20(删减总结版)12版中考数学精品课件(含10 11真题)第32讲概率初步(67张)

合集下载

新人教版九年级数学上册《概率初步》知识点

新人教版九年级数学上册《概率初步》知识点

第二十五章概率初步知识点总结25.1 概率1.随机事件(1)确定事件事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,必然事件和不可能事件都是确定的.(2)随机事件在一定条件下,可能发生也可能不发生的事件,称为随机事件.(3)事件分为确定事件和不确定事件(随机事件),确定事件又分为必然事件和不可能事件,其中,①必然事件发生的概率为1,即P(必然事件)=1;②不可能事件发生的概率为0,即P(不可能事件)=0;③如果A为不确定事件(随机事件),那么0<P(A)<1.随机事件发生的可能性(概率)的计算方法:2.可能性大小(1)理论计算又分为如下两种情况:第一种:只涉及一步实验的随机事件发生的概率,如:根据概率的大小与面积的关系,对一类概率模型进行的计算;第二种:通过列表法、列举法、树状图来计算涉及两步或两步以上实验的随机事件发生的概率,如:配紫色,对游戏是否公平的计算.(2)实验估算又分为如下两种情况:第一种:利用实验的方法进行概率估算.要知道当实验次数非常大时,实验频率可作为事件发生的概率的估计值,即大量实验频率稳定于理论概率.第二种:利用模拟实验的方法进行概率估算.如,利用计算器产生随机数来模拟实验.3.概率的意义(1)一般地,在大量重复实验中,如果事件A发生的频率mn会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率,记为P(A)=p.(2)概率是频率(多个)的波动稳定值,是对事件发生可能性大小的量的表现.(3)概率取值范围:0≤p≤1.(4)必然发生的事件的概率P(A)=1;不可能发生事件的概率P(A)=0.(4)事件发生的可能性越大,概率越接近与1,事件发生的可能性越小,概率越接近于0.(5)通过设计简单的概率模型,在不确定的情境中做出合理的决策;概率与实际生活联系密切,通过理解什么是游戏对双方公平,用概率的语言说明游戏的公平性,并能按要求设计游戏的概率模型,以及结合具体实际问题,体会概率与统计之间的关系,可以解决一些实际问题.25.2 用列举法求概率1.概率的公式(1)随机事件A的概率P(A)=事件A可能出现的结果数所有可能出现的结果数.(2)P(必然事件)=1.(3)P(不可能事件)=0.2. 几何概型的概率问题是指具有下列特征的一些随机现象的概率问题:设在空间上有一区域G,又区域g包含在区域G内(如图),而区域G与g都是可以度量的(可求面积),现随机地向G内投掷一点M,假设点M必落在G中,且点M落在区域G的任何部分区域g内的概率只与g的度量(长度、面积、体积等)成正比,而与g的位置和形状无关.具有这种性质的随机试验(掷点),称为几何概型.关于几何概型的随机事件“向区域G中任意投掷一个点M,点M落在G内的部分区域g”的概率P定义为:g的度量与G的度量之比,即P=g的测度G 的测度简单来说:求概率时,已知和未知与几何有关的就是几何概率.计算方法是长度比,面积比,体积比等.3.列举法和树状法(1)当试验中存在两个元素且出现的所有可能的结果较多时,我们常用列表的方式,列出所有可能的结果,再求出概率.(2)列表的目的在于不重不漏地列举出所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.(3)列举法(树形图法)求概率的关键在于列举出所有可能的结果,列表法是一种,但当一个事件涉及三个或更多元素时,为不重不漏地列出所有可能的结果,通常采用树形图.(4)树形图列举法一般是选择一个元素再和其他元素分别组合,依次列出,象树的枝丫形式,最末端的枝丫个数就是总的可能的结果n.(5)当有两个元素时,可用树形图列举,也可以列表列举.4.游戏公平性(1)判断游戏公平性需要先计算每个事件的概率,然后比较概率的大小,概率相等就公平,否则就不公平.(2)概率=所求情况数总情况数.25.3 利用频率估计概率1. 利用频率估计概率(1)大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.(2)用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.(3)当实验的所有可能结果不是有限个或结果个数很多,或各种可能结果发生的可能性不相等时,一般通过统计频率来估计概率.2.模拟实验(1)在一些有关抽取实物实验中通常用摸取卡片代替了实际的物品或人抽取,这样的实验称为模拟实验.(2)模拟实验是用卡片、小球编号等形式代替实物进行实验,或用计算机编号等进行实验,目的在于省时、省力,但能达到同样的效果.(3)模拟实验只能用更简便方法完成,验证实验目的,但不能改变实验目的,这部分内容根据《新课标》要求,只要设计出一个模拟实验即可.。

