FEKO引领智能网联汽车天线的创新设计

合集下载

微波仿真论坛_Feko 在天线罩设计中的应用概要

微波仿真论坛_Feko 在天线罩设计中的应用概要

媒体文章Feko在天线罩设计中的应用安世亚太(ANSYS-CHINA贾云峰天线罩是航空器中广泛采用的天线保护装置,其引入会影响天线的方向图等电磁特性。

由于天线罩仿真计算规模较大,因此通常软件难于解决。

Feko完美结合了矩量法和高频近似方法,在处理这类问题时游刃有余。

本文通过Feko对某型天线罩的分析展示了Feko在处理电大尺寸问题上的卓越能力。

在航空领域作为探测、测量、瞄准、通信的手段,雷达不可或缺,其性能至关重要,雷达天线就是决定雷达性能的关键部件之一。

雷达工作环境恶劣,其天线大多设有天线罩。

从理论上讲,作为雷达天线保护装置的天线罩对电磁波应该是完全透明的,但由于材料、工艺和结构的限制,这种透明是有限的,因此,必须在兼顾结构强度和稳定性要求的同时,考虑天线罩的电性能,使其尽量接近无罩状态的理想值。

采用仿真软件,构造虚拟样机并进行性能分析与优化设计,可以大大降低成本,加快研究进度。

FEKO是针对天线设计、天线布局、RCS分析等而开发的专业电磁场分析软件。

FEKO从严格的积分方程出发,以矩量法(MOM及多层快速多级子(MLFMM算法为基础,不需建立吸收边界条件,没有数值色散误差。

Feko完美结合了高频分析方法(物理光学PO,一致性绕射理论UTD,因此非常适合于分析天线设计、雷达散射截面(RCS、开域辐射、电磁兼容中的各类问题。

Feko还混合了有限元法(FEM:Finite Element Method,能更精确的处理多层复杂电介质、生物体比吸收率等问题。

对于电小结构的天线等电磁场问题,FEKO采用完全的矩量法进行分析,保证了结果的高精度。

对于具有电小与电大尺寸混合的结构,可以将问题分解后选用合适的混合方法(如用矩量法、多层快速多级子分析电小结构部分,而用高频方法分析电大结构部分,从而保证了高精度和高效率的完美结合。

采用以上的技术路线, Feko可以针对不同的具体问题选取不同的方法来进行快速精确的仿真分析,使得应用更加灵活,适用范围更广泛,突破了单一数值计算方法只能局限于某一类电磁问题的限制。

八木天线的FEKO仿真与优化

八木天线的FEKO仿真与优化

八木天线的FEKO仿真与优化Simulation And Optimization Of Yagi Antenna赵工(深圳518001)摘要:从折合振子开始,通过一步步增加无源振子,并使之成为发射器或引向器,并不断使用FEKO优化各无源振子长度及相邻振子之间的间距,使组成的八木天线达到最佳方向性和端射的最大增益。

关键字:FEKO折合振子无源发射器无源引向器FEKO优化Abstract:Added a parallel conductor rod to a folded dipole antenna will change the directivity and gain of the antenna.Step by step,more passive rods added in the antenna and constituted a traditional Yagi antenna.Optimized the distance of two rods and the length of every rod to get the best directivity and maximum gain.Key Words:FEKO,Yagi antenna,director elements,reflector,optimization1.概述:八木天线,是一种结构相对简单的方向性天线,常用作室外电视接收天线或测向天线。

因为是由日本东北大学的八木秀次和宇田太郞两人发明,所以被称为“八木宇田天线”,简称“八木天线”。

八木天线一般是由一根连接馈线的有源振子和多个无源振子平行排列组成,其中一根无源振子比有源振子略长,放在天线的一侧,称为反射器,而其他的无源振子则比有源振子略短,放在有源振子的另一侧,称为引向器。

加上反射器与引向器的八木天线,其中心频率点的输入阻抗比单独一根有源振子的阻抗大大降低,所以一般使用阻抗较高的折合振子作为有源振子。

FEKO教案设计模版

FEKO教案设计模版

FEKO 1一、简介FEKO 是美国EMSS 公司推出的一款针对天线设计、天线布局与电磁兼容性分析的专业电磁场分析软件。

FEKO 是以矩量法〔MOM〕为根底,承受多层快速多极子算法〔MLFMM〕,并与物理光学法〔PO〕、全都性绕射理论〔UTD〕等高频电磁分析方法相结合,在保证计算精度的同时,大大提高了计算速度,可以分析电大尺寸构造的电磁辐射、散射、EMC 等确定性问题。

FEKO 特点:具有多种算法可供选择,比方求解电小构造的天线,FEKO 可以承受完全的矩量法进展分析;对于具有电小与电大尺寸混合构造,既可以承受多层快速多极子,也可以承受混合算法——承受矩量法分析电小构造局部,而用高频方法分析电大构造局部。

