分数混合运算总结一

合集下载

分数的乘除混合运算知识点总结

分数的乘除混合运算知识点总结

分数的乘除混合运算知识点总结分数的乘除混合运算是数学中的一个基础概念,它涉及到分数的乘法和除法以及它们与整数的混合运算。

在这篇文章中,我们将介绍分数的乘除混合运算的基本规则和技巧。

1. 分数的乘法分数的乘法可以通过以下步骤进行:a) 将两个分数的分子相乘,作为新分数的分子;b) 将两个分数的分母相乘,作为新分数的分母;c) 对新分数进行约分,如果有需要的话。

举例来说,计算1/2乘以2/3,我们可以按照上述步骤进行计算:a) 1乘以2得到2,作为新分数的分子;b) 2乘以3得到6,作为新分数的分母;c) 新分数是2/6,我们可以将其约分为1/3。

2. 分数的除法分数的除法可以通过以下步骤进行:a) 将被除数的分子与除数的分母相乘,作为新分数的分子;b) 将被除数的分母与除数的分子相乘,作为新分数的分母;c) 对新分数进行约分,如果有需要的话。

举例来说,计算1/2除以2/3,我们可以按照上述步骤进行计算:a) 1乘以3得到3,作为新分数的分子;b) 2乘以2得到4,作为新分数的分母;c) 新分数是3/4,它已经是最简分数,无法再约分。

3. 分数与整数的乘法和除法分数与整数的乘法可以通过以下步骤进行:a) 将整数视为分母为1的分数,与分数的乘法规则相同。

举例来说,计算2乘以1/2,我们可以将2视为2/1,然后按照分数的乘法规则进行计算:a) 2乘以1得到2,作为新分数的分子;b) 1乘以2得到2,作为新分数的分母;c) 新分数是2/2,我们可以将其约分为1。

分数与整数的除法可以通过以下步骤进行:a) 将整数视为分母为1的分数,与分数的除法规则相同。

举例来说,计算2除以1/2,我们可以将2视为2/1,然后按照分数的除法规则进行计算:a) 2乘以2得到4,作为新分数的分子;b) 1乘以1得到1,作为新分数的分母;c) 新分数是4/1,它已经是最简分数,无法再约分。

4. 分数的混合运算在分数的混合运算中,我们可以根据运算顺序和运算规则,逐步进行计算。

分数混合运算知识要点

分数混合运算知识要点

分数混合运算
1、分数混合运算与整数混合运算的顺序一样:
先算乘除,后算加减,有括号的,先算括号里的,同一级运算,应从左到右依次计算。

2、整数的运算率在分数中同样适用:
加法交换率、加法结合律、乘法交换律、乘法结合律、分配律。

3、在分数连乘中,可以同时进行约分(所有的分子可以和所有的分母约分).
4、分数乘除法混合运算,先将里面的除法改成乘法(除号改成乘号,除号后面的数改成它的倒
数),在进行约分、计算。

一、分数应用题
1、遇到分数应用题,当分数后面没有单位时,可以按一下思路进行:
(1)弄清分数在题目中的意义:
谁是(占)谁的几分之几. 谁比谁多几分之几。

谁比谁少几分之几.
(2)找出单位“1”的量:
上面的“是”、“占”、“比”后面的量就是单位“1”的量。

(3)画出线段图:
一般地,单位“1"的量画在上面,另一个量画在下面.
(4)找出相等关系:“比、占、是、相当于”即“=”。

“的”即“×”。

“比多(比少)”即“×"。

如:甲比乙多1/5。

(1)乙×1/5=多的部分(2)乙×(1+1/5)=甲
例甲是乙的1/5 甲比乙多1/5 甲比乙少1/5
甲=乙×1/5 甲=乙×(1+1/5)甲=乙×(1-1/5)
(5)弄清甲和乙,谁是已知的,谁是未知的,用乘法还是除法。

