2018年武汉元月调考数学试卷
九年级数学(RJ)-2017-2018学年湖北省武汉市部分学校九年级元月调考数学试卷(word版含答案)--精选练习

2017~2018学年度武汉市部分学校九年级调研测试数学试卷一、选择题(共10小题,每小题3分,共30分)1.方程x (x -5)=0化成一般形式后,它的常数项是( )A .-5B .5C .0D .1 2.二次函数y =2(x -3)2-6( ) A .最小值为-6B .最大值为-6C .最小值为3D .最大值为33.下列交通标志中,是中心对称图形的是( )A .B .C .D .4.事件①:射击运动员射击一次,命中靶心;事件②:购买一张彩票,没中奖,则( )A .事件①是必然事件,事件②是随机事件B .事件①是随机事件,事件②是必然事件C .事件①和②都是随机事件D .事件①和②都是必然事件5.抛掷一枚质地均匀的硬币,正面朝上的概率为0.5,下列说法正确的是( )A .连续抛掷2次必有1次正面朝上B .连续抛掷10次不可能都正面朝上C .大量反复抛掷每100次出现正面朝上50次D .通过抛掷硬币确定谁先发球的比赛规则是公平的6.一元二次方程0322=++m x x 有两个不相等的实数根,则( )A .m >3B .m =3C .m <3D .m ≤3 7.圆的直径是13 cm ,如果圆心与直线上某一点的距离是6.5 cm ,那么该直线和圆的位置关系是( ) A .相离 B .相切 C .相交D .相交或相切 8.如图,等边△ABC 的边长为4,D 、E 、F 分别为边AB 、BC 、AC 的中点,分别以A 、B 、C 三点为圆心,以AD 长为半径作三条圆弧,则图中三条圆弧的弧长之和是( )A .πB .2πC .4πD .6π9.如图,△ABC 的内切圆与三边分别相切于点D 、E 、F ,则下列等式:① ∠EDF =∠B ;② 2∠EDF =∠A +∠C ;③ 2∠A =∠FED +∠EDF ;④ ∠AED +∠BFE +∠CDF =180°,其中成立的个数是( )A .1个B .2个C .3个D .4个10.二次函数y =-x 2-2x +c 在-3≤x ≤2的范围内有最小值-5,则c 的值是( )A .-6B .-2C .2D .3二、填空题(本大题共6个小题,每小题3分,共18分)11.一元二次方程x 2-a =0的一个根是2,则a 的值是___________12.把抛物线y =2x 2先向下平移1个单位,再向左平移2个单位,得到的抛物线的解析式是____13.一个不透明的口袋中有四个完全相同的小球,把它们分别标为1、2、3、4.随机摸取一个小球然后放回,再随机摸出一个小球,两次取出的小球标的和等于5的概率是_______14.设计人体雕像时,使雕像的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部(全身)的高度比,可以增加视觉美感.按此比例,如果雕像的高为2 m ,那么上部应设计为多高?设雕像的上部高x m ,列方程,并化成一般形式是___________15.如图,正六边形ABCDEF 中,P 是边ED 的中点,连接AP ,则ABAP =___________16.在⊙O 中,弧AB 所对的圆心角∠AOB =108°,点C 为⊙O 上的动点,以AO 、AC 为边构造□AODC .当∠A =__________°时,线段BD 最长三、解答题(共8题,共72分)17.(本题8分)解方程:x 2+x -3=018.(本题8分)如图,在⊙O 中,半径OA 与弦BD 垂直,点C 在⊙O 上,∠AOB =80°(1) 若点C 在优弧BD 上,求∠ACD 的大小(2) 若点C 在劣弧BD 上,直接写出∠ACD 的大小19.(本题8分)甲、乙、丙三个盒子中分别装有除颜色外都相同的小球,甲盒中装有两个球,分别为一个红球和一个绿球;乙盒中装有三个球,分别为两个绿球和一个红球;丙盒中装有两个球,分别为一个红球和一个绿球,从三个盒子中各随机取出一个小球(1) 请画树状图,列举所有可能出现的结果(2) 请直接写出事件“取出至少一个红球”的概率20.(本题8分)如图,在平面直角坐标系中有点A (-4,0)、B (0,3)、P (a ,-a )三点,线段CD 与AB 关于点P 中心对称,其中A 、B 的对应点分别为C 、D(1) 当a =-4时① 在图中画出线段CD ,保留作图痕迹② 线段CD 向下平移个单位时,四边形ABCD 为菱形(2) 当a =___________时,四边形ABCD 为正方形21.(本题8分)如图,点D在⊙O的直径AB的延长线上,CD切⊙O于点C,AE⊥CD于点E(1) 求证:AC平分∠DAE(2) 若AB=6,BD=2,求CE的长22.(本题10分)投资1万元围一个矩形菜园(如图),其中一边靠墙,另外三边选用不同材料建造.墙长24 m,平行于墙的边的费用为200元/m,垂直于墙的边的费用为150元/m,设平行于墙的边长为x m(1) 设垂直于墙的一边长为y m,直接写出y与x之间的函数关系式(2) 若菜园面积为384 m2,求x的值(3) 求菜园的最大面积23.(本题10分)如图,点C为线段AB上一点,分别以AB、AC、CB为底作顶角为120°的等腰三角形,顶角顶点分别为D、E、F(点E、F在AB的同侧,点D在另一侧)(1) 如图1,若点C是AB的中点,则∠AED=___________(2) 如图2,若点C不是AB的中点①求证:△DEF为等边三角形②连接CD,若∠ADC=90°,AB=3,请直接写出EF的长24.(本题12分)已知抛物线y=ax2+2x+c与x轴交于A(-1,0)、B(3,0)两点,一次函数y=kx+b的图象l经过抛物线上的点C(m,n)(1) 求抛物线的解析式(2) 若m=3,直线l与抛物线只有一个公共点,求k的值(3) 若k=-2m+2,直线l与抛物线的对称轴相交于点D,点P在对称轴上.当PD=PC时,求点P的坐标。
2018年武汉市元调模拟数学卷及答案

2
3
3
2
解得 x= 2 3 42 , ∴M( 2 3 42 ,– 1 ).
2
2
2
②当 D 是 MQ 的中点时,过 M 作 MS∥x 轴交 y 轴于 S,
△QOD≌△MSD,∴OD=DS,∴DS=1,∴yM=﹣2,代入抛物
线解析式得 1 x2﹣ 2 3 x﹣3=﹣2,解得 x= 3 6
3
3
∴OB=1 2 ,喷水最远有1 2 米远.
21. (1)略; (2)作 AH⊥OD 于 H,OG⊥AB 于 G, △AHE≌△ADE,EH=DE=1, ∵OH=HE=1,
∴OD=3, AH = 2 2 ,
OE × AH = AE × OG 得,
OG = 4 2 , 由 AG2 = OA2 - OG2 3
∴M( 3 6 ,–2).
