2014年全国初中数学联赛试题及答案(修正版)
2014年全国初中数学联合竞赛试题及答案

2014年全国初中数学联合竞赛预赛试题参考答案(八年级组)第一试一、选择题1.C 2.D 3.A 4.B 5.B (5.由11=x 和1121444k k k k x x -⎛--⎫⎡⎤⎡⎤=+-- ⎪⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭可得11x =,22x =,33x =,44x =,51x =,62x =,73x =,84x =,……因为2014=4×503+2,所以2014x =2) 二、填空题6.20°7.-48.919.5(小正方体个数最少情况如图所示(图中数字表示该位置小正方体的个数)所以最少为5块)10.23(对角四边形的面积之和相等)第二试一、(1)证明:∵2233x x y y =+=+,,∴22x y x y -=-∴ 1 ()x y x y +=≠……………………………………………………6分(2)解:∵2233x x y y =+=+,,∴323233x x x y y y =+=+,, 43243233x x x y y y =+=+,,54354333x x x y y y =+=+,,∴5543433223223339339x y x x y y x x x x y y y y +=+++=++++++3+ 22712712x x y y =+++223()2()1921192119()4261x y x y x y x y =+++=+++=++=.………15分 二、解:方程两边分解因式得 (2x +y )(x +y )=2×19×53.………………………………5分不妨先设x ≥y ≥1,则有2x +y ≥x +2y >x +y >1. 由此,只有三种情况: 253,2106,210238,219,2 2.x y x y x y x y x y x y+=+=+=⎧⎧⎧⎨⎨⎨+=+=+=⎩⎩⎩或或…………………………10分当253,238,x y x y +=⎧⎨+=⎩时,解得15,23,x y =⎧⎨=⎩当2106,21007,219,2 2.x y x y x y x y +=+=⎧⎧⎨⎨+=+=⎩⎩或时,不符合题意.故原方程的正整数解为15,23.x y =⎧⎨=⎩………………………………………………15分俯视图2 12三、解:设本次比赛钓到的鱼的总数是x 条.则钓到3条或3条以上的人共钓到鱼的条数为:()()14+26=16x x -⨯⨯-,钓到()16x -条的人数为165x -;…………………………………………………………5分 类似地,钓到10条或10条以下的人共钓到鱼的条数为:()()114+12213=81x x -⨯⨯+-,钓到这些鱼的人数为815x -;………………10分 根据题意,可知参加本次比赛的总人数得,()167465x -+++=()814215x -+++,解得x =541.因此,本次比赛共钓到541条鱼.……………………………………………………15分四、证明:∵AD 为△ABC 的角平分线,∴12∠=∠.(1)∵CE ∥AD ,∴1E ∠=∠,23∠=∠.∴3E ∠=∠. ∴AC =AE .∵F 为EC 的中点,∴AF ⊥BC . ∴90AFE FAD ∠=∠=︒.∴AF ⊥AD .…………………………………………………………10分(2)延长BA 与MN 延长线于点E ,过B 作BF ∥AC 交NM 延长线于点F .∴3C ∠=∠,4F ∠=∠.∵M 为BC 的中点∴BM =CM . 在△BFM 和△CNM 中,4,3,,F C BM CM ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△BFM ≌△CNM (AAS ). ∴BF =CN . ∵MN ∥AD ,∴1E ∠=∠,245∠=∠=∠. ∴5E F ∠=∠=∠. ∴AE =AN ,BE =BF .设CN =x ,则BF =x , AE =AN =AC -CN =10-x ,BE =AB +AE =6+10-x . ∴6+10-x =x .解得 x =8.∴CN =5.5,AN =2. ………………………………………………25分2014年全国初中数学联合竞赛预赛试题参考答案(九年级组)第一试一、选择题A MDCBNE F35 41 21.B 2.D 3.A 4.D 5.C 6.B 二、填空题7.1792(两边同时乘以a +b +c )8.-8 9.25-=x (提示:[]x ≤x <[]x +1,原方程化为[]x ≤2[]x +27<[]x +1,解得[]x =-3,代入原方程求出x .)10.(1,21)(1011,51-)(提示:除直角三角形ABC 斜边的中点外,直线AB 上与该中点关于斜边上高的垂足对称的点也满足题意)第二试一、解:设甲仓库供应给A 校,B 校,C 校的电脑分别为x 台,y 台,()[]y x -12+台,则乙仓库供应给A 校,B 校,C 校的电脑分别为(9-x )台,(15-y )台,()[]y -15x -9-20+台, 设总运输费为S 元,则S=10x +5y +6()[]y x -12++4(9-x )+8(15-y )+15()[]y -15x -9-20+,得S=15x +6y +48=9x +6(x +y )+48,…………………………………………………………10分 又0≤x ≤9,0≤y ≤15,4≤x +y ≤12,S≥9×0+6×4+48=72,………………………………………………………………………15分 此时,x =0,y =4,又()[]y x -12+=8,故甲仓库供应给A 校,B 校,C 校的电脑分别为0台,4台,8台.……………………20分二、(1)证明:由AB =AD ,知∠ABD =∠ADB =α,由等弧对等圆周角知,∠ACD =∠ACB =α.令∠DFC =β则∠BAD =∠BFC =2β,故∠ABD +∠ADB +∠BAD =α+α+2β=180°,于是α+β=90°,∠CDF =90°.又∠FBC =180°-α-2β=α=∠FCB ,所以FB =FC …………………………10分 (2)解:设边BC 的中点为M ,连接FM . 易知△FCD ≌△FBM ,BC =2CD 又AC 是∠BCD 的角平分线,由角平分线定理,得2==CDBCDE BE …………………25分三、解:点A 的坐标为(-1,0),点B 的坐标为(3,0),点C 坐标为(0,﹣3).