数学建模练习3

合集下载

(完整版)数学建模模拟试题及答案

(完整版)数学建模模拟试题及答案

数学建模模拟试题及答案一、填空题(每题5分,共20分)1.一个连通图能够一笔画出的充分必要条件是 .2. 设银行的年利率为0.2,则五年后的一百万元相当于现在的 万元.3. 在夏季博览会上,商人预测每天冰淇淋销量N 将和下列因素有关:(1) 参加展览会的人数n ;(2)气温T 超过C10; (3)冰淇淋的售价p .由此建立的冰淇淋销量的比例模型应为 .4. 如图一是一个邮路,邮递员从邮局A 出发走遍所有长方形街路后再返回邮局.若每个小长方形街路的边长横向 均为1km ,纵向均为2km ,则他至少要走km . 二、分析判断题(每题10分,共20分)1. 有一大堆油腻的盘子和一盆热的洗涤剂水。

为尽量图一 多洗干净盘子,有哪些因素应予以考虑?试至少列出四种。

2. 某种疾病每年新发生1000例,患者中有一半当年可治愈.若2000年底时有1200个病人,到2005年将会出现什么结果?有人说,无论多少年过去,患者人数只是趋向2000人,但不会达到2000人,试判断这个说法的正确性.三、计算题(每题20分,共40分)1. 某工厂计划用两种原材料B A ,生产甲、乙两种产品,两种原材料的最高供应量依次为22和20个单位;每单位产品甲需用两种原材料依次为1、1个单位,产值为3(百元);乙的需要量依次为3、1个单位,产值为9(百元);又根据市场预测,产品乙的市场需求量最多为6个单位,而甲、乙两种产品的需求比不超过5:2,试建立线性规划模型以求一个生产方案,使得总产值达到最大,并由此回答:(1) 最优生产方案是否具有可选择余地?若有请至少给出两个,否则说明理由. (2) 原材料的利用情况.2. 两个水厂21,A A 将自来水供应三个小区,,,321B B B 每天各水厂的供应量与各小区的需求量以及各水厂调运到各小区的供水单价见下表.试安排供水方案,使总供水费最小?四、综合应用题(本题20分)某水库建有10个泄洪闸,现在水库的水位已经超过安全线,上游河水还在不断地流入水库.为了防洪,须调节泄洪速度.经测算,若打开一个泄洪闸,30个小时水位降至安全线,若打开两个泄洪闸,10个小时水位降落至安全线.现在,抗洪指挥部要求在3个小时内将水位降至安全线以下,问至少要同时打开几个闸门?试组建数学模型给予解决.注:本题要求按照五步建模法给出全过程.数学建模06春试题模拟试题参考解答一、填空题(每题5分,共20分)1. 奇数顶点个数是0或2;2. 约40.1876 ;3. ),10(,/)10(0C T p T Kn N ≥-= K 是比例常数; 4. 42. 二、分析判断题(每题10分,共20分)1. 解: 问题与盘子、水和温度等因素直接相关,故有相关因素:盘子的油腻程度,盘子的温度,盘子的尺寸大小;洗涤剂水的温度、浓度; 刷洗地点的温度等.注:列出的因素不足四个,每缺一个扣2.5分。

数学建模习题3

数学建模习题3

数学建模(I )习题习 题 31.一个包裹从100米高的气球上掉下,当时,气球的上升速度为2米/秒,请根据以下两种情况计算包裹落到地面上约需多少时间:(1)空气阻力不计(2)空气阻力与包裹的速度成正比,阻力系数为0.05。

2.大气压强p 可用对海拔高度h 的变化率dh dp 与p 成正比来建模,且位于海平面的压强为1013毫巴(大约每平方英尺7.14磅),位于海拔高度20公里处的压强为90毫巴。

)(a 解初始值问题:微分方程: kp dh dp = (k 是一个常数) 初始条件: 0p p = (当0=h )得到通过h 表示p 的表达式。

根据海拔高度—压强的给定数据确定0p 和k 的值。

(b )在海拔高度50=h 公里处大气压强是多少?(c )在海拔高度是多少公里处大气压强等于900毫巴?3.在某化学反应中,物质的数量随着时间的改变率与其当前的数量成正比。

