2015年全国新课标卷1文科数学高考真题及答案
2015年全国高考新课标1卷文科数学试题(word文档完整版小题也有详解)

2015年全国高考新课标1卷文科数学试题一、选择题,本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|x=3n+2, n∈N},B={6,8,10,12,14},则集合A∩B中的元素个数为()A.5 B.4 C.3 D.22.已知点A(0,1),B(3,2),向量(4,3)AC=--,则向量BC=()A.(-7,-4) B.(7,4) C.(—1,4)D.(1,4)3.已知复数z满足(z-1)i=1+i,则z=()A.-2-i B.—2+i C.2-i D.2+i4.如果3个正数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( )A.310B.15C.110D.1205.已知椭圆E的中心为坐标原点,离心率为12,E的右焦点与抛物线C: y2=8x,的焦点重合,A,B是C的准线与E的两个交点,则|AB|=() A.3 B.6 C.9 D.126.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问”积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,米堆的体积和堆放的米各位多少?"已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米有()A.14斛B.22斛C.36斛D.66斛7.已知{a n}是公差为1的等差数列,S n为{a n}的前n项和,若S8=4S4,则a10=( )A.172B.192C.10 D.128.函数f(x)=cos(ωx+φ)的部分图像如图所示,则f(x)的单调递减区间为( )A.13(,),44k k k Zππ-+∈B.13(2,2),44k k k Zππ-+∈C.13(,),44k k k Z-+∈D.13(2,2),44k k k Z-+∈9.执行右面的程序框图,如果输入的t =0.01,则输出的n=( )A .5B .6C .7D .810.已知函数1222,1()log (1),1x x f x x x -⎧-≤=⎨-+>⎩ ,且f (a )=—3,则f (6-a )=( )A .74-B .54-C .34-D .14-11.圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为16+20π,则r =( ) A .1 B .2 C .4 D .8 12.设函数y =f (x )的图像与y =2x+a 的图像关于直线y =-x对称,且f (-2)+f (-4)=1,则a =( ) A .—1 B .1 C .2 D .4二、填空题:本大题共4小题,每小题5分,共20分.把答案填在横线上.13.数列{a n }中,a 1=2,a n +1=2a n ,S n 为{a n }的前n 项和,若S n =126,则n = 。
2015年全国高考文科数学试题及答案(全国1卷)

2015年全国高考文科数学试题及答案(全国1卷)2015年普通高等学校招生全国统一考试文科数学注意事项:1. 答题前,考生务必将自己的准考证号、姓名填写在答题卡上。
考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。
2. 第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。
第Ⅱ卷必须用0.5毫米黑色签字笔书写作答.若在试题卷上作答,答案无效。
3. 考试结束,监考员将试题卷、答题卡一并收回。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合A={x|x=3n+2,n ∈N},B={6,8,12,14},则集合A ?B 中元素的个数为(A )5 (B )4 (C )3 (D )2(2)已知点A (0,1),B (3,2),向量AC u u u r =(-4,-3),则向量BC uuu r =(A )(-7,-4)(B )(7,4)(C )(-1,4)(D )(1,4)(3)已知复数z 满足(z-1)i=i+1,则z=(A )-2-I (B )-2+I (C )2-I (D )2+i(4)如果3个整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则3个数构成一组勾股数的概率为(A )103 (B )15 (C )110 (D )120(5)已知椭圆E 的中心在坐标原点,离心率为12,E 的右焦点与抛物线C :y 2=8x 的焦点重合,A ,B 是C 的准线与E 的两个焦点,则|AB|=(A )3 (B )6 (C )9 (D )12。
2015年高考新课标全国卷Ⅰ文科数学试题(附答案)

2015年全国高考试题独家解析(新课标全国卷Ⅰ)文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{32,},{6,8,10,12,14}A x x n n N B ==+∈=,则集合A B 中的元素个数为A .5B .4C .3D .22.已知点(0,1),(3,2)A B ,向量(4,3)AC =--,则向量BC = A .(7,4)-- B .(7,4) C .(1,4)- D .(1,4) 3.已知复数z 满足(1)1z i i -=+,则z =A .2i --B .2i -+C .2i -D .2i +4.如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为A .310 B .15 C .110 D .1205.已知椭圆E 的中心为坐标原点,离心率为12,E 的右焦点与抛物线C :28y x =的焦点重合,A B 、是C 的准线与E 的两个交点,则AB = A .3 B .6 C .9 D .12 6.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问”积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有A .14斛B .22斛C .36斛D .66斛7.已知{}n a 是公差为1的等差数列,n S 为{}n a 的前n 项和,若844S S =,则10a = A .172 B .192C .10D .12 8.函数()cos()f x x ωϕ=+的部分图像如图所示,则()f x 的单调递减区间为A .13(,),44k k k Z ππ-+∈ B .13(2,2),44k k k Z ππ-+∈ C .13(,),44k k k Z -+∈ D .13(2,2),44k k k Z -+∈9.执行右面的程序框图,如果输入的0.01t =,则输出的n =A .5B .6C .7D .810.已知函数1222,1()log (1),1x x f x x x -⎧-=⎨-+>⎩≤ ,且()3f a =-,则(6)f a -=A .74-B .54-C .34-D .14-11.圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为1620π+,则r =A .1B .2C .4D .812.设函数()y f x =的图像与2x a y +=的图像关于直线y x =-对称,且(2)(4)1f f -+-=,则a =A .1-B .1C .2D .4第Ⅱ卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答。
2015年全国高考数学卷文科卷1及解析18670

执行第6次,S=S-m=0.015625, =0.0078125,n=6,S=0.015625>t=0.01,是,循环,
执行第7次,S=S-m=0.0078125, =0.00390625,n=7,S=0.0078125>t=0.01,否,输出n=7,故选C.
∴ = = .
考点:双曲线的定义;直线与双曲线的位置关系;最值问题
17.(Ⅰ) (Ⅱ)1
【解析】
试题分析:(Ⅰ)先由正弦定理将 化为变得关系,结合条件 ,用其中一边把另外两边表示出来,再用余弦定理即可求出角B的余弦值;(Ⅱ)由(Ⅰ)知 ,根据勾股定理和即可求出c,从而求出 的面积.
试题解析:(Ⅰ)由题设及正弦定理可得 .
试题解析:(Ⅰ)由散点图可以判断, 适合作为年销售 关于年宣传费用 的回归方程类型.
(Ⅱ)令 ,先建立 关于 的线性回归方程,由于 = ,
∴ =563-68×6.8=100.6.
∴ 关于 的线性回归方程为 ,
∴ 关于 的回归方程为 .
(Ⅲ)(ⅰ)由(Ⅱ)知,当 =49时,年销售量 的预报值
=576.6,
考点:简单线性规划解法
16.