∵y =x 2﹣2x ﹣3=(x ﹣1)2﹣4, ∴顶点D 的坐标为(1,﹣4);点E 的坐标为(1,0).………………………………5分 (1)当点M 在对称轴右侧时.①若点N 在射线CD 上,如图,延长MN 交y 轴于点F ,过点M 作MG ⊥y 轴于点G . ∵∠CMN =∠BDE ,∠CNM =∠BED =90°, ∴△MCN ∽△DBE ,∴21==DE BE MN CN , ∴MN =2CN . 设CN =a ,则MN =2a .∵∠CDE =∠DCF =45°,∴△CNF ,△MGF 均为等腰直角三角形, ∴NF =CN =a ,CF =a , ∴MF =MN +NF =3a ,∴MG =FG =223a , ∴CG =FG ﹣FC =22a ,∴M (223a ,﹣3+22a ).代入抛物线解得a =927,∴M (37,﹣920); ………………………………………………………………13分②若点N 在射线DC 上,如图,MN 交y 轴于点F ,过点M 作MG ⊥y 轴于点G . ∵∠CMN =∠BDE ,∠CNM =∠BED =90°, ∴△MCN ∽△DBE ,∴21==DE BE MN CN , ∴MN =2CN .设CN =a ,则MN =2a . ∵∠C DE =45°,∴△CNF ,△MGF 均为等腰直角三角形, ∴NF =CN =a ,CF =a , ∴MF =MN ﹣NF =a ,∴MG =FG =22a , ∴CG =FG +FC =223a ,∴M (22a ,﹣3+223a ).代入抛物线y =(x ﹣3)(x +1),解得a =5, ∴M (5,12);………………………………………………………………………………21分 (2)当点M 在对称轴左侧时. ∵∠CMN =∠BDE <45°, ∴∠MCN >45°,而抛物线左侧任意一点K ,都有∠KCN <45°,∴点M 不存在.…………………………24分综上可知,点M 坐标为(37,﹣920)或(5,12).……………………………………25分2014年全国初中数学联赛(初三组)初赛试卷(3月7日下午4:00—6:00)班级:: 姓名: 成绩:第2题图DACB第4题图DACB考生注意:1、本试卷共五道大题,全卷满分140分;2、用圆珠笔、签字笔或钢笔作答;3、解题书写不要超出装订线;4、不能使用计算器。
2014年全国初中数学联赛(初三组)初赛试卷参考答案及评分细则(详解)

D A C B2014年全国初中数学联赛(初三组)初赛试卷参考答案及评分细则(3月7日下午4:00—6:00)班级:: 姓名:成绩:考生注意:1、本试卷共五道大题,全卷满分140分;2、用圆珠笔、签字笔或钢笔作答;3、解题书写不要超出装订线;4、不能使用计算器。
一、选择题(本题满分42分,每小题7分)本题共有6个小题,每题均给出了代号为A、B、C、D的四个答案,其中有且只有一个是正确的。
将你选择的答案的代号填在题后的括号内。
每小题选对得7分;不选、错选或选出的代号字母超过一个(不论是否写在括号内),一律得0分。
1、某件商品的标价为13200元,若以8折降价出售,仍可获利10%(相对于进货价),则该商品的进货价是( B )A、9504元B、9600元C、9900元D、10000元解析:设该商品的进货价为x元,由题意得xx%108.013200=-⨯解得:9600=x答:该商品的进货价为9600元。
故选B2、如图,在凸四边形ABCD中,BDBCAB==,︒=∠80ABC,则ADC∠等于( C )A、︒80B、︒100C、︒140D、︒160解析:∵BDBCAB==∴BDCC∠=∠,ADBA∠=∠∵︒=∠+∠+∠+∠+∠360ABCAADBBDCC∴()︒=︒-︒=∠+∠280803602BDABDC∴︒=∠+∠140BDCADB,即︒=∠140ADC故选C第2题图3、如果方程()()0422=+--m x x x 的三根可以作为一个三角形的三边之长,那么,实数m 的取值范围是( D )A 、40≤mB 、3≥mC 、4≥mD 、43≤m解析:∵方程()()0422=+--m x x x 的有三根∴21=x ,042=+-m x x 有根,方程042=+-m x x 的0416≥-=∆m ,得4≤m 又∵原方程有三根,且为三角形的三边长∴有2132=+x x x ,2132=-x x x ,由根系关系得2432 =+x x ,m x x =32成立,; 当232 x x -时,两边平方得:()4432232 x x x x -+代入相应数据得4416 m -,解得,3 m ∴43≤m 故选D4、如图,梯形ABCD 中,CD AB //,︒=∠60BAD ,︒=∠30ABC ,6=AB 且CD AD =,那么BD 的长度是( C )A 、7B 、4C 、72D 、24解析:过点C 作AD CE //交AB 于E ,过点D 作AB DF ⊥于F 则四边形ADCE 是菱形,︒=∠=∠60A CEB ∵︒=∠30ABC ∴BE AE DC EC AD 21==== ∵6=AB∴2====AE DC EC AD ∴1=AF ,3=DF ,5=BF 由勾股定理得:72=BD 故选C5、如果02014 a -,那么|2014||2014|||+-+++-a x x a x 的最小值是( A ) A 、2014 B 、2014+a C 、4028 D 、4028+a解析:本题分类讨论∵02014 a - ∴a a 20142014-- 当2014-a x 时|2014||2014|||+-+++-a x x a x20142014-+----=a x x x a 20142014340282 a x a ---=当20142014-≤- x a|2014||2014|||+-+++-a x x a xF E 第4题图DACB()()()20142014+-++---=a x x a xx -=当a x ≤-2014时|2014||2014|||+-+++-a x x a x()()()20142014+-+++--=a x x a x 4028+=x当x a ≤时|2014||2014|||+-+++-a x x a x()()()20142014+-+++-=a x x a x 20144028402823 a a x +≥+-=综上|2014||2014|||+-+++-a x x a x 的最小值为2014 6、方程()y x y xy x +=++322的整数解有( D ) A 、3组B 、4组C 、5组D 、6组解析:∵()y x y xy x +=++322 ∴()()()1833222=++-+-y x y x则符合条件的整数解为:⎩⎨⎧==03y x ,⎩⎨⎧==30y x ,⎩⎨⎧=-=21y x ,⎩⎨⎧-=-=11y x ,⎩⎨⎧-==12y x ,⎩⎨⎧==00y x二、填空题(本大题满分28分,每小题7分)1、如图,扇形AOB 的圆心角︒=∠90AOB ,半径为5,正方形CDEF 内接于该扇形,则正方形CDEF 的边长为 .