《概率》(第1课时)示范课教学PPT课件【初中数学人教版九年级上册】

《概率》(第1课时)示范课教学PPT课件【初中数学人教版九年级上册】
n
特别地:当A为必然事件时,P(A)=1;
当A为不可能事件时,P(A)=0.
例题分析,深化提高
例 掷一枚质地均匀的骰子,观察向上一面的点数,求下列事件 的概率:
(1)点数为2; (2)点数为奇数; (3)点数大于2且小于5. 解:掷一枚质地均匀的骰子时,向上一面的点数可能为1,
2,4,5,6,共6种.这些点数出现的可能性相等.
第二十五章 概率初步
25.1 随机事件与概率 25.1.2 概率(第1课时)
学习目标
1.了解概率的意义,渗透随机观念. 2.能计算一些简单随机事件的概率.
创设情境,引入新课
你如何用数学的眼光看待“杞人忧天”、“瓮中捉鳖”、“守株待兔” 这几个成语呢?
杞人忧天:比喻不必要的或缺乏根据的忧虑和担 心.从数学的角度看属于不可能事件.
6
出现的可能性大小.
合作探究,形成新知
问题4 掷一枚质地均匀的骰子,向上的一面的点数有几种 可能?出现向上一面的点数是1的可能性是多少?其他点数呢?
由于骰子形状规则、质地均匀,又是随机掷出,所以出现每 种结果的可能性大小相等,都是全部可能结果总数分之一.
概率的定义是什么? 概率:一般地,对于一个随机事件A,我们把刻画其发生可能 性大小的数值,称为随机事件A发生的概率.表示方法:事件A 的概率表示为P(A).
【数学探究】掷一枚质地均匀的骰子,随机出现点数,体现随 机事件的基本属实.
合作探究,形成新知
问题1至问题4有什么共同特点? 共同特点: (1)每一次试验中,可能出现的结果只有有限个; (2)每一次试验中,各种结果出现的可能性相等.
合作探究,形成新知
你能类似求“点数是1”的概率的方法,由特殊上升到 一般,总结出古典概型的概率的求法吗?

人教版九年级上册数学《概率》概率初步PPT教学课件(第2课时)

人教版九年级上册数学《概率》概率初步PPT教学课件(第2课时)
P(没有中奖).
(1).
练习巩固
练习3 已知:在一个不透明的口袋中装有仅颜色不同的红、白 两种小球,其中红球3个,白球n个,若从袋中任取一个球,摸出白 球的概率为四分之三,求n 的值.
解:P(摸出白球).
根据题意得n=9.
经检验,n=9是原分式方程的解.
做一做
小明和小刚想通过抽取扑克牌的方式来决定谁去看电影, 现有一副扑克牌,请你设计对小明和小刚都公平的抽签方案.
解:(1)指向红色有1种结果, P(指向红色) =.
变式训练
例1变式 如图,是一个转盘,转盘被分成两个扇形,颜色分为红 黄两种,红色扇形的圆心角为120度,指针固定,转动转盘后任其自由 停止,指针会指向某个扇形,(指针指向交线时当作指向右边的扇形 )求下列事件的概率:(1)指向红色;(2)指向黄色.
各边相等的圆内接多边形是正多边形吗?
以四边形为例
A
已知:如图, O 中内接四边形
ABCD ,
AB=BC=CD=DA .
B
求证:四边形ABCD是正方形.
D O
C
思考
已知:如图, O 中内接四边形ABCDE,
AB=BC=CD=DA .
A
D
求证:四边形ABCD是正方形.
证明: AB BC CD DA ,
你能设计出几种方案?
课堂小结
(1)在计算简单随机事件的概率时需要满足两个前 提条件:
每一次试验中,可能出现的结果只有有限个; 每一次试验中,各种结果出现的可能性相等. (2)通过对概率知识的实际应用,体现了数学知识 在现实生活中的运用,体现了数学学科的基础性.
作业
1.一个质地均匀的小正方体,六个面分别标有数字 “1”“1”“2”“4”“5”“5”.掷小正方体后, 观察朝上一面的数字.

25.2.1 用列表法求概率课件 2024-2025学年人教版数学九年级上册

25.2.1 用列表法求概率课件 2024-2025学年人教版数学九年级上册
A.


B.


1
2
1
(1,1)
(1,2)
2
(2,1)
(2,2)
C.




D.
由列表可知,两次摸出小球的号码之积共有
4种等可能的情况,
)
知识讲解
知识点2 用列表法求概率
【例 2】一只不透明的袋子中装有两个完全相同的小球,上面分别标有1,
2两个数字,若随机地从中摸出一个小球,记下号码后放回,再随机地摸
1
(1,1)
(2,1)
(3,1)
(4,1)
(5,1)
(6,1)
(3)至少有一个骰子的点数为2.
2
(1,2)
(2,2)
(3,2)
(4,2)
(5,2)
(6,2)
3
(1,3)
(2,3)
(3,3)
(4,3)
(5,3)
(6,3)
4
(1,4)
(2,4)
(3,4)
(4,4)
(5,4)
(6,4)
5
(1,5)
(2,5)
(B )
A.


B.


C.


D.


随堂练习
2. 某次考试中,每道单项选择题一般有4个选项,某同学有两道题不
会做,于是他以“抓阄”的方式选定其中一个答案,则该同学的这两
道题全对的概率是( B )
A.


B.


C.


D.