③当 Q 是 MD 的中点时,过 M 作 MK⊥x 轴于 K,△DOQ≌△
MKQ,∴MK=OD=1,∴yM=1,代入抛物线解析式得 1 x2﹣ 2 3
3
3
x﹣3=1 ,解得 x= 3 15 ,∴M( 3 15 ,1)
∴M( 2 3 42 ,– 1 )或( 3 6 ,–2)或( 3 15 ,1).
2
2
(3)分别过 E 作 EK⊥AB,ES⊥AC,垂足分别为 K、S,过 P 作 PT ⊥AB 于 T.易知直线 AD 的解析式是:y=– 3 x–1, 3
联立
y
3 x 1 3
,
y
1 3
x2
23 3
x
3
整理得: 1 x2 3 x 2 0 , 33
武昌区2018届高三年级元月调研考试(理数答案)

武昌区2018届高三年级元月调研考试理科数学参考答案及评分细则二、填空题:13. 2 14. 180 15.3416. 100 三、解答题: 17.(12分) 解析:(1)由正弦定理,知C A C B sin sin 2cos sin 2+=, 由π=++C B A ,得C C B C B sin )sin(2cos sin 2++=,化简,得C C B C B C B sin )sin cos cos (sin 2cos sin 2++=,即0sin sin cos 2=+C C B . 因为0sin ≠C ,所以21cos -=B .因为π<<B 0,所以32π=B . ......................................6分 (2)由余弦定理,得B ac c a b cos 2222-+=,即B ac ac c a b cos 22)(22--+=, 因为2=b ,5=+c a ,所以,32cos22)5(222πac ac --=,即1=ac . 所以,4323121sin 21=⨯⨯==∆B ac S ABC . ......................................12分 18.(12分) 解析:(1)取AC 的中点O ,连接BO ,PO .因为ABC 是边长为2的正三角形,所以BO ⊥AC ,BO =3.因为P A ⊥PC ,所以PO =121=AC .因为PB =2,所以OP 2+OB 2==PB 2,所以PO ⊥OB . 因为AC ,OP 为相交直线,所以BO ⊥平面P AC .又OB ⊂平面ABC ,所以平面P AB ⊥平面ABC . ......................................6分 (2)因为P A =PB ,BA =BC ,所以PAB ∆≌PCB ∆. 过点A 作PB AD ⊥于D ,则PB CD ⊥.所以ADC ∠为所求二面角A ﹣PB ﹣C 的平面角. 因为P A =PC ,P A ⊥PC ,AC =2,所以2==PC PA . 在PAB ∆中,求得27=AD ,同理27=CD . P AC在ADC ∆中,由余弦定理,得712cos 222-=⋅-+=∠CD AD AC CD AD ADC .所以,二面角A ﹣PB ﹣C 的余弦值为71-. ......................................12分 19.(12分)解析:(1)由计算可得2K 的观测值为416.836362844)2028816(722≈⨯⨯⨯⨯-⨯⨯=k .因为005.0)879.7(2≈≥K P ,而789.7416.8>所以在犯错误的概率不超过0.005的前提下认为“性别与读营养说明之间有关系”.......................................4分 (2)ξ的取值为0,1,2.18995)0(28220===C C P ξ,18980)1(2812018===C C C P ξ,272)2(2828===C C P ξ. ξ的分布列为ξ的数学期望为742722189801189950=⨯+⨯+⨯=ξE . ......................................12分20.(12分)解析:(1)由题意,知⎪⎪⎩⎪⎪⎨⎧==+,22,141122ac b a 考虑到222c b a +=,解得⎪⎩⎪⎨⎧==.1,222b a所以,所求椭圆C 的方程为1222=+y x . ......................................4分(2)设直线l 的方程为m kx y +=,代入椭圆方程1222=+y x ,整理得0)1(24)21(222=-+++m kmx x k .由0)1)(21(8)4(222>-+-=∆m k km ,得1222->m k . ① 设),(11y x A ,),(22y x B ,则221214k km x x +-=+,222121)1(2k m x x +-=.因为)0,1(-F ,所以1111+=x yk AF ,1221+=x y k AF .因为1122211+++=x y x y k ,且m kx y +=11,m kx y +=22,所以0)2)((21=++-x x k m .因为直线AB :m kx y +=不过焦点)0,1(-F ,所以0≠-k m , 所以0221=++x x ,从而02414=++-k km ,即kk m 21+=. ② 由①②得1)21(222-+>k k k ,化简得22||>k . ③ 焦点)0,1(2F 到直线l :m kx y +=的距离112121|212|1||222++=++=++=k k k k k km k d . 令112+=k t ,由22||>k 知)3,1(∈t . 于是)3(21232tt t t d +=+=.考虑到函数)3(21)(tt t f +=在]3,1[上单调递减,所以)1()3(f d f <<,解得23<<d . ......................................12分 21.(12分)解析:(1)a x f x -='-2e )(.当0≤a 时,0)(≥'x f ,函数)(x f 在),(+∞-∞上单调递增; 当0>a 时,由0e )(2=-='-a x f x ,得a x ln 2+=.若a x ln 2+>,则0)(>'x f ,函数)(x f 在),ln 2(+∞+a 上单调递增;若a x ln 2+<,则0)(<'x f ,函数)(x f 在)ln 2,(a +-∞上单调递减. .........................4分 (2)(ⅰ)由(1)知,当0≤a 时,)(x f 单调递增,没有两个不同的零点. 当0>a 时,)(x f 在a x ln 2+=处取得极小值. 由0)ln 2(e )ln 2(ln <+-=+a a a f a ,得ea 1>. 所以a 的取值范围为),1(+∞e.(ⅱ)由0e 2=--ax x ,得x a ax x ln ln )ln(2+==-,即a x x ln ln 2=--. 所以a x x x x ln ln 2ln 22211=--=--.令x x x g ln 2)(--=,则xx g 11)(-='. 当1>x 时,0)(>'x g ;当10<<x 时,0)(<'x g .所以)(x g 在)1,0(递减,在),1(+∞递增,所以2110x x <<<. 要证221>+x x ,只需证1212>->x x .因为)(x g 在),1(+∞递增,所以只需证)2()(12x g x g ->.因为)()(21x g x g =,只需证)2()(11x g x g ->,即证0)2()(11>--x g x g . 