答案:10解析:过点O 作EF OH ⊥于点H ,交DC 于点K ,连接OF ∵OH 过圆心 ∴FH EH =∵四边形CDEF 是正方形 ∴DC OH ⊥,CK DK =∴OCK ∆是等腰直角三角形,KC OK = 设x CF =,则x KH =,2xCK OK HF === 在OHF Rt ∆中,222OF HF OH =+ 即222522=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛+x x x ,解得10=xH G KD FE O AC B即CF 的长为10 故答案为:102、已知四个自然数两两的和依次从小到大的次序是:23,28,33,39,x ,y ,则____=+y x . 答案:93解析:设四个自然数满足D C B A∴D C D B C B C A B A +++++ 且D C D B D A C A B A +++++ 又∵23=+B A ,28=+C A ∴512=++=+++C B A C A B A ∴33=+C B∴9=A ,14=B ,19=C ,30=D ∴443014=+=x ,493019=+=y ∴93=+y x 故答案为:933、已知6=-y x ,922=-+-y xy xy x ,则22y xy xy x ---的值是 . 答案:4解析:∵6=-y x ∴()()6=-+y x yx ∴yx y x -=+6∵()9=+-y x yx∴966=-yx ,即966=-y x ∴()4966622=⨯=--=---y x yx y xy xy x 4、有质地均匀的正方体形的红白骰子各一粒,每个骰子的六个面分别写有1、2、3、4、5、6的自然数,随机掷红、白两粒骰子各一次,红色骰子掷出向上面的点数比白色骰子掷出向上面的点数小的概率是 .答案:125 解析:机会均等的可能共有36种,其中当红色骰子掷出上面的点数为1时,白色骰子掷出上面的点数比它的可能有5种;当红色骰子掷出上面的点数为2时,白色骰子掷出上面的点数比它的可能有4种;当红色骰子掷出上面的点数为3时,白色骰子掷出上面的点数比它的可能有3种;当红色骰子掷出上面的点数为4时,白色骰子掷出上面的点数比它的可能有4种;当红色骰子掷出上面的点数为5时,白色骰子掷出上面的点数比它的可能有1种。
2014年全国初中数学联赛参考答案

2014年全国初中数学联合竞赛(初二组)初赛试题参考答案及评分标准说明:评阅试卷时,请依据本评分标准.第一试,选择题和填空题只设7分和0分两档;第二试各题,请严格按照本评分标准规定的评分档次给分,不要再增加其他中间档次.如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数.一、选择题(本题满分42分,每小题7分)1、C 2、B 3、B 4、D 5、D 6、C二、填空题(本题满分28分,每小题7分)1、41n - 2、4 3、1 4、3三、(本大题满分20分)解不等式13|2|-<-x x解:(1)当2<x 时,不等式化为132-<-x x ,解此不等式得43>x ,故此时243<<x ;(2)当2≥x 时,不等式化为132-<-x x ,解此不等式得21->x ,此时2≥x .(15分) 综上所述,不等式的解为:34x >.(20分) 四、(本大题满分25分)如图,在等腰梯形ABCD 中,//AD BC ,DE BC ⊥于E .若3,5DE BD ==,求梯形ABCD 的面积.解:在直角△BDE 中,由勾股定理有:422=-=DE BD BE ;(5分) 过D 作AC 的平行线交BC 的延长线于F ,连接DF 、CF ,则ACFD 是平行四边形,故CF =AD ,DF AC BD ==,所以DE 是等腰△DBF 底边上的高,故28BF BE ==(15分) 所以1221)(21=⋅=+=DE BF DE AD BC S ABCD (25分).五、(本大题满分25分)已知正整数a 、b 满足332)(b a b a +=+,试求a 、b 的值.解:由已知得b a b ab a +=+-22,(5分)则2)1()1()(222=-+-+-b a b a .(10分)因为a 、b 均为正整数,故01≥-a ,01≥-b ,(1)当a=b 时,1)1()1(22=-=-b a ,即a =b=2;(15分)(2)当a b ≠时,2()1a b -=,从而2(1)1a -=且2(1)0b -=;或者2(1)0a -=且2(1)1b -=;所以,2,1a b ==,或者1,2a b ==.(20分)综上所述,所求,a b 的值是:2a b ==;或者1,2a b ==;或者2,1a b ==.(25分)。
2014年全国初中数学竞赛试题参考答案及评分标准

2014年全国初中数学竞赛试题参考答案及评分标准一、选择题(共10小题,每小题6分,满分60分.) 1.已知x 、y 、z 满足2x =3y-x =5z+x ,则5x-yy+2z的值为( )(A )1 (B )13 (C )-13 (D )12【答】B .解:设 2x =3y-x =5z+x =1k 则x=2k ,y-z=3k ,z+x=5k ,即x=2k ,y=6k ,z=3k 。
