机器人上用的传感器的介绍

合集下载

机器人传感器知识要点梳理

机器人传感器知识要点梳理

机器人传感器知识要点梳理机器人传感器是指机器人系统中用于感知和获取外部环境信息的装置。

传感器的准确使用和理解对于机器人设计和应用至关重要。

本文将从机器人传感器的分类、原理和常用技术等方面进行梳理,以帮助读者更好地理解和应用机器人传感器。

一、机器人传感器的分类机器人传感器可以根据其感知的信息类型、工作原理和应用环境等因素进行分类。

在这里,我将介绍几种常见的机器人传感器分类方式。

1. 按照感知的信息类型分类:1.1 触觉传感器:用于感知机器人与物体之间的接触力、接触面积和物体形状等信息。

常见的触觉传感器包括压力传感器、力传感器和力敏电阻。

1.2 视觉传感器:用于感知机器人周围的可见光图像信息,例如拍摄照片、识别物体和人脸等。

常见的视觉传感器包括摄像头、光电传感器和图像传感器。

1.3 声音传感器:用于感知机器人周围的声音和音频信息。

常见的声音传感器包括麦克风和声波传感器。

1.4 温度传感器:用于感知机器人周围的温度信息。

常见的温度传感器包括热电偶和温度传感器芯片。

1.5 其他传感器:还有其他类型的传感器,例如气体传感器、湿度传感器和加速度传感器等。

2. 按照工作原理分类:2.1 主动传感器:主动传感器是指能主动产生电磁、声、光等信号并获取反馈的传感器。

例如雷达传感器和激光传感器等。

2.2 被动传感器:被动传感器是指根据周围环境的变化对外部物理量进行感知的传感器。

例如光电传感器、温度传感器和湿度传感器等。

3. 按照应用环境分类:3.1 室内传感器:主要应用于室内环境的机器人,例如家庭服务机器人、工业机器人和教育机器人等。

3.2 室外传感器:主要应用于室外环境的机器人,例如农业机器人、勘探机器人和航空航天机器人等。

二、机器人传感器的工作原理了解机器人传感器的工作原理对于正确选择和使用传感器至关重要。

在这一部分,我们将重点介绍几种常见的机器人传感器工作原理。

1. 光电传感器:光电传感器工作原理基于光敏元件的光电效应。

扫地机器人传感器简介

扫地机器人传感器简介
02 扫 地 机 器 人 的 P S D 沿 墙 传 感 器 发 射 出 经 过 调 制 的 红 外 光 , 可令扫地机器人在墙边和经过障碍物时能于墙面或是障 碍物更好的贴合,确保实现清扫无死角。
光电编码器是扫地机器人上的位置和速度检测的传 感器,扫地机器人上的光电编码器通过减速器和驱 动轮的驱动电机同轴相连,并以增量式编码的方式 记录驱动电机旋转角度对应的脉冲。由于光电编码 器和驱动轮同步旋转,利用码盘、减速器、电机和 驱动轮之间的物理参数,可将检测到的脉冲数转换 成驱动轮旋转的角度,即机器人相对于某一参考点 的瞬时位置,这就是所谓的里程计。光电编码器已 经成为在电机驱动内部、轮轴,或在操纵机构上测 量角速度和位置的最普遍的装置。因为光电编码器 是本体感受式的传感器,在机器人参考框架中,它 的位置估计扫地机器人的回充传感器位于扫地机器人正前方,由4组
红外接收器组成,可以精准锁定充电座指引信号,大幅度
提升回充效率。扫地机器人所带电池容量有限,所以就需
要在电量低时自动返回充电基座进行充电再返回原位置继
续打扫。当电量低于限定值时,控制器会向红外线发射器
01
发送信号,红外线发射器向四周发射红外线。充电基座安
电子罗盘
电子罗盘是利用地磁场,检测电子罗盘模块相对于地磁场方向的偏转角度的传感器。 电子罗盘模块是由高可靠性的磁性传感器及驱动芯片组成,集成度非常高,实现了 高可靠性、高精度、强抗磁场干扰的数码电子罗盘功能。电子罗盘模块有两个磁性 传感器和一个驱动芯片构成。磁性传感器里面包含一个LR振荡电路,当磁性传感器 与地球磁感线平行方向夹角发生变化时,LR振荡电路的磁感应系数也会发生变化。 驱动芯片通过磁性传感器磁感应系数的变化可以计算出磁性传感器与地球磁感线之 间的夹角,驱动芯片可以连接三个磁性传感器,这三个磁性传感器方向互为垂直, 这样就可以测量在三维方向上与地球磁感线的夹角,从而得到当前的三维方向。电 子指南针模组只要得到水平方向上与地球磁感线的夹角就可以测得方向。