【解析】
试题分析:设双曲线的左焦点为 ,由双曲线定义知, ,
∴△APF的周长为|PA|+|PF|+|AF|=|PA|+ +|AF|=|PA|+ +|AF|+ ,
由于 是定值,要使△APF的周长最小,则|PA|+ 最小,即P、A、 共线,
∵ , (-3,0),∴直线 的方程为 ,即 代入 整理得 ,解得 或 (舍),所以P点的纵坐标为 ,
(完整版)2015年新课标1卷文科数学高考真题及答案,推荐文档

2015年普通高等学校招生全国统一考试(新课标1卷)文 一、选择题:每小题5分,共60分 1、已知集合{32,},{6,8,10,12,14}A x x n n N B ==+∈=,则集合A B I 中的元素个数为(A ) 5 (B )4 (C )3 (D )22、已知点(0,1),(3,2)A B ,向量(4,3)AC =--u u u r ,则向量BC =u u u r(A ) (7,4)-- (B )(7,4) (C )(1,4)- (D )(1,4)3、已知复数z 满足(1)1z i i -=+,则z =( )(A ) 2i -- (B )2i -+ (C )2i - (D )2i +4、如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( )(A )310 (B )15 (C )110 (D )1205、已知椭圆E 的中心为坐标原点,离心率为12,E 的右焦点与抛物线2:8C y x =的焦点重合,,A B 是C 的准线与E 的两个交点,则AB =(A ) 3 (B )6 (C )9 (D )126、《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问”积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )(A )14斛 (B )22斛 (C )36斛 (D )66斛7、已知{}n a 是公差为1的等差数列,n S 为{}n a 的前n 项和,若844S S =,则10a =( )(A ) 172 (B )192(C )10 (D )12 8、函数()cos()f x x ωϕ=+的部分图像如图所示,则()f x 的单调递减区间为( )(A )13(,),44k k k Z ππ-+∈(B )13(2,2),44k k k Z ππ-+∈(C )13(,),44k k k Z -+∈(D )13(2,2),44k k k Z -+∈ 9、执行右面的程序框图,如果输入的0.01t =,则输出的n =( )(A ) 5 (B )6 (C )7 (D )810、已知函数1222,1()log (1),1x x f x x x -⎧-≤=⎨-+>⎩ , 且()3f a =-,则(6)f a -=(A )74- (B )54-(C )34-(D )14- 11、圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为1620π+,则r =( )(A )1(B )2(C )4(D )812、设函数()y f x =的图像与2x a y +=的图像关于直线y x =-对称,且(2)(4)1f f -+-=,则a =( )(A ) 1- (B )1 (C )2 (D )4二、填空题:本大题共4小题,每小题5分13、数列{}n a 中112,2,n n n a a a S +==为{}n a 的前n 项和,若126n S =,则n = .14.()31f x ax x =++的图像在点()()1,1f 的处的切线过点()2,7,则 a = . 15. 若x ,y 满足约束条件20210220x y x y x y +-≤⎧⎪-+≤⎨⎪-+≥⎩,则z =3x +y 的最大值为 .16.已知F 是双曲线22:18y C x -=的右焦点,P 是C 左支上一点,()0,66A ,当APF ∆周长最小时,该三角形的面积为 .三、解答题17. (本小题满分12分)已知,,a b c 分别是ABC ∆内角,,A B C 的对边,2sin 2sin sin B A C =.(I )若a b =,求cos ;B (II )若90B =o ,且2,a = 求ABC ∆的面积.18. (本小题满分12分)如图四边形ABCD 为菱形,G 为AC 与BD 交点,BE ABCD ⊥平面,(I )证明:平面AEC ⊥平面BED ;(II )若120ABC ∠=o ,,AE EC ⊥ 三棱锥E ACD -的体积为63,求该三棱锥的侧面积. 19. (本小题满分12分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响,对近8年的宣传费i x 和年销售量()1,2,,8i y i =L 数据作了初步处理,得到下面的散点图及一些统计量的值.(I )根据散点图判断,y a bx =+与y c x =+,哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型(给出判断即可,不必说明理由);(II )根据(I )的判断结果及表中数据,建立y 关于x 的回归方程;(III )已知这种产品的年利润z 与x ,y 的关系为0.2z y x =- ,根据(II )的结果回答下列问题:(i )当年宣传费x =49时,年销售量及年利润的预报值时多少?(ii )当年宣传费x 为何值时,年利润的预报值最大?20. (本小题满分12分)已知过点()1,0A 且斜率为k 的直线l 与圆C :()()22231x y -+-=交于M ,N 两点.(I )求k 的取值范围;(II )若12OM ON ⋅=u u u u r u u u r ,其中O 为坐标原点,求MN .21. (本小题满分12分)设函数()2ln x f x e a x =-.(I )讨论()f x 的导函数()f x '的零点的个数;(II )证明:当0a >时()22lnf x a a a ≥+. 请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,做答时请写清题号22. (本小题满分10分)选修4-1:几何证明选讲如图AB 是e O 直径,AC 是e O 切线,BC 交e O 与点E .(I )若D 为AC 中点,证明:DE 是e O 切线;(II )若3OA CE = ,求ACB ∠的大小.23. (本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,直线1:2C x =-,圆()()222:121C x y -+-=,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系. (I )求12,C C 的极坐标方程.(II )若直线3C 的极坐标方程为()πR 4θρ=∈,设23,C C 的交点为,M N 求2C MN ∆ 的面积. 24. (本小题满分10分)选修4-5:不等式选讲已知函数()12,0f x x x a a =+--> .(I )当1a = 时求不等式()1f x > 的解集;(II )若()f x 的图像与x 轴围成的三角形面积大于6,求a 的取值范围.一、D A C C B B B (8)D (9)C (10)A (11)B (12)C 二、填空题(13)6 (14)1 (15)4 (16) 三、 17、解:(I )由题设及正弦定理可得2b =2ac.又a=b ,可得cosB=2222a c b ac +-=14……6分 (II )由(I )知2b =2ac. 因为B=o 90,由勾股定理得222a c =b +.故22a c =2ac +,的. 所以△ABC 的面积为1. ……12分18、解:(I )因为四边形ABCD 为菱形,所以AC ⊥BD.因为BE ⊥平面ABCD,所以AC ⊥BE,故AC ⊥平面BED.又AC ⊂平面AEC,所以平面AEC ⊥平面BED. ……5分 (II )设AB=x ,在菱形ABCD 中,又∠ABC=o 120 ,可得,GB=GD=2x . 因为AE ⊥EC,所以在Rt △AEC 中,可的x . 由BE ⊥平面ABCD,知△EBG 为直角三角形,可得. 由已知得,三棱锥E-ACD 的体积E ACD V -=13×12AC ·GD ·3x = 故x =2 ……9分从而可得.所以△EAC 的面积为3,△EAD 的面积与 △ECD故三棱锥E-ACD 的侧面积为. ……12分19、解:(I )由散点图可以判断,适宜作为年销售量y 关于年宣传费x 的回归方程式类型.(II)令w =y 关于w 的线性回归方程式.由于28181()()108.8d=681.6()i i i i i w w y y w w ==--==-∑∑),56368 6.8100.6c y d w =-=-⨯=)), 所以y 关于w 的线性回归方程为y=100.668w +),因此y 关于x 的回归方程为y 100.6=+)(Ⅲ)(i )由(II )知,当x =49时,年销售量y的预报值y 100.6=+), 年利润z 的预报值 z=576.60.24966.32⨯-=) ……9分 (ii )根据(II )的结果知,年利润z 的预报值=-20.12x x ++).13.6=6.82=,即x =46.24时,z )取得最大值. 故年宣传费为46.24千元时,年利润的预报值最大. ……12分20、解:(I )由题设,可知直线l 的方程为1y kx =+.因为l 与C 交于两点,.解得k 所以k的取值范围为. ……5分 (II )设()1122,,(,)M x y N x y .将1y kx =+代入方程22(2)(3)1x y -+-=,整理得22(1)4(1)70k x k x +-++=. 所以1212224(1)7,11k x x x x k k++==++. 