所以5x-y y+2z =5·2k-6k 6k+6k =13,故选B.2.已知等腰三角形的周长为12,则腰长a 的取值范围是( )(A )a >3 (B )a <6 (C )3<a <6 (D )4<a <7 【答】C.解:腰长为a ,则底长为12-2a ,由2a >12-2a 及12-2a >0可得3<a <6 故选C. 3.设 21x x 、 是一元二次方程032=-+x x的两根,则 1942231+-x x 等于( )(A )-4 (B )8 (C )6 (D )0 【答】D.解:将21x x 、代入方程,将目标整式降次,利用两根之和求解.4.如果a b ,为给定的实数,且1a b <<,那么1121a a b a b ++++,, ,这四个数据的平均数与中位数之差的绝对值是( ) (A )1 (B )214a - (C )12 (D )14【答】D.解:由题设知,1112a a b a b <+<++<+,所以这四个数据的平均数为1(1)(1)(2)34244a ab a b a b+++++++++=, 中位数为 (1)(1)44224a ab a b++++++=, 于是 4423421444a b a b ++++-=. 故选D.5. 如图,正方形A BCD 和EFGC 中,正方形EFGC 的边长为a ,用a 的代数式表示阴影部分△AEG 的面积为( )(A )232a (B )223a (C )212a (D )2a【答】C .6.若△ABC 的三条边a,b,c 满足关系式a 4+b 2c 2- a 2c 2-b 4=0,则△ABC 的形状是( ) (A )等腰三角形 (B )等边三角形(C )直角三角形 (D )等腰三角形或直角三角形 【答】D.解法一:原方程左边变形为 (a 4-b 4)+(b 2c 2-a 2c 2)=0, (a 2+b 2)(a 2-b 2)+(b 2-a 2+)c 2=0,∴(a 2-b 2)(a 2+b 2-c 2)=0, ∴a=b 或c 2=a 2+b 2.∴△ABC 为等腰三角形或直角三角形. 解法二:应用配方法a 4+b 2c 2- a 2c 2-b 4=0, (a 4-a 2c 2)-(-b 2c 2+b 4)=0 (a 2-22c )2 -(22c -b 2)2=0 ∴(a 2-b 2)(a 2+b 2-c 2)=0, ∴a 2-b 2=0,或a 2+b 2-c 2=0. ∴a=b 或c 2=a 2+b 2. ∴△ABC 为等腰三角形或直角三角形. 故选D.7.一批志愿者组成了一个“爱心团队”,以募集爱心基金.第一个月他们就募集到资金1万元,随着影响的扩大,第n (n ≥2)个月他们募集到的资金都将会比上个月增加20%,则当该月所募集到的资金首次突破10万元时(参考数据: 51.22.5≈,61.2 3.0≈,71.2 3.6≈),相应的n 的值为( )(A )11 (B )12 (C )13 (D )14 【答】D.8.如图:点D 是△ABC 的边BC 上一点,若∠CAD = ∠DAB = 60°,AC = 3 ,AB = 6,则AD 的长度是( )(A )2 (B )2.5 (C )3 (D )3.5 【答】A.解:如图,作BE ⊥AC 交CA 的延长线于E ,在Rt △ABE 中, ∠BAE= 60° ∴∠ABE= 30° ∴AE=21AB = 3 由勾股定理得BE =33∴21BCA s △AC ·BE =329 ∵∠CAD = ∠DAB = 60°同理得△ADC 和△ABD 中AD 边上的高分别是323和33 ∴=CD A s △343AD ,=B DA s △323AD 又CD A s △+B DA s △=BC A s △ ∴343AD + 323AD =329 ∴AD = 2 故选A9.若m=20132+20132×20142+20142,则m ( )(A )是完全平方数,还是奇数 (B )是完全平方数,还是偶数 (C )不是完全平方数,但是奇数 (D )不是完全平方数,但是偶数 【答】A.解 :原式=20132-2×2013×2014+20142+2×2013×2014+20132×20142=(2013-2014)2+2×2013×2014+(2013×2014)2=1+2×2013×2014+(2013×2014)2=(2013×2014+1)2所以(2013×2014+1)2是一个完全平方数,末尾数字是9,所以也是奇数. 故选A. 10、设非零实数a ,b ,c 满足2302340a b c a b c ++=⎧⎨++=⎩,,则222ab bc caa b c ++++的值为( ) (A )12-(B )0 (C )12(D )1 【答】A.解:由已知得(234)(23)0a b c a b c a b c ++=++-++=,故 2()0a b c ++=.于是 2221()2ab bc ca a b c ++=-++, 所以22212ab bc ca a b c ++=-++.故选A.二、填空题(共5小题,每小题6分,满分30分)11.已知整数1234a a a a ⋅⋅⋅,,,,满足下列条件:10a =,21|1|a a =-+,32|2|a a =-+,43|3|a a =-+,…,依次类推,则2012a 的值为 .【答】1006-12.如图,四边形ABCD 中,AB =BC ,∠ABC =∠CDA =90°, BE ⊥AD 于点E ,且四边形ABCD 的面积为8,则BE = .【答】解:.如图,可以通过旋转变换将△ABE 绕点B 逆时针旋转90°,得到△CBF.证明出四边形BFDE 是正方形,且它的面积是8,则边长是或者过点B 作BF ⊥BE ,交DC 延长线于F. 证明△ABE ≌△CBF ,其余思路同上。
2014年全国初中数学联合竞赛试题参考答案及评分标准

2014年全国初中数学联合竞赛试题参考答案及评分标准说明:评阅试卷时,请依据本评分标准.第一试,选择题和填空题只设7分和0分两档;第二试各题,请按照本评分标准规定的评分档次给分.如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数.第一试一、选择题:(本题满分42分,每小题7分) 1.已知,x y 为整数,且满足22441111211()()()3x y x y x y++=--,则x y +的可能的值有( ) A. 1个 B. 2个 C. 3个 D. 4个【答】 C.由已知等式得2244224423x y x y x y xy x y x y++-⋅=⋅,显然,x y 均不为0,所以x y +=0或32()xy x y =-.若32()xy x y =-,则(32)(32)4x y +-=-.又,x y 为整数,可求得12,x y =-⎧⎨=⎩,或21.x y =-⎧⎨=⎩,所以1x y +=或1x y +=-.因此,x y +的可能的值有3个.2.