传感器在机器人中的应用

传感器在机器人中的应用

传感器在机器人中的应用传感器是机器人中必不可少的组成部分之一。

它可以感知周围环境的物理量,如温度、湿度、压力、光强度、距离等。

在机器人中,传感器的应用极为广泛,本文将从多个方面介绍传感器在机器人中的应用。

一、环境感应在机器人中,环境感应是传感器的重要应用之一。

机器人通过安装不同类型的传感器,可以感知周围环境的温度、湿度、光强度等物理量,从而更好地适应不同环境,更好地完成任务。

例如,在农业机器人中,传感器常常用于测量土壤温度、湿度、光照强度等参数,以便更好地控制植物的生长环境。

在工业机器人中,传感器可以用于检测环境温度和压力,以便更好地控制机器人的运行。

二、运动控制传感器在机器人中的另一个重要应用是运动控制。

机器人需要根据环境和任务的不同,进行不同的运动控制,这就需要传感器提供的测量数据。

例如,机器人需要根据测量到的距离数据来调整自己的运动速度和方向,以便更好地避开障碍物。

传感器还可以用于衡量机器人的转角、速度等参数,以便更好地控制机器人的运动轨迹。

三、姿态控制在机器人中,传感器还可以用于姿态控制。

姿态控制是指控制机器人维持某种特定的姿态,例如保持平衡。

在这种情况下,传感器可以感知机器人的倾斜角度,并根据这些数据控制机器人的运动,以维持机器人的平衡。

四、安全控制在机器人中,传感器还可以用于安全控制。

机器人在执行任务时,需要遵循一定的安全规则,例如避开障碍物、避免碰撞等。

传感器可以感知周围环境的物理量,并根据这些数据控制机器人的运动,以避免发生意外事故。

例如,在工业机器人中,传感器可以用于检测机器人周围的人员和物品,以便更好地控制机器人的运动,避免碰撞和伤害。

传感器在机器人中的应用极为广泛,可以用于环境感应、运动控制、姿态控制和安全控制等多个方面。

随着传感器技术的不断发展,机器人的应用范围也将不断拓展。

相信在不久的将来,传感器将在机器人领域发挥更加重要的作用。

工业机器人用传感器的分类

工业机器人用传感器的分类

工业机器人用传感器的分类随着工业自动化的发展,工业机器人已经成为制造业中不可或缺的一部分。

而传感器则是工业机器人实现自动化的重要组成部分,它们可以感知周围环境的变化,并将这些信息传递给机器人控制系统,从而实现机器人的自主运动和操作。

本文将介绍工业机器人用传感器的分类及其在实际应用中的作用。

一、力传感器力传感器是一种可以测量机器人施加的力和扭矩的传感器。

它可以通过测量机器人的力和扭矩,来确定机器人的位置和方向。

力传感器广泛应用于自动化装配、焊接、涂装等工艺中,可以通过反馈机器人的力和扭矩,来实现机器人的精准定位和控制。

二、视觉传感器视觉传感器是一种可以感知机器人周围环境的传感器。

它可以通过摄像头或激光雷达等设备,来获取机器人周围的图像和数据,并将这些信息传递给机器人控制系统。

视觉传感器广泛应用于自动化检测、定位、导航、拍照等场景中,可以通过机器人的视觉来实现自主运动和操作。

三、接触传感器接触传感器是一种可以感知机器人与物体之间接触力的传感器。

它可以通过测量机器人与物体之间的接触力,来判断机器人的位置和方向。

接触传感器广泛应用于自动化装配、夹持、抓取等场景中,可以通过反馈机器人与物体之间的接触力,来实现机器人的精准定位和控制。

四、距离传感器距离传感器是一种可以测量机器人与物体之间距离的传感器。

它可以通过测量机器人与物体之间的距离,来判断机器人的位置和方向。

距离传感器广泛应用于自动化导航、避障、测量等场景中,可以通过反馈机器人与物体之间的距离,来实现机器人的自主运动和操作。

五、温度传感器温度传感器是一种可以测量机器人周围温度的传感器。

