于x的一元二次方程,解之即可得出x的值,取其正值代入(5+5x)中即可求出结论.【解答】解:设每轮传染中每人传染x人,依题意,得:5+5x+x(5+5x)=605,整理,得:x2+2x﹣120=0,解得:x1=10,x2=﹣12(不合题意,舍去),∴5+5x=55.故选:C.9.如图,AB为半圆⊙O的直径,AB=10,AC为⊙O的弦,AC=8,D为的中点,DM⊥AC 于M,则DM的长为()A.B.C.1 D.【分析】如图,连接OD交AC于H,连接BC.利用勾股定理求出BC,再利用相似三角形的性质求出OH,AH,DH,证明△DMH∽△AOH,构建关系式即可解决问题.【解答】解:如图,连接OD交AC于H,连接BC.∵AB是直径,∴∠ACB=90°,∴BC==6,∵=,∴OD⊥AB,∵∠OAH=∠CAB,∠AOH=∠ACB=90°,∴△AOH∽△ACB,∴==∴==∴OH=,AH=,∵DH=OD﹣OH=5﹣=,∵DM⊥AC,∵∠DMH=∠AOH=90°,∠DHM=∠AHO,∴△DMH∽△AOH,∴=,∴=,∴DM=1,故选:C.10.在平面直角坐标系中,已知m≠n,函数y=x2+(m+n)x+mn的图象与x轴有a个交点,函数y=mnx2+(m+n)x+1的图象与x轴有b个交点,则a与b的数量关系是()A.a=b B.a=b﹣1 C.a=b或a=b+1 D.a=b或a=b﹣1 【分析】根据题意,利用分类讨论的方法可以求得a、b的值,从而可以得到a和b的关系,本题得以解决.【解答】解:∵函数y=x2+(m+n)x+mn的图象与x轴有a个交点,m≠n,∴(m+n)2﹣4mn=(m﹣n)2>0,∴a=2;∵函数y=mnx2+(m+n)x+1的图象与x轴有b个交点,m≠n,∴当mn=0时,该函数为y=(m+n)x+1与x轴有一个交点,∴b=1;当mn≠0时,(m+n)2﹣4mn=(m﹣n)2>0,∴b=2;由上可得,a=b+1或a=b,故选:C.二.填空题(共6小题)11.已知1是一元二次方程x2﹣3x+p=0的一个根,则p= 2 .【分析】根据一元二次方程的解的定义把x=1代入方程x2﹣3x+p=0得到关于p的一元一次方程,然后解此方程即可.【解答】解:把x=1代入方程x2﹣3x+p=0,得1﹣3+p=0,解得p=2.故答案为:2.12.在平面直角坐标系中,点P(4,1)关于点(2,0)中心对称的点的坐标是(0,﹣1).【分析】直接利用中心对称图形的性质结合平面直角坐标系得出答案.【解答】解:如图所示:点P(4,1)关于点(2,0)中心对称的点的坐标是:(0,﹣1).故答案为:(0,﹣1).13.用数字1、2、3随机组成一个三位数,那么组成的三位数是2的倍数的概率是.【分析】先得到用1、2、3三个数字组成一个三位数的所有情况数,再根据2的倍数的特征,得出组成的数是2的倍数的情况数,然后利用概率公式求解即可.【解答】解:用1,2,3三个数字组成一个三位数的所有情况是:123,132,213,231,312,321,其中组成的三位数是2的倍数的有132,312,共2种,所以组成的三位数是2的倍数的概率是=.故答案为:.14.如图,正六边形ABCDEF,连接AE,CF,则=.【分析】连接BD交CF于K.四边形ABDE是矩形,设FG=CK=a,则AF=BC=AB=2a,推出CF=4a,于是得到结论.【解答】解:连接BD交CF于K.∵六边形ABCDEF是正六边形,∴∠BAF=∠AFE=120°,FA=FE,∴∠FAE=30°,∴∠BAE=90°,同理可证∠AED=∠BDE=90°,设FG=CK=a,则AF=BC=AB=2a,∴CF=4a,AE=2AG=2a,∴==,故答案为:.15.航天飞机从某个时间t秒开始,其飞行高度为h=﹣10t2+700t+21000(单位:英尺),对人而言不低于31000英尺时会感觉到失重,则整个过程中能体会到失重感觉的时间为30 秒.【分析】代入h=31000可求出t值,两个t值做差后即可得出结论.【解答】解:依题意,得:﹣10t2+700t+21000=31000,解得:t1=20,t2=50,∴整个过程中能体会到失重感觉的时间为50﹣20=30(秒).故答案为:30.16.如图,⊙O的半径为1,点D为优弧上一动点,AC⊥AB交直线BD于C,且∠B=30°,当△ACD的面积最大时,∠BAD的度数为30°.【分析】连接OA、OD,如图,根据圆周角定理得到∠AOD=2∠B=60°,则△OAD为等边三角形,所以AD=OA=1,而∠C=60°,利用圆周角定理可判断点C在AD为弦,圆周角为60°的弧上运动,根据三角形面积公式,当C在的中点时△ADC的面积最大,此时∠CAD=60°,从而得到∠BAD=30°.【解答】解:连接OA、OD,如图,∵∠B=30°,∴∠AOD=2∠B=60°,∵OA=OD,∴△OAD为等边三角形,∴AD=OA=1,∵BA⊥AC,∴∠BAC=90°,∴∠C=60°,∴点C在AD为弦,圆周角为60°的弧上运动,当C在的中点时点C到AD的距离最大,则△ADC的面积最大,此时△ADC为等边三角形,∠CAD=60°,此时∠BAD=30°.故答案为30°.三.解答题(共8小题)17.解方程:2x2﹣5x﹣3=0.【分析】将方程左边的多项式利用十字相乘法分解因式,然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程,求出一次方程的解即可得到原方程的解.【解答】解:方程2x2﹣5x﹣3=0,因式分解得:(2x+1)(x﹣3)=0,可得:2x+1=0或x﹣3=0,解得:x1=﹣,x2=3.18.如图,已知AB=AC,BD=CD,点D在BC上,以A为圆心的圆恰好经过点D,求证:BC 为⊙A的切线.【分析】如图,连结AD,通过证明AD⊥BC得到BC为⊙A的切线.