例如,δ-醣蛋白内酯变成葡萄糖酸,当时间t 以小时为单位时,化学反应方程式是 y dtdy 6.0-= 如果当0=t 时,有δ-醣蛋白内酯100克,那么一小时后还剩下多少?4.从惠蒂尔峡谷的油井中抽走了一定数量的石油,会使加利福尼亚的石油产量每年以10%的比率减少。

试问什么时候加利福尼亚的石油产量将降到当前值得五分之一?5.一个放电的电容器,电压的改变率和终端电压成正比,并且时间t 以秒为单位时,其满足的方程是V dt dV 401-= 解此方程,用0V 表示当0=t 时的V 值。

试问经过多长时间电压将降落到初始值得10%?6.粗糖的加工过程中,有一个步骤称为转化,这一步骤将改变粗糖的分子结构。

反应一旦开始,粗糖量的改变速率和粗糖量成正比,如果1000公斤粗糖在10 小时后只剩下100公斤,那么再过14小时还剩下多少?7.在海洋表面下方x 英尺处的光的强度)(x L 满足微分方程kL dxdL -= 潜水者根据经验知道,在加勒比海潜水到18 英尺深时光线强度大约降低到水面上的一半。

数学建模答案 (3)

数学建模答案 (3)

一、解释下列词语,并举例说明(每小题满分5分,共15分)1.模型答:为了某种特定的目的将原型的某一部分信息简化、压缩、提炼而构成的原型替代物。

如地图。

苯分子图等。

2.数学模型答:由数字、字母、或其他数学符号组成的,描述现实对象(原型)数量规律的数学结构。

3.抽象模型答:通过人们对原型的反复认识,将获取的知识以经验的形式直接存储在大脑中的模型称之谓思维模型。

从实际的人、物、事和概念中抽取所关心的共同特性,忽略非本质的细节把这些特性用各种概念精确地加以描述。

二、简答题(每小题满分8分,共24分)1.模型的分类按照模型替代原型的方式,模型可以简单分为形象模型和抽象模型两类。

形象模型:直观模型,物理模型,分子模型等;抽象模型:思维模型,符号模型,数学模型等。

2.数学建模的基本步骤(1) 建模准备:确立建模课题的过程;(2) 建模假设:根据建模的目的将原型进行抽象,简化.有目的性的原则。

简明性原则,真实性原则和全面性原则。

(3) 构造模型:在模型假设的基础上,进一步分析建模假设的各条款,选择恰当的数学工具和构造模型的方法对其进行表征,构造出根据已知条件和数据,分析模型的特征和模型的结构特点,设计或选择求解模型的数学刻画实际问题的数学模型;(4) 模型求解:构造数学模型之后,方法和算法,并借助计算机完成对模型的求解;(5) 模型分析:根据建模的目的的要求,对模型求解的数字结果,或进行稳定性分析,或进行系统参数的灵敏度分析,或进行误差分析等;(6) 模型检验:模型分析符合要求之后,还必须回到客观中去对模型进行检验,看它是否符合客观实际;(7) 数学应用:模型应用是数学建模的宗旨,将其用于分析,研究和解决实际问题,充分发挥建模在生产和科研中的特殊作用。

3.数学模型的作用数学模型的根本作用在于他将客观原型化繁为简,化难为易,便于人们采用定量的方法去分析和解决实际问题。

正应为如此,数学建模在科学发展,科学预见,科学预测,科学管理,科学决策,驾控市场乃至个人高效工作和生活等众多方面发挥着特殊的重要作用。

数学建模习题3答案

数学建模习题3答案

2.某种山猫在较好的,中等及较差的自然环境下,年平均增长率分别是1.68%,0.55%,-4.5%。

假设开始时有100只山猫,按以下情况分别讨论山猫数量逐年变化的过程及趋势:(1)三种自然环境下25年的变化过程,结果要列表并图示;解:首先讨论紫檀环境下山猫的数量的演变。