1212OM ON c x y y ⋅=+()()2121211k x x k x x =++++ ()24181k k k+=++. 由题设可得()24181k k k+=++=12,解得k=1,所以l 的方程是y=x+1. 故圆心C 在l 上,所以2MN =. ……12分21、解:(I )()f x 的定义域为()()20,,2(0)x a f x e x x '+∞=-〉. 当a ≤0时,()()0f x f x ''〉,没有零点;当0a 〉时,因为2x e 单调递增,a x -单调递减,所以()f x '在()0,+∞单调递增,又()0f a '〉, 当b 满足0<b <4a 且b <14时,()0f b '〈,故当a <0时()f x '存在唯一零点.……6分 (II )由(I ),可设()f x '在()0,+∞的唯一零点为0x ,当()00x x ∈,时,()f x '<0;当()0x x ∈+∞,时,()f x '>0. 故()f x 在()0+∞,单调递减,在()0x +∞,单调递增,所以0x x =时, ()f x 取得最小值,最小值为()0f x . 由于02020x a e x -=,所以()0002221212a f x ax a n a a n x a a=++≥+. 故当0a 〉时,()221f x a a na ≥+. ……12分 23、解:(I )因为cos ,sin x y ρθρθ==,所以1C 的极坐标方程为cos 2ρθ=-, 2C 的极坐标方程为22cos 4sin 40ρρθρθ--+=. ……5分 (II )将4πθ=代入22cos 4sin 40ρρθρθ--+=,得240ρ-+=,解得12ρρ==.故12ρρ-=,即MN = 由于2C 的半径为1,所以2C MN ∆的面积为12. ……10分 24、解:(I )当1a =时,()1f x >化为12110x x +--->. 当1x ≤-时,不等式化为40x ->,无解;当11x -<<时,不等式化为320x ->,解得213x <<; 当1x ≥,不等式化为-x +2>0,解得1≤x <2.所以()1f x >的解集为223x x ⎧⎫⎨⎬⎩⎭︱<<. ……5分 (II )由题设可得,()12,1312,1,12,.x a x f x x a x a x a x a --⎧⎪=+--≤≤⎨⎪-++⎩<<所以函数()f x 的图像与x 轴围成的三角形的三个丁点分别为()()21,0,21,0,,13a A B a C a a -⎛⎫++ ⎪⎝⎭,△ABC 的面积为()2213a +. 由题设得()2213a +>6,故a >2. 所以a 的取值范围为()2+∞,. ……10分。
2015年全国卷1文科数学高考真题及答案

2015年普通高等学校招生全国统一考试(新课标1卷)文一、选择题:每小题5分,共60分1、已知集合{32,},{6,8,10,12,14}A x x n n N B ==+∈=,则集合A B 中的元素个数为(A )5(B )4(C )3(D )22、已知点(0,1),(3,2)A B ,向量(4,3)AC =--,则向量BC =(A )(7,4)--(B )(7,4)(C )(1,4)-(D )(1,4)3、已知复数z 满足(1)1z i i -=+,则z =()(A )2i--(B )2i-+(C )2i-(D )2i+4、如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为()(A )310(B )15(C )110(D )1205、已知椭圆E 的中心为坐标原点,离心率为12,E 的右焦点与抛物线2:8C y x =的焦点重合,,A B 是C 的准线与E 的两个交点,则AB =(A )3(B )6(C )9(D )126、《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问”积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有()(A )14斛(B )22斛(C )36斛(D )66斛7、已知{}n a 是公差为1的等差数列,n S 为{}n a 的前n 项和,若844S S =,则10a =()(A )172(B )192(C )10(D )128、函数()cos()f x x ωϕ=+的部分图像如图所示,则()f x 的单调递减区间为()(A )13(,),44k k k Z ππ-+∈(B )13(2,244k k k Zππ-+∈(C )13(,),44k k k Z -+∈(D )13(2,2),44k k k Z-+∈9、执行右面的程序框图,如果输入的0.01t =,则输出的n =()(A )5(B )6(C )7(D )810、已知函数1222,1()log (1),1x x f x x x -⎧-≤=⎨-+>⎩,且()3f a =-,则(6)f a -=(A )74-(B )54-(C )34-(D )14-11、圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为1620π+,则r =()(A )1(B )2(C )4(D )812、设函数()y f x =的图像与2x ay +=的图像关于直线y x =-对称,且(2)(4)1f f -+-=,则a =()(A )1-(B )1(C )2(D )4二、填空题:本大题共4小题,每小题5分13、数列{}n a 中112,2,n n n a a a S +==为{}n a 的前n 项和,若126n S =,则n =.14.已知函数()31f x ax x =++的图像在点()()1,1f 的处的切线过点()2,7,则a =.15.若x ,y 满足约束条件20210220x y x y x y +-≤⎧⎪-+≤⎨⎪-+≥⎩,则z =3x +y 的最大值为.16.已知F 是双曲线22:18y C x -=的右焦点,P 是C左支上一点,(A ,当APF ∆周长最小时,该三角形的面积为.三、解答题17.(本小题满分12分)已知,,a b c 分别是ABC ∆内角,,A B C 的对边,2sin 2sin sin B A C =.(I )若a b =,求cos ;B (II )若90B =,且a =求ABC ∆的面积.18.(本小题满分12分)如图四边形ABCD 为菱形,G 为AC 与BD 交点,BE ABCD ⊥平面,(I )证明:平面AEC ⊥平面BED ;(II )若120ABC ∠=,,AE EC ⊥三棱锥E ACD -的体积为3,求该三棱锥的侧面积.19.(本小题满分12分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响,对近8年的宣传费i x 和年销售量()1,2,,8i y i = 数据作了初步处理,得到下面的散点图及一些统计量的值.(I )根据散点图判断,y a bx =+与y c =+,哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型(给出判断即可,不必说明理由);(II )根据(I )的判断结果及表中数据,建立y 关于x 的回归方程;(III )已知这种产品的年利润z 与x ,y 的关系为0.2z y x =-,根据(II )的结果回答下列问题:(i )当年宣传费x =49时,年销售量及年利润的预报值时多少?(ii )当年宣传费x 为何值时,年利润的预报值最大?20.(本小题满分12分)已知过点()1,0A 且斜率为k 的直线l 与圆C :()()22231x y -+-=交于M ,N 两点.(I )求k 的取值范围;(II )若12OM ON ⋅=,其中O 为坐标原点,求MN .21.(本小题满分12分)设函数()2ln xf x ea x =-.(I )讨论()f x 的导函数()f x '的零点的个数;(II )证明:当0a >时()22lnf x a a a≥+.请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,做答时请写清题号22.(本小题满分10分)选修4-1:几何证明选讲如图AB 是 O 直径,AC 是 O 切线,BC 交 O 与点E .(I )若D 为AC 中点,证明:DE 是 O 切线;(II )若OA =,求ACB ∠的大小.23.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,直线1:2C x =-,圆()()222:121C x y -+-=,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.(I )求12,C C 的极坐标方程.(II )若直线3C 的极坐标方程为()πR 4θρ=∈,设23,C C 的交点为,M N ,求2C MN ∆的面积.24.(本小题满分10分)选修4-5:不等式选讲已知函数()12,0f x x x a a =+-->.(I )当1a =时求不等式()1f x >的解集;(II )若()f x 的图像与x 轴围成的三角形面积大于6,求a 的取值范围.欢迎光临:蒙清牛肉干店(按ctrl 键点击即可进入淘宝店铺)牛肉干无脂肪.减肥必备超级抗饿.熬夜必备美食(3斤牛肉才做1斤牛肉干)2015年普通高等学校招生全国统一考试(新课标1卷)文答案一、选择题(1)D (2)A (3)C (4)C (5)B (6)B (7)B (8)D (9)C (10)A (11)B (12)C二、填空题(13)6(14)1(15)4(16)三、解答题17、解:(I )由题设及正弦定理可得2b =2ac.又a=b ,可得cosB=2222a c b ac+-=14……6分(II )由(I )知2b =2ac.