【解答】证明:如图,连结AD,∵AB=AC,BD=CD,∴AD⊥BC,又∵AD是⊙A的半径,∴BC为⊙A的切线.19.九年级某班联欢会上,节目组设计了一个即兴表演节目游戏,在一个不透明的盒子里,放有五个完全相同的乒乓球,乒乓球上分别标有数字1、2、3、4、5,游戏规则是参加联欢会的50名同学,每人同时从众里一次摸出两个乒乓球,若两球上的数字之和是偶数就给大家即兴表演一个节目;否则,下一个同学依次进行,直至50名同学都摸完.(1)若小朱是该班同学,用列表法或画树状图法求小朱同学表演即兴节目的概率;(2)若参加联欢会的同学每人都有一次摸球的机会,请估计本次联欢会上有多少个同学表演即兴节目?【分析】(1)根据画出的树状图得出所有等情况数和两个数字之和为偶数的结果数,然后根据概率公式即可得出答案;(2)表演即兴节目的同学数=学生总数×相应概率.【解答】解:(1)根据题意画图如下:由表可知,共有20种等可能结果,其中两个数字之和为偶数的结果有8个,所以小朱同学表演即兴节目的概率=.(2)根据题意得:50×=20(名),答:估计本次联欢会上有20个同学表演即兴节目.20.如图,在边长为1的正方形网格中,已知A(0,0),B(8,6),C(8,0),要求用无刻度直尺作图,画出△ABC的内心.(1)在AC上找一格点D,使得BD平分∠ABC,则D( 5 ,0 );(2)在BD上找一格点I使得CI平分∠ACB,则I点即为△ABC的内心,I( 6 , 2 );(3)直接写出△ABC内切圆半径为 2 .【分析】(1)作BD平分∠ABC,即可找到点D;(2)作CI平分∠ACB,即I点为△ABC的内心,即可写出I的坐标;(3)根据作图过程即可写出△ABC内切圆半径.【解答】解:如图,(1)在AC上找一格点D,使得BD平分∠ABC,则D(5,0);(2)在BD上找一格点I使得CI平分∠ACB,则I点即为△ABC的内心,I(6,2);(3)∵I点为△ABC的内心,∴I到三角形三边的距离为△ABC内切圆半径,∴IE=IF=2,即为△ABC内切圆半径.故答案为:5,0;6,2;2.21.点A,B在⊙O上,∠ABO的平分线交⊙O于点C.(1)如图1,连接CO,证明:CO∥AB;(2)如图2,过点C作CE⊥AO于E,若AE=2,AB=6,求CB的长.【分析】(1)证明∠C=∠ABC即可解决问题.(2)延长BO交⊙O于点D,作CF⊥OD于F,CG⊥BA延长线于G,连CD,CA,OC.利用全等三角形的性质求出BF,CF即可解决问题.【解答】解:(1)如图1中,∵OC=OB,∴∠C=∠OBC,∵BC平分∠OBA,则∠OBC=∠CBA,∴∠C=∠ABC,∴OC∥AB.(2)延长BO交⊙O于点D,作CF⊥OD于F,CG⊥BA延长线于G,连CD,CA,OC.∵CB平分∠ABD,CF⊥BD,CG⊥BG,∴CF=CG,∵OA=OB,∴∠OAB=∠OBA,∵OC∥AB,∴∠COA=∠OAB,∠DOC=∠OBA,∴∠DOC=∠COA,∵CF⊥OD,CE⊥OA,∴CF=CE,∴CA平分∠OAG,则Rt△CAG≌Rt△CAE(HL),Rt△CEO≌Rt△CFO(HL),Rt△CGB≌Rt△CFB(HL),Rt△CEA≌Rt△CFD(HL),∴BG=BF=8,AE=DF=2,∴BD=BF+DF=10,∴OC=5,OF=3,∴CE=CF===4,在Rt△CFB中,CB===4.22.科幻小说《实验室的故事》中,有这样一个情节,科学家把一种珍奇的植物分别放在不同温度的环境中,经过一天后,测试出这种植物高度的增长情况(如表):温度x/℃……﹣4 ﹣2 0 2 4 4.5 ……植物每天高度增长量y/mm……41 49 49 41 25 19.75 ……由这些数据,科学家推测出植物每天高度增长量y是温度x的函数,且这种函数是一次函数和二次函数中的一种.(1)请你选择一种适当的函数,求出它的函数关系式,并简要说明不选择另外一种函数的理由;(2)温度为多少时,这种植物每天高度的增长量最大?(3)如果实验室温度保持不变,在10天内要使该植物高度增长量的总和超过250mm,那么实验室的温度x应该在哪个范围内选择?请直接写出结果.【分析】(1)选择二次函数,设y=ax2+bx+c(a≠0),然后选择x=﹣2、0、2三组数据,利用待定系数法求二次函数解析式即可,再根据反比例函数的自变量x不能为0,一次函数的特点排除另两种函数;(2)把二次函数解析式整理成顶点式形式,再根据二次函数的最值问题解答;(3)求出平均每天的高度增长量为25mm,然后根据y=25求出x的值,再根据二次函数的性质写出x的取值范围.【解答】解:(1)选择二次函数,设y=ax2+bx+c(a≠0),∵x=﹣2时,y=49,x=0时,y=49,x=2时,y=41,∴,解得,所以,y关于x的函数关系式为y=﹣x2﹣2x+49;不选另外两个函数的理由:∵点(0,49)不可能在反比例函数图象上,∴y不是x的反比例函数;∵点(﹣4,41),(﹣2,49),(2,41)不在同一直线上,∴y不是x的一次函数;(2)由(1)得,y=﹣x2﹣2x+49=﹣(x+1)2+50,∵a=﹣1<0,∴当x=﹣1时,y有最大值为50,即当温度为﹣1℃时,这种作物每天高度增长量最大;(3)∵10天内要使该植物高度增长量的总和超过250mm,∴平均每天该植物高度增长量超过25mm,当y=25时,﹣x2﹣2x+49=25,整理得,x2+2x﹣24=0,解得x1=﹣6,x2=4,∴在10天内要使该植物高度增长量的总和超过250mm,实验室的温度应保持在﹣6℃<x <4℃.23.已知△ACB和△ADE都是等腰直角三角形,∠ACB=∠ADE=90°,以CE、BC为边作平行四边形CEFB,连CD、CF.