上面关系式中,乙要是已知的,求甲,直接用乘法;
甲要是已知的,求乙,用除法或用方程方法解。

1。

分数的混合运算

分数的混合运算

分数的混合运算分数是数学中的一个重要概念,用来表示整数之间的比例关系。

混合运算则是指在一个算式中同时运用了不同的运算符,包括加法、减法、乘法和除法。

本文将探讨分数的混合运算,包括相加、相减、相乘和相除四种运算。

一、相加运算(加法)相加运算是指将两个或多个分数进行求和,得到它们的总和。

我们以以下两个例子来说明。

例子1:分数相加假设我们需要计算3/4 + 1/2 + 2/3的结果。

首先,我们可以通过通分将分数的分母都相同化,得到9/12 + 6/12 + 8/12。

然后,将分子相加,得到23/12。

最后,将分数化简为最简形式,可以得到1又11/12。

例子2:分数与整数相加假设我们需要计算1/3 + 2的结果。

首先,我们可以将整数转化为分数形式,即2/1。

然后,通过通分将分母都相同化,得到1/3 + 2/1。

接着,将分子相加,得到7/3。

最后,将分数化简为最简形式,可以得到2又1/3。

二、相减运算(减法)相减运算是指将一个分数减去另一个分数,得到它们的差。

以下两个例子将说明相减运算的过程。

例子1:分数相减假设我们需要计算5/8 - 2/3的结果。

首先,我们可以通过通分将分数的分母都相同化,得到15/24 -16/24。

然后,将分子相减,得到-1/24。

最后,将分数化简为最简形式,可以得到-1/24。

例子2:分数与整数相减假设我们需要计算3/4 - 1的结果。

首先,我们可以将整数转化为分数形式,即1/1。

然后,通过通分将分母都相同化,得到3/4 - 4/4。

接着,将分子相减,得到-1/4。

最后,将分数化简为最简形式,可以得到-1/4。

三、相乘运算(乘法)相乘运算是指将两个分数相乘,得到它们的积。

以下两个例子将说明相乘运算的过程。

例子1:分数相乘假设我们需要计算2/3 * 4/5的结果。

首先,我们将两个分数的分子相乘,得到8/15。

然后,将分数化简为最简形式,可以得到8/15。

例子2:分数与整数相乘假设我们需要计算5/6 * 3的结果。

分数混合运算归纳总结

分数混合运算归纳总结

分数混合运算归纳总结
嘿,朋友们!今天咱来好好唠唠分数混合运算。

你看啊,分数混合运算就像是一场精彩的游戏,有各种规则和技巧等你掌握。

比如说,5/6 加上 3/4 乘以 8/9 这道题。

这就好像你在游戏里遇到了一个难关,需要你开动脑筋去突破。

那怎么玩这个游戏呢?首先,咱得知道先算什么后算什么,就跟你玩游戏得知道先后顺序一样。

遇到有括号的,那就得先算括号里面的呀,这可是重中之重!就像你玩捉迷藏,先得找到藏身之处一样。

然后呢,乘法和除法那可不能乱了次序,得依次进行。

这就好比排队买好吃的,得一个个来。

咱再来看看这个例子,2/3 除以 4/5 再乘以 3/8,你就得按照顺序依次计算。

还有啊,计算过程中可千万不能粗心大意!一次失误可能就让你这场游戏失败啦,多不划算呀!就像你走路不小心摔了一跤,哎呦,那懊恼哟!我以前就犯过这样的错,结果答案错得离谱,真是悔不当初啊!
哎呀呀,说起来简单,做起来可得细心细心再细心呢!可别小瞧了分数混合运算,它能让你的大脑飞速运转起来,变得越来越聪明。