记k年山猫的数量为x k,设自然条件下的年平均增长率为r(相当于假设年增长率r为常数),则列式得:X k+1=x k*(1+r),k=0,1,2,……解为等比数列X k=x0*(1+r)k ,k=0,1,2,……在以下的Matlab的程序里,分别取r=0.0168,0.0055,-0.045,取初始值x0 =100,用循环语句迭代计算出25年不同自然环境下山猫的数量的演变过程,将结果列表并绘图:n=25;r=[.0168,.0055,-.045];x=[100,100,100];for k=1:nx(k+1,:)=x(k,:).*(1+r);enddisp('自然条件下(b=0)山猫的数量的演变')%列表自然条件下(b=0)山猫的数量的演变disp(' 年较好中等较差') %每列项目的名称年较好中等较差disp([(0:n)',round(x)]) %舍入为整数,列表0 100 100 1001 102 101 962 103 101 913 105 102 874 107 102 835 109 103 796 111 103 767 112 104 728 114 104 699 116 105 6610 118 106 6311 120 106 6012 122 107 5813 124 107 5514 126 108 5215 128 109 5016 131 109 4817 133 110 4618 135 110 4419 137 111 4220 140 112 4021 142 112 3822 144 113 3624 149 114 3325 152 115 32plot(0:n,x(:,1),'k^',0:n,x(:,2),'ko',0:n,x(:,3),'kv')legend('r=0.0168','r=0.0055','r=-0.045',2)axis([-1,n+1,0,200])title('自然条件下(b=0)山猫数量的演变')xlabel('第k年'),ylabel('山猫的数量')(2)如果每年捕获三只,山猫的数量将会如何变化?会灭绝吗?如果每年捕获一只呢?解:讨论每年捕获三只条件下山猫数量的演变。

2020年数学建模国赛题目

2020年数学建模国赛题目

2020年数学建模国赛题目
以下是2020年数学建模国赛题目:
题目一:某县遭受水灾,县领导需要带领有关部门负责人到全县各乡(镇)、村巡视,以考察灾情、组织自救。

假设巡视人员在各乡(镇)停留时间T=2小时,在各村停留时间t=1小时,汽车行驶速度V=35公里/小时。

要求在24小时内完成巡视。

请回答以下问题:
1. 要在24小时内完成巡视,至少应分几组?给出这种分组下你认为最佳的巡视路线。

2. 假定巡视人员足够多,完成巡视的最短时间是多少?给出在这种最短时间完成巡视的要求下,你认为最佳的巡视路线。

3. 改变对最佳巡视路线的影响。

题目二:一家电子商务公司需要对交易数据进行深入分析,以便预测未来的销售额和用户行为,从而制定相应的经营策略。

请构建一个数学模型,以分析历史交易数据并预测未来的销售额和用户行为。

题目三:某燃煤发电厂需要进行烟气脱硫处理,以减少二氧化硫的排放。

请建立一个数学模型,以找出最佳的脱硫工艺和操作参数。

题目四:网络流量优化问题:请通过调整网络拓扑结构和设置合适的流量控制策略,优化网络中的流量分布,并提高网络的传输效率。

题目五:地铁运行优化问题:通过对城市地铁线路的时空数据进行分析,优化地铁列车的发车间隔和运行速度,以提高乘客满意度和运行效率。

以上题目仅供参考,具体赛题及要求以数学建模国赛官网为准。

人教版(B版)高中数学必修第2册 数学建模活动(3)

人教版(B版)高中数学必修第2册 数学建模活动(3)

提出问题 建立模型 参数求解 模型检验
你能进一步改进 这个模型吗?
可以以第9段为界 分段描述或者更换函数 模型.
若以第9段为界分段描述: 将 H (9) 153.6, H (11) 180.79 代入 H (x) AeBx ,可解得:
H (x) 74.096e0.081x ,
所以
0.458e0.670x , H (x) 74.096e0.081x ,
年龄/岁 身高/cm 年龄/岁 身高/cm
0 0.5 1 1.5 2 2.5 3 49.7 66.8 75 81.5 87.2 92.1 96.3 3.5 4 4.5 5 5.5 6 6.5 99.4 103.1 106.7 110.2 113.5 116.6 119.4
你能看出7岁以下女童身高的哪些生长规律?
0
-3.53 0
0
x 8, x 9.
4 7.73
6.68 -1.05
10 174.9
-8.34
69.56
5 16.55 13.05 -3.5
11 180.79
0
0
6 经计算, 32.55 在H(x)模型 25.51 下,误差的 -7.04 平方和约为
145.06.
因此,我们可以通过计算不同模型下误差的平方和 来比较模型之间的优劣. 在玉米植株生长规律问题中,
对于女童身高生长规律问题,利用
提出问题
g(x) 26.7 x 49.7 计算对应函数值,可得下表:
年龄/岁 0 0.5
1
1.5
2
2.5
3 建立模型
身高/cm 49.7 66.8 75 81.5 87.2 92.1 96.3
g(x) 49.7 68.6 76.4 82.4 87.5 91.9 95.9 参数求解