它可以通过测量机器人周围的温度,来判断机器人的工作状态和环境。

温度传感器广泛应用于自动化加热、冷却、温度控制等场景中,可以通过反馈机器人周围的温度,来实现机器人的自主运动和操作。

总之,传感器是工业机器人实现自动化的重要组成部分,不同类型的传感器可以感知机器人周围不同的环境信息,从而实现机器人的自主运动和操作。

简述工业机器人传感器的作用

简述工业机器人传感器的作用

工业机器人传感器的作用1. 简介工业机器人传感器是用于感知和获取环境信息的设备,它们能够帮助工业机器人实现精准的定位、避障、检测和控制等功能。

传感器在工业机器人系统中起着至关重要的作用,它们能够使机器人具备感知能力,从而能够更好地适应复杂多变的工作环境。

本文将详细介绍工业机器人传感器的作用,包括定位传感器、力传感器、视觉传感器、接触传感器和温度传感器等。

2. 定位传感器定位传感器是工业机器人中常用的传感器之一,它能够帮助机器人准确地定位自身的位置,以便实现精确的运动控制。

常见的定位传感器包括编码器、惯性测量单元(IMU)和全球定位系统(GPS)等。

•编码器:编码器能够测量机器人关节的角度或位置,通过将测量值与预设值进行比较,可以实现机器人的运动控制和定位。

•IMU:IMU是一种集成了加速度计、陀螺仪和磁力计等传感器的设备,它能够测量机器人的加速度、角速度和方向等信息,从而实现机器人的姿态估计和运动控制。

•GPS:GPS是一种全球定位系统,能够通过卫星信号定位机器人的位置,广泛应用于需要室外定位的工业机器人。

定位传感器能够使工业机器人实现高精度的定位和运动控制,提高工作效率和精度。

3. 力传感器力传感器是用于测量机器人与外界物体之间的力或压力的传感器,它能够帮助机器人实现精确的力控制和力检测。

常见的力传感器包括压电传感器、应变传感器和力/扭矩传感器等。

•压电传感器:压电传感器能够将受力转化为电信号,通过测量电信号的变化,可以得到机器人与外界物体之间的压力信息。

•应变传感器:应变传感器能够测量物体受力后的应变变化,通过测量应变的大小,可以得到机器人与外界物体之间的力信息。

•力/扭矩传感器:力/扭矩传感器能够测量机器人施加在外界物体上的力和扭矩,从而实现力控制和力检测。

力传感器能够使工业机器人具备对外界物体的感知和控制能力,实现精确的力控制和力检测。

4. 视觉传感器视觉传感器是工业机器人中常用的传感器之一,它能够帮助机器人获取环境的视觉信息,实现目标识别、物体定位和视觉导航等功能。

传感器技术在机器人中的应用

传感器技术在机器人中的应用

传感器技术在机器人中的应用一、引言机器人技术是人工智能领域的重要研究方向之一。

在机器人的自主行动和环境感知中,传感器技术发挥着重要作用。

本文将从机器人的视觉传感器、触觉传感器和运动传感器等多个方面,介绍传感器技术在机器人中的应用。

二、机器人视觉传感器的应用视觉传感器是机器人感知外界环境的关键部件。

在工业生产中,机器人可以通过视觉传感器实现产品的自动检测和缺陷识别,提高生产效率和品质。

此外,在无人驾驶领域,机器人可以通过视觉传感器获取道路信息和障碍物识别,实现自动驾驶。

三、机器人触觉传感器的应用触觉传感器可以让机器人感知和控制接触力、力矩和形状等信息。

在机器人操作中,触觉传感器可以帮助机器人识别物体的材质和形状,实现精确的抓取和搬运。

此外,触觉传感器还可以应用于医疗机器人,如手术机器人中的触觉传感器可以帮助外科医生进行高精度的手术操作。

四、机器人运动传感器的应用运动传感器是机器人实现导航和运动控制的关键技术。

惯性传感器可以感知机器人的加速度和角速度,利用这些信息可以实现机器人的运动跟踪和定位。

激光雷达是一种常用的运动传感器,可以通过测量距离和角度信息,实现机器人的环境建模和避障。