随堂练习
3. 在6张卡片上分别写有1-6的整数,随机地抽取一张后放回,再随机

【人教版】九上数学:《概率初步》全套教案

【人教版】九上数学:《概率初步》全套教案

第二十五章概率课题: 25.1 随机事件教学目标:知识技能目标了解必然发生的事件、不可能发生的事件、随机事件的特点.数学思考目标学生经历体验、操作、观察、归纳、总结的过程,发展学生从纷繁复杂的表象中,提炼出本质特征并加以抽象概括的能力.解决问题目标能根据随机事件的特点,辨别哪些事件是随机事件.情感态度目标引领学生感受随机事件就在身边,增强学生珍惜机会,把握机会的意识.教学重点:随机事件的特点.教学难点:判断现实生活中哪些事件是随机事件.教学过程<活动一>【问题情境】摸球游戏三个不透明的袋子均装有10个乒乓球.挑选多名同学来参加游戏.游戏规则每人每次从自己选择的袋子中摸出一球,记录下颜色,放回,搅匀,重复前面的试验.每人摸球5次.按照摸出黄色球的次数排序,次数最多的为第一名,其次为第二名,最少的为第三名.【师生行为】教师事先准备的三个袋子中分别装有10个白色的乒乓球;5个白色的乒乓球和5个黄色的乒乓球;10个黄色的乒乓球.学生积极参加游戏,通过操作和观察,归纳猜测出在第1个袋子中摸出黄色球是不可能的,在第2个袋子中能否摸出黄色球是不确定的,在第3个袋子中摸出黄色球是必然的.教师适时引导学生归纳出必然发生的事件、随机事件、不可能发生的事件的特点.【设计意图】通过生动、活泼的游戏,自然而然地引出必然发生的事件、随机事件和不可能发生的事件,不仅能够激发学生的学习兴趣,并且有利于学生理解.能够巧妙地实现从实践认识到理性认识的过渡.<活动二>【问题情境】指出下列事件中哪些是必然发生的,哪些是不可能发生的,哪些是随机事件?1.通常加热到100°C时,水沸腾;2.姚明在罚球线上投篮一次,命中;3.掷一次骰子,向上的一面是6点;4.度量三角形的内角和,结果是360°;5. 经过城市中某一有交通信号灯的路口,遇到红灯;6.某射击运动员射击一次,命中靶心;7.太阳东升西落;8.人离开水可以正常生活100天;9.正月十五雪打灯;10.宇宙飞船的速度比飞机快.【师生行为】教师利用多媒体课件演示问题,使问题情境更具生动性.学生积极思考,回答问题,进一步夯实必然发生的事件、随机事件和不可能发生的事件的特点.在比较充分的感知下,达到加深理解的目的.教师在学生完成问题后应注意引导学生发现在我们生活的周围大量地存在着随机事件.【设计意图】引领学生经历由实践认识到理性认识再重新认识实践问题的过程, 同时引入一些常识问题,使学生进一步感悟数学是认识客观世界的重要工具.<活动三>【问题情境】情境15名同学参加讲演比赛,以抽签方式决定每个人的出场顺序.签筒中有5根形状、大小相同的纸签,上面分别标有出场的序号1,2,3,4,5.小军首先抽签,他在看不到纸签上的数字的情况下从签筒中随机地抽取一根纸签.情境2小伟掷一个质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数.在具体情境中列举不可能发生的事件、必然发生的事件和随机事件.【师生行为】学生首先独立思考,再把自己的观点和小组其他同学交流,并提炼出小组成员列举的主要事件,在全班发布.【设计意图】开放性的问题有利于培养学生的发散性思维和创新思维,也有利于学生加深对学习内容的理解.<活动四>【问题情境】请你列举一些生活中的必然发生的事件、随机事件和不可能发生的事件.【师生行为】教师引导学生充分交流,热烈讨论.【设计意图】随机事件在现实世界中广泛存在.通过让学生自己找到大量丰富多彩的实例,使学生从不同侧面、不同视角进一步深化对随机事件的理解与认识.<活动五>【问题情境】李宁运动品牌打出的口号是“一切皆有可能”,请你谈谈对这句话的理解.【师生行为】教师注意引导学生独立思考,交流合作,提升学生对问题的理解与判断能力.【设计意图】有意识地引领学生从数学的角度重新审视现实世界,初步感悟辩证统一的思想.<活动六>【问题情境】归纳、小结布置作业设计一个摸球游戏,要求对甲乙公平.【师生行为】学生反思、讨论. 学生在设计游戏的过程中,进一步感悟随机事件的特点.作业的开放性为学生创设了更大的学习空间.【设计意图】课堂小结采取学生反思汇报形式,帮助学生形成较完整的认知结构.作业使课堂内容得以丰富和延展.教学设计说明现实生活中存在着大量的随机事件,而概率正是研究随机事件的一门学科.本课是“概率初步”一章的第一节课.教学中,教师首先以一个学生喜闻乐见的摸球游戏为背景,通过试验与分析,使学生体验有些事件的发生是必然的、有些是不确定的、有些是不可能的,引出必然发生的事件、随机事件、不可能发生的事件.然后,通过对不同事件的分析判断,让学生进一步理解必然发生的事件、随机事件、不可能发生的事件的特点.结合具体问题情境,引领学生设计提出必然发生的事件、随机事件、不可能发生的事件,具有相当的开放度,鼓励学生的逆向思维与创新思维,在一定程度上满足了不同层次学生的学习需要.做游戏是学习数学最好的方法之一,根据本节课内容的特点,教师设计了摸球游戏,力求引领学生在游戏中形成新认识,学习新概念,获得新知识,充分调动了学生学习数学的积极性,体现了学生学习的自主性.