菜单工具工具按 钮绘图窗口工程树窗口 细节窗口消息窗口FEKO 软件的界面包括 CADFEKO 、EDITFEKO 、POSTFEKO , 软件模块包括 PREFEKO 、FEKO 、OPTFEK 和 OTIMEFEKO 。

CADFEKO 主要用于创立几何模型,进展网格划分以及进展求解设置。

本课程中,重点对 CADFEKO 建立模型和网格,并在 POSTFEKO 中输出可视化结果的过程进展学习。

更多其他模块的使用方法请参考用户使用手册。

二、操作界面CADFEKO 的用户界面包括工具条、建模窗口、工程树、快捷工具、细节窗口和消息窗口。

cfx boffekcfs outCADFEKORUNFEKOPOSTFEKO建工程和设计结果可视化与输出增加分析和综合根本建模与求解参数设置添加鼓舞与求解项模型构造输出偏好设置建模变量设置GUI接口三、建仿照真过程1、建立工程文件和保存在CADFEKO 中建和保存后生成*.cfx 文件〔原始模型文件,包括几何模型、网格、求解设置、优化设置〕,*.cfm 文件〔保存网格数据〕和*.pre 文件〔PREFEKO 输入文件〕。

运行PREFEKO 又会生成*.fek 文件〔求解模型信息〕。

FEKO在太赫兹天线和成像仿真中的应用

FEKO在太赫兹天线和成像仿真中的应用
2 ,两束腰与椭球距离分别为 r1 和 r2 。天线设计时忽略分束器的影响,设计过程如下:
(1)给定成像空间分辨率 ,根据文献[5]计算 2 / 0.83 ; (2)根据成像距离和结构要求给定 r1 和 r2 ,由高斯理论计算 1 、 f1 、 f 2 和 ; (3)根据 1 设计高斯双模喇叭,收发双模喇叭完全相同,模型如图 3 所示。 表 1 给出了设计完成的太赫兹 SAR 天线参数值,图 4 给出了运用 FEKO 软件的 MLFMM 算法仿真计算的 双模喇叭在 0.2THz 时的远场幅度方向图。 根据方向图曲线, 计算可得双模喇叭在 0.2THz 时等效高斯束腰约为 1.66mm。
-1-
Altair 2015 技术大会论文集
2 FEKO 软件简介
FEKO 软件的核心算法是矩量法(MOM),不同于有限元法(FEM)和时域有限差分法(FDTD),MOM 法是基于严格的频域积分方程方法,无需进行模型的三维空间网格剖分,且无需建立吸收边界条件,这使得 FEKO 在建模计算方面相对比较简便。由于计算资源的限制,MOM 适用于非电大尺寸结构的全波求解。而对 于电大尺寸结构的仿真,FEKO 软件通过引入 GO、PO、UTD 等高频算法可以很好的解决。 针对非电大和电大尺寸混合结构求解的电磁仿真问题,FEKO 软件通过引入高低频混合法(MOM/PO、 MOM/GO、MOM/UTD)、多层快速多极子算法(MLFMM)、口面场激励结合高频电磁算法等可进行解决。 (1)高低频混合法:突破了单一数值计算方法难以解决诸如喇叭激励大型反射面等非电大尺寸结构与电 大尺寸结构共存电磁问题的局限。对于非电大尺寸结构,可以采用精确的全波 MOM 算法,而对于电大尺寸结 构可选用 GO、PO 等算法。 (2)MLFMM:MLFMM 算法源自 MOM,其采用分组逐层计算单元间的相互作用,加速迭代过程中的矩 阵和向量相乘,从而实现快速计算。采用 MLFMM 算法可以极大减少对内存的需求,同时计算速度得到明显提 高,使得一些电大尺寸物体的电磁问题能够得以精确求解。 (3)口面场激励结合高频电磁算法:诸如波束波导馈电反射面天线或透镜等复杂结构,可采用 MLFMM 或 PO 计算每一级反射面的辐射口面场分布,并用口面场馈电下一级反射面或透镜从而完成问题的求解。

EDITFEKO在阵列天线中的应用

EDITFEKO在阵列天线中的应用

EDITFEKO在阵列天线中的应用Application Of EDITFEKO In The Antenna ArraySimulation于嘉嵬周成哲(成都中电锦江、成都、610051)摘要: 大型阵列天线的建模和端口激励设置在仿真软件的GUI界面中完成通常困难并且耗时间,EDITFEKO是Altair公司FEKO软件的脚本控制模块。