运动传感器的应用广泛,包括工业自动化、服务机器人和农业机器人等领域。

五、机器人传感器融合技术的应用机器人的多传感器融合技术可以将不同传感器的信息进行整合,提高机器人的环境感知能力和决策精度。

例如,将视觉传感器和运动传感器的信息融合,可以实现机器人的自主导航和避障。

同时,传感器融合技术还可以应用于机器人的人机交互,通过融合语音识别、视觉识别和触觉反馈等多种传感器信息,实现智能化的交互体验。

六、机器人传感器技术的挑战和展望尽管传感器技术在机器人中的应用已取得了显著的成果,但仍面临一些挑战。

首先是传感器的精度和可靠性问题,高精度传感器的研发和生产仍需要技术上的突破。

其次是传感器的成本和功耗问题,降低成本和功耗将有助于推广传感器技术在机器人中的应用。

常见的工业机器人传感器类型和作用介绍

常见的工业机器人传感器类型和作用介绍

常见的工业机器人传感器类型和作用介绍工业机器人是现代工业生产中的重要设备,它可以自动完成各种工艺操作,提高生产效率和质量。

而机器人要实现自主操作和与环境的交互,就必须依赖传感器来获取各种信息。

下面将介绍一些常见的工业机器人传感器类型及其作用。

1.视觉传感器:视觉传感器是机器人中应用最广泛的传感器之一,可以帮助机器人获取周围环境的图像信息,实现目标识别、位置定位、检测等功能。

常见的视觉传感器包括CCD相机、CMOS相机等,其分辨率越高,精度越高。

2.力传感器:力传感器可以测量机器人与周围环境之间的力和力矩,实现精确控制和操作。

常见的力传感器有电容式、压阻式、电感式等,可以应用于装配、抓取、力控处置等任务。

3.距离传感器:距离传感器可以测量机器人与物体之间的距离,实现避障、定位等功能。

常见的距离传感器包括激光传感器、超声波传感器、红外线传感器等,可以用于测距、测量高度等任务。

4.光电传感器:光电传感器可以检测物体的存在、颜色、形状等特性,实现物体识别、分类、定位等功能。

常见的光电传感器有光电开关、光幕、光电编码器等,可以应用于自动分拣、装配等任务。

5.温度传感器:温度传感器可以测量机器人周围环境的温度变化,实现温度控制、安全保护等功能。

常见的温度传感器包括热敏电阻、热电偶等,可以用于焊接、烤箱等工作环境中。

6.声音传感器:声音传感器可以检测周围环境中的声音,实现语音交互、声音控制等功能。

常见的声音传感器有麦克风、声纳等,可以应用于机器人导航、语音识别等任务。

7.气体传感器:气体传感器可以检测周围环境中的气体浓度和成分,实现气体分析、安全监测等功能。

常见的气体传感器有气体传感电阻、气体传感器阵列等,可以应用于有害气体探测、环境监测等任务。

8.触摸传感器:触摸传感器可以感知机器人与物体接触的力和位置,实现精确控制和安全保护。

常见的触摸传感器有电容触摸传感器、压阻触摸传感器等,可以用于装配、物体操纵等任务。

机器人的传感器及其应用

机器人的传感器及其应用

机器人的传感器及其应用近年来,人工智能和机器人技术得到了飞速的发展,它们的应用也逐渐渗透到各个领域。

机器人的传感器是机器人最重要的组成部分之一,它能够帮助机器人感知周围环境,从而更好地完成任务。

本文将围绕机器人的传感器及其应用展开探讨。

一、机器人常用的传感器机器人常用的传感器有红外线传感器、超声波传感器、激光传感器、视觉传感器等,这些传感器分别有不同的功能。

下面我们将逐一介绍其功能。

1. 红外线传感器红外线传感器是将红外线能量转换为信号输出的一种传感器,它主要用于检测温度、避障及追踪等功能。

对于机器人而言,红外线传感器可用于自动寻线和避障,对于机器人走过的路程也起到了记录的作用。

2. 超声波传感器超声波传感器是一种利用声波输入和输出信号来确定物体距离的传感器。