在游戏中参与数学活动,在游戏中分析、归纳、合作、思考,领悟数学道理.在快乐轻松的学习氛围中,显性目标和隐性目标自然达成,在一定程度上,开创了一个崭新的数学课堂教学模式.课题: 25.1.2 概率的意义教学目标:〈一〉知识与技能1.知道通过大量重复试验时的频率可以作为事件发生概率的估计值2.在具体情境中了解概率的意义〈二〉教学思考让学生经历猜想试验--收集数据--分析结果的探索过程,丰富对随机现象的体验,体会概率是描述不确定现象规律的数学模型.初步理解频率与概率的关系.〈三〉解决问题在分组合作学习过程中积累数学活动经验,发展学生合作交流的意识与能力.锻炼质疑、独立思考的习惯与精神,帮助学生逐步建立正确的随机观念.〈四〉情感态度与价值观在合作探究学习过程中,激发学生学习的好奇心与求知欲.体验数学的价值与学习的乐趣.通过概率意义教学,渗透辩证思想教育.【教学重点】在具体情境中了解概率意义.【教学难点】对频率与概率关系的初步理解【教具准备】壹元硬币数枚、图钉数枚、多媒体课件【教学过程】一、创设情境,引出问题教师提出问题:周末市体育场有一场精彩的篮球比赛,老师手中只有一张球票,小强与小明都是班里的篮球迷,两人都想去.我很为难,真不知该把球给谁.请大家帮我想个办法来决定把球票给谁.学生:抓阄、抽签、猜拳、投硬币,……教师对同学的较好想法予以肯定.(学生肯定有许多较好的想法,在众多方法中推举出大家较认可的方法.如抓阄、投硬币)追问,为什么要用抓阄、投硬币的方法呢?由学生讨论:这样做公平.能保证小强与小明得到球票的可能性一样大在学生讨论发言后,教师评价归纳.用抛掷硬币的方法分配球票是个随机事件,尽管事先不能确定“正面朝上”还上“反面朝上”,但同学们很容易感觉到或猜到这两个随机事件发生的可能性是一样的,各占一半,所以小强、小明得到球票的可能性一样大.质疑:那么,这种直觉是否真的是正确的呢?引导学生以投掷壹元硬币为例,不妨动手做投掷硬币的试验来验证一下.说明:现实中不确定现象是大量存在的,新课标指出:“学生数学学习内容应当是现实的、有意义、富有挑战的”,设置实际生活问题情境贴近学生的生活实际,很容易激发学生的学习热情,教师应对此予以肯定,并鼓励学生积极思考,为课堂教学营造民主和谐的气氛,也为下一步引导学生开展探索交流活动打下基础.二、动手实践,合作探究1.教师布置试验任务.(1)明确规则.把全班分成10组,每组中有一名学生投掷硬币,另一名同学作记录,其余同学观察试验必须在同样条件下进行.(2)明确任务,每组掷币50次,以实事求是的态度,认真统计“正面朝上”的频数及“正面朝上”的频率,整理试验的数据,并记录下来..2.教师巡视学生分组试验情况.注意:(1).观察学生在探究活动中,是否积极参与试验活动、是否愿意交流等,关注学生是否积极思考、勇于克服困难.(2).要求真实记录试验情况.对于合作学习中有可能产生的纪律问题予以调控.3.各组汇报实验结果.由于试验次数较少,所以有可能有些组试验获得的“正面朝上”的频率与先前的猜想有出入.提出问题:是不是我们的猜想出了问题?引导学生分析讨论产生差异的原因.在学生充分讨论的基础上,启发学生分析讨论产生差异的原因.使学生认识到每次随机试验的频率具有不确定性,同时相信随机事件发生的频率也有规律性,引导他们小组合作,进一步探究.解决的办法是增加试验的次数,鉴于课堂时间有限,引导学生进行全班交流合作.4.全班交流.把各组测得数据一一汇报,教师将各组数据记录在黑板上.全班同学对数据进行累计,按照书上P140要求填好25-2.并根据所整理的数据,在25.1-1图上标注出对应的点,完成统计图.表25-2n图25.1-1想一想1(投影出示). 观察统计表与统计图,你发现“正面向上”的频率有什么规律?注意学生的语言表述情况,意思正确予以肯定与鼓励.“正面朝上”的频率在0.5上下波动.想一想2(投影出示)随着抛掷次数增加,“正面向上”的频率变化趋势有何规律?在学生讨论的基础上,教师帮助归纳.使学生认识到每次试验中随机事件发生的频率具有不确定性,同时发现随机事件发生的频率也有规律性.在试验次数较少时,“正面朝上”的频率起伏较大,而随着试验次数的逐渐增加,一般地,频率会趋于稳定,“正面朝上”的频率越来越接近0.5. 这也与我们刚开始的猜想是一致的.我们就用0.5这个常数表示“正面向上”发生的可能性的大小.说明:注意帮助解决学生在填写统计表与统计图遇到的困难.通过以上实践探究活动,让学生真实地感受到、清楚地观察到试验所体现的规律,即大量重复试验事件发生的频率接近事件发生的可能性的大小(概率).鼓励学生在学习中要积极合作交流,思考探究.学会倾听别人意见,勇于表达自己的见解.为了给学生提供大量的、快捷的试验数据,利用计算机模拟掷硬币试验的课件,丰富学生的体验、提高课堂教学效率,使他们能直观地、便捷地观察到试验结果的规律性--大量重复试验中,事件发生的频率逐渐稳定到某个常数附近.其实,历史上有许多著名数学家也做过掷硬币的试验.让学生阅读历史上数学家做掷币试验的数据统计表(看书P141表25-3).