因为B=o90,由勾股定理得222a c =b +.故22a c =2ac +,的.所以△ABC 的面积为1.……12分18、解:(I)因为四边形ABCD 为菱形,所以AC⊥BD.因为BE⊥平面ABCD,所以AC⊥BE,故AC⊥平面BED.又AC ⊂平面AEC,所以平面AEC ⊥平面BED.……5分(II )设AB=x ,在菱形ABCD 中,又∠ABC=o120,可得AG=GC=32x ,GB=GD=2x .因为AE ⊥EC,所以在Rt△AEC 中,可的EG=32x .由BE ⊥平面ABCD,知△EBG 为直角三角形,可得BE=2x .由已知得,三棱锥E-ACD 的体积E ACD V -=13×12AC ·GD ·BE=366243x =.故x =2……9分从而可得.所以△EAC 的面积为3,△EAD 的面积与△ECD.故三棱锥E-ACD 的侧面积为……12分19、解:(I )由散点图可以判断,适宜作为年销售量y 关于年宣传费x 的回归方程式类型.(II)令w =,先建立y 关于w 的线性回归方程式.由于28181()()108.8d=681.6(i i i i i w w y y w w ==--==-∑∑ ,56368 6.8100.6c y d w =-=-⨯=,所以y 关于w 的线性回归方程为y=100.668w +,因此y 关于x的回归方程为y 100.6=+(Ⅲ)(i )由(II )知,当x =49时,年销售量y 的预报值y 100.6=+,年利润z 的预报值z=576.60.24966.32⨯-=……9分(ii )根据(II )的结果知,年利润z的预报值=-20.12x x ++.13.6=6.82=,即x =46.24时,z取得最大值.故年宣传费为46.24千元时,年利润的预报值最大.……12分20、解:(I )由题设,可知直线l 的方程为1y kx =+.因为l 与C1.解得474733k +〈〈.所以k 的取值范围为4747()33+.……5分(II )设()1122,,(,)M x y N x y .将1y kx =+代入方程22(2)(3)1x y -+-=,整理得22(1)4(1)70k x k x +-++=.所以1212224(1)7,11k x x x x k k++==++.1212OM ON c x y y ⋅=+()()2121211k x x k x x =++++()24181k k k +=++.由题设可得()24181k k k+=++=12,解得k=1,所以l 的方程是y=x+1.故圆心C 在l上,所以2MN =.……12分21、解:(I )()f x 的定义域为()()20,,2(0)xaf x e x x'+∞=-〉.当a ≤0时,()()0f x f x ''〉,没有零点;当0a 〉时,因为2xe 单调递增,ax-单调递减,所以()f x '在()0,+∞单调递增,又()0f a '〉,当b 满足0<b <4a且b <14时,()0f b '〈,故当a <0时()f x '存在唯一零点.……6分(II )由(I ),可设()f x '在()0,+∞的唯一零点为0x ,当()00x x ∈,时,()f x '<0;当()0x x ∈+∞,时,()f x '>0.故()f x 在()0+∞,单调递减,在()0x +∞,单调递增,所以0x x =时,()f x 取得最小值,最小值为()0f x .由于02020x aex -=,所以()0002221212a f x ax a n a a n x a a =++≥+.故当0a 〉时,()221f x a a n a≥+.……12分22、解:(I )连接AE ,由已知得,AE ⊥BC,AC ⊥AB.在Rt △AEC 中,由已知得,DE=DC,故∠DEC=∠DCE.连结OE ,则∠OBE=∠OEB.又∠OED+∠ABC=o90,所以∠DEC+∠OEB=o90,故∠OED=o90,DE 是 O 的切线. (5)分(II )设CE=1,AE=x ,由已知得AB=由射影定理可得,2AE CE BE =⋅,所以2x =,即42120x x +-=.可得x =ACB=60o .……10分23、解:(I )因为cos ,sin x y ρθρθ==,所以1C 的极坐标方程为cos 2ρθ=-,2C 的极坐标方程为22cos 4sin 40ρρθρθ--+=.……5分(II )将4πθ=代入22cos 4sin 40ρρθρθ--+=,得240ρ-+=,解得12ρρ==.故12ρρ-=MN =由于2C 的半径为1,所以2C MN ∆的面积为12.……10分24、解:(I )当1a =时,()1f x >化为12110x x +--->.当1x ≤-时,不等式化为40x ->,无解;当11x -<<时,不等式化为320x ->,解得213x <<;当1x ≥,不等式化为-x +2>0,解得1≤x <2.所以()1f x >的解集为223x x ⎧⎫⎨⎬⎩⎭︱<<.……5分(II )由题设可得,()12,1312,1,12,.x a x f x x a x a x a x a --⎧⎪=+--≤≤⎨⎪-++⎩<<所以函数()f x 的图像与x 轴围成的三角形的三个丁点分别为()()21,0,21,0,,13a A B a C a a -⎛⎫++ ⎪⎝⎭,△ABC 的面积为()2213a +.由题设得()2213a +>6,故a >2.所以a 的取值范围为()2+∞,.……10分。
2015年全国统一高考数学试卷(文科)(新课标i)答案与解析

2015年全国统一高考数学试卷(文科)(新课标I)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x=3n+2,n∈N},B={6,8,10,12,14},则集合A∩B中元素的个数为()A.5B.4C.3D.2考点:交集及其运算.专题:集合.分析:根据集合的基本运算进行求解.解答:解:A={x|x=3n+2,n∈N}={2,5,8,11,14,17,…},则A∩B={8,14},故集合A∩B中元素的个数为2个,故选:D.点评:本题主要考查集合的基本运算,比较基础.2.(5分)已知点A(0,1),B(3,2),向量=(﹣4,﹣3),则向量=()A.(﹣7,﹣4)B.(7,4)C.(﹣1,4)D.(1,4)考点:平面向量的坐标运算.专题:平面向量及应用.分析:顺序求出有向线段,然后由=求之.解答:解:由已知点A(0,1),B(3,2),得到=(3,1),向量=(﹣4,﹣3),则向量==(﹣7,﹣4);故答案为:A.点评:本题考查了有向线段的坐标表示以及向量的三角形法则的运用;注意有向线段的坐标与两个端点的关系,顺序不可颠倒.3.(5分)已知复数z满足(z﹣1)i=1+i,则z=()A.﹣2﹣i B.﹣2+i C.2﹣i D.2+i考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:由已知等式变形,然后利用复数代数形式的乘除运算化简求得z﹣1,进一步求得z.解答:解:由(z﹣1)i=1+i,得z﹣1=,∴z=2﹣i.故选:C.点评:本题考查复数代数形式的乘除运算,是基础的计算题.4.(5分)如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数.从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为()A.B.C.D.考点:列举法计算基本事件数及事件发生的概率.专题:概率与统计.分析:一一列举出所有的基本事件,再找到勾股数,根据概率公式计算即可.解答:解:从1,2,3,4,5中任取3个不同的数,有(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5)(2,3,4),(2,3,5),(2,4,5),(3,4,5)共10种,其中只有(3,4,5)为勾股数,故这3个数构成一组勾股数的概率为.故选:C点评:本题考查了古典概型概率的问题,关键是不重不漏的列举出所有的基本事件,属于基础题.5.(5分)已知椭圆E的中心在坐标原点,离心率为,E的右焦点与抛物线C:y2=8x的焦点重合,A,B是C的准线与E的两个交点,则|AB|=()A.3B.6C.9D.12考点:圆锥曲线的综合;直线与圆锥曲线的关系.专题:圆锥曲线的定义、性质与方程.分析:利用椭圆的离心率以及抛物线的焦点坐标,求出椭圆的半长轴,然后求解抛物线的准线方程,求出A,B坐标,即可求解所求结果.解答:解:椭圆E的中心在坐标原点,离心率为,E的右焦点(c,0)与抛物线C:y2=8x 的焦点(2,0)重合,可得c=2,a=4,b2=12,椭圆的标准方程为:,抛物线的准线方程为:x=﹣2,由,解得y=±3,所以a(﹣2,3),B(﹣2,﹣3).|AB|=6.故选:B.点评:本题考查抛物线以及椭圆的简单性质的应用,考查计算能力.6.(5分)《九章算术》是我国古代内容极为丰富的数学明著,书中有如下问题:”今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?“其意思为:”在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?“已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有()A.14斛B.22斛C.36斛D.66斛考点:棱柱、棱锥、棱台的体积.专题:空间位置关系与距离.分析:根据圆锥的体积公式计算出对应的体积即可.解答:解:设圆锥的底面半径为r,则×2×3r=8,解得r=,故米堆的体积为××3×()2×5=,∵1斛米的体积约为1.62立方,∴÷1.62≈22,故选:B.点评:本题主要考查椎体的体积的计算,比较基础.7.(5分)已知{a n}是公差为1的等差数列;S n为{a n}的前n项和,若S8=4S4,则a10=()A.B.C.10 D.12考点:等差数列的前n项和.