(1)如图1,当E、D分别在AC和AB上时,求证:CD=CF;(2)如图2,△ADE绕点A旋转一定角度,判断(1)中CD与CF的数量关系是否依然成立,并加以证明;(3)如图3,AE=,AB=,将△ADE绕A点旋转一周,当四边形CEFB为菱形时,直接写出CF的长.【分析】(1)连接FD.证明△ADC≌△EDF(SAS)推出△DFC为等腰直角三角形即可解决问题.(2)成立.连接FD,证明△ADC≌△EDF(SAS)推出△DFC为等腰直角三角形即可解决问题.(3)分两种情形分别画出图形,利用(2)中结论求出CD即可解决问题.【解答】(1)证明:连接FD,∵AD=ED,∠ADE=90°,∴∠DAC=∠DEF=45°,∵四边形BCEF是平行四边形,∠BCE=90°,∴四边形BCEF是矩形,∴∠CEF=∠AEF=90°,BC=EF=AC,∴∠DEF=45°,∴∠A=∠DEF,∴△ADC≌△EDF(SAS),∴DC=DF,∠DCA=∠DFE,∴∠FDC=∠FEC=90°,从而△DFC为等腰直角三角形,∴CD=CF.(2)解:成立.理由:连接FD,∵AD⊥DE,EF⊥AC,∴∠DAC=∠DEF,又AD=ED,AC=EF,∴△ADC≌△EDF(SAS),∴DC=DF,∴∠FDC=90°,从而△DFC为等腰直角三角形,∴CD=CF.(3)解:如图3﹣1中,设AE与CD的交点为M,∵CE=CA,DE=DA,∴CD垂直平分AE,∴=,DM=,∴CD=DM+CM=3,∵CF=CD∴CF=6.如图3﹣2中,设AE与CD的交点为M,同法可得CD=CM﹣DM=﹣=2,∴CF=CD=4,综上所述,满足条件的CF的值为6或4.24.已知,抛物线y=m与y轴交于点C,与x轴交于点A和点B(其中点A在y轴左侧,点B在y轴右侧).(1)若抛物线y=m的对称轴为直线x=1,求抛物线的解析式;(2)如图1,∠ACB=90°,点P是抛物线y=m上的一点,若S△BCP =,求点P的坐标;(3)如图2,过点A作AD∥BC交抛物线于点D,若点D的纵坐标为﹣m,求直线AD 的解析式.【分析】(1)由对称轴x=1,可求解;(2)先求出点A,点B,点C坐标,由勾股定理可求m的值,即可求抛物线解析式,在y轴上选取点Q(0,3),则,过Q作PQ∥BC,则直线与抛物线的交点就是点P,可求PQ解析式,联立方程组,可求点P坐标;(3)由题意可得A(m,0),B(1,0),点C(0,m),可求出BC解析式,AD解析式,联立方程组,可求点D坐标,代入解析式可m的值,即可求解.【解答】解:(1)∵抛物线y=m的对称轴为直线x=1,∴对称轴直线为,∴m=1,∴抛物线解析式为.(2)∵,∴当y=0时,x1=1,x2=m,∴点A(m,0),点B(1,0),∴AB=1﹣m,∵C点坐标为(0,),点A(m,0),点B(1,0),∴AB2=(m﹣1)2,=1+m2,∵∠ACB=90°,∴AB2=AC2+BC2,∴1+m2=(m﹣1)2,∴m=﹣4,∴抛物线解析式为,A(﹣4,0),B(1,0)C(0,﹣2),∴,如图1,在y轴上选取点Q(0,3),则,过Q作PQ∥BC,则直线与抛物线的交点就是点P,∵B(1,0)C(0,﹣2),∴直线BC解析式为:y=2x﹣2,则直线PQ解析式为:y=2x+3,∴,解得,,∴P坐标为(,)或(,)(3)由题意知>0,∴m<0,∴A(m,0),B(1,0),且点C(0,m),∴直线BC解析式为:y=﹣mx+m,∴AD解析式为:,∴解得:x1=1﹣m,x2=m(舍,这是A点的横坐标),∴点D(1﹣m,﹣)∴,解得m=,∴AD解析式为.。

2020年湖北省武汉市九年级元月调考数学模拟试卷

2020年湖北省武汉市九年级元月调考数学模拟试卷

2020年湖北省武汉市九年级元月调考数学模拟试卷一.选择题(满分27分,每小题3分)1.一元二次方程2x2+5x=6的二次项系数、一次项系数、常数项分别是()A.2,5,6 B.5,2,6 C.2,5,﹣6 D.5,2,﹣62.如图,△ABC与△A′B′C′关于点O成中心对称,则下列结论不成立的是()A.点A与点A′是对称点B.BO=B′OC.AB∥A′B′D.∠ACB=∠C′A′B′3.二次函数y=x2﹣1的图象的顶点坐标为()A.(0,0)B.(0,﹣1)C.(﹣,﹣1)D.(﹣,1)4.下列说法正确的是()A.调查某班学生的身高情况,适宜采用全面调查B.篮球队员在罚球线上投篮两次都未投中,这是不可能事件C.天气预报说明天的降水概率为95%,意味着明天一定下雨D.小南抛掷两次硬币都是正面向上,说明抛掷硬币正面向上的概率是15.下列方程中,有两个不相等的实数根的是()A.5x2﹣4x=﹣2 B.(x﹣1)(5x﹣1)=5x2C.4x2﹣5x+1=0 D.(x﹣4)2=06.已知⊙O的半径为3,A为线段PO的中点,则当OP=5时,点A与⊙O的位置关系为()A.点在圆内B.点在圆上C.点在圆外D.不能确定7.要组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划7天,每天安排4场比赛.设比赛组织者应邀请x个队参赛,则x满足的关系式为()A.B.C.x(x﹣1)=28 D.x(x+1)=288.如图,将矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α(0°<α<90°).若∠1=112°,则∠α的大小是()A.68°B.20°C.28°D.22°9.已知抛物线y=ax2+bx+c(a<0)的对称轴为x=﹣1,与x轴的一个交点为(2,0).若于x的一元二次方程ax2+bx+c=p(p>0)有整数根,则p的值有()A.2个B.3个C.4个D.5个二.填空题(满分18分,每小题3分)10.