令)2()()(x g x g x h --=,10<<x ,则)211(2)2()()(xx x g x g x h -+-=-'-'='.因为2)211)](2([21211≥-+-+=-+xx x x x x ,所以0)(≤'x h ,即)(x h 在)1,0(上单调递减. 所以0)1()(=>h x h ,即0)2()(11>--x g x g ,所以221>+x x 成立. ......................................12分 22.[选修4-4:坐标系与参数方程](10分) 解析:(1)∵ρsin 2α﹣2cos α=0,∴ρ2sin 2α=4ρcos α, ∴曲线C 的直角坐标方程为y 2=4x . 由⎩⎨⎧=+=,2,12t y t x 消去t ,得1+=y x .∴直线l 的直角坐标方程为01=--y x . ......................................5分 (2)点M (1,0)在直线l 上,设直线l 的参数方程⎪⎪⎩⎪⎪⎨⎧=+=,22,221t y t x (t 为参数),A ,B 对应的参数为t 1,t 2.将l 的参数方程代入y 2=4x ,得08242=--t t . 于是2421=+t t ,821-=t t .∴8||||||21==⋅t t MB MA . ......................................10分 23.[选修4-5:不等式选讲](10分)解析:(1)由题意知03|||2|≥-++-a x x 恒成立. 因为|2||)()2(||||2|+=+--≥++-a a x x a x x ,所以3|2|≥+a ,解得5-≤a 或1≥a . ......................................5分 (2)因为2=+n m ()0,0>>n m ,所以)322(21)32(21)12(212+≥++=+⋅+=+n m m n n m n m n m ,即n m 12+的取值范围为),232[+∞+. ......................................10分。
湖北省武汉市武昌区2018届高三元月调研考试数学(文)试卷(word版)及解析

第1页,总15页………外…………○…………装…学校:___________姓名:_………内…………○…………装…湖北省武汉市武昌区2018届高三元月调研考试数学(文)试卷(word版)注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题B ={x |x 2﹣3x ﹣0},则A ∩B = A. {}1- B. {}1,2 C. {}1,2,3 D. {}0,1,3- 2.已知复数z 满足1i z z +=+,则z = A. i - B. i C. 1-i D. 1i +3.奇函数()f x 在()-∞+∞,单调递增,若()11f =,则满足()121f x -≤-≤的x 的取值范围是 A. []2,2- B. []1,1- C. []0,4 D. []1,34.设实数,x y ,满足约束条件10{10 10x y y x y -+≥+≥++≤,则2z x y =-的最大值为( )A. 3-B. 2-C. 1D. 25.执行如图所示的程序框图,如果输入的a 依次为2,2,5时,输出的s 为17,那么在框中,可以填入A. k n >?B. k n <?C. k n ≤?D. k n ≥?答案第2页,总15页…装…………○……线………不※※要※※在※※装※※…装…………○……线………6.函数()()cos f x A x ωφ=+的部分图像如图所示,给出以下结论:①()f x 的周期为2; ②()f x 的一条对称轴为12x =-; ③()f x 在132,244k k ⎛⎫-+ ⎪⎝⎭, k Z ∈ 上是减函数; ④()f x 的最大值为A . 则正确结论的个数为 A. 1 B. 2 C. 3 D. 47.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为A.112 B. 94 C. 92D. 3 8.在ABC ∆中, a , b , c 分别是角A , B , C 的对边,且2cos 2b C a c =+,则B =( ) A. π6 B. π4 C. π3 D. 2π39.已知点P 在双曲线22221(0,0)x y a b a b-=>>上, PF x ⊥轴(其中F 为双曲线的焦点),点P 到该双曲线的两条渐近线的距离之比为13,则该双曲线的离心率为 A.3510.已知底面半径为1O 的球面上,则此球的表面积为第3页,总15页…○…………外………名:________…○…………内……… B. 4π C. 16π3D. 12π 11.过抛物线C : 24y x =的焦点F 的直线l 与抛物线C 交于P , Q 两点,与其准线交于点M ,且3FM FP =,则FP =A.23 B. 43 C. 13D. 1 12.已知函数()ln x f x kx x =-在区间14e ,e ⎡⎤⎢⎥⎣⎦上有两个不同的零点,则实数k 的取值范围为A. 12e ⎫⎪⎭B. 12e ⎫⎪⎭C. 21e ⎡⎢⎣D. 211,e e ⎡⎤⎢⎥⎣⎦ 第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题(题型注释)13.若1tan 3α=,则sin cos αα=________. 14.设3log 6a =, 5log 10b =, 7log 14c =,则a , b , c 的大小关系是__________.15.将某选手的7个得分去掉1个最高分,去掉1个最低分,剩余5个分数的平均数为91,现场作的7个分数的茎叶图有一个数据模糊,无法辨认,在图中以x 表示,则5个剩余分数的方差为________.16.在矩形ABCD 中,AB =2,AD =1.边DC 上(包含D 、C )上的动点P 与CB 延长线上(包含点B )的动点Q 满足DP BQ =,则PA PQ ⋅的最小值为________.三、解答题(题型注释)17.已知数列{}n a 的前n 项和22n n S a =-. (1)求数列{}n a 的通项公式;(2)令2log n n n b a a =⋅,求数列{}n b 的前n 项和n T .18.如图,三棱锥P ABC -中,底面ABC 是边长为2的正三角形, PA PC ⊥, 2PB =.答案第4页,总15页(1)求证:平面PAC ⊥平面ABC ;(2)若PA PC =,求三棱锥P ABC -的体积. 19.在对人们的休闲方式的一次调查中,用简单随机抽样方法调查了125人,其中女性70人,男性55人.女性中有40人主要的休闲方式是看电视,另外30人主要的休闲方式是运动;男性中有20人主要的休闲方式是看电视,另外35人主要的休闲方式是运动. (1)根据以上数据建立一个22⨯列联表;﹣2)能否在犯错误的概率不超过0.025的前提下,认为性别与休闲方式有关系?﹣3)在休闲方式为看电视的人中按分层抽样方法抽取6人参加某机构组织的健康讲座,讲座结束后再从这6人中抽取2人作反馈交流,求参加交流的恰好为2位女性的概率. ()()()()()22n ad bc K a b c d a c b d -=++++20.