专题:等差数列与等比数列.分析:利用等差数列的通项公式及其前n项和公式即可得出.解答:解:∵{a n}是公差为1的等差数列,S8=4S4,∴=4×(4a1+),解得a1=.则a10==.故选:B.点评:本题考查了等差数列的通项公式及其前n项和公式,考查了推理能力与计算能力,属于中档题.8.(5分)函数f(x)=cos(ωx+ϕ)的部分图象如图所示,则f(x)的单调递减区间为()A.(kπ﹣,kπ+,),k∈z B.(2kπ﹣,2kπ+),k∈zC.(k﹣,k+),k∈z D.(,2k+),k∈z考点:余弦函数的单调性.专题:三角函数的图像与性质.分析:由周期求出ω,由五点法作图求出φ,可得f(x)的解析式,再根据余弦函数的单调性,求得f(x)的减区间.解答:解:由函数f(x)=cos(ωx+ϕ)的部分图象,可得函数的周期为=2(﹣)=2,∴ω=π,f(x)=cos(πx+ϕ).再根据函数的图象以及五点法作图,可得+ϕ=,k∈z,即ϕ=,f(x)=cos(πx+).由2kπ≤πx+≤2kπ+π,求得2k﹣≤x≤2k+,故f(x)的单调递减区间为(,2k+),k∈z,故选:D.点评:本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由周期求出ω,由五点法作图求出φ的值;还考查了余弦函数的单调性,属于基础题.9.(5分)执行如图的程序框图,如果输入的t=0.01,则输出的n=()A.5B.6C.7D.8考点:程序框图.专题:算法和程序框图.分析:由题意可得,算法的功能是求S=1﹣﹣≤t 时n的最小值,由此可得结论.解答:解:由程序框图知:算法的功能是求S=1﹣﹣≤t 时n的最小值,再根据t=0.01,可得当n=6时,S=1﹣﹣=>0.01,而当n=7时,S=1﹣﹣=≤0.01,故输出的n值为7,故选:C.点评:本题考查了直到型循环结构的程序框图,根据框图的流程判断算法的功能是解题的关键,属于基础题.10.(5分)(2015春•河南校级月考)已知函数f(x)=且f(a)=﹣3,则f(6﹣a)=()A.﹣B.﹣C.﹣D.﹣考点:分段函数的应用;函数的零点.专题:函数的性质及应用.分析:由f(a)=﹣3,结合指数和对数的运算性质,求得a=7,再由分段函数求得f(6﹣a)的值.解答:解:函数f(x)=且f(a)=﹣3,若a≤1,则2a﹣1﹣2=﹣3,即有2a﹣1=﹣1<0,方程无解;若a>1,则﹣log2(a+1)=﹣3,解得a=7,则f(6﹣a)=f(﹣1)=2﹣1﹣1﹣2=﹣.故选:A.点评:本题考查分段函数的运用:求函数值,主要考查指数和对数的运算性质,属于中档题.11.(5分)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=()A.1B.2C.4D.8考点:由三视图求面积、体积.专题:立体几何.分析:通过三视图可知该几何体是一个半球拼接半个圆柱,计算即可.解答:解:由几何体三视图中的正视图和俯视图可知,截圆柱的平面过圆柱的轴线,该几何体是一个半球拼接半个圆柱,∴其表面积为:×4πr2+×πr22r×2πr+2r×2r+×πr2=5πr2+4r2,又∵该几何体的表面积为16+20π,∴5πr2+4r2=16+20π,解得r=2,故选:B.点评:本题考查由三视图求表面积问题,考查空间想象能力,注意解题方法的积累,属于中档题.12.(5分)(2015春•河南校级月考)设函数y=f(x)的图象与y=2x+a的图象关于y=﹣x对称,且f(﹣2)+f(﹣4)=1,则a=()A.﹣1 B.1C.2D.4考点:函数的图象与图象变化.专题:开放型;函数的性质及应用.分析:先求出与y=2x+a的反函数的解析式,再由题意f(x)的图象与y=2x+a的反函数的图象关于原点对称,继而求出函数f(x)的解析式,问题得以解决.解答:解:∵与y=2x+a的图象关于y=x对称的图象是y=2x+a的反函数,x=log2y﹣a(y>0),即g(x)=log2x﹣a,(x>0).∵函数y=f(x)的图象与y=2x+a的图象关于y=﹣x对称,∴f(x)=﹣g(﹣x)=﹣log2(﹣x)+a,x<0,∵f(﹣2)+f(﹣4)=1,∴﹣log22+a﹣log24+a=1,解得,a=2,故选:C.点评:本题考查反函数的概念、互为反函数的函数图象的关系、求反函数的方法等相关知识和方法,属于基础题二、本大题共4小题,每小题5分.13.(5分)在数列{a n}中,a1=2,a n+1=2a n,S n为{a n}的前n项和,若S n=126,则n=6.考点:等比数列的前n项和;等比关系的确定.专题:计算题;等差数列与等比数列.分析:由a n+1=2a n,结合等比数列的定义可知数列{a n}是a1=2为首项,以2为公比的等比数列,代入等比数列的求和公式即可求解.解答:解:∵a n+1=2a n,∴,∵,a1=2,∴数列{a n}是a1=2为首项,以2为公比的等比数列,∴S n===2n+1﹣2=126,∴2n+1=128,∴n+1=7,∴n=6.故答案为:6点评:本题主要考查了等比数列的通项公式及求和公式的简单应用,解题的关键是熟练掌握基本公式.14.(5分)已知函数f(x)=ax3+x+1的图象在点(1,f(1))处的切线过点(2,7),则a=1.考点:利用导数研究曲线上某点切线方程.专题:导数的综合应用.分析:求出函数的导数,利用切线的方程经过的点求解即可.解答:解:函数f(x)=ax3+x+1的导数为:f′(x)=3ax2+1,f′(1)=3a+1,而f(1)=a+2,切线方程为:y﹣a﹣2=(3a+1)(x﹣1),因为切线方程经过(2,7),所以7﹣a﹣2=(3a+1)(2﹣1),解得a=1.故答案为:1.点评:本题考查函数的导数的应用,切线方程的求法,考查计算能力.15.(5分)若x,y满足约束条件,则z=3x+y的最大值为4.考点:简单线性规划.专题:不等式的解法及应用.分析:作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z的最大值.解答:解:作出不等式对应的平面区域如图,由z=3x+y,得y=﹣3x+z,平移直线y=﹣3x+z,由图象可知当直线y=﹣3x+z,经过点A时,直线y=﹣3x+z的截距最大,此时z最大.由,解得,即A(1,1)此时z的最大值为z=3×1+1=4,故答案为:4.点评:本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.16.(5分)已知F是双曲线C:x2﹣=1的右焦点,P是C的左支上一点,A(0,6).当△APF周长最小时,该三角形的面积为12.考点:双曲线的简单性质.专题:计算题;开放型;圆锥曲线的定义、性质与方程.分析:利用双曲线的定义,确定△APF周长最小时,P的坐标,即可求出△APF周长最小时,该三角形的面积.解答:解:由题意,设F′是左焦点,则△APF周长=|AF|+|AP|+|PF|=|AF|+|AP|+|PF′|+2 ≥|AF|+|AF′|+2(A,P,F′三点共线时,取等号),直线AF′的方程为与x2﹣=1联立可得y2+6y﹣96=0,∴P的纵坐标为2,∴△APF周长最小时,该三角形的面积为﹣=12.故答案为:12.点评:本题考查双曲线的定义,考查三角形面积的计算,确定P的坐标是关键.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)已知a,b,c分别是△ABC内角A,B,C的对边,sin2B=2sinAsinC.(Ⅰ)若a=b,求cosB;(Ⅱ)设B=90°,且a=,求△ABC的面积.考点:正弦定理;余弦定理.专题:解三角形.分析:(I)sin2B=2sinAsinC,由正弦定理可得:b2=2ac,再利用余弦定理即可得出.(II)利用(I)及勾股定理可得c,再利用三角形面积计算公式即可得出.解答:解:(I)∵sin2B=2sinAsinC,由正弦定理可得:>0,代入可得(bk)2=2ak•ck,∴b2=2ac,∵a=b,∴a=2c,由余弦定理可得:cosB===.(II)由(I)可得:b2=2ac,∵B=90°,且a=,∴a2+c2=2ac,解得a=c=.∴S△ABC==1.点评:本题考查了正弦定理余弦定理、勾股定理、三角形面积计算公式,考查了推理能力与计算能力,属于中档题.18.(12分)如图,四边形ABCD为菱形,G为AC与BD的交点,BE⊥平面ABCD.(Ⅰ)证明:平面AEC⊥平面BED;(Ⅱ)若∠ABC=120°,AE⊥EC,三棱锥E﹣ACD的体积为,求该三棱锥的侧面积.考点:平面与平面垂直的判定;棱柱、棱锥、棱台的侧面积和表面积.专题:空间位置关系与距离.分析:(Ⅰ)根据面面垂直的判定定理即可证明:平面AEC⊥平面BED;(Ⅱ)根据三棱锥的条件公式,进行计算即可.解答:证明:(Ⅰ)∵四边形ABCD为菱形,∴AC⊥BD,∵BE⊥平面ABCD,∴AC⊥BE,则AC⊥平面BED,∵AC⊂平面AEC,∴平面AEC⊥平面BED;解:(Ⅱ)设AB=x,在菱形ABCD中,由∠ABC=120°,得AG=GC=x,GB=GD=,∵AE⊥EC,∴△EBG为直角三角形,则BE=x,∵三棱锥E﹣ACD的体积V===,解得x=2,从而得AE=EC=ED=,∴△EAC的面积为3,∴△EAD的面积和△ECD的面积均为,故该三棱锥的侧面积为3+2.点评:本题主要考查面面垂直的判定,以及三棱锥体积的计算,要求熟练掌握相应的判定定理以及体积公式.19.(12分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的年宣传费x i和年销售量y i(i=1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.