数学建模练习答案
数学建模习题集及标准答案

3.动态模型:描述对象特征随时间(空间)的演变过程,分析对象特征的变化规律,预报对象特征的未来性态,研究控制对象特征的手段;微分方程建模:模根据函数及其变化率之间的关系确定函数,根据建模目的和问题分析作出简化假设,按照内在规律或用类比法建立微分方程。
4.按照你的观点应从那几个方面来建立传染病模型。
5.叙述Leslie人口模型的特点。并讨论稳定状况下种群的增长规律。
6.试比较连续形式的阻滞增长模型(Logistic模型)和离散形式阻滞增长模型,并讨论离散形式阻滞增长模型平衡点及其稳定性。
第二部分
1.优点:短期预报比较准确;缺点:不适合中长期预报;原因:预报时假设人口增长率为常数,没有考虑环境对人口增长的制约作用。
(4)你能提出其他的方法吗。用你的方法分配上面的名额。
2.在超市购物时你注意到大包装商品比小包装商品便宜这种现象了吗。比如洁银牙膏50g装的每支1.50元,120g装的3.00元,二者单位重量的价格比是1.2:1。试用比例方法构造模型解释这个现象。
(1)分析商品价格C与商品重量w的关系。价格由生产成本、包装成本和其他成本等决定,这些成本中有的与重量w成正比,有的与表面积成正比,还有与w无关的因素。
根据上述分析我们可以看出,该博弈比较明确可以预测的结果有这样几种情况:
(1) ,此时本博弈的结果是乙在第一阶段不愿意借给对方,结束博弈,双方得益
(1,0),不管这时候b的值是多少;(2) ,此时博弈的结果仍然是乙在第一阶段选择不借,结束博弈,双方得益(1,0);(3) ,此时博弈的结果是乙在第一阶段选择借,甲在第二阶段选择不分,乙在第三阶段选择打,最后结果是双方得益
数学建模试卷及参考答案

数学建模试卷及参考答案一、选择题1. 已知函数 $y = 2x^3 - 5x^2 + 3x - 7$,求导数函数 $y'$ 的值。
A) $6x^2 - 10x + 3$\B) $6x - 10x^2 + 3$\C) $6x - 10x + 3$\D) $6x^2 - 10x^2 + 3$答案:A2. 设矩形的长为 $x$,宽为 $y$,满足 $x^2 + y^2 = 25$。
当矩形的面积最大时,求矩形的长和宽。
A) 长为 4,宽为 3\B) 长为 5,宽为 3\C) 长为 4,宽为 2.5\D) 长为 5,宽为 2.5答案:A3. 一条直线过点 $A(1,2)$ 和点 $B(3,-1)$,与另一条直线 $2x + y - 4 = 0$ 平行。
求该直线的方程。
A) $2x - y + 3 = 0$\B) $2x - y - 3 = 0$\C) $-2x + y - 3 = 0$\D) $2x - y - 5 = 0$答案:B4. 已知函数 $y = e^x$,求 $y$ 的微分值。
A) $e^x$\B) $e^x + C$\C) $e^x - C$\D) $C \cdot e^x$答案:A5. 一辆汽车以每小时 60 公里的速度行驶,途中经过两座相距 60 公里的城市。
假设两座城市间有一辆以每小时90 公里的速度行驶的列车,两车同时出发。
求两辆车首次相遇的时间。
A) 0.5 小时\B) 1 小时\C) 1.5 小时\D) 2 小时答案:A二、填空题6. 已知函数 $f(x) = \sin(x)$,求函数 $g(x) = f^{\prime}(x)$。
答案:$g(x) = \cos(x)$7. 若直线 $3x + ky = 2$ 与直线 $2x - y = 3$ 相垂直,则 $k$ 的值为\_\_\_。
答案:$k = 6$8. 设抛物线 $y = ax^2 - 3x + 2$ 的顶点为 $(2,1)$,则 $a$ 的值为\_\_\_。
数学建模题目及答案