已知椭圆C : 22221(0)x y a b a b +=>>经过点1,2P ⎛⎫⎪ ⎪⎝⎭.﹣1)求椭圆C 的方程;(2)设直线l : y x m =+与椭圆C 交于两个不同的点A ,B ,求OAB ∆面积的最大值(O 为坐标原点). 21.已知函数()ln af x x x=+, a R ∈. (1)讨论函数()f x 的单调性; (2)当0a >时,证明()21a f x a-≥. 22.以直角坐标系的原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρsin 2α﹣4cosα=0.已知直线l 的参数方程为21,{2,x t y t =+=(t 为参数),点M 的直角坐标为()1,0.﹣1)求直线l 和曲线C 的普通方程;(2)设直线l 与曲线C 交于A ,B 两点,求MA MB ⋅. 23.选修4-5:不等式选讲第5页,总15页(1)已知函数()f x =R ,求实数a 的取值范围;(2)若正实数,m n 满足2m n +=,求21m n+的取值范围.答案第6页,总15页………○…………装…………○……※※请※※不※※要※※在※※装※※订※※………○…………装…………○……参数答案1.B【解析】1.依题意()0,3B =,故{}1,2A B ⋂=. 2.B【解析】2.设i z a b =+,依题意有i 1i a b =+,故1{ 1a b +==,解得0a =.所以i z =.3.D【解析】3.根据奇函数的性质有()()111f f -=-=-,故原不等式等价与121x -≤-≤,解得13x ≤≤. 4.C【解析】4.画出可行域如下图所示,由图可知,目标函数在点()0,1-处取得最大值为1.5.A【解析】5.输入2a =, 2,1s k ==,判断否, 2,6,2a s k ===,判断否, 5,17,3a s k ===,判断是,输出17s =,故选A . 6.A第7页,总15页○…………装…………○…………订…………○……学校:___________姓名:___________班级:___________考号:___________○…………装…………○…………订…………○……【解析】6.由图可知511,2244T T =-==,但这是最小正周期,周期应为2k ,故①错误.函数的最大值为A ,故④错误.由于函数周期是2,四分之一周期是12,故函数的对称轴是14x =-,②错误.由图像可知③正确.故选A .7.D【解析】7.有三视图可知,几何体为如下图所示的三棱锥A BCD -,故体积为1112333332BCD V S h =⋅=⋅⋅⋅⋅=.8.D【解析】8.由余弦定理得222222a b c ba c ab +-=+,化简得222b ac ac =++,再由余弦定理可得12πcos ,23B B =-=. 9.A【解析】9.不妨设2,b P c a ⎛⎫⎪⎝⎭,两渐近线为0bx ay ±=,依题意有2213bc b c b c b bc b --==++, 2c b =,答案第8页,总15页…………○…………订…………○…要※※在※※装※※订※※线※※内※※答※※题※※…………○…………订…………○…a =,故离心率为c a =. 10.C【解析】10.画出圆锥的截面如下图所示,设球的半径为r ,则1,,BC OC r OB r ===,由勾股定理得)2221rr +=,解得r =.故表面积为216π4π3r =.11.B【解析】11.画出图像如下图所示,根据抛物线的定义, PD PF =,根据相似三角形,结合已知有224,333PD PD PN PF FN ====.第9页,总15页………外…………○…………订…………○…………线…………○…学校:_________考号:___________………内…………○…………订…………○…………线…………○…12.A【解析】12.令()0f x =,则ln x kx x =,依题意()ln xg x x =与y kx =在区间14e ,e ⎡⎤⎢⎥⎣⎦上有两个不同的交点,也即图像有两个不同的交点. ()21ln xg x x -'=,故()g x 在()0,e 上递增,在(),e +∞上递减,且1411441144g e e e ⎛⎫== ⎪⎝⎭, ()1g e e =,由于()1414e e e e g g ⎛⎫ ⎪⎝⎭>,故k 的最小值为1414e e g ⎛⎫ ⎪⎝⎭=,直到y kx =与()g x 图像相切时,观察选项可知,只有A 选项正确.13.310答案第10页,总15页…………○…………装…………○…………※※请※※不※※要※※在※※装※※订※※线※※…………○…………装…………○…………【解析】13.原式22sin cos sin cos αααα=+,分子分母同时除以2cos α得到2tan 3tan 110αα=+. 14.a b c >>【解析】14.357log 21,log 21,log 21a b c =+=+=+,而357log 2log 2log 2>>,故a b c >>. 15.6【解析】15.依题意8793909190915x +++++=,解得4x =.则方差为1641965+++=.16.34【解析】16.以D 为原点建立平面直角坐标系,则()0,1A ,设[],0,2DP x x =∈,则(),0P x , ()2,1Q x +()()2213,12,1124PA PQ x x x x x x ⎛⎫⋅=-⋅-+=-+=-+ ⎪⎝⎭,故最小值为34.17.(1) 2nn a =;(2) ()1122n n T n +=-⋅+.【解析】17.【试题分析】(1)利用公式11,1{,2n n n S n a S S n -==-≥,可求得数列n a 的通项公式.(2)化简nb第11页,总15页的表达式,由于它是由一个等差数列乘以一个等比数列组合而成,故用错位相减法来求其前n 项和n T . 【试题解析】(1)当1n =时, 1122a a =-,所以12a =. 当2n ≥时, 1122n n S a --=-.于是()()112222n n n n S S a a ---=---,即12n n a a -=. 所以数列{}n a 是以12a =为首项,公式2q =的等比数列.所以2nn a =.(2)因为22log 22n n nn b n ==⋅,所以()1231122232122n n n T n n -=⨯+⨯+⨯+-⨯+⨯,于是()23412122232122n n n T n n +=⨯+⨯+⨯+-⨯+⨯,两式相减,得123122222n n n T n +-=+++-⨯,于是()1122n n T n +=-⋅+.18.(1)见解析;(2【解析】18.【试题分析】(1)取AC 的中点O ,连接,BO PO ,利用等边三角形的性质,得到OB AC ⊥,通过计算证明OB PO ⊥,由此证明OB ⊥平面PAC ,从而得到平面PAC ⊥平面ABC .(2)利用(1)的结论,以BO 为高,计算体积111332PAC V S BO PA PC BO ∆⎛⎫=⋅=⋅⋅⋅ ⎪⎝⎭【试题解析】﹣1)取AC 的中点O ,连接BO ﹣PO . 因为ABC 是边长为2的正三角形, 所以BO ⊥AC ,BO 因为PA ⊥PC ,所以PO =112AC =. 因为PB =2,所以OP 2+OB 2=PB 2,所以PO ⊥OB . 因为AC ﹣OP 为相交直线,所以BO ⊥平面PAC . 