总之呢,分数混合运算就是这么个有趣又有点挑战性的东西。

你只要掌握了方法,多练习,就一定能在这场“游戏”中玩得游刃有余!所以呀,大家赶紧行动起来吧,去挑战那些分数混合运算题,让自己成为运算高手!。

分数混合运算知识点总结

分数混合运算知识点总结

分数混合运算知识点总结一、分数混合运算基本概念1. 分数: 分数是指数与数之间的一种比,它由分子和分母两部分组成。

其中,分子表示被分割的份数,分母表示分割的总数。

通常用a/b来表示分数,其中a为分子,b为分母。

2. 整数: 整数是正整数、负整数和0的统称,它包括所有的正整数、负整数及0。

3. 运算符: 运算符是用来表示数学运算关系的符号,主要包括加减乘除等。

4. 分数的加减乘除: 分数的加减乘除是指对分子和分母进行相应的运算。

在分数的加减乘除运算中,需要将分数化为通分或者约分后再进行运算。

5. 分数混合运算: 分数混合运算是指包含整数和分数的运算,它包括整数与分数的加减乘除、分数与分数的加减乘除等。

二、分数混合运算的基本原则1. 通分: 在分数混合运算中,经常需要将分数化为通分后再进行运算。

通分的原则是将每个分数的分母变为相同的数。

2. 约分: 在分数混合运算中,有时需要将分数化简为最简分数,这就是约分的过程。

约分的原则是将分子和分母的公因数约去,使得分数的分子和分母互质。

3. 分数转化: 分数混合运算中,有时需要将分数转化为整数或者带分数,这就是分数的转化。

分数的转化根据需要可以将分数化为整数或者带分数,或者将整数或者带分数化为分数。

4. 综合运算: 在分数混合运算中,需要根据运算顺序和优先级进行综合运算。

通常先进行括号内的运算,然后进行乘除运算,最后进行加减运算。

五、分数混合运算的常见问题及解决方法1. 将以下分数化为通分形式,并进行加减乘除运算:1/3+2/5、5/8-1/4、2/3*3/4、3/5÷2/3。

解决方法:(1)1/3+2/5=5/15+6/15=11/15;(2)5/8-1/4=5/8-2/8=3/8;(3)2/3*3/4=2/3*3/4=6/12=1/2;(4)3/5÷2/3=3/5*3/2=9/10;2. 将以下分数转化为带分数形式:11/4、3/2、7/3、5/2。

分数的四则混合运算知识点

分数的四则混合运算知识点

分数的四则混合运算知识点分数是数学中常见的一种数形式,它由一个整数部分和一个分数部分组成。

分数可以表示部分整数,常见的分数形式包括真分数和假分数。

在数学中,我们经常需要对分数进行四则混合运算,即加法、减法、乘法和除法。

本文将介绍分数的四则混合运算的知识点和相关的运算规则。

一、分数的加法分数的加法是指两个分数相加的运算。

要将两个分数相加,首先要确保两个分数的分母相同,然后将分子相加,分母保持不变。

例如,计算1/4 + 1/3的结果,首先需要将两个分数的分母统一为12,然后相加分子,得到7/12。

如果两个分数的分母不相同,我们需要找到它们的最小公倍数,然后通过改变分数的形式,使它们的分母相同。

例如,计算1/4 + 2/3的结果,最小公倍数为12,我们可以将1/4改写为3/12,然后进行分数的加法,得到5/12。

二、分数的减法分数的减法是指两个分数相减的运算。

要将两个分数相减,和分数的加法类似,首先要确保两个分数的分母相同,然后将分子相减,分母保持不变。

例如,计算2/3 - 1/4的结果,首先需要将两个分数的分母统一为12,然后相减分子,得到5/12。

如果两个分数的分母不相同,我们需要找到它们的最小公倍数,然后通过改变分数的形式,使它们的分母相同。

例如,计算2/3 - 1/5的结果,最小公倍数为15,我们可以将2/3改写为10/15,然后进行分数的减法,得到7/15。

三、分数的乘法分数的乘法是指两个分数相乘的运算。

要将两个分数相乘,只需要将它们的分子相乘,分母相乘。

例如,计算3/4 * 2/5的结果,分子相乘得到6,分母相乘得到20,所以答案是6/20,可以进一步简化为3/10。

四、分数的除法分数的除法是指两个分数相除的运算。

要将一个分数除以另一个分数,只需要将它们的分子相除,分母相除。

例如,计算3/4 ÷ 1/2的结果,分子相除得到3,分母相除得到2,所以答案是3/2,可以进一步简化为1整又1/2。

分数混合运算知识点整理

分数混合运算知识点整理

分数混合运算知识点整理1、分数混合运算顺序与整数混合运算顺序相同,没有括号的先算(乘除),再算(加减);有括号的先算(括号里面的),再算(括号外面的)。

2、整数的运算律在分数运算中同样适用。

加法运算定律:加法交换律:a+b=b+a 加法结合律:a+b+c=a+(b+c) 乘法定律:乘法交换律:a×b=b×a 乘法结合律:a×b×c=a×(b×c) 乘法分配律:(a+b)×c=a×c+b×c或a×c+b×c=(a+b)×c减法定律:减法的性质a-b-c=a-(b+c)或a-(b+c) =a-b-c除法的特性:a÷b÷c=a÷(b×c)或a÷(b×c)= a÷b÷c3、用方程解决有关分数混合运算的实际问题,关键是找出(单位1),并把它设为未知数,再找出等量关系计算。

4、分数基本性质:分数的分子和分母同时乘以或除以相同的数(0除外)分数的大小不变。

5、分数加减法同分母分数相加减,分母不变,分子相加减,异分母分数相加减,要先通分为同分母分数再相加减。

二、分数混合运算的应用1、打折计算方法:现价÷原价=折扣2、一件商品打几折,求现价。

计算方法:原价×折数3、一件商品打几折,求原价。

计算方法:现价÷折数4、分数混合运算的应用题解答方法解答方法:1、找准单位1——并在题目的文字下面标注①总数量是单位“1”例如:小红看完整本书的,那么单位“1”是整本书的页码。