已知非负实数,,x y z 满足1x y z ++=,则22t xy yz zx =++的最大值为 ( ) A .47 B .59 C .916 D .1225【答】 A.21222()2()()4t xy yz zx x y z yz x y z y z =++=++≤+++212(1)(1)4x x x =-+-2731424x x =-++2734()477x =--+,易知:当37x =,27y z ==时,22t xy yz zx =++取得最大值47.3.在△ABC 中,AB AC =,D 为BC 的中点,BE AC ⊥于E ,交AD 于P ,已知3BP =,1PE =,则AE = ( )A.2BCD【答】 B .因为A D B C ⊥,BE AC ⊥,所以,,,P D C E 四点共圆,所以12BD BC BP BE ⋅=⋅=,又2B C B D =,所以BD =DP =.又易知△AEP ∽△BDP ,所以AE PEBD DP =,从而可得PE AE BD DP =⋅==.4.6张不同的卡片上分别写有数字2,2,4,4,6,6,从中取出3张,则这3张卡片上所写的数字可以作为三角形的三边长的概率是 ( )A .12 B .25 C .23 D .34【答】 B.若取出的3张卡片上的数字互不相同,有2×2×2=8种取法;若取出的3张卡片上的数字有相同的,有3×4=12种取法.所以,从6张不同的卡片中取出3张,共有8+12=20种取法.要使得三个数字可以构成三角形的三边长,只可能是:(2,4,4),(4,4,6),(2,6,6),(4,6,6),由于不同的卡片上所写数字有重复,所以,取出的3张卡片上所写的数字可以作为三角形的三边长的情况共有4×2=8种.因此,所求概率为82205=. 5.设[]t 表示不超过实数t 的最大整数,令{}[]t t t =-.已知实数x 满足33118x x +=,则1{}{}x x+= ( )A .12 B.3 C.1(32D .1 【答】 D . 设1x a x +=,则32223211111()(1)()[()3](3)x x x x x a a x x x x x+=++-=++-=-,所以2(3)18a a -=,因式分解得2(3)(36)0a a a -++=,所以3a =. 由13x x +=解得1(32x =,显然10{}1,0{}1x x <<<<,所以1{}{}x x+=1. 6.在△ABC 中,90C ∠=︒,60A ∠=︒,1AC =,D 在BC 上,E 在AB 上,使得△ADE 为等腰直角三角形, 90ADE ∠=︒ ,则BE 的长为 ( )A.4- B.2 C.11)2D1【答】 A.过E 作EF BC ⊥于F ,易知△ACD ≌△DFE ,△EFB ∽△ACB .设EF x =,则2BE x =,22AE x =-,)DE x =-,1DF AC ==,故2221)]x x +=-,即2410x x -+=.又01x <<,故可得2x =故24BE x ==-二、填空题:(本题满分28分,每小题7分) 1.已知实数,,a b c 满足1a b c ++=,1111a b c b c a c a b++=+-+-+-,则abc =____.【答】 0. 由题意知1111121212c a b++=---,所以 (12)(12)(12)(12)(12)(12)(12)(12)(12)a b b c a c a b c --+--+--=---整理得22()8a b c abc -++=,所以abc =0.A2.使得不等式981715n n k <<+对唯一的整数k 成立的最大正整数n 为 . 【答】144. 由条件得7889k n <<,由k 的唯一性,得178k n -≤且189k n +≥,所以2118719872k k n n n +-=-≥-=,所以144n ≤.当144n =时,由7889k n <<可得126128k <<,k 可取唯一整数值127. 故满足条件的正整数n 的最大值为144.3.已知P 为等腰△ABC 内一点,AB BC =,108BPC ∠=︒,D 为AC 的中点,BD 与PC 交于点E ,如果点P 为△ABE 的内心,则PAC ∠= .【答】48︒.由题意可得PEA PEB CED AED ∠=∠=∠=∠,而180PEA PEB AED ∠+∠+∠=︒,所以60PEA PEB CED AED ∠=∠=∠=∠=︒, 从而可得30PCA ∠=︒.又108BPC ∠=︒,所以12PBE ∠=︒,从而24ABD ∠=︒. 所以902466BAD ∠=︒-︒=︒, 11()(6630)1822PAE BAD CAE ∠=∠-∠=︒-︒=︒,所以183048PAC PAE CAE ∠=∠+∠=︒+︒=︒.4.已知正整数,,a b c 满足:1a b c <<<,111a b c ++=,2b ac =,则b = .【答】36.设,a c 的最大公约数为(,)a c d =,1a a d =,1c c d =,11,a c 均为正整数且11(,)1a c =,11a c <,则2211b ac d a c ==,所以22|d b ,从而|d b ,设1b b d =(1b 为正整数),则有2111b a c =,而11(,)1a c =,所以11,a c 均为完全平方数,设2211,a m c n ==,则1b mn =,,m n 均为正整数,且(,)1m n =,m n <.又111a b c ++=,故111()111d a b c ++=,即22()111d m n mn ++=.注意到222212127m n mn ++≥++⨯=,所以1d =或3d =.若1d =,则22111m n mn ++=,验算可知只有1,10m n ==满足等式,此时1a =,不符合题意,故舍去.若3d =,则2237m n mn ++=,验算可知只有3,4m n ==满足等式,此时27,36,48a b c ===,符合题意.因此,所求的36b =.第二试D一、(本题满分20分)设实数,a b 满足22(1)(2)40a b b b a +++=,(1)8a b b ++=,求2211a b +的值.解 由已知条件可得222()40a b a b ++=,()8ab a b ++=.