已知A(m,n),B(m+8,n)是抛物线y=﹣(x﹣h)2+2036上两点,则n=.11.如图,小圆O的半径为1,△A1B1C1,△A2B2C2,△A3B3C3,…,△A n B n∁n依次为同心圆O的内接正三角形和外切正三角形,由弦A1C1和弧A1C1围成的弓形面积记为S1,由弦A2C2和弧A2C2围成的弓形面积记为S2,…,以此下去,由弦A n∁n和弧A n∁n围成的弓形面积记为S n,其中S2020的面积为.12.《九章算术》作为古代中国乃至东方的第一部自成体系的数学专著,与古希腊的《几何原本》并称现代数学的两大源泉.在《九章算术》中记载有一问题“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”小辉同学根据原文题意,画出圆材截面图如图所示,已知:锯口深为1寸,锯道AB=1尺(1尺=10寸),则该圆材的直径为寸.13.已知圆锥的底面半径为3,母线长为7,则圆锥的侧面积是.14.若抛物线y=x2﹣4x+c的顶点在x轴上,则c的值是.15.一块等边三角形木板,边长为1,现将木板沿水平线翻滚,如图所示,若翻滚了40次,则B点所经过的路径长度为.三.解答题(共8小题,满分72分)16.(8分)解方程:x2+4x﹣3=0.17.(8分)如图,在⊙O中,AB是弦,OC⊥AB于C,OA=6,AB=8,求OC的长.18.(8分)如图所示,有一张“太阳”和两张“小花”样式的精美卡片(共三张),它们除花形外,其余都一样.(1)小明认为:闭上眼从中任意抽取一张,抽出“太阳”卡片与“小花”卡片是等可能的,因为只有这两种卡片.小明的说法正确吗?为什么;(2)混合后,从中一次抽出两张卡片,请通过列表或画树状图的方法求出两张卡片都是“小花”的概率;(3)混合后,如果从中任意抽出一张卡片,使得抽出“太阳”卡片的概率为,那么应添加多少张“太阳”卡片?请说明理由.19.(8分)如图,等腰直角△ABC的斜边AB上有两点M、N,且满足MN2=BN2+AM2,将△ABC绕着C点顺时针旋转90°后,点M、N的对应点分别为T、S.(1)请画出旋转后的图形,并证明△MCN≌△MCS;(2)求∠MCN的度数.20.(8分)如图,AE平分∠BAC,交BC于点D,AE⊥BE,垂足为E,过点E作EF∥AC,交AB于点F.求证:点F是AB的中点.21.(10分)某水果批发商销售每箱进价为40元的苹果,市场调查发现,若每箱以50元的价格调查,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.(1)求平均每天销售量y(箱)与销售价x(元/箱)之间的函数关系式.(2)求该批发商平均每天的销售利润w(元)与销售价x(元/箱)之间的函数关系式.(3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?22.(10分)如图,△ABC是等边三角形,AB=2cm.动点P从点C出发,以lcm/s的速度在边BC的延长线上运动.以CP为边作等边三角形CPQ,点A、Q在直线BC同侧.连结AP、BQ相交于点E.设点P的运动时间为t(s)(t>0).(1)当t=s时,△ABC≌△QCP.(2)求证:△ACP≌△BCQ.(3)求∠BEP的度数.(4)设AP与CQ交于点F,BQ与AC交于点G,连结FG,当点G将边AC分成1:2的两部分时,直接写出△CFG的周长.23.(12分)如图,抛物线y=ax2+2x+c(a<0)与x轴交于点A和点B(点A在原点的左侧,点B在原点的右侧),与y轴交于点C,OB=OC=3.(1)求该抛物线的函数解析式;(2)如图1,连接BC,点D是直线BC上方抛物线上的点,连接OD,CD,OD交BC于点F,当S△COF :S△CDF=3:2时,求点D的坐标.(3)如图2,点E的坐标为(0,),在抛物线上是否存在点P,使∠OBP=2∠OBE?若存在,请直接写出符合条件的点P的坐标;若不存在,请说明理由.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年九年级元月调考数学模拟试卷(4)一.选择题(共10小题)1.将方程4x2=81的一次项系数为()A.4 B.0 C.81 D.﹣812.抛物线y=(x﹣1)2﹣2 的顶点是()A.(1,﹣2)B.(﹣1,2)C.(1,2)D.(﹣1,﹣2)3.下列事件是必然事件的是()A.某种彩票中奖率为1%,则买100张这种彩票必然中奖B.今晚努力学习,明天考试必然考出好成绩C.从装有2个红球、3个白球的袋中随机摸出4个球,则一定会摸出红球D.抛掷一枚普通的骰子所得的点数一定小于64.下列我国著名企业商标图案中,是中心对称图形的是()A.B.C.D.5.某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有100被感染.设每轮感染中平均每一台电脑会感染x台其他电脑,由题意列方程应为()A.1+2x=100 B.x(1+x)=100 C.(1+x)2=100 D.1+x+x2=100 6.小强将一个球竖直向上抛起,球升到最高点,垂直下落,直到地面.在此过程中,球的高度与时间的关系可以用图中的哪一幅来近似地刻画()A.B.C.D.7.某商场为了吸引顾客,设立了一个可以自由转动的转盘(如图所示),并规定:顾客消费200元以上(含200元),就能获得一次转动转盘的机会,如果转盘停止后,指针正好对准九折、八折、七折区域,顾客就可以获得此项优惠,如果指针恰好在分界线上时,则需要重新转动转盘.某顾客正好消费300元,他转动一次转盘,实际付款210元的概率为()A.B.C.D.8.如图,在Rt△ABC中,∠ACB=90°,AC=BC,将△ABC绕点A逆时针旋转60°,得到△ADE,连接BE,则∠BED的度数为()A.100°B.120°C.135°D.150°9.