应用EDITFEKO可快速实现阵列天线的快速建模设置。

本文应用EDITFEKO完成一大型阵列天线的仿真。

关键词:阵列天线FEKO快速建模EDITFEKOAbstract:Usually it's very difficult and time-consuming to model and set excitation port for large-scale antenna array by GUI of EM simulation. EDITFEKO is the FEKO component that is a text editor to edit and modify the model geometry and solution. EDITFEKO can be used to fast geometry modeling and electrical setting for large-scale antenna array. In this paper, one antenna array is fast modeled by EDITFEKO and analyzed by FEKO.Key words: Antenna array,FEKO, Fast modeling,EDITFEKO1 概述在FEKO中,EDITFEKO模块有着很广泛的应用,在处理一些阵列天线问题时可以给我们带来很多便利,解决一些比较复杂的建模问题。

尤其当阵列天线的单元数量较多时,在CADFEKO中处理数量庞大的天线单元往往显得力不从心,而EDITFEKO可以很方便的处理这类问题:通过简单的编程便可以复制任意数量的天线单元,使其按照我们需要的阵列形式进行排布;在天线单元上添加激励端口、对每个激励端口进行加权值和相位值的处理,可以快速的得到阵列天线模型,而在CADFEKO中,这往往需要耗费大量的时间。

《2024年基于人工智能的天线优化设计》范文

《2024年基于人工智能的天线优化设计》范文

《基于人工智能的天线优化设计》篇一一、引言随着科技的快速发展,人工智能()已经成为各个领域的焦点,其在通信、军事、医疗等众多领域均有着广泛的应用。

其中,在天线优化设计中,技术的运用已显示出其强大的潜力。

本篇论文旨在探讨基于人工智能的天线优化设计的方法及其在现实中的应用,分析其与传统天线设计方法的差异与优势。

二、传统天线设计方法的局限性传统天线设计方法主要依赖于工程师的经验和专业知识,通过反复试验和调整来达到设计目标。

然而,这种方法存在效率低下、成本高、设计周期长等局限性。

随着无线通信技术的快速发展,对天线性能的要求越来越高,传统的设计方法已难以满足日益增长的需求。

三、人工智能在天线优化设计中的应用针对传统天线设计方法的局限性,人工智能在天线的优化设计中展现出了独特的优势。

技术能够通过对大量数据的分析学习,找到传统方法无法发现的规律和模式,从而实现对天线性能的优化。

1. 深度学习在天线设计中的应用:深度学习算法可以通过对历史数据的分析学习,预测新天线的性能。

同时,深度学习还可以用于优化天线的结构,提高其辐射效率、增益等性能指标。

2. 遗传算法在天线优化中的应用:遗传算法是一种模拟自然进化过程的搜索算法,可以用于寻找最优的天线结构。

通过设定适应度函数,遗传算法可以在大量的设计方案中寻找到最优的解决方案。

四、基于人工智能的天线优化设计方法基于人工智能的天线优化设计方法主要包括以下步骤:1. 数据准备:收集历史天线的设计数据和性能数据,用于训练模型。

2. 模型训练:利用深度学习等技术,训练模型以找到天线结构与性能之间的关系。

3. 方案生成:利用训练好的模型,生成新的天线设计方案。

4. 方案评估与优化:通过仿真或实际测试,评估新设计方案的性能,利用遗传算法等优化方法对方案进行优化。

5. 迭代优化:将优化后的方案返回模型进行再次训练,以提高设计的准确性和效率。

五、实际应用与效果分析基于人工智能的天线优化设计方法在实际应用中取得了显著的成果。

FEKO_天线仿真应用_微带天线

FEKO_天线仿真应用_微带天线



删除释放出来的”substrate”模型;
Demo2: 定义介质层
• 进入”Construct” Tab, 点击”Planes/arrays”下拉按钮, 选择”Plane/ground”, 弹出”Plane/ground”对话框:
– Ground medium: planar multiplayer substrate – Layer1:
• Medium: substrate
– 点击”OK”
Demo1:建模-substrate底部面设定为PEC
• 在树型浏览器的” Construct”中, 选中 “substrate”,在”Details”中, 展开”Faces”, 选中右图所示的Faces:”Face6”, 点击鼠标右 键,弹出”Face properties”对话框:
• 计算完成之后, 进入”Solve/Run”, 点 击”PostFEKO”, 弹出”PostFEKO”.
DEMO1: 格林函数MOM+线端口
线端口:Wire Port
Demo2: 创建工程
• 把上述建立的工程” Microstrip_Patch_Antenna_Pin_Feed_Finite_Ground.cfx”另存为” Microstrip_Patch_Antenna_Pin_Feed_Infinite_Ground.cfx”; 进入左侧树型浏览器中的”Construct”, “展开Model->Geometry>antenna”, 选中”substrate”, 按住鼠标左键不放, 拖动鼠标位置 到”Geometry”节点, 释放鼠标左键, 在弹出的浮动窗口中选择”Move out”;
– – – – 选择: Continous (interpolated) range Start frequency: fmin End frequency: fmax 点击 OK