设a b x +=,ab y =,则有2240x y +=,8x y +=, ……………………5分 联立解得(,)(2,6)x y =或(,)(6,2)x y =. ……………………10分 若(,)(2,6)x y =,即2a b +=,6ab =,则,a b 是一元二次方程2260t t -+=的两根,但这个方程的判别式2(2)24200∆=--=-<,没有实数根; ……………………15分若(,)(6,2)x y =,即6a b +=,2ab =,则,a b 是一元二次方程2620t t -+=的两根,这个方程的判别式2(6)8280∆=--=>,它有实数根.所以2222222222211()262282a b a b ab a b a b a b ++--⨯+====. ……………………20分二.(本题满分25分)如图,在平行四边形ABCD 中,E 为对角线BD 上一点,且满足ECD ACB ∠=∠,AC 的延长线与△ABD 的外接圆交于点F . 证明:DFE AFB ∠=∠.证明 由ABCD 是平行四边形及已知条件知ECD ACB DAF ∠=∠=∠. ……………………5分又A 、B 、F 、 D 四点共圆,所以BDC ABD AFD ∠=∠=∠,所以△ECD ∽△DAF , ……………………15分 所以ED CD ABDF AF AF==. ……………………20分 又EDF BDF BAF ∠=∠=∠,所以△EDF ∽△BAF ,故DFE AFB ∠=∠. ……………………25分三.(本题满分25分)设n 是整数,如果存在整数,,x y z 满足3333n x y z xyz =++-,则称n 具有性FBD质P .在1,5,2013,2014这四个数中,哪些数具有性质P ,哪些数不具有性质P ?并说明理由.解 取1x =,0y z ==,可得33311003100=++-⨯⨯⨯,所以1具有性质P .取2x y ==,1z =,可得33352213221=++-⨯⨯⨯,所以5具有性质P .…………………5分 为了一般地判断哪些数具有性质P ,记333(,,)3f x y z x y z xyz =++-,则33(,,)()3()3f x y z x y z xy x y xyz =++-+- 3()3()()3()x y z x y z x y z xy x y z =++-+++-++=3()3()()x y z x y z xy yz zx ++-++++2221()()2x y z x y z xy yz zx =++++--- 2221()[()()()]2x y z x y y z z x =++-+-+-. 即(,,)f x y z 2221()[()()()]2x y z x y y z z x =++-+-+- ①……………………10分不妨设x y z ≥≥,如果1,0,1x y y z x z -=-=-=,即1,x z y z =+=,则有(,,)31f x y z z =+; 如果0,1,1x y y z x z -=-=-=,即1x y z ==+,则有(,,)32f x y z z =+; 如果1,1,2x y y z x z -=-=-=,即2,1x z y z =+=+,则有(,,)9(1)f x y z z =+; 由此可知,形如31k +或32k +或9k (k 为整数)的数都具有性质P .因此,1,5和2014都具有性质P . ……………………20分 若2013具有性质P ,则存在整数,,x y z 使得32013()3()()x y z x y z xy yz zx =++-++++.注意到3|2013,从而可得33|()x y z ++,故3|()x y z ++,于是有39|()3()()x y z x y z xy yz zx ++-++++,即9|2013,但2013=9×223+6,矛盾,所以2013不具有性质P . ……………………25分。
2014年全国初中数学联赛试题及答案(修正版)

第一试
一、选择题:
1 1 1 1 21 1 1.已知 x,y 为整数,且满足(x+y) (x2+y2)=-3(x4-y4),则 x+y 的可能的值有( )
A. 1 个
B. 2 个
C. 3 个
D. 4 个
2.已知非负实数 x,y,z 满足 x+y+z=1,则 t=2xy+yz+2xz 的最大值为(
3 | f (x, y, z) (x y z)3 3(x y z)(xy yz zx) , 则 3 | (x y z)3 从 而
,
3 | (x y z) ,进而可知9 | f (x, y, z) (x y z) 3 3(x y z)(xy yz zx) .
综合可知:当且仅当 n 9k 3 或 n 9k 6 ( k 为整数)时,整数 n 不具有性质 P.
设 a b x , ab y ,则有 x2 y2 40 , x y 8 ,
联立解得 (x, y) (2, 6) 或 (x, y) (6, 2) .
若 (x, y) (2, 6) ,即 a b 2 , ab 6 ,则 a, b 是一元二次方程t 2 2t 6 0 的两
根,但这个方程的判别式 ( 2)2 24 20 0 ,没有实数根;
为等腰直角三角形, ∠ADE=90° ,则 BE 的长为(
)
A.4-2 3
B.2- 3
C.12( 3-1)
D. 3-1
二、填空题: 1.已知实数 a,b,c 满足 a+b+c=1,a+1b-c+a+1c-b+b+1c-a=1,则 abc=__
2.使得不等式197<n+n k<185对唯一的整数 k 成立的最大正整数 n 为________.
P.
2014年全国初中数学联合竞赛试题(第一试)参考答案

第一试
一、选择题: (本题满分 42 分,每小题 7 分) 1.已知 x, y 为整数,且满足 ( A. 1 个 B. 2 个
1 x
1 1 1 2 1 1 )( 2 2 ) ( 4 4 ) ,则 x y 的可能的值有( C ) y x y 3 x y
C. 3 个 D. 4 个 ( A )
2.已知非负实数 x, y, z 满足 x y z 1 ,则 t 2 xy yz 2 zx 的最大值为 A.
9 12 D. 16 25 3. 在△ ABC 中,AB AC ,D 为 BC 的中点,BE AC 于 E , 交 AD 于 P , 已知 BP 3 ,PE 1 , 则 AE = ( B )
B. C. A.
4 7
5 9
6 2
B. 2
C. 3
D. 6
4.6 张不同的卡片上分别写有数字 2,2,4,4,6,6,从中取出 3 张,则这 3 张卡片上所写的数字 可以作为三角形的三边长的概率是 ( B ) A.