它通常用于测距和避障系统中,该传感器能够定位、测距、检测物体运动方向和速度。

3. 激光传感器激光传感器是一种利用激光束在空气中反射和散射的信号来识别障碍物的传感器。

它能够测量物体的距离和位置,用于机器人的室内定位、三维建模等方面。

4. 视觉传感器视觉传感器可以进一步分为单目和双目视觉传感器,它们能够模拟人眼视角,识别并测量物体位置和方向。

对于机器人而言,由于视觉传感器可以帮助机器人识别环境和对象,因此在研发自主导航和智能抓取等方面具有重要的应用前景。

二、机器人传感器的应用机器人由于其优异的性能,具有广泛的应用前景。

下面我们将围绕机器人的传感器在各个领域中的应用进行探讨。

1. 工业制造领域在工业制造领域中,机器人的传感器可以帮助机器人自主检测产品、进行装配、检测缺陷等任务,在生产线协作中发挥更大的作用。

2. 医疗领域机器人在医疗领域中的应用同样具有巨大潜力,比如手术机器人能够为病人实现精准手术,减少手术风险;机器人助手能够照顾需要护理的老人或残障人士,提高其生活质量。

3. 农业领域机器人在农业领域中的应用主要是在农作物种植、养殖等方面。

机器人可利用红外线传感器检测作物生长情况,激光传感器则可用于精准喷药、精准除草等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

机器人上用的传感器的介绍
作者:Ricky 文章来源:更新时间:2006年05月20日打印此文浏览数:18549
感知系统是机器人能够实现自主化的必须部分。

这一章,将介绍一下移动机器人中所采用的传感器以及如何从传感器系统中采集所需要的信号。

根据传感器的作用分,一般传感器分为:
内部传感器(体内传感器):主要测量机器人内部系统,比如温度,电机速度,电机载荷,电池电压等。

外部传感器(外界传感器):主要测量外界环境,比如距离测量,声音,光线。

根据传感器的运行方式,可以分为:
被动式传感器:传感器本身不发出能量,比如CCD,CMOS摄像头传感器,靠捕获外界光线来获得信息。

主动式传感器:传感器会发出探测信号。

比如超声波,红外,激光。

但是此类传感器的反射信号会受到很多物质的影响,从而影响准确的信号获得。

同时,信号还狠容易受到干扰,比如相邻两个机器人都发出超声波,这些信号就会产生干扰。

传感器一般有以下几个指标:
动态范围:是指传感器能检测的范围。

比如电流传感器能够测量1mA-20A的电流,那么这个传感器的测量范围就是10log(20/0.001)=43dB. 如果传感器的输入超出了传感器的测量范围,那么传感器就不会显示正确的测量值了。

比如超声波传感器对近距离的物体无法测量。

分辨率:分辨率是指传感器能测量的最小差异。

比如电流传感器,它的分辨率可能是5mA,也就是说小于5mA的电流差异,它没法检测出。

当然越高分辨率的传感器价格就越贵。

线性度:这是一个非常重要的指标来衡量传感器输入和输出的关系。

频率:是指传感器的采样速度。

比如一个超声波传感器的采样速度为20HZ,也就是说每秒钟能扫描20次。

下面介绍一下常用的传感器:
编码器:主要用于测量电机的旋转角度和速度。

任何用电机的地方,都可以用编码器来作为传感器来获得电机的输出。

光电编码器的原理
电子罗盘:可以检测机器人与地球南北极之间的角度,从而获得机器人的朝向。

但是精度很低。

而且任何磁性物体都会造成罗盘失灵,比如扬声器。

所以要配合其它传感器,比如编码器一起使用才能获得比较好的定位效果。

主要有hall-effect和flux-gate两种:
Hall-Effect 原理的电子罗盘
Flux-gate 原理的电子罗盘
陀螺仪:又分机械陀螺仪和光电陀螺仪。