又OB ⊂平面ABC ﹣所以平面PAB ⊥平面ABC ﹣﹣2)因为PA =PC ﹣PA ⊥PC ﹣AC =2﹣答案第12页,总15页所以PA PC ==.由(1)知BO ⊥平面PAC . 所以111332PAC V S BO PA PC BO ∆⎛⎫=⋅=⋅⋅⋅=⎪⎝⎭19.(1)答案见解析;(2)在犯错误的概率不超过0.025的前提下认为“休闲方式与性别有关”.(3)0.4.【解析】19.【试题分析】(1)根据题目所给已知条件填写好22⨯联表;(2)通过计算2 5.328K ≈,所以在犯错误的概率不超过0.025的前提下认为“休闲方式与性别有关”. (3)按分层抽样,则男性有2人,女性有4人,通过列举法可求得基本事件总数有15种,符合要求的有6种,故概率为62155=. 【试题解析】()212540353020 5.32870556065k ⨯⨯-⨯=≈⨯⨯⨯.因为 5.024k >,所以在犯错误的概率不超过0.025的前提下认为“休闲方式与性别有关”.﹣3)休闲方式为看电视的共60人,按分层抽样方法抽取6人,则男性有2人,可记为A ﹣B ,女性4人,可记为c ﹣d ﹣e ﹣f .现从6人中抽取2人,基本事件是AB 、Ac 、Ad 、Ae 、Af 、Bc 、Bd 、Be 、Bf 、cd 、ce 、cf 、de 、df 、ef 共15种不同的方法,恰是2女性的有cd 、ce 、cf 、de 、df 、ef 共6种不同的方法,故所求概率为620.4155p ===.20.(1) 2212x y +=;(2).【解析】20.【试题分析】(1)将P 点坐标代入椭圆方程,结合椭圆离心率和222a b c =+,列方程组,求出,,a b c 的值.由此求得椭圆方程.(2)联立直线的方程和椭圆的方程,写出韦达定理和判别式.根据弦长公式和点到直线距离公式,求得OAB ∆面积的表达式,最后利用基本不等式求最大值. 【试题解析】第13页,总15页(1)由题意,知22111,4{2ab c a +==考虑到222a b c =+,解得222,{ 1.a b ==所以,所求椭圆C 的方程为2212x y +=. (2)设直线l 的方程为y x m =+,代入椭圆方程2212x y +=, 整理得()2234210x mx m ++-=.由()()2242410m m ∆=-->,得23m <. ①设()11,A x y , ()22,B x y ,则1243mx x +=-, ()212213m x x -=.于是12AB x =-==== 又原点O ()0,0到直线AB : 0x y m-+=的距离d =.所以1122OAB S AB d ∆=⋅== 因为()2222239324m m mm ⎛⎫+--≤= ⎪⎝⎭,当仅且当223m m =-,即232m =时取等号. 所以3322OAB S ∆≤=,即OAB ∆面积的最大值为2. 21.(1)答案见解析;(2)证明见解析.【解析】21.【试题分析】(1)先求函数的定义域,然后求导通分,对a 分成两类,讨论函数的单调区间.(2)结合(1)的结论,将原不等式转化为1ln 10a a +-≥,构造函数()1ln 1g a a a=+-,利用导数求得()g a 的最小值为0,由此证得原不等式成立. 【试题解析】(1)函数()f x 的定义域为()0,+∞,且()221a x a f x x x x='-=-.答案第14页,总15页当0a ≤时, ()0f x '>, ()f x 在()0,+∞上单调递增;当0a >时,若x a >时,则()0f x '>,函数()f x 在(),a +∞上单调递增;若0x a <<时,则()0f x '<,函数()f x 在()0,a 上单调递减.(2)由(1)知,当0a >时, ()()min ln 1f x f a a ==+.要证()21a f x a -≥,只需证21ln 1a a a -+≥, 即只需证1ln 10a a+-≥构造函数()1ln 1g a a a =+-,则()22111a g a a a a='-=-.所以()g a 在()0,1单调递减,在()1,+∞单调递增. 所以()()min 10g a g ==.所以1ln 10a a+-≥恒成立, 所以()21a f x a-≥.22.(1)直线l 的直角坐标方程为10xy --=,曲线C的直角坐标方程为y 2=4x ;(2)8.【解析】22.【试题分析】(1)对曲线C 极坐标方程两边乘以ρ,化简为普通方程,对直线l 的参数方程,利用加减消元法消去t ,化为普通方程.(2)写出直线l 参数方程的标准形式,并代入曲线C 的普通方程,利用直线参数的几何意义和韦达定理,求得MA MB ⋅的值. 【试题解析】﹣1﹣∵ρsin 2α﹣2cosα=0﹣∴ρ2sin 2α=4ρcosα﹣ ∴曲线C 的直角坐标方程为y 2=4x ﹣ 由21,{2,x t y t =+=消去t ,得1x y =+.∴直线l 的直角坐标方程为10x y --=. ﹣2)点M ﹣1﹣0)在直线l 上,设直线l 的参数方程1,2{ ,2x t y =+=(t 为参数),A ,B 对应的参数为t 1,t 2.第15页,总15页将l 的参数方程代入y 2=4x ,得280t --=. 于是12t t += 128t t =-. ∴128MA MB t t ⋅==.23.(1)5a ≤-或1a ≥.(2)3,2⎫+∞⎪⎭.【解析】23.【试题分析】(1)由题意知230x x a -++-≥恒成立,利用绝对值不等式,消去x ,化简为只含有a 的式子,由此求得a 的取值范围.(2)利用1的代换的方法,通过2112322m n n m m n m n +⎛⎫⎛⎫⋅+=++ ⎪ ⎪⎝⎭⎝⎭再利用基本不等式即可求得取值范围. 【试题解析】(1)由题意知230x x a -++-≥恒成立. 因为()()222x x a x x a a -++≥--+=+, 所以23a +≥,解得5a ≤-或1a ≥. (2)因为2m n +=(0,0)m n >>,所以()212112133222m n n m m n m n m n +⎛⎫⎛⎫+=⋅+=++≥ ⎪ ⎪⎝⎭⎝⎭, 即21m n +的取值范围为3,2⎫+∞⎪⎭.。
最新-湖北武汉武昌区2018届高三元月调考数学文科试题精品

D1 A1
D A 6 分)
C1 B1 E
C B
(Ⅱ)
V V EB B1 A1D 1E
, E A1 B1 D1
1
平面 A1 B1C1D1 ,
VE A1 B1 D1
1 3 S A1B1D1 EB1 .
1
1
2
S A1 B1 D1
A1B1 A1D1 2
1,
VE A1B 1 D1
EB1 3
.
3
EB1 2 .
13 分)
1 ln x
21.解:(Ⅰ) f ( x) 的定义域为 (0, ) , f ( x)
x2 ,
由 f ( x)
1 ln x x2
0 ,得 x
e.
当0
x
e 时, f ( x)
1 ln x x2
0 ;当 x
e时, f ( x)
1 ln x x2
0.
所以函数 f ( x) 在 (0, e] 上单调递增,在 [e, ) 上单调递减 . ………………………( 4 分)
ac sin B
38
6 3 .…………………………………………(
2
2
2
12 分)
19.解 :(Ⅰ)由题意知数列 an 是首项 a1 1 ,公比 q 2 的等比数列,
所以 an 2n 1 ;
因为 b1 a1 2 , b2 a2 4 , 所以数列 bn a n 的公差为 d 2 .