表25-3通过以上学生亲自动手实践,电脑辅助演示,历史材料展示, 让学生真实地感受到、清楚地观察到试验所体现的规律,大量重复试验中,事件发生的频率逐渐稳定到某个常数附近,即大量重复试验事件发生的频率接近事件发生的可能性的大小(概率).同时,又感受到无论试验次数多么大,也无法保证事件发生的频率充分地接近事件发生的概率.在探究学习过程中,应注意评价学生在活动中参与程度、自信心、是否愿意交流等,鼓励学生在学习中不怕困难积极思考,敢于表达自己的观点与感受,养成实事求是的科学态度.5.下面我们能否研究一下“反面向上”的频率情况?学生自然可依照“正面朝上”的研究方法,很容易总结得出:“反面向上”的频率也相应稳定到0.5.教师归纳:(1)由以上试验,我们验证了开始的猜想,即抛掷一枚质地均匀的硬币时,“正面向上”与“反面向上”的可能性相等(各占一半).也就是说,用抛掷硬币的方法可以使小明与小强得到球票的可能性一样.(2)在实际生活还有许多这样的例子,如在足球比赛中,裁判用掷硬币的办法来决定双方的比赛场地等等.说明:这个环节,让学生亲身经历了猜想试验——收集数据——分析结果的探索过程,在真实数据的分析中形成数学思考,在讨论交流中达成知识的主动建构,为下一环节概率意义的教学作了很好的铺垫.三、评价概括,揭示新知问题1.通过以上大量试验,你对频率有什么新的认识?有没有发现频率还有其他作用? 学生探究交流.发现随机事件的可能性的大小可以用随机事件发生的频率逐渐稳定到的值(或常数)估计或去描述.通过猜想试验及探究讨论,学生不难有以上认识.对学生可能存在语言上、描述中的不准确等注意予以纠正,但要求不必过高.归纳:以上我们用随机事件发生的频率逐渐稳定到的常数刻画了随机事件的可能性的大小.那么我们给这样的常数一个名称,引入概率定义.给出概率定义(板书):一般地,在大量重复试验中,如果事件A 发生的频率nm会稳定在某个常数p 附近,那么这个常数p 就叫做事件A 的概率(probability ), 记作P (A )= p.注意指出:1.概率是随机事件发生的可能性的大小的数量反映.2.概率是事件在大量重复试验中频率逐渐稳定到的值,即可以用大量重复试验中事件发生的频率去估计得到事件发生的概率,但二者不能简单地等同.想一想(学生交流讨论)问题2.频率与概率有什么区别与联系?从定义可以得到二者的联系, 可用大量重复试验中事件发生频率来估计事件发生的概率.另一方面,大量重复试验中事件发生的频率稳定在某个常数(事件发生的概率)附近,说明概率是个定值,而频率随不同试验次数而有所不同,是概率的近似值,二者不能简单地等同.说明:猜想试验、分析讨论、合作探究的学习方式十分有益于学生对概率意义的理解,使之明确频率与概率的联系,也使本节课教学重难点得以突破.为下节课进一步研究概率和今后的学习打下了基础. 当然,学生随机观念的养成是循序渐进的、长期的.这节课教学应把握教学难度,注意关注学生接受情况.四.练习巩固,发展提高.学生练习1.书上P143.练习.1. 巩固用频率估计概率的方法.2.书上P143.练习.2 巩固对概率意义的理解.教师应当关注学生对知识掌握情况,帮助学生解决遇到的问题.五.归纳总结,交流收获:1.学生互相交流这节课的体会与收获,教师可将学生的总结与板书串一起,使学生对知识掌握条理化、系统化.2.在学生交流总结时,还应注意总结评价这节课所经历的探索过程,体会到的数学价值与合作交流学习的意义.【作业设计】(1)完成P144 习题25.1 2、4(2)课外活动分小组活动,用试验方法获得图钉从一定高度落下后钉尖着地的概率.【教学设计说明】这节课是在学习了25.1.1节随机事件的基础上学习的,学生通过大量重复试验,体验用事件发生的频率去刻画事件发生的可能性大小,从而得到概率的定义.1.对概率意义的正确理解,是建立在学生通过大量重复试验后,发现事件发生的频率可以刻画随机事件发生可能性的基础上.结合学生认知规律与教材特点,这节课以用掷硬币方法分配球票为问题情境,引导学生亲身经历猜测试验—收集数据—分析结果的探索过程.这符合《新课标》“从学生已有生活经验出发,让学生亲身经历将实际问题抽象为数学模型并进行解释与应用的过程”的理念.贴近生活现实的问题情境,不仅易于激发学生的求知欲与探索热情,而且会促进他们面对要解决的问题大胆猜想,主动试验,收集数据,分析结果,为寻求问题解决主动与他人交流合作.在知识的主动建构过程中,促进了教学目标的有效达成.更重要的是,主动参与数学活动的经历会使他们终身受益.2.随机现象是现实世界中普遍存在的,概率的教学的一个很重要的目标就是培养学生的随机观念.为了实现这一目标,教学设计中让学生亲身经历对随机事件的探索过程,通过与他人合作探究,使学生自我主动修正错误经验,揭示频率与概率的关系,从而逐步建立正确的随机观念,也为以后进一步学习概率有关知识打下基础.3.在教学中,本课力求向学生提供从事数学活动的时间与空间,为学生的自主探索与同伴的合作交流提供保障,从而促进学生学习方式的转变,使之获得广泛的数学活动经验.教师在学习活动中是组织者、引导者与合作者,应注意评价学生在活动中参与程度、自信心、是否愿意交流等,给学生以适时的引导与鼓励.课题: 25.2 列举法求概率教学目标:知识与技能目标学习用列表法、画树形图法计算概率,并通过比较概率大小作出合理的决策。