1 2
B.
2 5
C.
2 3
D.
3 4
3
5.设 [t ] 表示不超过实数 t 的最大整数,令 {t} t [t ] .已知实数 x 满足 x
点 E ,如果点 P 为△ ABE 的内心,则 PAC
48
. 36 .
4.已知正整数 a, b, c 满足: 1 a b c , a b c 111, b2 ac ,则 b
第二试 (A)
一、 (本题满分 20 分)设实数 a, b 满足 a (b 1) b(b 2a) 40 , a(b 1) b 8 ,求
2014年全国初中数学联合竞赛试题参考答案和评分标准

初三数学竞赛试题 2014年全国初中数学联合竞赛试题参考答案及评分标准A.B. C. D.2014年全国初中数学联合竞赛试题参考答案及评分标准2.【答】 A.,易知:当,时,取得最大值.4.【答】 B.若取出的3张卡片上的数字互不相同,有2×2×2=8种取法;若取出的3张卡片上的数字有相同的,有3×4=12种取法.所以,从6张不同的卡片中取出3张,共有8+12=20种取法.6.【答】 A.过作于,易知△≌△,△∽△.设,则,,,,故,即.又,故可得.故.1.【答】 0.由题意知,所以2.【答】144.由条件得,由的唯一性,得且,所以,所以.当时,由可得,可取唯一整数值127.故满足条件的正整数的最大值为144.4.【答】36.设的最大公约数为,,,均为正整数且,,则,所以,从而,设(为正整数),则有,而,所以均为完全平方数,设,则,均为正整数,且,.又,故,即.注意到,所以或.若,则,验算可知只有满足等式,此时,不符合题意,故舍去.解由已知条件可得,.设,,则有,,……………………5分若,即,,则是一元二次方程的两根,但这个方程的判别式,没有实数根;……………………15分若,即,,则是一元二次方程的两根,这个方程的判别式,它有实数根.所以. ……………………20分解取,,可得,所以1具有性质.取,,可得,所以5具有性质.…………………5分为了一般地判断哪些数具有性质,记,则=.即……………………10分如果,即,则有;如果,即,则有;如果,即,则有;由此可知,形如或或(为整数)的数都具有性质.因此,1,5和2014都具有性质. ……………………20分若2013具有性质,则存在整数使得.注意到,从而可得,故,于是有,即,但2013=9×223+6,矛盾,所以2013不具有性质. ……………………25分2014年全国初中数学联合竞赛试题参考答案及评分标准,易知:当,时,取得最大值.【答】 B.若取出的3张卡片上的数字互不相同,有2×2×2=8种取法;若取出的3张卡片上的数字有相同的,有3×4=12种取法.所以,从6张不同的卡片中取出3张,共有8+12=20种取法.要使得三个数字可以构成三角形的三边长,只可能是:(2,4,4),(4,4,6),(2,6,6),(4,6,6),由于不同的卡片上所写数字有重复,所以,取出的3张卡片上所写的数字可以作为三角形的三边长的情况共有4×2=8种.A.B. C. D.【答】 A.设,则,,,,故,即.又,故可得.故.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014年全国初中数学联合竞赛试题参考答案第一试一、选择题:1.已知x ,y 为整数,且满足(1x +1y ) (1x 2+1y 2)=-23(1x 4-1y 4),则x +y 的可能的值有( ) A. 1个 B. 2个 C. 3个 D. 4个2.已知非负实数x ,y ,z 满足x +y +z =1,则t =2xy +yz +2xz 的最大值为( )A .47B .59C .916D .12253.在△ABC 中,AB =AC ,D 为BC 的中点,BE ⊥AC 于E ,交AD 于P ,已知BP =3,PE =1,则AE =( )A .62B .2C .3D .64.6张不同的卡片上分别写有数字2,2,4,4,6,6,从中取出3张,则这3张卡片上所写的数字可以作为三角形的三边长的概率是( )A .12B .25C .23D .345.设[t ]表示不超过实数t 的最大整数,令{t }=t -[t ].已知实数x 满足x 3+1x3=18,则 {x }+{1x}=( ) A .12 B .3-5 C .12(3-5) D .16.在△ABC 中,∠C =90°,∠A =60°,AC =1,D 在BC 上,E 在AB 上,使得△ADE 为等腰直角三角形, ∠ADE =90° ,则BE 的长为( )A .4-23B .2-3C .12(3-1) D .3-1二、填空题:1.已知实数a ,b ,c 满足a +b +c =1,1 a +b -c + 1 a +c -b + 1 b +c -a =1,则abc =__2.使得不等式917<n n +k <815对唯一的整数k 成立的最大正整数n 为________.3.已知P 为等腰△ABC 内一点,AB =BC ,∠BPC =108°,D 为AC 的中点,BD 与PC 交于点E ,如果点P 为△ABE 的内心,则∠P AC =________.FB D4.已知正整数a ,b ,c 满足: 1<a <b <c ,a +b +c =111,b 2=ac ,则b =________.第一试 参考答案一、选择题1.C2.A3.B4.B5.D6.A二、填空题1. 02. 1443. 48°4. 36第二试 (A )一、 设实数,a b 满足22(1)(2)40a b b b a +++=,(1)8a b b ++=,求2211a b+的值.二、如图,在□ABCD 中, D 为对角线BD 上一点,且满足∠ECD =∠ACB , AC 的延长线与△ABD 的外接圆交于点F . 证明:∠DFE =∠AFB三、设n 是整数,如果存在整数x ,y ,z 满足n =x 3+y 3+z 3-3xyz ,则称n 具有性质P . 在1,5,2013,2014这四个数中,哪些数具有性质P ,哪些数不具有性质P ?并说明理由.第二试 (A )答案一、解 由已知条件可得222()40a b a b ++=,()8ab a b ++=.设a b x +=,ab y =,则有2240x y +=,8x y +=,联立解得(,)(2,6)x y =或(,)(6,2)x y =.若(,)(2,6)x y =,即2a b +=,6ab =,则,a b 是一元二次方程2260t t -+=的两根,但这个方程的判别式2(2)24200∆=--=-<,没有实数根;若(,)(6,2)x y =,即6a b +=,2ab =,则,a b 是一元二次方程2620t t -+=的两根,这个方程的判别式2(6)8280∆=--=>,它有实数根.