所以 bn 所以 bn
S=0, k=1
k≤ n 是
k 是偶数 是
SБайду номын сангаасS- k2
否
否 S=S+k2
输出 S
k=k+1
完整word版2018~2019度武汉市九年级元月调考数学试卷含标准答案

学年度武汉市部分学校九年级调研测试数学试卷2018~201914:00~16:00 日1月17考试时间:2019年分)3分,共30一、选择题(共10小题,每小题6,常数项是1 1.将下列一元二次方程化成一般形式后,其中二次项系数是3,一次项系数是-)的方程是(22221=+6x=1 D.3x-6A.3x.+1=6x B3x3-1=6x C.xx)2.下列图形中,是中心对称图形的是(. C D..A B.2)个单位长度,再向上平移2个单位长度,就得到抛物线(3.若将抛物线y=x先向右平移122222 =(x+1).x A.y=(-B.y=(x1)--2 1)++2 2 D y=(x+1)-C.y的点数,则下列事件为随机事件4.投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6 )的是(1 B.两枚骰子向上一面的点数之和等于A.两枚骰子向上一面的点数之和大于112 .两枚骰子向上一面的点数之和等于C.两枚骰子向上一面的点数之和大于12 D 8 cm,圆心O到直线l的距离为9 cm,则直线O的公共点的个数l与⊙5.已知⊙O的半径等于为()D2B .1C..无法确定0 A.6.如图,“圆材埋壁”和我国古代著名数学著作《九章算术》中的问题:“今有圆材,埋在壁为中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何”用几何语言可表述为:CD)的长为(==于点的直径,弦⊙OAB垂直CDE,CE1寸,AB10寸,则直径CD.寸.A12.5 B13寸寸D.26 25 C.寸题图第9 第8题图6第题图枚鸟卵全部成功孵化,那么3只雏7.假定鸟卵孵化后,雏鸟为雌鸟与雄鸟的概率相同.如果3 )鸟中恰有2只雄鸟的概率是(2351..D C.A .B3868OAB8.如图,将半径为1,圆心角为120°的扇形绕点A逆时针旋转一个角度,使点O的对应BD围成的封闭图形,则图中CD、BC和弧BCBD点落在弧AB上,点的对应点为C,连接)面积是(????33??.A .B. C D.?33?82623622的方程的图解法是:如图,画b=ax+x.古希腊数学家欧几里得的《几何原本》记载,形如9.aa,则该方程的一个上截取BD=,∠ACB=90°,BC,AC=b=,再在斜边ABRt△ABC22 )正根是(B.BC的长 C A.AC的长.AD的长D.CD的长2+bx+c(a<0)的对称轴为xax=-1,与x轴的一个交点为(2,0).若关10.已知抛物线y=2+bx +c=p(p>0)有整数根,则p的值有()于x的一元二次方程ax A.2个B.3个C.4个D.5个二、填空题(本大题共6个小题,每小题3分,共18分)2=p的一个根,则另一根是是一元二次方程.已知3x___________1112.在平面直角坐标系中,点P的坐标是(-1,-2),则点P关于原点对称的点的坐标是_____13.一个口袋中有3个黑球和若干个白球,在不允许将球倒出来数的前提下,小刚为估计其中的白球数,采用了如下的方法:从口袋中随机摸出一球,记下颜色,然后把它放回口袋中,摇匀后再随机摸出一球,记下颜色……,不断重复上述过程,小刚共摸了100次,其中20次摸到黑球,根据上述数据,小刚可估计口袋中的白球大约有___________个14.第七届世界军人运动会将于2019年10月18日至27日在中国武汉举行,小明幸运获得了一张军运会吉祥物“兵兵”的照片.如图,该照片(中间的矩形)长29 cm,宽为20 cm,他1.想为此照片配一个四条边宽度相等的镜框(阴影部分),且镜框所占面积为照片面积的4为求镜框的宽度,他设镜框的宽度为x cm,依题意列方程,化成一般式为_____________16题图第第15题图题图第1415.如图是抛物线形拱桥,当拱顶离水面2 m时,水面宽4 m.水面下降2.5 m,水面宽度增加___________m16.如图,正方形ABCD的边长为4,点E是CD边上一点,连接AE,过点B作BG⊥AE于点G,连接CG并延长交AD于点F,则AF的最大值是___________三、解答题(共8题,共72分)2-3x-1=0 17.(本题8分)解方程:x18.(本题8分)如图,A、B、C、D是⊙O上四点,且AD=CB,求证:AB=CD第18题图19.(本题8分)武汉的早点种类丰富,品种繁多,某早餐店供应甲类食品有:“热干面”、“烧“米粑粑”、);乙类食品有:D,C,B,A(分别记为“锅贴饺”“生煎包”、“面窝”、.梅”、“欢喜坨”、“发糕”(分别记为E、F、G、H),共八种美食.小李和小王同时去品尝美食,小李准备在“热干面”、“面窝”、“米粑粑”、“烧梅”(即A,B,E,F)这四种美食中选择一种,小王准备在“生煎包”、“锅贴饺”、“欢喜坨”、“发糕”(即C,D,G,H)这四种美食中选择一种,用列举法求小李和小王同时选择的美食都会是甲类食品的概率20.(本题8分)如图,在边长为1的正方形网格中,点A的坐标为(1,7),点B的坐标为(5,5),点C的坐标为(7,5),点D的坐标为(5,1)(1) 将线段AB绕点B逆时针旋转,得到对应线段BE.当BE与CD第一次平行时,画出点A运动的路径,并直接写出点A运动的路径长(2) 小贝同学发现:线段AB与线段CD存在一种特殊关系,即其中一条线段绕着某点旋转一个角度可以得到另一条线段,直接写出这个旋转中心的坐标第20题图21.(本题8分)如图,在四边形ABCD中,AD∥BC,AD⊥CD,AC=AB,⊙O为△ABC的外接圆(1) 如图1,求证:AD是⊙O的切线(2) 如图2,CD交⊙O于点E,过点A作AG⊥BE,垂足为F,交BC于点G①求证:AG=BG②若AD=2,CD=3,求FG的长22.(本题10分)某商家销售一种成本为20元的商品,销售一段时间后发现,每天的销量y(件)与当天的销售单价x(元/件)满足一次函数关系,并且当x=25时,y=550;当x=30时,y=500.物价部门规定,该商品的销售单价不能超过48元/件(1) 求出y与x的函数关系式(2) 问销售单价定为多少元时,商家销售该商品每天获得的利润是8000元?(3) 直接写出商家销售该商品每天获得的最大利润,EDC=120°ABC与等腰三角形△EDC有公共顶点C,其中∠23.(本题10分)如图,等边△26,连接BE,P为BE的中点,连接PD、AB=CEAD=(1) 小亮为了研究线段AD与PD的数量关系,将图1中的△EDC绕点C旋转一个适当的角度,使CE与CA重合,如图2,请直接写出AD与PD的数量关系(2) 如图1,(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由(3) 如图3,若∠ACD=45°,求△PAD的面积2+(1-m)x-m交x轴于A,x24.(本题12分)如图,在平面直角坐标系中,抛物线y=B两点(点A在点B的左边),交y轴负半轴于点C(1) 如图1,m=3①直接写出A,B,C三点的坐标②若抛物线上有一点D,∠ACD=45°,求点D的坐标(2) 如图2,过点E(m,2)作一直线交抛物线于P,Q两点,连接AP,AQ,分别交y轴于M,N两点,求证:OM·ON是一个定值。
湖北省武汉市达标名校2018年高考一月调研数学试卷含解析