FEKO应用4_相控阵天线资料

FEKO应用4_相控阵天线资料

FEKO应用4_相控阵天线资料FEKO应用4:天线系列内容:线性偶极子相控阵一、模型描述工作频率:freq=1GHz天线:采用51源偶极子组成的偶极子阵列(垂直极化放置)天线振子长度:0.45*lam,沿X方向平行排列天线阵列单元排布规律参见文本格式文件[图2所示]:../started/arrayLayout.inc天线阵列单元的激励幅度和相位参见文本格式文件[图3所示]:../started/Mag_phase.inc注:上述两个文件中单元的幅度和相位排布要和坐标位置排列对应,如单元位置文件的第二行描述的是端口1,在单元激励幅度与相位文件的第二行对应的就是端口1对应的激励和相位。

注:该例子中天线阵列单元排布规律文件的坐标值是以m单位给定的,所以在CadFEKO中建模的时候,也是采用m的单位,这个要注意对应。

天线单元的复制和激励的添加均在EditFEKO中完成。

图1:阵列的模型示意图图2:天线阵列各单元的位置(X坐标、Y坐标、Z坐标),第一行是注释图3:天线阵列各单元的幅度和相位(幅度、相位组合1、相位组合2…)第一行描述主瓣指向角度与第二行均为注释行二、主要流程:启动CadFEKO,新建一个工程:dipole_array.cfx,在以下的各个操作过程中,可以即时保存做个的任何修正。

2.1 定义变量:在左侧树型浏览器中,双击“Variables”节点,依次定义如下变量: 工作频率:freq=1e9工作波长:lam=c0/freq2.2 模型建立:天线模型建立:在“Construct”菜单中,点击“Line”,弹出“Create line”对话框,定义线段的起始点坐标:Start Point (U:0.0, V: 0, N: -lam*0.225), End point (U:0.0, V:0.0, N:lam*0.225),Label: dipole,点击“Create”。

图4:天线模型建立2.3 天线端口设置:在左侧树型浏览器中,展开“Model->Geometry”节点,选中新建的“dipole”模型,在左下角的“details”树浏览器中展开“Wires”节点,选择“Wire1”(注:该名称在EditFEKO中进行模型复制平移-TG的时候要对应),点击鼠标右键选择“Create port->Wire port”,在弹出的“Create wire port” 对话框中,把“Location on wire”设置为“Middle”,Label:Port1(该端口的编号也和EditFEKO中应用端口复制平移TG命令用到的编号对应),点击“Create”按钮。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

FEKO引领智能网联汽车天线的创新设计
背景信息智能网联汽车又被称为互联网汽车,代表着汽车行业的未来发展方向,其设计思想是利用智能感知和控制,让乘车旅行更加安全,路线规划更加合理,同时引进新一代的互联网娱乐系统,让旅行更加充满乐趣。

根据中国汽车工程学会(SAE-China)的研究表明,智能网联汽车技术(V2X)的广泛应用可使普通道路的交通效率提高30%以上。

根据美国国家公路交通安全管理局(NHTSA)的官方数据显示,车辆与车辆通信技术(V2V)能预知即将发生的交通事故并对潜在危险发出实时预警,它的广泛应用能帮助避免高达81%轻微碰撞事故。

未来车联网将存在多种通信需求,涉及多种协议或标准,包括:车辆间通讯的DSRC(一种Wifi升级技术)或LTE-V标准、定位用的GPS协议、与互联网通信的WiMax或WLAN 标准。

这些标准或协议所采用的频段、抗干扰方式和传输距离等各不相同。

这就对车联网的接收设备尤其是车载天线提出了非常高的要求。

然而,现有的车载天线系统已经沿用多年,普遍存在频带单一、传输距离短、抗干扰能力弱和布局复杂等问题,将无法满足未来智能网联汽车在主动安全、智能规划和娱乐方面的需求。

因此,开发新型的车载天线已经成为汽车行业的共识。

技术挑战对于工作于不同频段的车联网通信系统,采用多个传统的硬质天线既不利于系统的兼容也不利于车体的空间布局。

在华东交通大学刘海文教授的指导下,刘凡所在团队结合未来车联网通信发展需求,在国内外天线小型化技术、共形天线和多频带天线的研究基础上设计了一款极具创新价值的新型车载天线五角星形状的柔性四频带天线。

该天线如下图所示:
该款天线具备以下重要特点:小型化、抗干扰能力强、支持多频带,同时其形状极为轻薄,被称为与车辆外观可以无缝匹配的共形天线。

该发明具备良好的应用前景。

然而,这一创新仍然需要克服电磁兼容的问题。

天线安装在车体上后,其辐射性能会受到汽车车身影响发生改变,由于天线的工作频段不同、安装位置不同,受车体的影响也不同。

相关文档
最新文档