(x i ﹣)2(w i ﹣)2(x i ﹣)(y i﹣)(w i ﹣)(y i ﹣)46.6 563 6.8 289.8 1.6 1469 108.8表中w i =1,=(Ⅰ)根据散点图判断,y=a+bx与y=c+d哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y关于x的回归方程;(Ⅲ)以知这种产品的年利率z与x、y的关系为z=0.2y﹣x.根据(Ⅱ)的结果回答下列问题:(i)年宣传费x=49时,年销售量及年利润的预报值是多少?(ii)年宣传费x为何值时,年利率的预报值最大?附:对于一组数据(u1 v1),(u2 v2)…..(u n v n),其回归线v=α+βu的斜率和截距的最小二乘估计分别为:=,=﹣.考点:线性回归方程.专题:概率与统计.分析:(Ⅰ)根据散点图,即可判断出,(Ⅱ)先建立中间量w=,建立y关于w的线性回归方程,根据公式求出w,问题得以解决;(Ⅲ)(i)年宣传费x=49时,代入到回归方程,计算即可,(ii)求出预报值得方程,根据函数的性质,即可求出.解答:解:(Ⅰ)由散点图可以判断,y=c+d适宜作为年销售量y关于年宣传费x的回归方程类型;(Ⅱ)令w=,先建立y关于w 的线性回归方程,由于==68,=﹣=563﹣68×6.8=100.6,所以y关于w的线性回归方程为=100.6+68w,因此y关于x的回归方程为=100.6+68,(Ⅲ)(i)由(Ⅱ)知,当x=49时,年销售量y的预报值=100.6+68=576.6,年利润z的预报值=576.6×0.2﹣49=66.32,(ii)根据(Ⅱ)的结果可知,年利润z的预报值=0.2(100.6+68)﹣x=﹣x+13.6+20.12,当==6.8时,年利润的预报值最大.点评:本题主要考查了线性回归方程和散点图的问题,准确的计算是本题的关键,属于中档题.20.(12分)已知过点A(0,1)且斜率为k的直线l与圆C:(x﹣2)2+(y﹣3)2=1交于点M、N两点.(1)求k的取值范围;(2)若•=12,其中O为坐标原点,求|MN|.考点:直线与圆的位置关系;平面向量数量积的运算.专题:开放型;直线与圆.分析:(1)由题意可得,直线l的斜率存在,用点斜式求得直线l的方程,根据圆心到直线的距离等于半径求得k的值,可得满足条件的k的范围.(2)由题意可得,经过点M、N、A的直线方程为y=kx+1,根据直线和圆相交的弦长公式进行求解.解答:(1)由题意可得,直线l的斜率存在,设过点A(0,1)的直线方程:y=kx+1,即:kx﹣y+1=0.由已知可得圆C的圆心C的坐标(2,3),半径R=1.故由=1,解得:k1=,k2=.故当<k<,过点A(0,1)的直线与圆C:(x﹣2)2+(y﹣3)2=1相交于M,N两点.(2)设M(x1,y1);N(x2,y2),由题意可得,经过点M、N、A的直线方程为y=kx+1,代入圆C的方程(x﹣2)2+(y﹣3)2=1,可得(1+k2)x2﹣4(k+1)x+7=0,∴x1+x2=,x1•x2=,∴y1•y2=(kx1+1)(kx2+1)=,由•=x1•x2+y1•y2==12,解得k=1,故直线l的方程为y=x+1,即x﹣y+1=0.圆心C在直线l上,MN长即为圆的直径.所以|MN|=2.点评:本题主要考查直线和圆的位置关系的应用,以及直线和圆相交的弦长公式的计算,考查学生的计算能力.21.(12分)(2015春•河南校级月考)设函数f(x)=e2x﹣alnx.(Ⅰ)讨论f(x)的导函数f′(x)零点的个数;(Ⅱ)证明:当a>0时,f(x)≥2a+aln.考点:导数在最大值、最小值问题中的应用;根的存在性及根的个数判断;导数的运算.专题:开放型;导数的综合应用.分析:(Ⅰ)先求导,在分类讨论,当a≤0时,当a>0时,根据零点存在定理,即可求出;(Ⅱ)设导函数f′(x)在(0,+∞)上的唯一零点为x0,根据函数f(x)的单调性得到函数的最小值f(x0),只要最小值大于2a+aln,问题得以证明.解答:解:(Ⅰ)f(x)=e2x﹣alnx的定义域为(0,+∞),∴f′(x)=2e2x﹣.当a≤0时,f′(x)>0恒成立,故f′(x)没有零点,当a>0时,∵y=e2x为单调递增,y=﹣单调递增,∴f′(x)在(0,+∞)单调递增,又f′(a)>0,当b满足0<b<时,且b<,f(b)<0,故当a>0时,导函数f′(x)存在唯一的零点,(Ⅱ)由(Ⅰ)知,可设导函数f′(x)在(0,+∞)上的唯一零点为x0,当x∈(0,x0)时,f′(x)<0,当x∈(x0+∞)时,f′(x)>0,故f(x)在(0,x0)单调递减,在(x0+∞)单调递增,所欲当x=x0时,f(x)取得最小值,最小值为f(x0),由于﹣=0,所以f(x0)=+2ax0+aln≥2a+aln.故当a>0时,f(x)≥2a+aln.点评:本题考查了导数和函数单调性的关系和最值的关系,以及函数的零点存在定理,属于中档题.四、请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题记分.【选修4-1:几何证明选讲】22.(10分)如图,AB是⊙O的直径,AC是⊙O的切线,BC交⊙O于点E.(Ⅰ)若D为AC的中点,证明:DE是⊙O的切线;(Ⅱ)若OA=CE,求∠ACB的大小.考点:圆的切线的判定定理的证明.专题:直线与圆.分析:(Ⅰ)连接AE和OE,由三角形和圆的知识易得∠OED=90°,可得DE是⊙O的切线;(Ⅱ)设CE=1,AE=x,由射影定理可得关于x的方程x2=,解方程可得x值,可得所求角度.解答:解:(Ⅰ)连接AE,由已知得AE⊥BC,AC⊥AB,在RT△ABC中,由已知可得DE=DC,∴∠DEC=∠DCE,连接OE,则∠OBE=∠OEB,又∠ACB+∠ABC=90°,∴∠DEC+∠OEB=90°,∴∠OED=90°,∴DE是⊙O的切线;(Ⅱ)设CE=1,AE=x,由已知得AB=2,BE=,由射影定理可得AE2=CE•BE,∴x2=,即x4+x2﹣12=0,解方程可得x=∴∠ACB=60°点评:本题考查圆的切线的判定,涉及射影定理和三角形的知识,属基础题.五、【选修4-4:坐标系与参数方程】23.(2015春•新乐市校级月考)在直角坐标系xOy中,直线C1:x=﹣2,圆C2:(x﹣1)2+(y﹣2)2=1,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.(Ⅰ)求C1,C2的极坐标方程;(Ⅱ)若直线C3的极坐标方程为θ=(ρ∈R),设C2与C3的交点为M,N,求△C2MN的面积.考点:简单曲线的极坐标方程.专题:坐标系和参数方程.分析:(Ⅰ)由条件根据x=ρcosθ,y=ρsinθ求得C1,C2的极坐标方程.(Ⅱ)把直线C3的极坐标方程代入ρ2﹣3ρ+4=0,求得ρ1和ρ2的值,结合圆的半径可得C2M⊥C2N,从而求得△C2MN的面积•C2M•C2N的值.解答:解:(Ⅰ)由于x=ρcosθ,y=ρsinθ,∴C1:x=﹣2 的极坐标方程为ρcosθ=﹣2,故C2:(x﹣1)2+(y﹣2)2=1的极坐标方程为:(ρcosθ﹣1)2+(ρsinθ﹣2)2=1,化简可得ρ2﹣(2ρcosθ+4ρsinθ)+4=0.(Ⅱ)把直线C3的极坐标方程θ=(ρ∈R)代入ρ2﹣3ρ+4=0,求得ρ1=2,ρ2=,∴|MN|=ρ1﹣ρ2=,由于圆C2的半径为1,∴C2M⊥C2N,△C2MN的面积为•C2M•C2N=.点评:本题主要考查简单曲线的极坐标方程,点的极坐标的定义,属于基础题.六、【选修4-5:不等式选讲】24.已知函数f(x)=|x+1|﹣2|x﹣a|,a>0.(Ⅰ)当a=1时,求不等式f(x)>1的解集;(Ⅱ)若f(x)的图象与x轴围成的三角形面积大于6,求a的取值范围.考点:绝对值不等式的解法.专题:不等式的解法及应用.分析:(Ⅰ)当a=1时,把原不等式去掉绝对值,转化为与之等价的三个不等式组,分别求得每个不等式组的解集,再取并集,即得所求.(Ⅱ)化简函数f(x)的解析式,求得它的图象与x轴围成的三角形的三个顶点的坐标,从而求得f(x)的图象与x轴围成的三角形面积;再根据f(x)的图象与x轴围成的三角形面积大于6,从而求得a 的取值范围.解答:解:(Ⅰ)当a=1时,不等式f(x)>1,即|x+1|﹣2|x﹣1|>1,即①,或②,或③.解①求得x∈∅,解②求得<x<1,解③求得1≤x<2.综上可得,原不等式的解集为(,2).(Ⅱ)函数f(x)=|x+1|﹣2|x﹣a|=,由此求得f(x)的图象与x轴的交点A (,0),B(2a+1,0),故f(x)的图象与x轴围成的三角形的第三个顶点C(a,a+1),由△ABC的面积大于6,可得[2a+1﹣]•(a+1)>6,求得a>2.故要求的a的范围为(2,+∞).点评:本题主要考查绝对值不等式的解法,体现了转化、分类讨论的数学思想,属于中档题.。
2015年高考(全国Ⅰ卷)文科数学试题及解析