抛物线y=mx2+3mx+2(m<0)经过点A(a,y1)、B(1,y2)两点,若y1>y2,则实数a 满足()A.﹣4<a<1 B.a<﹣4或a>1 C.﹣4<a≤﹣D.﹣≤a<1 10.如图,△ABC内接于⊙O,AC=5,BC=12,且∠A=90°+∠B,则点O到AB的距离为()A.B.C.D.4二.填空题(共6小题)11.一元二次方程x(x﹣5)=0的根为.12.把点P(﹣2,3)绕坐标原点旋转180°后对应点的坐标为.13.抛物线y=x2﹣2x﹣5的顶点坐标是.14.如图,扇形的弧长是20π,面积是240π,则此扇形的圆心角的度数是.15.已知抛物线y=ax2+bx+c经过点(﹣1,5),且无论m为何值,不等式a+b≥am2+bm恒成立,则关于x的方程ax2+bx+c=5的解为.16.平面直角坐标系中,点P是一动点,点A(6,0)绕点P顺时针旋转90°到点B处,点B恰好落在直线y=﹣2x上.当线段AP最短时,点P的坐标为.三.解答题(共8小题)17.解方程:x2﹣4x﹣7=0.18.如图,A、B是⊙O上的两点,∠AOB=120°,C是弧AB的中点,CE⊥OA交⊙O于点E,连接AE.求证:AE=AO.19.为了有效保护环境,某景区要求游客将垃圾按可回收垃圾,不可回收垃圾,有害垃圾分类投放.一天,小林一家游玩了该景区后,把垃圾按要求分成三袋并随机投入三类垃圾桶中,请用列树状图的方法求三袋垃圾都投对的概率.20.在正方形ABCD中,E为AB的中点.(1)将线段AB绕点O逆时针旋转一定角度,使点A与点B重合,点B与点C重合,用无刻度直尺作出点O的位置,保留作图痕迹;(2)将△ABD绕点D逆时针旋转某个角度,得到△CFD,使DA与DC重合,用无刻度直尺作出△CFD,保留作图痕迹.21.如图,在⊙O中,AB为直径,F是半圆弧AB的中点,E是弧BF上一点,直线AE与过点B的切线相交于点C,连接EF.(1)若EF=AB,求∠ACB的度数;(2)若⊙O的半径为3,BC=2,求EF的长.22.某坦克部队需要经过一个拱桥(如图所示),拱桥的轮廓是抛物线形,拱高OC=6m,跨度AB=20m,有5根支柱:AG、MN、CD、EF、BH,相邻两支柱的距离均为5m.(1)以AB的中点为原点,AB所在直线为x轴,支柱CD所在直线为y轴,建立平面直角坐标系,求抛物线的解析式;(2)若支柱每米造价为2万元,求5根支柱的总造价;(3)拱桥下面是双向行车道(正中间是一条宽2m的隔离带),其中的一条行车道是坦克的行进方向,现每辆坦克长4m,宽2m,高3m,行驶速度为24km/h,坦克允许并排行驶,坦克前后左右距离忽略不计,试问120辆该型号坦克从刚开始进入到全部通过这座长1000m的拱桥隧道所需最短时间为多少分钟?23.已知平行四边形ABCD.(1)如图1,将▱ABCD绕点D逆时针旋转一定角度得到▱A1B1C1D,延长B1C1,分别与BC、AD的延长线交于点M、N.①求证:∠BMB1=∠ADA1;②求证:B1N=AN+C1M;(2)如图2,将线段AD绕点D逆时针旋转,使点A的对应点A1落在BC上,将线段CD 绕点D逆时针旋转到C1D的位置,AC1与A1D交于点H.若H为AC1的中点,∠ADC1+∠A1DC =180°,A1B=nA1C,试用含n的式子表示的值.24.已知抛物线y=x2+(2m﹣1)x﹣2m(m>0.5)的最低点的纵坐标为﹣4.(1)求抛物线的解析式;(2)如图1,抛物线与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,D 为抛物线上的一点,BD平分四边形ABCD的面积,求点D的坐标;(3)如图2,平移抛物线y=x2+(2m﹣1)x﹣2m,使其顶点为坐标原点,直线y=﹣2上有一动点P,过点P作两条直线,分别与抛物线有唯一的公共点E、F(直线PE、PF 不与y轴平行),求证:直线EF恒过某一定点.参考答案与试题解析一.选择题(共10小题)1.将方程4x2=81的一次项系数为()A.4 B.0 C.81 D.﹣81【分析】将已知方程转化为一般形式,然后找出方程的一次项系数即可.【解答】解:方程4x2=81的一般形式是4x2﹣81=0,它的一次项系数是0,故选:B.2.抛物线y=(x﹣1)2﹣2 的顶点是()A.(1,﹣2)B.(﹣1,2)C.(1,2)D.(﹣1,﹣2)【分析】根据顶点式的坐标特点直接写出顶点坐标.【解答】解:∵y=(x﹣1)2﹣2是抛物线解析式的顶点式,根据顶点式的坐标特点可知,顶点坐标为(1,﹣2).故选:A.3.下列事件是必然事件的是()A.某种彩票中奖率为1%,则买100张这种彩票必然中奖B.今晚努力学习,明天考试必然考出好成绩C.从装有2个红球、3个白球的袋中随机摸出4个球,则一定会摸出红球D.抛掷一枚普通的骰子所得的点数一定小于6【分析】直接利用必然事件以及随机事件的定义分析得出答案.【解答】解:A、某种彩票中奖率为1%,则买100张这种彩票必然中奖,不一定必然中奖,不合题意;B、今晚努力学习,明天考试必然考出好成绩,是随机事件,不合题意;C、从装有2个红球、3个白球的袋中随机摸出4个球,则一定会摸出红球,是必然事件,符合题意;D、抛掷一枚普通的骰子所得的点数一定小于6,也有可能等于6,故此选项不合题意;故选:C.4.下列我国著名企业商标图案中,是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的概念对各选项分析判断后利用排除法求解.【解答】解:A、不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项正确;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误.