数学建模习题及答案

数学建模习题及答案

数学建模习题及答案第⼀部分课后习题1.学校共1000名学⽣,235⼈住在A宿舍,333⼈住在B宿舍,432⼈住在C宿舍。

学⽣们要组织⼀个10⼈的委员会,试⽤下列办法分配各宿舍的委员数:(1)按⽐例分配取整数的名额后,剩下的名额按惯例分给⼩数部分较⼤者。

(2)2.1节中的Q值⽅法。

(3)d’Hondt⽅法:将A,B,C各宿舍的⼈数⽤正整数n=1,2,3,…相除,其商数如下表:将所得商数从⼤到⼩取前10个(10为席位数),在数字下标以横线,表中A,B,C⾏有横线的数分别为2,3,5,这就是3个宿舍分配的席位。

你能解释这种⽅法的道理吗。

如果委员会从10⼈增⾄15⼈,⽤以上3种⽅法再分配名额。

将3种⽅法两次分配的结果列表⽐较。

(4)你能提出其他的⽅法吗。

⽤你的⽅法分配上⾯的名额。

2.在超市购物时你注意到⼤包装商品⽐⼩包装商品便宜这种现象了吗。

⽐如洁银⽛膏50g装的每⽀1.50元,120g装的3.00元,⼆者单位重量的价格⽐是1.2:1。

试⽤⽐例⽅法构造模型解释这个现象。

(1)分析商品价格C与商品重量w的关系。

价格由⽣产成本、包装成本和其他成本等决定,这些成本中有的与重量w成正⽐,有的与表⾯积成正⽐,还有与w⽆关的因素。

(2)给出单位重量价格c与w的关系,画出它的简图,说明w越⼤c越⼩,但是随着w 的增加c减少的程度变⼩。

解释实际意义是什么。

3.⼀垂钓俱乐部⿎励垂钓者将调上的鱼放⽣,打算按照放⽣的鱼的重量给予奖励,俱乐部只准备了⼀把软尺⽤于测量,请你设计按照测量的长度估计鱼的重量的⽅法。

假定鱼池中只有⼀种鲈鱼,并且得到8条鱼的如下数据(胸围指鱼⾝的最⼤周长):先⽤机理分析建⽴模型,再⽤数据确定参数4.⽤宽w的布条缠绕直径d的圆形管道,要求布条不重叠,问布条与管道轴线的夹⾓应多⼤(如图)。

若知道管道长度,需⽤多长布条(可考虑两端的影响)。

如果管道是其他形状呢。

5. ⽤已知尺⼨的矩形板材加⼯半径⼀定的圆盘,给出⼏种简便、有效的排列⽅法,使加⼯出尽可能多的圆盘。

常见数学建模练习题目及解答

常见数学建模练习题目及解答

合计
37
42
(要求建立模型,并用LINGO软件求解)
解 设 x1 、 x2 、 x3 分别表示提升到 I、II 级和录用到 III 级的新职工人数。对各目标确
定的优先因子为:
P1 − 不超过年工资总额 60000 元;
P2 − 每级的人数不超过定编规定的人数;
P3 − II、III 级的升级面尽可能达到现有人数的 20%。
解 LINGO 程序如下: model: data:
M=5; enddata sets:
rows/1..M/: b; cols/1..100/: x; table(rows,cols): a;
endsets data:
a=@qrand(); b=@qrand(); enddata min=@sum(cols(i):i*@abs(x(i))); @sum(cols:x)=1; @sum(cols(i):i*x(i))=1; @sum(cols(i)|i#le#50:x(2*i-1))-@sum(cols(i)|i#le#50:x(2*i))=0; @for(rows(i):@sum(cols(j):a(i,j)*x(j))<b(i)); @for(cols:@free(x)); end
解 求符号解的MATLAB命令为 y=dsolve('x^2*D2y+x*Dy+(x^2-1/4)*y','y(pi/2)=2,Dy(pi/2)=-2/pi','x ')
下面求数值解,首先把方程化成一阶方程组。
设 y1 = y , y2 = y' ,则二阶方程可以化成如下一阶方程组
⎧ ⎪
y1
'
=
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档