2015年普通高等学校招生全国统一考试(全国Ⅰ卷)文科数学试题解析1. 解析 当3214n +…,得4n ….由32x n =+,当0n =时,2x =;当1n =时,5x =;当2n =时,8x =;当3n =时,11x =;当4n =时,14x =. 所以{}8,14AB =,则集合A B 中含元素个数为2.故选D .2. 解析 BA =()03,12--=()3,1--,()()34,137,4BC BA AC =+=----=--.故选A.3. 解析 由题意可得i 1i i 12i z =++=+,12i2i iz +==-.故选C. 4. 解析 由211=,222224,39,416,525====, 可知只有()3,4,5是一组勾股数.从1,2,3,4,5中任取3个不同的数,其基本事件有:()()()1,2,3,1,2,4,1,2,5,()()()1,3,4,1,3,5,1,4,5, ()()()()2,3,4,2,3,5,2,4,5,3,4,5,共10种.则从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率110P =.故选C. 5. 解析 28y x =的焦点为()2,0,准线方程为2x =-. 由E 的右焦点与28y x =的焦点重合,可得2c =.又12c a =,得4a =,212b =,所以椭圆E 的方程为2211612x y +=. 当2x =-时,()22211612y -+=,得3y =±,即6AB =.故选B. 6. 解析 由l r α=,得816332lr α===. 21116320354339V ⎛⎫=⨯⨯⨯⨯=⎪⎝⎭. 故堆放的米约有3201.62229÷≈(斛).故选B.7. 解析 解法一:由844S S =,1d =,知()()118814418144122a a --⎡⎤+⨯=+⨯⎢⎥⎣⎦, 解得112a =.所以()10119101122a =+-⨯=.故选B. 解法二:由844S S =,即()()1814442a a a a +=⨯+,可得8142a a a =+. 又公差1d =,所以817a a =+,则427a =,解得472a =. 所以1041962a a =+=.故选B. 8. 解析 由图可知511244T =-=,得2T =,2ππTω==. 画出图中函数()f x 的一条对称轴0x x =,如图所示. 由图可知034x =,则3πcos 14ϕ⎛⎫+=- ⎪⎝⎭, 可得3π2ππ4k ϕ+=+,则()π2π4k k ϕ=+∈Z ,得()πcos π4f x x ⎛⎫=+ ⎪⎝⎭. 由π2ππ2ππ4k x k ++剟,得()f x 的单调递减区间为132244k xk -+剟. 故选D.9. 解析 由程序框图可知, 第一次循环为:1110.0122S =-=>, 11224m ==,011n =+=;第二次循环为:1110.01244S =-=>,18m =,2n =; 第三次循环为:1110.01488S =-=>,116m =,3n =; 第四次循环为:1110.0181616S=-=>,132m =,4n =;第五次循环为:1110.01163232S =-=>,164m =,5n =; 第六次循环为:1110.01326464S =-=>,1128m =,6n =; 第七次循环为:1110.0164128128S =-=…,1256m =,7n =. 此时循环结束,输出7n =.故选C.10. 解析 当1a …时,()1223a f a -=-=-,即121a -=-,无解;当1a >时,()()2log 13f a a =-+=-,即()322log 13log 2a +==, 得18a +=,所以7a =,符合1a >. 综上可知,7a =.则()()()1176671224f a f f ---=-=-=-=-.故选A. 11. 解析 由几何体的视图,还原其立体图形,并调整其摆放姿势,让半圆柱体在下方,半球在上方,如图所示.224π22π2π2r S r r r r r =+++=2245π1620πr r +=+,得2r =.故选B.12. 解析 设(),x y 为()f x 图像上一点,则(),x y 关于y x =-的对称点为(),y x --, 代入2x a y +=,得2y ax -+-=,①对①两边取以2为底的对数,得()2log x y a -=-+,即()2log y x a =---⎡⎤⎣⎦. 又()()241f f -+-=,即()()22log 2log 41a a ----=, 得()121a a ---=,得2a =.故选C. 13. 解析 由12n n a a +=,得12n na a +=,即数列{}n a 是首项为2,公比为2的等比数列. ()()11212126112n n n a q S q--===--,得6n =.14. 解析 由题意可得()12f a =+,()131f a '=+,2r所以切线方程为()()()2311y a a x -+=+-.又过点()2,7,即()()723121a a --=+-,解得1a =. 15. 解析 画出满足不等式组的可行域,如图中阴影部分所示.联立()1122y x y x ⎧=+⎪⎨⎪=-+⎩,得()1,1B . 由图可知当直线3y x =-经过点()1,1B 时,z 取得最大值.max 134z =+=.16. 解析 设双曲线的左焦点为1F ,连接AF ,与双曲线左支交于点P ,连接PF .则此P 点即为使得APF △周长最小时的点P ,如图所示.证明如下:由双曲线的定义知,122PF PF a -==.所以12PF PF =+. 又APF C AF AP PF =++△, 所以12APF C AF AP PF =+++△,所以当点A ,P ,1F 在同一条直线上时,周长取得最小值. 由题意可得1AF所在直线方程为)3y x =+, 同理可得AF的直线方程为)3y x =--.联立)22318y x y x ⎧=+⎪⎨-=⎪⎩,解得(2,P -. 则(),d P AF ==又15AF ==,所以1152PAF S =⨯=△17. 解析 (1)由正弦定理得,22b ac =.又a b =,所以22a ac =,即2a c =.则22222212cos 2422a a a a cb B a ac a ⎛⎫+- ⎪+-⎝⎭===⋅. (2)解法一:因为90B ∠=,所以()2sin 12sin sin 2sin sin 90B A C A A ===-,即2sin cos 1A A =,亦即sin 21A =.又因为在ABC △中,90B ∠=,所以090A <∠<, 则290A ∠=,得45A ∠=.所以ABC △为等腰直角三角形,得a c ==,所以112ABC S ==△. 解法二:由(1)可知22b ac =,①因为90B ∠=,所以222a cb +=,②将②代入①得()20a c -=,则a c ==,所以112ABC S ==△. 18. 解析 (1)因为BE ⊥平面ABCD ,所以BE AC ⊥. 又ABCD 为菱形,所以AC BD ⊥.又因为BD BE B =,BD ,BE ⊂平面BED ,所以AC ⊥平面BED .又AC ⊂平面AEC ,所以平面AEC ⊥平面BED . (2)在菱形ABCD 中,取2AB BC CD AD x ====, 又120ABC ∠=,所以AG GC ==,BG GD x ==. 在AEC △中,90AEC ∠=,所以12EG AC ==, 所以在Rt EBG △中,BE =,所以31122sin120232E ACD V x x x x -=⨯⨯⋅⋅⋅==,解得1x =. 在Rt EBA △,Rt EBC △,Rt EBD △中,可得AE EC ED===所以三棱锥的侧面积1122322S =⨯⨯=+侧19. 解析 (1)由散点图变化情况选择y c =+.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015年普通高等学校招生全国统一考试(新课标1卷)文一、选择题:每小题5分,共60分1、已知集合{32,},{6,8,10,12,14}A x x n n N B ==+∈=,则集合A B I 中的元素个数为 (A ) 5 (B )4 (C )3 (D )22、已知点(0,1),(3,2)A B ,向量(4,3)AC =--u u u r,则向量BC =u u u r(A ) (7,4)-- (B )(7,4) (C )(1,4)- (D )(1,4)3、已知复数z 满足(1)1z i i -=+,则z =( )(A ) 2i -- (B )2i -+ (C )2i - (D )2i +4、如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( )(A )310 (B )15 (C )110 (D )1205、已知椭圆E 的中心为坐标原点,离心率为12,E 的右焦点与抛物线2:8C y x =的焦点重合,,A B 是C 的准线与E 的两个交点,则AB =(A ) 3 (B )6 (C )9 (D )126、《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问”积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )(A )14斛 (B )22斛 (C )36斛 (D )66斛7、已知{}n a 是公差为1的等差数列,n S 为{}n a 的前n 项和,若844S S =,则10a =( ) (A )172 (B )192(C )10 (D )12 8、函数()cos()f x x ωϕ=+的部分图像如图所示,则()f x 的单调递减区间为( ) (A )13(,),44k k k Z ππ-+∈ (B )13(2,2),44k k k Z ππ-+∈(C )13(,),44k k k Z -+∈(D)13(2,2),44k k k Z-+∈9、执行右面的程序框图,如果输入的0.01t=,则输出的n=()(A)5(B)6(C)7 (D)810、已知函数1222,1()log(1),1x xf xx x-⎧-≤=⎨-+>⎩,且()3f a=-,则(6)f a-=(A)74-(B)54-(C)34-(D)14-11、圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为1620π+,则r=( )(A)1(B)2(C)4(D)812、设函数()y fx =的图像与2x ay +=的图像关于直线y x =-对称,且(2)(4)1f f -+-=,则a =( )(A ) 1- (B )1 (C )2 (D )4 二、填空题:本大题共4小题,每小题5分13、数列{}n a 中112,2,n n n a a a S +==为{}n a 的前n 项和,若126n S =,则n = .14.