人教版九年级数学上册《用列举法求概率》概率初步PPT精品教学课件

人教版九年级数学上册《用列举法求概率》概率初步PPT精品教学课件

板书设计
把两枚骰子分别记为第1枚和第2枚,这样就可以用下面的方形表格列举出
所有可能出现的结果.
解决问题
两枚骰子分别记为第1枚和第2枚,所有可能的结果列表如下:
(1)满足两枚骰子点数相同(记为事件A)的结果有6个
6
1
(表中斜体加粗部分),所以P(A)= 36 = 6.
(2)满足两枚骰子的和是9(记为事件B)的结果有4个
2.如图所示的扇形图给出的是地球上海洋、陆地的表面积约占地球表面积的
百分比. 若宇宙中有一块陨石落在地球上,则它落在海洋中的概率是
%.
达标检测
1.“同吋掷两枚质地均匀的骰子,至少有一枚骰子的点数是3”的概率为


1
A.
3
11
B.
36
5
C.
12
1
D.
4
2.不透明的袋子中装有红球1个、绿球1个、白球2个,这些球除颜色外无
出场,由于人为指定出场顺序不合规,要重新抽签确定出场顺序,则抽签后三个
运动员出场顺序都发生变化的概率是
.
达标检测
5.一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色外完全相同,
2
3
其中红球1个,若从中随机摸出一个球,这个球是白球的概率为 .
(1)求袋子中白球的个数;
(2)随机摸出一个球后放回并搅匀,再随机摸出一个球,请用画树状图
5
,全是辅音字母的结果有两个,
12
2
1
即BCH,BDH,所以P(三个辅音)= = .
12
6
P(一个元音)=
练习巩固
1.经过某十字路口的汽车,可能直行,也可能左转或右转. 如果这三种可能

九年级数学概率初步PPT优秀课件

九年级数学概率初步PPT优秀课件

(1)一般地,在大量重复试验中,如果事件 A发生的频率 会稳定在某个常数p附近 ,那么,这个常数p就叫作事件A的概率 。事件A发生的频率是:在 n次试验中 ,事件A发生的频数m与 n 的比。
(2)求一个事件的概率的基本方法是:进行大量 的重复试验,用这个事件发生的频率近似地 作 为它的概率
(3)对于某些随机事件也可以不通过重复试验, 而只通过一次试验中可能出现的结果的分析 来计算概率。例如:掷两枚硬币,求两枚硬 币正面向上的概率。
随机事件:海市蜃楼,守株待兔。 不可能事件:海枯石烂,画饼充饥,拔苗助长。
2、在一个不透明的口袋中装有除颜色外其余都 相同的1个红球,2个黄球,如果每一次先从袋中 摸出1个球后不再放回,第二次再从袋中摸出1个 球,那么两次都摸到黄球的概率是多少?
(2004.海口)
3、你喜欢玩游戏吗?现请你玩一个转盘游戏,如 图的两个转盘中指针落在每一个数字的机会均等, 现同时自由转动甲、乙两个转盘,转盘停止后,指 针各指向一个数字,用所指的两个数学作乘积, (1)列举所有可能得到的数字之积。 (2)求出数字之积为奇数的概率 (2005.黄冈)
THANKS
FOR WATCHING
演讲人: XXX
PPT文档·教学课件
3、在什么条件下适用P(A)= 得到 事件的概率?
一般地,如果在一次试验中,有n种可能的 结果,并且它们发生的可能性都相等, 事件A包含其中m种结果,那么事件A发 生的概率为P(A)=
4、如何用列举法求概率?
当事件要经过一步完成时列举出所有可 能 情况,当事件要经过两步完成时用列 表 法,当事件要经过三步以上完成时用 树形图法。
1、下列事件中哪个是必然事件? (A)打开电视机正在播广告。 (B)明天是晴天. (C)已知:3>2,则3c>2c 。 (D)从装有两个红球和一个白球的口袋

2020年中考数学必考考点专题29概率含解析

2020年中考数学必考考点专题29概率含解析

专题29 概率1.确定事件(1)必然发生的事件:在一定的条件下重复进行试验时,在每次试验中必然会发生的事件。

(2)不可能发生的事件:有的事件在每次试验中都不会发生,这样的事件叫做不可能的事件。

2.随机事件:在一定条件下,可能发生也可能不放声的事件,称为随机事件。

(1)有些事情我们能确定他一定会发生,这些事情称为必然事件; (2)有些事情我们能肯定他一定不会发生,这些事情称为不可能事件; 必然事件和不可能事件都是确定的(3)有很多事情我们无法肯定他会不会发生,这些事情称为不确定事件 2.概率的统计定义:一般地,在大量重复试验中,如果事件A 发生的频率mn会稳定在某个常数p 附近,那么这个常数p 就叫做事件A 的概率。

即()p A P = . 概率各种情况出现的次数某一事件发生的次数=3.确定事件概率(1)当A 是必然发生的事件时,P (A )=1 (2)当A 是不可能发生的事件时,P (A )=0 4.古典概型的定义某个试验若具有:①在一次试验中,可能出现的结构有有限多个;②在一次试验中,各种结果发生的可能性相等。

我们把具有这两个特点的试验称为古典概型。

5.古典概型的概率的求法一般地,如果在一次试验中,有n 种可能的结果,并且它们发生的可能性都相等,事件A 包含其中的m 中结果,那么事件A 发生的概率为P (A )=nm 6.列表法:用列出表格的方法来分析和求解某些事件的概率的方法叫做列表法。

7.列表法的应用场合当一次试验要设计两个因素, 并且可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法。