可以检测绝对朝向。

但是目前价格过高,只在飞机上采用。

目前最好的光电陀螺仪能提供100KHz的采样频率,同时提供0.0001degress/hr的分辨率。

但是价格也是同样昂贵。

GPS系统:这个相比不需要太多的解释。

GPS系统分为标准GPS和差分GPS系统。

标准GPS系统能提供15m的误差定位,而差分GPS系统能提供高达1m内误差的定位。

如果再考虑相位差信号的话,最新的GPS设备能提供精确到10cm的定位坐标。

怪不得美国人现在的导弹精确度如此之高。

差分GPS系统(DGPS)
超声波传感器:超声波传感器是基于TOF原理。

首先发射一组声波脉冲信号,然后一个积分器就开始计算发射时间。

一个返回信号阀值接着就会被设定来接受回波信号,这个阀值会随着时间的增加而减小,因为回波会随着距离的增加而发散,从而强度变小。

但是在刚发射信号的时候,返回信号的阀值会被设定的很高以防止发射波直接触发接受器,但是这样造成一个问题,就是如果检测的距离很短,在阀值没有下降之前,返回信号已经到达接收器,这时,接收器会认为这个返回信号是刚发出的信号,从而拒绝接受。

超声波传感器就会有一个探测盲区,没法这样对近距离物体探测。

一般超声波探测器的频率为40Hz,探测范围为12c'm-5m,精度为98%-99.1%,分辨率为2cm。

同时超声波是一个20-40度角的面探测,所以可以使用若干个超声波组成一个超声波阵列来获得180度甚至360的探测范围。

超声波还有其它几个缺点,比如交叉感应,扫描频率低,尤其是使用超声波阵列的时候,还有回波衰减,折射等问题。

不过对于移动机器人来说,超声波还是目前最廉价和有效的传感器。

TOF(time of flight):TOF 原理就是距离=速度×时间,比如声波传输速度是0.3m/ms,如果3m的距离,需要10ms才能到达。

然后通过计算这个返回的时间差来确定距离。

但是如果是光速的话,光速是0.3m/ns,同样3m的距离,光只要10ns就到了。

这就对检测元件提出了非常高的要求。

这也是激光传感器价格居高不下的原因。

TOF 原理
激光传感器:原理就是一个旋转得反射镜,将激光光束或者超声波按一定间隔反射出去,然后根据旋转得角度和时间差来得到不同角度得距离值。

是用很典型得TOF原理。

不过对于激光传感器而言,有3种检测方式:
1)使用脉冲激光,按一定间隔发射激光,然后计算返回时间。

这种方法和超声波一样,但是激光速度太快,所以对检测元件要求太高,一般LaserScanner不用这种方式。

2)使用不同频率得激光,按照一点顺序,发射不同频率得激光,通过检测返回光束得频率来得到距离。

3)相位差。

多数激光传感器用得是这种方法。

通过检测发射激光和反射激光得相位差来得到距离。

红外传感器:是利用三角测量法。

三角测量法(Triangulation-based):就是把发射器和接受器按照一定距离安装,然后与被探测的点形成一个三角形的三个顶点,由于发射器和接收器的距离已知,发射角度已知,反射角度也可以被检测到。

因此检测点到发射器的距离就可以求出。

假设发射角度是90度的情况,
D=f(L/x)
L=发射器和接收器的距离
x=接受波的偏移距离
f()是函数。

由此可见,D是由1/x决定的,所以用这个测量法可以测得距离非常近的物体,目前最精确可以到1um 的分辨率。

但是由于D同时也是L的函数,要增加测量距离就必须增大L值。

所以不能探测远距离物体。

但是如果将红外传感器和超声波传感器同时应用于机器人,就能提供全范围的探测范围了,超声波传感器的盲区正好可以由红外传感器来弥补。

多普勒效应传感器:主要用于探测移动物体的速度。

目前战斗机上用的雷达就是基于这个原理的。

主要用于躲避快速移动障埃物。

多普勒原理(Doppler):假设发射器以频率ft发射波,接收器以频率fr接受波,发射器和接收器之间的相对速度为v。

如果发射器在移动,则
fr=ft/(1+v/c)
如果接收器在移动,则
fr=ft(1+v/c)
通过计算多普勒频移来得到相对速度v。

f=ft-fr=2*ft*v*cosA/c
f=多普勒频移
A=发射波和运动角度差
静止状态
物体趋近
物体远离
目前还没有适合小型移动机器人的相关传感器出现。

视觉传感器:摄像头都是属于视觉传感器,目前200元一个的网络摄像头也都可以用作机器人的视觉传感器。

相关文档
最新文档