故选:B.5.某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有100被感染.设每轮感染中平均每一台电脑会感染x台其他电脑,由题意列方程应为()A.1+2x=100 B.x(1+x)=100 C.(1+x)2=100 D.1+x+x2=100 【分析】此题可设每轮感染中平均一台电脑会感染x台电脑,则第一轮共感染x+1台,第二轮共感染x(x+1)+x+1=(x+1)(x+1)台,根据题意列方程即可.【解答】解:设每轮感染中平均一台电脑会感染x台电脑,根据题意列方程得(x+1)2=100,故选:C.6.小强将一个球竖直向上抛起,球升到最高点,垂直下落,直到地面.在此过程中,球的高度与时间的关系可以用图中的哪一幅来近似地刻画()A.B.C.D.【分析】根据小球的运动过程进行分析即可.【解答】解:因为是小强将一个球竖直向上抛,小强有一定的身高,故D一定不符合;小强抛出小球后,小球开始是向上运动的,故高度在增加,故A一定错误;小球升到一定高度后,会自由落下,高度就会降低,故B错误,C正确,故选:C.7.某商场为了吸引顾客,设立了一个可以自由转动的转盘(如图所示),并规定:顾客消费200元以上(含200元),就能获得一次转动转盘的机会,如果转盘停止后,指针正好对准九折、八折、七折区域,顾客就可以获得此项优惠,如果指针恰好在分界线上时,则需要重新转动转盘.某顾客正好消费300元,他转动一次转盘,实际付款210元的概率为()A.B.C.D.【分析】根据概率公式即可得到结论.【解答】解:他转动一次转盘,实际付款210元的概率为=,故选:D.8.如图,在Rt△ABC中,∠ACB=90°,AC=BC,将△ABC绕点A逆时针旋转60°,得到△ADE,连接BE,则∠BED的度数为()A.100°B.120°C.135°D.150°【分析】如图,连接BD,由旋转的性质可得AB=AD,∠BAD=60°,可证△ABD为等边三角形,由“SSS”可证△ABE≌△DBE,可得∠ABE=∠DBE=30°,由三角形内角和定理可求解.【解答】解:如图,连接BD,∵将△ABC绕点A逆时针旋转60°,得到△ADE,∴AB=AD,∠BAD=60°,∴△ABD为等边三角形,∴∠ABD=60°,AB=BD,且AE=DE,BE=BE,∴△ABE≌△DBE(SSS)∴∠ABE=∠DBE=30°∴∠ABE=∠DBE=30°,且∠BDE=∠ADB﹣∠ADE=15°,∴∠BED=135°.故选:C.9.抛物线y=mx2+3mx+2(m<0)经过点A(a,y1)、B(1,y2)两点,若y1>y2,则实数a 满足()A.﹣4<a<1 B.a<﹣4或a>1 C.﹣4<a≤﹣D.﹣≤a<1 【分析】先确定抛物线的对称轴为x=﹣=﹣1.5,则确定点B(1,y2)关于直线x =﹣1.5的对称点的坐标为(﹣4,y2),然后利用二次函数的性质得到a的范围.【解答】解:抛物线的对称轴为x=﹣=﹣1.5,而点B(1,y2)关于直线x=﹣1.5的对称点的坐标为(﹣4,y2),∵m<0,∴抛物线开口向下,且y1>y2,∴﹣4<a<1.故选:A.10.如图,△ABC内接于⊙O,AC=5,BC=12,且∠A=90°+∠B,则点O到AB的距离为()A.B.C.D.4【分析】作直径CD,连BD,过O作OM⊥AB于M,过B作BN⊥CD于N,如图,利用圆周角定理得到∠CBD=90°,再证明CD∥AB得到•∠BDC=∠ABC,所以BD=AC=5.然后利用勾股定理计算出CD,再利用面积法求出BN即可.【解答】解:作直径CD,连BD,过O作OM⊥AB于M,过B作BN⊥CD于N,如图,则∠CBD=90°,∵∠A=90°+∠ABC,∴∠A=∠ABD,∴∠ABD+∠D=∠A+∠D=180°,∴CD∥AB,∴∠BDC=∠ABC,∴=,∴BD=AC=5.∴OM=BN,在Rt△ABD中,CD==13,∵×BN×CD=×BC×BD,∴BN═==,∴OM=,即点O到AB的距离为.故选:B.二.填空题(共6小题)11.一元二次方程x(x﹣5)=0的根为x1=0,x2=5 .【分析】利用因式分解法求出解即可.【解答】解:方程x(x﹣5)=0,可得x=0或x﹣5=0,解得:x1=0,x2=5,故答案为:x1=0,x2=512.把点P(﹣2,3)绕坐标原点旋转180°后对应点的坐标为(2,﹣3).【分析】利用关于原点中心对称的点的坐标特征求解.【解答】解:把点P(﹣2,3)绕坐标原点旋转180°后对应点的坐标为(2,﹣3).故答案为:(2,﹣3).13.抛物线y=x2﹣2x﹣5的顶点坐标是(1,﹣6).【分析】直接利用配方法得出二次函数的顶点坐标即可.【解答】解:抛物线y=x2﹣2x﹣5=(x﹣1)2﹣6的顶点坐标是:(1,﹣6).故答案为:(1,﹣6).14.如图,扇形的弧长是20π,面积是240π,则此扇形的圆心角的度数是150°.【分析】根据扇形面积可求得扇形半径,再根据弧长公式可求得圆心角的度数.【解答】解:∵S 扇形=וOA,∴240π=×20π×OA,∴OA=24,又=,∴=20π,解得n=150,故答案为:150°.15.已知抛物线y=ax2+bx+c经过点(﹣1,5),且无论m为何值,不等式a+b≥am2+bm恒成立,则关于x的方程ax2+bx+c=5的解为x1=﹣1,x2=3 .【分析】不等式a+b≥am2+bm恒成立,即a+b+c≥am2+bm+c恒成立,由此得到顶点坐标是(1,a+b+c);然后由抛物线的对称性得到(﹣1,5)关于直线x=1的对称点为(3,5),易得答案.