湖北省武汉市达标名校2018年高考一月调研数学试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知函数2()ln(1)33x x f x x x -=+-+-,不等式()22(4)50f a x f x +++对x ∈R 恒成立,则a 的取值范围为( ) A .[2,)-+∞B .(,2]-∞-C .5,2⎡⎫-+∞⎪⎢⎣⎭D .5,2⎛⎤-∞- ⎥⎝⎦2.小明有3本作业本,小波有4本作业本,将这7本作业本混放在-起,小明从中任取两本.则他取到的均是自己的作业本的概率为( ) A .17B .27C .13D .18353.如图所示,直三棱柱的高为4,底面边长分别是5,12,13,当球与上底面三条棱都相切时球心到下底面距离为8,则球的体积为 ( )A .B .C .D .4.《易·系辞上》有“河出图,洛出书”之说,河图、洛书是中华文化,阴阳术数之源,其中河图的排列结构是一、六在后,二、七在前,三、八在左,四、九在右,五、十背中,如图,白圈为阳数,黑点为阴数,若从阴数和阳数中各取一数,则其差的绝对值为5的概率为A .15B .625C .825D .255.等比数列{}n a 的各项均为正数,且384718a a a a +=,则3132310log log log a a a +++=( )A .12B .10C .8D .32log 5+6.若某几何体的三视图如图所示,则该几何体的表面积为( )A .240B .264C .274D .2827.复数z 的共轭复数记作z ,已知复数1z 对应复平面上的点()1,1--,复数2z :满足122z z ⋅=-.则2z 等于( ) A .2B .2C .10D .108.ABC 是边长为23的等边三角形,E 、F 分别为AB 、AC 的中点,沿EF 把AEF 折起,使点A 翻折到点P 的位置,连接PB 、PC ,当四棱锥P BCFE -的外接球的表面积最小时,四棱锥P BCFE -的体积为( ) A .53B .33C .6 D .369.已知角α的顶点与坐标原点O 重合,始边与x 轴的非负半轴重合,它的终边过点(3,4)P --,则tan 24πα⎛⎫+ ⎪⎝⎭的值为( )A .247-B .1731-C .247D .173110.某空间几何体的三视图如图所示(图中小正方形的边长为1),则这个几何体的体积是( )A .323B .643C .16D .3211.设集合{}220A x x x =-->,{}2log 2B x x =≤,则集合()R C A B =A .{}12x x -≤≤B .{}02x x <≤C .{}04x x <≤D .{}14x x -≤≤12.函数()sin()f x A x ωϕ=+的部分图象如图中实线所示,图中圆C 与()f x 的图象交于,M N 两点,且M 在y 轴上,则下列说法中正确的是A .函数()f x 的最小正周期是2πB .函数()f x 的图象关于点,034⎛⎫π ⎪⎝⎭成中心对称 C .函数()f x 在2(,)36ππ--单调递增 D .函数()f x 的图象向右平移512π后关于原点成中心对称二、填空题:本题共4小题,每小题5分,共20分。
(完整word版)2018年武汉元月调考数学试卷

2017〜2018学年度武汉市部分学校九年级调研测试数学试卷2.3. 考试时间:2018年1月25日、选择题(共10小题,每小题3分,共30分) 方程x(x —5) = 0化成一般形式后,它的常数项是(A . —5B . 5二次函数y= 2(x —3)2— 6 ( )A .最小值为—6C.最小值为3下列交通标志中,是中心对称图形的是( 14:00〜16:004.5.6.7.8.9.C.B .最大值为3)最大值为—6C.B.D.A .事件①:射击运动员射击一次,命中靶心;事件②:购买一张彩票,没中奖,则A .事件①是必然事件,事件②是随机事件B. 事件①是随机事件,事件②是必然事件C. 事件①和②都是随机事件D. 事件①和②都是必然事件抛掷一枚质地均匀的硬币,正面朝上的概率为A .连续抛掷2次必有1次正面朝上B .连续抛掷10次不可能都正面朝上C .大量反复抛掷每100次岀现正面朝上50次D .通过抛掷硬币确定谁先发球的比赛规则是公平的0.5,下列说法正确的是( 元二次方程x2 2、3x m 0有两个不相等的实数根,则(A . m> 3B . m= 3C .圆的直径是13 cm,如果圆心与直线上某一点的距离是( )A •相离B •相切C . m v 36.5 cm,那么该直线和圆的位置关系是D. m< 3相交如图,等边△ ABC的边长为4,D、E、F分别为边AB、BC、AC的中点, 点为圆心,以AD长为半径作三条圆弧,则图中三条圆弧的弧长之和是(D•相交或相切分别以A、B、C三)D . 6 n/ EDF =Z B;② 2A . nB . 2 n C. 4 n如图,△ ABC的内切圆与三边分别相切于点D、E、F,则下列等式:①/ EDF =Z A + / C:③ 2/A =Z FED +/ EDF :④ / AED + / BFE + / CDF = 180°,其中成立的个数是(A . 1个B . 2个C. 3个DB二次函数y = - x 2— 2x + c 在一3< x < 2的范围内有最小值一 5,贝U c 的值是()A . — 6B . — 2C . 2D . 3 填空题(本大题共 6个小题,每小题 3分,共18分) 一元二次方程 x 2— a = 0的一个根是2,则a 的值是 _________________ 把抛物线y = 2x 2先向下平移1个单位,再向左平移2个单位,得到的抛物线的解析式是 _ 一个不透明的口袋中有四个完全相同的小球,把它们分别标号为 1、2、3、4•随机摸取一个 小球然后放回,再随机摸岀一个小球,两次取岀的小球标号的和等于 5的概率是 _________ 设计人体雕像时, 使雕像的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部(全身)的高度比,可以增加视觉美感•按此比例,如果雕像的高为 2m ,那么上部应设计为多高?设雕像的上部高 xm ,列方程,并化成一般形式是 ________________APAP ,则-在O O 中,弧AB 所对的圆心角/ AOB = 108 °点C 为O O 上的动点,以□ AODC •当/ A = _______ :时,线段BD 最长 解答题(共 8题,共72 分)(本题8分)解方程:X 2 + x — 3= 0(本题8分)如图,在 O O 中,半径 OA 与弦BD 垂直,点 C 在O O 上,/ AOB = 80(1)若点C 在优弧BD 上,求/ ACD 的大小10. _ 、11.12. 13. 14. 15. 16. 三、17.18. 19.AO 、AC 为边构造如图,正六边形 ABCDEF 中,P 是边ED 的中点,连接(本题8分)甲、乙、丙三个盒子中分别装有除颜色外都相同的小球,甲盒中装有两个球,分别为一个红球和一个绿球; 乙盒中装有三个球, 分别为两个绿球和一个红球;丙盒中装有 两个球,分别为一个红球和一个绿球,从三个盒子中各随机取岀一个小球(1) 请画树状图,列举所有可能岀现的结果(2) 请直接写出事件“取出至少一个红球”的概率上,直接写出/ (2)若点C 在劣弧BD ACD 的大小20.(本题8分)如图,在平面直角坐标系中有点A(— 4 , 0)、B(0 , 3)、P(a, —a)三点,线段CD与AB关于点P中心对称,其中A、B的对应点分别为C、D(1) 当a=—4 时①在图中画岀线段CD,保留作图痕迹②线段CD向下平移个单位时,四边形ABCD为菱形(2) 当a = ____________ 时,四边形ABCD为正方形1 /BA o21 .(本题8分)如图,点D在O O的直径AB的延长线上,CD切O O于点C,AE丄CD于点E(1) 求证:AC平分/ DAE(2) 若AB = 6,BD = 2,求CE 的长22. (本题10分)投资1万元围一个矩形菜园(如图),其中一边靠墙,另外三边选用不同材料建造•墙长24 m,平行于墙的边的费用为200元/m,垂直于墙的边的费用为150元/m,设平行于墙的边长为x m(1) 设垂直于墙的一边长为ym,直接写岀y与x之间的函数关系式(2) 若菜园面积为384 m2,求x的值(3) 求菜园的最大面积樂园23. (本题10分)如图,点C为线段AB上一点,分别以AB、AC、CB为底作顶角为120。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017~2018学年度武汉市部分学校九年级调研测试数学试卷
考试时间:2018年1月25日14:00~16:00
一、选择题(共10小题,每小题3分,共30分)
1.方程x (x -5)=0化成一般形式后,它的常数项是( )
A .-5
B .5
C .0
D .1 2.二次函数y =2(x -3)2-6( ) A .最小值为-6
B .最大值为-6
C .最小值为3
D .最大值为3
3.下列交通标志中,是中心对称图形的是( )
A .