已知函数()31f x ax x =++的图像在点()()1,1f 的处的切线过点()2,7,则 a = .15. 若x ,y 满足约束条件20210220x y x y x y +-≤⎧⎪-+≤⎨⎪-+≥⎩,则z =3x +y 的最大值为 .16.已知F 是双曲线22:18y C x -=的右焦点,P 是C 左支上一点,()0,66A ,当APF ∆周长最小时,该三角形的面积为 . 三、解答题17. (本小题满分12分)已知,,a b c 分别是ABC ∆内角,,A B C 的对边,2sin 2sin sin B A C =. (I )若a b =,求cos ;B (II )若90B =o ,且2,a =求ABC ∆的面积.18. (本小题满分12分)如图四边形ABCD 为菱形,G 为AC 与BD 交点,BE ABCD ⊥平面,(I )证明:平面AEC ⊥平面BED ;(II )若120ABC ∠=o ,,AE EC ⊥ 三棱锥E ACD -的体积为63,求该三棱锥的侧面积.19. (本小题满分12分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响,对近8年的宣传费i x 和年销售量()1,2,,8i y i =L 数据作了初步处理,得到下面的散点图及一些统计量的值.(I )根据散点图判断,y a bx =+与y c d x =+,哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型(给出判断即可,不必说明理由);(II )根据(I )的判断结果及表中数据,建立y 关于x 的回归方程;(III )已知这种产品的年利润z 与x ,y 的关系为0.2z y x =- ,根据(II )的结果回答下列问题: (i )当年宣传费x =49时,年销售量及年利润的预报值时多少? (ii )当年宣传费x 为何值时,年利润的预报值最大?20. (本小题满分12分)已知过点()1,0A 且斜率为k 的直线l 与圆C :()()22231x y -+-=交于M ,N 两点.(I )求k 的取值范围;(II )若12OM ON ⋅=u u u u r u u u r,其中O 为坐标原点,求MN .21. (本小题满分12分)设函数()2ln xf x ea x =-.(I )讨论()f x 的导函数()f x '的零点的个数; (II )证明:当0a >时()22lnf x a a a≥+. 请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,做答时请写清题号22. (本小题满分10分)选修4-1:几何证明选讲 如图AB 是e O 直径,AC 是e O 切线,BC 交e O 与点E .(I )若D 为AC 中点,证明:DE 是e O 切线; (II )若3OA CE =,求ACB ∠的大小.23. (本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,直线1:2C x =-,圆()()222:121C x y -+-=,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.(I )求12,C C 的极坐标方程. (II )若直线3C 的极坐标方程为()πR 4θρ=∈,设23,C C 的交点为,M N ,求2C MN ∆ 的面积. 24. (本小题满分10分)选修4-5:不等式选讲 已知函数()12,0f x x x a a =+--> . (I )当1a = 时求不等式()1f x > 的解集;(II )若()f x 的图像与x 轴围成的三角形面积大于6,求a 的取值范围.2015年普通高等学校招生全国统一考试(新课标1卷)文答案一、 选择题(1)D (2)A (3)C (4)C (5)B (6)B (7)B (8)D (9)C (10)A (11)B (12)C二、 填空题(13)6 (14)1 (15)4 (16) 三、解答题17、解:(I )由题设及正弦定理可得2b =2ac.又a=b ,可得cosB=2222a c b ac +-=14……6分(II )由(I )知2b =2ac.因为B=o90,由勾股定理得222a c =b +.故22a c =2ac +,的所以△ABC 的面积为1. ……12分 18、解:(I )因为四边形ABCD 为菱形,所以AC ⊥BD. 因为BE ⊥平面ABCD,所以AC ⊥BE,故AC ⊥平面BED.又AC ⊂平面AEC,所以平面AEC ⊥平面BED. ……5分 (II )设AB=x ,在菱形ABCD 中,又∠ABC=o120 ,可得x ,GB=GD=2x .因为AE ⊥EC,所以在Rt △AEC 中,可的x . 由BE ⊥平面ABCD,知△EBG 为直角三角形,可得BE=2x . 由已知得,三棱锥E-ACD 的体积E ACD V -=13×12AC ·GD ·BE=3243x =. 故x =2 ……9分 从而可得.所以△EAC 的面积为3,△EAD 的面积与 △ECD故三棱锥E-ACD 的侧面积为……12分 19、解:(I )由散点图可以判断,适宜作为年销售量y 关于年宣传费x 的回归方程式类型. (II)令w =y 关于w 的线性回归方程式.由于28181()()108.8d=681.6()i i i i i w w y y w w ==--==-∑∑), 56368 6.8100.6c y d w =-=-⨯=)),所以y 关于w 的线性回归方程为y=100.668w +),因此y 关于x 的回归方程为y 100.6=+)(Ⅲ)(i )由(II )知,当x =49时,年销售量y 的预报值y 100.6=+),年利润z 的预报值z=576.60.24966.32⨯-=)……9分 (ii )根据(II )的结果知,年利润z 的预报值=-20.12x x +).13.6=6.82=,即x =46.24时,z )取得最大值. 故年宣传费为46.24千元时,年利润的预报值最大. ……12分20、解:(I )由题设,可知直线l 的方程为1y kx =+.因为l 与C1.解得4433k +〈. 所以k的取值范围为44(,33+. ……5分 (II )设()1122,,(,)M x y N x y .将1y kx =+代入方程22(2)(3)1x y -+-=,整理得22(1)4(1)70k x k x +-++=.所以1212224(1)7,11k x x x x k k++==++. 1212OM ON c x y y ⋅=+()()2121211k x x k x x =++++ ()24181k k k +=++.由题设可得()24181k k k+=++=12,解得k=1,所以l 的方程是y=x+1. 故圆心C 在l上,所以2MN =. ……12分 21、解:(I )()f x 的定义域为()()20,,2(0)xaf x e x x'+∞=-〉. 当a ≤0时,()()0f x f x ''〉,没有零点; 当0a 〉时,因为2xe 单调递增,ax-单调递减,所以()f x '在()0,+∞单调递增,又()0f a '〉, 当b 满足0<b <4a 且b <14时,()0f b '〈,故当a <0时()f x '存在唯一零点. ……6分(II )由(I ),可设()f x '在()0,+∞的唯一零点为0x ,当()00x x ∈,时,()f x '<0;当()0x x ∈+∞,时,()f x '>0.故()f x 在()0+∞,单调递减,在()0x +∞,单调递增,所以0x x =时,()f x 取得最小值,最小值为()0f x . 由于02020x a ex -=,所以()0002221212a f x ax a n a a n x a a=++≥+. 故当0a 〉时,()221f x a a n a≥+. ……12分 22、解:(I )连接AE ,由已知得,AE ⊥BC,AC ⊥AB. 在Rt △AEC 中,由已知得,DE=DC,故∠DEC=∠DCE. 连结OE ,则∠OBE=∠OEB.又∠OED+∠ABC=o90,所以∠DEC+∠OEB=o90,故∠OED=o90,DE 是e O 的切线.……5分(II )设CE=1,AE=x ,由已知得AB=23212x -由射影定理可得,2AE CE BE =⋅, 所以2212x x =-,即42120x x +-=.可得3x =ACB=60o .……10分 23、解:(I )因为cos ,sin x y ρθρθ==,所以1C 的极坐标方程为cos 2ρθ=-,2C 的极坐标方程为22cos 4sin 40ρρθρθ--+=. ……5分(II )将4πθ=代入22cos 4sin 40ρρθρθ--+=,得2240ρρ-+=,解得1222,2ρρ==.故122ρρ-=2MN =由于2C 的半径为1,所以2C MN ∆的面积为12. ……10分 24、解:(I )当1a =时,()1f x >化为12110x x +--->. 当1x ≤-时,不等式化为40x ->,无解;当11x -<<时,不等式化为320x ->,解得213x <<; 当1x ≥,不等式化为-x +2>0,解得1≤x <2.所以()1f x >的解集为223xx ⎧⎫⎨⎬⎩⎭︱<<. ……5分 (II )由题设可得,()12,1312,1,12,.x a x f x x a x a x a x a --⎧⎪=+--≤≤⎨⎪-++⎩<<所以函数()f x 的图像与x 轴围成的三角形的三个丁点分别为()()21,0,21,0,,13a A B a C a a -⎛⎫++ ⎪⎝⎭,△ABC 的面积为()2213a +.由题设得()2213a +>6,故a >2. 所以a 的取值范围为()2+∞,. ……10分。