【解答】解:∵不等式a+b≥am2+bm恒成立,∴a+b+c≥am2+bm+c恒成立,∴点(1,a+b+c)是抛物线的顶点,点(﹣1,5)关于直线x=1的对称点为(3,5),当y=5时,x=﹣1或3,此即为答案.故答案是:x1=﹣1,x2=3.16.平面直角坐标系中,点P是一动点,点A(6,0)绕点P顺时针旋转90°到点B处,点B恰好落在直线y=﹣2x上.当线段AP最短时,点P的坐标为(,).【分析】在平面直角坐标系中,构造△PGB≌△AHP,设B(m,﹣2m),P(a,b),依据全等三角形的性质,即可得到a=,b=,再根据两点间距离公式以及配方法,即可得到m的值,进而得出点P的坐标.【解答】解:如图,构造△PGB≌△AHP,设B(m,﹣2m),P(a,b),由题可得PG=AH,BG=PH,即a﹣m=b,b+2m=6﹣a,联立解得:a=,b=,即P(,),∴PA2=(﹣6)2+()2=(5m2﹣12m+36)=(m﹣)2+,∴当m=时,PA最小,此时P(,).故答案为:(,).三.解答题(共8小题)17.解方程:x2﹣4x﹣7=0.【分析】移项后配方得出x2﹣4x+4=7+4,推出(x﹣2)2=11,开方后得出方程x﹣2=±,求出方程的解即可.【解答】解:移项得:x2﹣4x=7,配方得:x2﹣4x+4=7+4,即(x﹣2)2=11,开方得:x﹣2=±,∴原方程的解是:x1=2+,x2=2﹣.18.如图,A、B是⊙O上的两点,∠AOB=120°,C是弧AB的中点,CE⊥OA交⊙O于点E,连接AE.求证:AE=AO.【分析】连OC,OA,如图,先利用圆心角、弧、弦的关系得到∠AOC=60°,则可判断△AOC为等边三角形,所以AC=AO,再根据垂径定理得到=,从而得到AE=AC=AO.【解答】证明:连OC,OA,如图,∵∠AOB=120°,C是弧AB的中点,∴∠AOC=60°,∵OA=OC,∴△AOC为等边三角形,∴AC=AO,∵OA⊥CE,∴=,∴AE=AC,∴AE=AO.19.为了有效保护环境,某景区要求游客将垃圾按可回收垃圾,不可回收垃圾,有害垃圾分类投放.一天,小林一家游玩了该景区后,把垃圾按要求分成三袋并随机投入三类垃圾桶中,请用列树状图的方法求三袋垃圾都投对的概率.【分析】首先根据题意求得所有等可能的结果与垃圾投放正确的情况,再利用概率公式即可求得答案.【解答】解:三类垃圾随机投入三类垃圾箱的树状图如下:由树状图可知随机投入三类垃圾桶共有6种等可能结果,其中三袋垃圾都投对的只有1种结果,∴三袋垃圾都投对的概率为.20.在正方形ABCD中,E为AB的中点.(1)将线段AB绕点O逆时针旋转一定角度,使点A与点B重合,点B与点C重合,用无刻度直尺作出点O的位置,保留作图痕迹;(2)将△ABD绕点D逆时针旋转某个角度,得到△CFD,使DA与DC重合,用无刻度直尺作出△CFD,保留作图痕迹.【分析】(1)将线段AB绕点O逆时针旋转一定角度,使点A与点B重合,点B与点C 重合,用无刻度直尺即可作出点O的位置;(2)将△ABD绕点D逆时针旋转某个角度,得到△CFD,使DA与DC重合,用无刻度直尺即可作出△CFD,【解答】解:如图所示:(1)连接AC交BD于点O,则点O即为所求的点;(2)连EO并延长交CD于H,连AH,延长AH、BC交于点F,连DF,则△DCF即为所求.21.如图,在⊙O中,AB为直径,F是半圆弧AB的中点,E是弧BF上一点,直线AE与过点B的切线相交于点C,连接EF.(1)若EF=AB,求∠ACB的度数;(2)若⊙O的半径为3,BC=2,求EF的长.【分析】(1)连接OE、OF、AF,根据等边三角形的性质得到∠EOF=60°,由圆周角定理得到∠EAF=∠EOF=30°,根据切线的性质得到∠ABC=90°,根据直角三角形的性质计算即可;(2)连BE、AF、BF,过F作FM⊥EF交AE于M,根据勾股定理求出AC,根据三角形的面积公式求出BE,证明△AFM≌△BFE,根据全等三角形的性质得到AM=BE,EF=FM,根据等腰直角三角形的性质计算,得到答案.【解答】解:(1)连接OE、OF、AF,∵EF=AB=OE=OF,∴△EOF为等边三角形,∴∠EOF=60°,由圆周角定理得,∠EAF=∠EOF=30°,∵F是半圆弧AB的中点,∴∠AOF=90°,∴∠OAF=45°,∴∠CAB=15°,∵BC为⊙O的切线,∴∠ABC=90°,∴∠ACB=75°;(2)连BE、AF、BF,过F作FM⊥EF交AE于M,则∠AEB=∠CEB=90°.∵∠ABC=90°,AB=6,BC=2,∴AC===2,由面积法得,BE==,∴AE==,∵AB为直径,∴∠AFB=90°,又FM⊥EF,∴∠AFM=∠BFE,在△AFM和△BFE中,,∴△AFM≌△BFE(ASA),∴AM=BE=,EF=FM.∵EM=AE﹣AM=,∴EF=EM=.22.某坦克部队需要经过一个拱桥(如图所示),拱桥的轮廓是抛物线形,拱高OC=6m,跨度AB=20m,有5根支柱:AG、MN、CD、EF、BH,相邻两支柱的距离均为5m.(1)以AB的中点为原点,AB所在直线为x轴,支柱CD所在直线为y轴,建立平面直角坐标系,求抛物线的解析式;(2)若支柱每米造价为2万元,求5根支柱的总造价;(3)拱桥下面是双向行车道(正中间是一条宽2m的隔离带),其中的一条行车道是坦克的行进方向,现每辆坦克长4m,宽2m,高3m,行驶速度为24km/h,坦克允许并排行驶,坦克前后左右距离忽略不计,试问120辆该型号坦克从刚开始进入到全部通过这座长1000m的拱桥隧道所需最短时间为多少分钟?【分析】(1)根据题目可知A,B,C的坐标,设出抛物线的解析式代入可求解.(2)把x=5代入可求出支柱的长度,然后算出总造价即可.(3)先求出坦克方队的长,然后算出速度,从而求得通过隧道的时间即可.【解答】【解】(1)设y=ax2+c,把C(0,6)、B(10,0)代入,得a=﹣,c=6.