专题知识回顾8.树状图法:就是通过列树状图列出某事件的所有可能的结果,求出其概率的方法叫做树状图法。

9.运用树状图法求概率的条件当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率。

10.利用频率估计概率在同样条件下,做大量的重复试验,利用一个随机事件发生的频率逐渐稳定到某个常数,可以估计这个事件发生的概率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
结合近年中考试题分析,概率初步的内容考查主要有以 下特点:
1.概率与统计紧密相连,概率知识相对少一些,但考查 的灵活性较强.从题型上看,不仅出现在填空题、选择题中, 更多地以解答题的形式出现.
2.从试题内容上看,由原来单一地求概率到利用概率解 决实际问题,并且到概率知识与方程相结合的综合性试题, 选材贴近生活,越来越新.
重转一次,在该游戏中乙获胜的概率是( )
(A) 1 (B) 1 (C) 3 (D) 5
4
2
4
6
【解析】选C.由题意知共有16种情况,其中偶数有12种情况, 则所求的概率为 3故, 选C.
4
1.(2010·湛江中考)下列成语中描述的事件必然发生的是
()
(A)水中捞月
(B)瓮中捉鳖
(C)守株待兔
(D)拔苗助长
9
3
3
9
【解析】选A.∵上、下午各选一个馆共有9种选法. ∴小明恰好上午选中台湾馆,下午选中法国馆这两个场馆的概 率是 1 .
9
3.(2010·日照中考)如图,有三条绳子穿过一片木板,姊妹 两人分别站在木板的左、右两边,各选该边的一段绳子.若每 边每段绳子被选中的机会相等,则两人选到同一条绳子的概 率为( )
(A) 1 (B)1 (C) 2 (D) 2
9
3
3
9
【解析】选A.设A代表孔氏南宗家庙,B代表烂柯山,C代表龙游 石窟,D代表江郎山,E代表三衢石林、F代表开化根博园. 画树状图可得
共9种可能结果,符合题意的只有1种,故概率为 1 . 9
6.(2011·绍兴中考)在一个不透明的盒子中装有8个白球,若
(A) 1 (B)1 (C) 1 (D) 1
2
3
6
9
【解析】选B.设三条绳子从上到下依次为A、B、C、列表可 得
3 = 1. 93 选到同一条绳子的概率为
4.(2010·聊城中考)一个材质均匀的正方体的六个面上分别 标有字母A、B、C,其展开图如图所示,随机抛掷此正方 体,A面朝上的概率是_______.
【解析】(1)结合两个统计图所提供的信息得参观展馆的员工 总数为:20÷10%=200(人),所以参观B展馆的人数为 200-(20+30+20+80)=50(人);参观C展馆的人数的百分比 为:30÷200=15%.补全的统计图如下:
P(小明获胜)= 6 = 3 16 8
P(小华获胜)= 6 = 3 16 8
5.(2011·衢州中考)5月19日为中国旅游日,衢州推出“读万 卷书,行万里路,游衢州景”的主题系列旅游惠民活动,市 民王先生准备在优惠日当天上午从孔氏南宗家庙、烂柯山、 龙游石窟中随机选择一个地点;下午从江郎山、三衢石林、开
化根博园中随机选择一个地点游玩,则王先生恰好上午选中 孔氏南宗家庙,下午选中江郎山这两个地点的概率是( )
简单事件的概率的计算
简单事件的概率的求法法可以将复杂的问题化繁为简,化 难为易,这种方法能把所有可能的结果一一列举出来,从而 能较简便地求出事件发生的概率.
【例2】(2010·益阳中考)有三张大小、形状完全相同的卡片, 卡片上分别写有数字1、2、3,从这三张卡片中随机同时抽取 两张,用抽出的卡片上的数字组成两位数,这个两位数是偶 数的概率是______.
【解析】一个正方体的六个面朝上的概率都为 1标,有A的面
6
有两个,概率为 1 2 = 1 .
答案: 1
63
3
5.(2010·成都中考)某公司组织部分员工到一博览会的A、B、 C、D、E五个展馆参观,公司所购门票种类、数量绘制成的条 形和扇形统计图如图所示.
请根据统计图回答下列问题: (1)将条形统计图和扇形统计图在图中补充完整; (2)若A馆门票仅剩下一张,员工小明和小华都想要,他们决 定采用抽扑克的方法来确定,规则是:“将同一副牌中分别 标有数字1、2、3、4的四张牌洗匀后,背面朝上放置在桌面 上,每人随机抽一次且一次只抽一张;一人抽后记下数字, 将牌放回洗匀背面朝上放置在桌面,再由另一人抽.若小明抽 得的数字比小华抽得的数字大,门票给小明,否则给小华.” 请用画树形图或列表的方法计算出小明和小华获得门票的概 率,并说明这个游戏规则对双方是否公平.
(A)打雷后会下雨
(B)明天是晴天
(C) 1小时等于60分钟
(D)下雨后有彩虹
【解析】选C.A、B、D都是不确定事件,C是确定事件.
2.(2011·湖州中考)下列事件中,必然事件是( ) (A)掷一枚硬币,正面朝上 (B)a是实数,|a|≥0 (C)某运动员跳高的最好成绩是20.1米 (D)从车间刚生产的产品中任意抽取一个,是次品 【解析】选B.必然事件是一定会发生的事件,A是随机事件, B是必然事件,C是不可能事件,D是随机事件.
【解析】选B.因为瓮中捉鳖是一定能实现的事件.