②原价就是单位“1”例如:笔记本电脑原价是300元,现在降价了,那么单位“1”是原价3000元。

③分数比率之前的“的”字前面的量是单位“1”例如:全校男生的人数是女生人数的几分之几,那么单位“1”是女生人数。

④一个东西比另一个东西多几分之几中“比”后面的东西是单位“1”例如:商店卖的苹果比橘子多,那么单位“1”是橘子数量。

新苏教版六年级上册数学-分数四则混合运算知识题型归纳总结

新苏教版六年级上册数学-分数四则混合运算知识题型归纳总结

分数四则混合运算(一)知识梳理一、分数四则运算的运算法则和运算顺序 1、运算法则(1)加减:同分母分数相加减,分母不变,分子相加减:异分母分数相加减,先通分,再分母不变,分子相加减。

(2)乘法:先约分,分子乘分子作为积的分子,分母乘分母作为积的分母 (3)除法:除以一个数就等于乘这个数的倒数 2、运算顺序(1)如果是同一级运算,一般按从左往右依次进行计算 (2)如果既有加减、又有乘除法,先算乘除法、再算加减 (3)如果有括号,先算括号里面的(4)如果符合运算定律,可以利用运算定律进行简算。

模块一 分数四则混合运算例1 计算,能用简便方法的要用简便方法。

454544÷-÷784341187÷+⨯ 2011103231322-⨯-2412743⨯+)( 52424587⨯÷ 32753275⨯÷⨯5216514371⨯-÷ 9519154÷+⨯ 149)]321(2[⨯-+变式1 计算,能用简便方法的要用简便方法。

100992727⨯- 72767276+÷+ )4183(83+÷1352213518135-⨯+⨯ 361)9212721(÷-+ 41)]8341(1[÷+- 46944695⨯+⨯ 2120)768364(÷+⨯ 109185)2153(43⨯-+÷简便计算类型归纳:模块二 分数四则混合运算实际运用例2 英才小学六年级共有200人,其中六(1)班人数占全年级的41 ,六(2)班人数占全年级的4011,六(1)班和六(2)班一共有多少人?例3 小马虎在计算一个数减去53的差除以4时漏看了小括号,这样算出的结果比正确结果大109,这个数是多少?例4 一袋大米,吃了81后,又买来15千克倒入袋中,结果比原来重了21,这袋大米现在有多少千克?变式2 食堂有43吨大米,前2天每天吃掉81吨,剩下的要3天吃完,平均每天可以吃多少吨?变式3 环卫工叔叔在小区里清理建筑垃圾,第一组有8人,共清理59吨,第二组有10人,共清理513吨。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分数混合运算的总结
一、运算
1.分数加减法:同分母分数相加减,分母不变,分子相加减,异分母分数相加减,要先通分为同分母分数再相加减。

同分母分数加减法
②法则:异分母分数相加减,先通分,然后按照同分母分数加减法进行计算。

注意:计算的结果,能约分的要约成最简分数,是假分数的一般要化成带分数或整数。

步骤:一看二通三算四约五化
验算:分数加减法的验算方法与整数加减法的验算相同。

例:
6562362633121=+=+=+ (和的分母是两个分母的积) 8786186814381=+=+=+ (分母是其中一个分母的)
2411249224924283121=+=+=+(分母是最小公倍数)
2计算技巧:能约分的,先约分再算。

分数的意义: 把单位“1”平均分成若干份,表示这样的一份或者几份的数,叫做
分数。

在分数里,表示把单位“1”平均分成多少份的数,叫做分母;
表示这样多少份的数,叫做分子;其中的一份,叫做分数单位。

分数混合运算顺序
1.含有同级运算的按从左到右的顺序计算;
2.含有两级运算的先算乘除,后算加减;
3.有括号的先算括号里的运算。

分数简便运算常见题型
涉及定律:乘法分配律逆向定律)
=

±


a
(c
b
b
c
a
基本方法:提取两个乘式中共有的因数,将剩余的因数用加减相连,同时添加括号,先行运算。

第四种:添加因数“1”
例题:1)759575⨯- 2)9216792⨯- 3)232331
17233114+⨯+⨯
持一致。

第六种:带分数化加式
例题:1)4161725
⨯ 2)351213⨯ 3)135127⨯
涉及定律:乘法分配律
基本方法:将带分数转化为整数部分和分数部分相加的形式,再按照乘法分配律计算。

第七种:乘法交换律与乘法分配律相结合
例题:1)
7
4
9
5

+
⨯2)
8
6
6
11

+
⨯3)
1
137
137
139⨯
+


5
9
32
1 5+
2
9
×
3
10
44-72×
5
12
2
3
+(
4
7

1
2

7
25。

相关文档
最新文档