∴y=﹣x2+6.(2)当x=5时,y=﹣×52+6=,∴EF=10﹣=,CD=10﹣6=4,支柱的总造价为2(2×+2×10+4)=70(万元).(3)∵坦克的高为3米,令y=3时,﹣x2+6=3,解得:x=±5,∵7<5<8,坦克宽为2米,∴可以并排3辆坦克行驶,此时坦克方阵的长为120÷3×4=160(米),坦克的行驶速度为24km/h=400米/分,∴通过隧道的最短时间为=2.9(分).23.已知平行四边形ABCD.(1)如图1,将▱ABCD绕点D逆时针旋转一定角度得到▱A1B1C1D,延长B1C1,分别与BC、AD的延长线交于点M、N.①求证:∠BMB1=∠ADA1;②求证:B1N=AN+C1M;(2)如图2,将线段AD绕点D逆时针旋转,使点A的对应点A1落在BC上,将线段CD 绕点D逆时针旋转到C1D的位置,AC1与A1D交于点H.若H为AC1的中点,∠ADC1+∠A1DC =180°,A1B=nA1C,试用含n的式子表示的值.【分析】(1)①先判断出∠BMB1=∠N,再判断出∠N=∠ADA1,即可得出结论;②先判断出∠DCE=∠B=∠B1=∠DC1F,DC=DC1,得出△DCE≌△DC1F,得出DE=DF,进而判断出Rt△DEM≌Rt△DMF,得出∠DME=∠DMF,进而判断出DN=MN,即可得出结论;(2)先判断出AT=2DH,得出∠ADT=∠A1DC,进而判得出△A1DC≌△ADT,得出A1C=AT =2DH.即可得出结论.【解答】解:(1)①∵四边形ABCD是平行四边形,∴AD∥BC,∴∠BMB1=∠N,由旋转知,四边形A1B1C1D是平行四边形,∴A1D∥B1C1,∴∠N=∠ADA1,∴∠BMB1=∠ADA1;②如图1,连接DM,过D作DE⊥BC于E,作DF⊥MN于F,∴∠DEC=∠DFC1=90°,显然,∠DCE=∠B=∠B1=∠DC1F,DC=DC1,∴△DCE≌△DC1F(AAS),∴DE=DF,∵DM=DM,∴Rt△DEM≌Rt△DMF(HL),∴∠DME=∠DMF,又∵AN∥BM,∴∠DME=∠MDN,∴∠DMN=∠MDN,∴DN=MN,又AD=BC=B1C1,∴B1N=B1C1+C1M+MN=AD+C1M+DN=AN+C1M;(2)如图2,延长C1D至点T,使DT=DC1,连接AT,∵H为AC1的中点,∴AT=2DH(三角形中位线定理).∵∠ADC1+∠A1DC=180°,∠ADC1+∠ADT=180°,∴∠ADT=∠A1DC,由旋转知,A1D=AD,DC=DC1=DT,∴△A1DC≌△ADT(SAS),∴A1C=AT=2DH.设DH=a,则A1C=AT=2a,A1B=nA1C=2an,A1D=AD=BC=A1B+A1C=2an+2a,∴A1H=A1D﹣DH=2an+2a﹣a=2an+a,∴=2n+1.24.已知抛物线y=x2+(2m﹣1)x﹣2m(m>0.5)的最低点的纵坐标为﹣4.(1)求抛物线的解析式;(2)如图1,抛物线与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,D 为抛物线上的一点,BD平分四边形ABCD的面积,求点D的坐标;(3)如图2,平移抛物线y=x2+(2m﹣1)x﹣2m,使其顶点为坐标原点,直线y=﹣2上有一动点P,过点P作两条直线,分别与抛物线有唯一的公共点E、F(直线PE、PF 不与y轴平行),求证:直线EF恒过某一定点.【分析】(1)先求出顶点坐标,由最低点的纵坐标为﹣4,可列方程,即可求解;(2)如图1,连AC交BD于E,过A作AM⊥BD于M,过C作CN⊥BD于N,由三角形面积关系和全等三角形的性质可求点E坐标,可求BD解析式,即可求点D坐标;(3)设E(t,t2),F(n,n2),可求PE解析式,由与抛物线有唯一的公共点,可求k1=2t,即可求点P横坐标,可得tn=﹣2,设直线EF的解析式为y=kx+b,得x2﹣kx﹣b =0,可求b=2,即可得直线EF恒过定点(0,2).【解答】解:(1)∵y=x2+(2m﹣1)x﹣2m=(x+m﹣0.5)2﹣m2﹣m﹣0.25,∴顶点坐标为(0.5﹣m,﹣m2﹣m﹣0.25)∵最低点的纵坐标为﹣4,∴﹣m2﹣m﹣0.25=﹣4,即4m2+4m﹣15=0,∴m=1.5或﹣2.5,∵m>0.5,∴m=1.5.∴抛物线的解析式为y=x2+2x﹣3;(2)∵y=x2+2x﹣3与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,∴A(﹣3,0),B(1,0),C(0,﹣3).如图1,连AC交BD于E,过A作AM⊥BD于M,过C作CN⊥BD于N,∵BD平分四边形ABCD的面积,∴S△ABD=S△CBD,∴BD×AM=BD×CN,∴AM=CN,且∠AEM=∠CMN,∠AME=∠CNE=90°∴△AEM≌△CEN(AAS),∴AE=CE,∴E(﹣1.5,﹣1.5),且B(1,0),∴直线BE的解析式为y=0.6x﹣0.6.∴0.6x﹣0.6=x2+2x﹣3,解得x1=﹣,x2=1,∴D(﹣,﹣).(3)由题意可得平移后解析式为y=x2,设E(t,t2),F(n,n2),设直线PE为y=k1(x﹣t)+t2,由题意可得x2﹣k1x+k1t﹣t2=0,∴△=k12﹣4(k1t﹣t2)=(k1﹣2t)2=0,∴k1=2t.∴直线PE为y=2t(x﹣t)+t2,即y=2tx﹣t2.令y=﹣2,得x P=,同理,设直线PF为y=k2(x﹣n)+n2,∴x P=,∴=,∵t≠n,∴tn=﹣2.设直线EF的解析式为y=kx+b,得x2﹣kx﹣b=0,∴x E•x F=﹣b,即tn=﹣b,∴b=2.∴直线EF为y=kx+2,过定点(0,2).。

相关文档
最新文档