所以 2222222222211()262282a b a b ab a b a b a b ++--⨯+====.二、证明 由ABCD 是平行四边形及已知条件知ECD ACB DAF ∠=∠=∠.又A 、B 、F 、 D 四点共圆,所以BDC ABD AFD ∠=∠=∠,所以△ECD ∽△DAF ,所以ED CD AB DF AF AF==.又EDF BDF BAF ∠=∠=∠,所以△EDF ∽△BAF ,故 DFE AFB ∠=∠.三、解 取1x =,0y z ==,可得33311003100=++-⨯⨯⨯,所以1具有性质P . 取2x y ==,1z =,可得33352213221=++-⨯⨯⨯,所以5具有性质P . 为了一般地判断哪些数具有性质P ,记333(,,)3f x y z x y z xyz =++-,则 33(,,)()3()3f x y z x y z xy x y xyz =++-+-3()3()()3()x y z x y z x y z xy x y z =++-+++-++=3()3()()x y z x y z xy yz zx ++-++++ 2221()()2x y z x y z xy yz zx =++++--- 2221()[()()()]2x y z x y y z z x =++-+-+-.N 即(,,)f x y z 2221()[()()()]2x y z x y y z z x =++-+-+- ① 不妨设x y z ≥≥, 如果1,0,1x y y z x z -=-=-=,即1,x z y z =+=,则有(,,)31f x y z z =+; 如果0,1,1x y y z x z -=-=-=,即1x y z ==+,则有(,,)32f x y z z =+;如果1,1,2x y y z x z -=-=-=,即2,1x z y z =+=+,则有(,,)9(1)f x y z z =+; 由此可知,形如31k +或32k +或9k (k 为整数)的数都具有性质P .因此,1,5和2014都具有性质P .若2013具有性质P ,则存在整数,,x y z 使得32013()3()()x y z x y z xy yz zx =++-++++.注意到3|2013,从而可得33|()x y z ++,故3|()x y z ++,于是有39|()3()()x y z x y z xy yz zx ++-++++,即9|2013,但2013=9×223+6,矛盾,所以2013不具有性质P .第二试 (B )试题及答案一.同(A )卷第一题.二.如图,已知O 为△ABC 的外心,AB AC =,D 为△OBC 的外接圆上一点,过点A 作直线OD 的垂线,垂足为H .若7BD =,3DC =,求AH .解 延长BD 交⊙O 于点N ,延长OD 交⊙O 于点E ,由题意得NDE ODB OCB OBC CDE ∠=∠=∠=∠=∠,所以DE 为BDC ∠的平分线.又点D 在⊙O 的半径OE 上,点C 、N 在⊙O 上,所以点C 、N 关于直线OE 对称,DN DC =.延长AH 交⊙O 于点M ,因为O 为圆心,AM OD ⊥,所以点A 、M 关于直线OD 对称,AH MH =.因此MN AC AB ==.又FNM FAB ∠=∠,FBA FMN ∠=∠,所以△ABF ≌△NMF ,所以MF BF =,FN AF =.因此,AM AF FM FN BF BN BD DN BD DC =+=+==+=+ 7310=+=,即210AH =,所以5AH =.三.设n 是整数,如果存在整数x ,y ,z 满足n =x 3+y 3+z 3-3xyz ,则称n 具有性质P ..(1)试判断1,2,3是否具有性质P ;(2)在1,2,3,…,2013,2014这2014个连续整数中,不具有性质P 的数有多少个?解 取1x =,0y z ==,可得33311003100=++-⨯⨯⨯,所以1具有性质P ; 取1x y ==,0z =,可得33321103110=++-⨯⨯⨯,所以2具有性质P ;若3具有性质P ,则存在整数,,x y z 使得33()3()()x y z x y z xy yz zx =++-++++, 从而可得33|()x y z ++,故3|()x y z ++,于是有39|()3()()x y z x y z xy yz zx ++-++++,即9|3,这是不可能的,所以3不具有性质P .(2)记333(,,)3f x y z x y z xyz =++-,则 33(,,)()3()3f x y z x y z xy x y xyz =++-+-3()3()()3()x y z x y z x y z xy x y z =++-+++-++=3()3()()x y z x y z xy yz zx ++-++++ 2221()()2x y z x y z xy yz zx =++++--- 2221()[()()()]2x y z x y y z z x =++-+-+-. 即(,,)f x y z 2221()[()()()]2x y z x y y z z x =++-+-+- ① 不妨设x y z ≥≥,如果1,0,1x y y z x z -=-=-=,即1,x z y z =+=,则有(,,)31f x y z z =+; 如果0,1,1x y y z x z -=-=-=,即1x y z ==+,则有(,,)32f x y z z =+;如果1,1,2x y y z x z -=-=-=,即2,1x z y z =+=+,则有(,,)9(1)f x y z z =+;由此可知,形如31k +或32k +或9k (k 为整数)的数都具有性质P .又若33|(,,)()3()()f x y z x y z x y z xy yz zx =++-++++,则33|()x y z ++,从而3|()x y z ++,进而可知39|(,,)()3()()f x y z x y z x y z xy yz zx =++-++++.综合可知:当且仅当93n k =+或96n k =+(k 为整数)时,整数n 不具有性质P . 又2014=9×223+7,所以,在1,2,3,…,2013,2014这2014个连续整数中,不具有性质P 的数共有224×2=448个.。