2.(2010·义乌中考)小明打算暑假里的某天到上海世博会一 日游,上午可以先从台湾馆、香港馆、韩国馆中随机选择一个 馆, 下午再从加拿大馆、法国馆、俄罗斯馆中随机选择一个 馆游玩.则小明恰好上午选中台湾馆,下午选中法国馆这两个 场馆的概率是( )
(A) 1 (B)1 (C) 2 (D) 2
16 8
8
(2)由(1)列表的结果可知:小莉去的概率为 3哥,哥去的概率
为 5,所以游戏不公平,对哥哥有利.
8
8
游戏规则改为:若和为偶数则小莉得5分,若和为奇数则哥哥
得3分,则游戏是公平的.
秉持“十分满意”的服务理念,由经过“五项安全认证”的专职司机,遵循30项标准化服务流程,配合“365全天候快速响应机制”,为用户提供智能、有趣、优质、风尚的出行体验。正式上岗前,所 有司机还需接受完善的岗前及在职培训,内容覆盖交通法规基本常识、安全驾驶、服务礼仪、洁净服务标准等,最终通过“笔试+路试”双重考核方可上岗接单。 如祺出行APP端已设置号码保护、紧急求助按钮、紧急联系人、行程录音、司乘保险等多重安全保障。 如祺出行源于广汽集团的优质产品基因,积极探索智能网联汽车技术与定制车型,主张智享出行、乐享生活,希望能让科技赋能我们的生活与城市,让更多人愿意选择共享出行。如祺出 行:/newscenter/2020-06/24/c_1126157746.htm 如祺出行APP端已设置号码保护、紧急求助按钮、紧急联系人、行程录音、司乘保险等多重安全保障。 秉持“十分满意”的服务理念,由经过“五项安全认证”的专职司机,遵循30项标准化服务流程,配合“365全天候快速响应机制”,为用户提供智能、有趣、优质、风尚的出行体验。, 如祺出行采用多款广汽集团旗下优质车型,网络预约出租汽车运输证、网络预约出租车经营许可证等证照齐全,车载一键报警装置、车辆GPS定位等基础功能完备,合规运营出行
1.牢固掌握概率的求法. 2.注重概率在实际问题中的应用. 3.加大概率与方程相结合的综合性试题的训练力度,注 重能力培养.
事件的分类
事件可以分为确定事件和随机事件,其中确定事件又可以分 为必然事件和不可能事件,随机事件的发生的可能性有大小 之分,当大到一定发生时,就转变为必然事件;当小到一定 不发生时,就转变为不可能事件.
【思路点拨】
【自主解答】从这三张卡片中随机同时抽取两张,用抽出的 卡片上的数字组成两位数,共有12,21,13,31,23,32六种 情况,其中是偶数的有两种,因此这个两位数是偶数的概率 是2 = 1 . 63
1 3 答案:
4.(2010·福州中考)有人预测2010年南非世界杯足球赛巴西 国家队夺冠的概率是70%,他们的理解正确的是( ) (A)巴西国家队一定会夺冠 (B)巴西国家队一定不会夺冠 (C)巴西国家队夺冠的可能性比较大 (D)巴西国家队夺冠的可能性比较小 【解析】选C.概率为70%,表示夺冠的可能性大,但是不一 定一定会夺冠或一定不会夺冠,而是说明夺冠的几率大.
【例1】(2011·武汉中考)下列事件中,为必然事件的是( ) (A)购买一张彩票,中奖 (B)打开电视,正在播放广告 (C)抛掷一枚硬币,正面向上 (D)一个袋中只装有5个黑球,从中摸出一个球是黑球
【思路点拨】 【自主解答】选D.从装有5个黑球的袋中摸出的球只能是黑球.
1.(2010·晋江中考)下列事件中,是确定事件的是( )
【例】(2010·兰州中考)小莉的爸爸买了今年七月份去上海 看世博会的一张门票,她和哥哥两人都很想去观看,可门票 只有一张,读九年级的哥哥想了一个办法,拿了八张扑克牌, 将数字为1,2,3,5的四张牌给小莉,将数字为4,6,7,8 的四张牌留给自己,并按如下游戏规则进行:小莉和哥哥从 各自的四张牌中随机抽出一张,然后将抽出的两张扑克牌数 字相加,如果和为偶数,则小莉去;如果和为奇数,则哥哥 去.
(1)请用树形图或列表的方法求小莉去上海看世博会的概率; (2)哥哥设计的游戏规则公平吗?若公平,请说明理由;若不 公平,请你设计一种公平的游戏规则. 【思路点拨】
【自主解答】(1)所有可能的结果如表: 一共有16种结果,每种结果出现的可能性相同.
和为偶数的概率为 6 =所3,以小莉去上海看世博会的概率为 3 .
3.(2011·盐城中考)“任意打开一本200页的数学书,正好是 第35页”,这是_______事件 (选填“随机”或“必然”). 【解析】必然事件是在一定条件下必然会发生的事件;随机 事件是在一定条件下可能发生也可能不发生的事件.任意打开 一本200页的书,可能正好是第35页,也可能不是. 答案:随机
二者获胜的概率相同,所以规则对双方公平.
6.(2010·西宁中考)现有分别标有数字-1,1,2的3个质地和 大小完全相同的小球.若3个小球都装在一个不透明的口袋中, 从中随机摸出一个小球后不放回,其标号作为一次函数 y=kx+b的系数k.再随机摸出一个,其标号作为一次函数 y=kx+b的系数b. (1)利用树形图或列表法(只选一种),表示一次函数y=kx+b可 能出现的所有结果,并写出所有等可能结果; (2)求出一次函数y=kx+b的图象不经过第四象限的概率.
相关文档
最新文档