B .
C .
D .
4.事件①:射击运动员射击一次,命中靶心;事件②:购买一张彩票,没中奖,则( )
A .事件①是必然事件,事件②是随机事件
B .事件①是随机事件,事件②是必然事件
C .事件①和②都是随机事件
D .事件①和②都是必然事件
5.抛掷一枚质地均匀的硬币,正面朝上的概率为0.5,下列说法正确的是( )
A .连续抛掷2次必有1次正面朝上
B .连续抛掷10次不可能都正面朝上
C .大量反复抛掷每100次出现正面朝上50次
D .通过抛掷硬币确定谁先发球的比赛规则是公平的
6.一元二次方程0322=++m x x 有两个不相等的实数根,则( )
A .m >3
B .m =3
C .m <3
D .m ≤3 7.圆的直径是13 cm ,如果圆心与直线上某一点的距离是6.5 cm ,那么该直线和圆的位置关系是( )
A .相离
B .相切
C .相交
D .相交或相切
8.如图,等边△ABC 的边长为4,D 、E 、F 分别为边AB 、BC 、AC 的中点,分别以A 、B 、C 三点为圆心,以AD 长为半径作三条圆弧,则图中三条圆弧的弧长之和是( )
A .π
B .2π
C .4π
D .6π
9.如图,△ABC 的内切圆与三边分别相切于点D 、E 、F ,则下列等式:① ∠EDF =∠B ;② 2∠EDF =∠A +∠C ;③ 2∠A =∠FED +∠EDF ;④ ∠AED +∠BFE +∠CDF =180°,其中成立的个数是( )
A .1个
B .2个
C .3个
D .4个
10.二次函数y =-x 2-2x +c 在-3≤x ≤2的范围内有最小值-5,则c 的值是( )
A .-6
B .-2
C .2
D .3
二、填空题(本大题共6个小题,每小题3分,共18分)
11.一元二次方程x 2-a =0的一个根是2,则a 的值是___________
12.把抛物线y =2x 2先向下平移1个单位,再向左平移2个单位,得到的抛物线的解析式是____
13.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1、2、3、4.随机摸取一
个小球然后放回,再随机摸出一个小球,两次取出的小球标号的和等于5的概率是_______
14.设计人体雕像时,使雕像的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部(全
身)的高度比,可以增加视觉美感.按此比例,如果雕像的高为2 m ,那么上部应设计为多高?设雕像的上部高x m ,列方程,并化成一般形式是___________
15.如图,正六边形ABCDEF 中,P 是边ED 的中点,连接AP ,则AB
AP =___________
16.在⊙O 中,弧AB 所对的圆心角∠AOB =108°,点C 为⊙O 上的动点,以AO 、AC 为边构造□AODC .当∠A =__________°时,线段BD 最长
三、解答题(共8题,共72分)
17.(本题8分)解方程:x 2+x -3=0
18.(本题8分)如图,在⊙O 中,半径OA 与弦BD 垂直,点C 在⊙O 上,∠AOB =80°
(1) 若点C 在优弧BD 上,求∠ACD 的大小
(2) 若点C 在劣弧BD 上,直接写出∠ACD 的大小
19.(本题8分)甲、乙、丙三个盒子中分别装有除颜色外都相同的小球,甲盒中装有两个球,
分别为一个红球和一个绿球;乙盒中装有三个球,分别为两个绿球和一个红球;丙盒中装有两个球,分别为一个红球和一个绿球,从三个盒子中各随机取出一个小球
(1) 请画树状图,列举所有可能出现的结果
(2) 请直接写出事件“取出至少一个红球”的概率
20.(本题8分)如图,在平面直角坐标系中有点A(-4,0)、B(0,3)、P(a,-a)三点,线段CD与AB关于点P中心对称,其中A、B的对应点分别为C、D
(1) 当a=-4时
①在图中画出线段CD,保留作图痕迹
②线段CD向下平移个单位时,四边形ABCD为菱形
(2) 当a=___________时,四边形ABCD为正方形
21.(本题8分)如图,点D在⊙O的直径AB的延长线上,CD切⊙O于点C,AE⊥CD于点E
(1) 求证:AC平分∠DAE
(2) 若AB=6,BD=2,求CE的长
22.(本题10分)投资1万元围一个矩形菜园(如图),其中一边靠墙,另外三边选用不同材料建造.墙长24 m,平行于墙的边的费用为200元/m,垂直于墙的边的费用为150元/m,设平行于墙的边长为x m
(1) 设垂直于墙的一边长为y m,直接写出y与x之间的函数关系式
(2) 若菜园面积为384 m2,求x的值
(3) 求菜园的最大面积
23.(本题10分)如图,点C为线段AB上一点,分别以AB、AC、CB为底作顶角为120°的等腰三角形,顶角顶点分别为D、E、F(点E、F在AB的同侧,点D在另一侧)
(1) 如图1,若点C是AB的中点,则∠AED=___________
(2) 如图2,若点C不是AB的中点
①求证:△DEF为等边三角形
②连接CD,若∠ADC=90°,AB=3,请直接写出EF的长
24.(本题12分)已知抛物线y=ax2+2x+c与x轴交于A(-1,0)、B(3,0)两点,一次函数y=kx+b的图象l经过抛物线上的点C(m,n)
(1) 求抛物线的解析式
(2) 若m=3,直线l与抛物线只有一个公共点,求k的值
(3) 若k=-2m+2,直线l与抛物线的对称轴相交于点D,点P在对称轴上.当PD=PC
时,求点P的坐标。