09级数模试题1. 把四只脚的连线呈长方形的椅子往不平的地面上一放,通常只有三只脚着地,放不稳,然后稍微挪动几次,就可以使四只脚同时着地,放稳了。
试作合理的假设并建立数学模型说明这个现象。
(15分)解:对于此题,如果不用任何假设很难证明,结果很可能是否定的。
因此对这个问题我们假设 :(1)地面为连续曲面(2)长方形桌的四条腿长度相同(3)相对于地面的弯曲程度而言,方桌的腿是足够长的(4)方桌的腿只要有一点接触地面就算着地。
那么,总可以让桌子的三条腿是同时接触到地面。
现在,我们来证明:如果上述假设条件成立,那么答案是肯定的。
以长方桌的中心为坐标原点作直角坐标系如图所示,方桌的四条腿分别在A 、B 、C 、D 处,A 、B,C 、D的初始位置在与x 轴平行,再假设有一条在x 轴上的线ab,则ab 也与A 、B ,C 、D 平行。
当方桌绕中心0旋转时,对角线 ab 与x 轴的夹角记为θ。
容易看出,当四条腿尚未全部着地时,腿到地面的距离是不确定的。
为消除这一不确定性,令 ()f θ为A 、B 离地距离之和,()g θ为C 、D 离地距离之和,它们的值由θ唯一确定。
由假设(1),()f θ,()g θ均为θ的连续函数。
又由假设(3),三条腿总能同时着地, 故()f θ()g θ=0必成立(∀θ)。
不妨设(0)0f =,(0)0g >g (若(0)g 也为0,则初始时刻已四条腿着地,不必再旋转),于是问题归结为:已知()f θ,()g θ均为θ的连续函数,(0)0f =,(0)0g >且对任意θ有00()()0f g θθ=,求证存在某一0θ,使00()()0f g θθ=。
证明:当θ=π时,AB 与CD 互换位置,故()0f π>,()0g π=。
作()()()h f g θθθ=-,显然,()h θ也是θ的连续函数,(0)(0)(0)0h f g =-<而()()()0h f g πππ=->,由连续函数的取零值定理,存在0θ,00θπ<<,使得0()0h θ=,即00()()f g θθ=。
数学建模试题(带答案)

数学建模试题(带答案)第一章4.在1.3节“椅子能在不平的地面上放稳吗”的假设条件中,将四脚的连线呈正方形改为长方形,其余不变。
试构造模型并求解。
答:相邻两椅脚与地面距离之和分别定义为)()(a g a f 和。
f 和g 都是连续函数。
椅子在任何位置至少有三只脚着地,所以对于任意的a ,)()(a g a f 和中至少有一个不为零。
不妨设0)0(,0)0(g >=f 。
当椅子旋转90°后,对角线互换,0π/2)(,0)π/2(>=g f 。
这样,改变椅子的位置使四只脚同时着地。
就归结为证明如下的数学命题:已知a a g a f 是和)()(的连续函数,对任意0)π/2()0(,0)()(,===⋅f g a g a f a 且,0)π/2(,0)0(>>g f 。
证明存在0a ,使0)()(00==a g a f证:令0)π/2(0)0(),()()(<>-=h h a g a f a h 和则, 由g f 和的连续性知h 也是连续函数。
根据连续函数的基本性质,必存在0a (0<0a <π/2)使0)(0=a h ,即0)()(00==a g a f 因为0)()(00=•a g a f ,所以0)()(00==a g a f8第二章7.10.用已知尺寸的矩形板材加工半径一定的圆盘,给出几种简便有效的排列方法,使加工出尽可能多的圆盘。
第三章5.根据最优定价模型 考虑成本随着销售量的增加而减少,则设kx q x q -=0)( (1)k 是产量增加一个单位时成本的降低 ,销售量x 与价格p 呈线性关系0,,>-=b a bp a x (2) 收入等于销售量乘以价格p :px x f =)( (3) 利润)()()(x q x f x r -= (4) 将(1)(2)(3)代入(4)求出ka q kbp pa bp x r --++-=02)(当k q b a ,,,0给定后容易求出使利润达到最大的定价*p 为bakb ka q p 2220*+--=6.根据最优定价模型 px x f =)( x 是销售量 p 是价格,成本q 随着时间增长,ββ,0t q q +=为增长率,0q 为边际成本(单位成本)。
数学建模答案(完整版)

1 建立一个命令M 文件:求数60.70.80,权数分别为1.1,1.3,1.2的加权平均数。
在指令窗口输入指令edit ,打开空白的M 文件编辑器;里面输入s=60*1.1+70*1.3+80*1.2;ave=s/3然后保存即可2 编写函数M 文件SQRT.M;函数 x=567.889与0.0368处的近似值(保留有()f x =效数四位)在指令窗口输入指令edit ,打开空白的M 文件编辑器;里面输入syms x1 x2 s1 s2 zhi1 zhi2 x1=567.889;x2=0.368;s1=sqrt(x1);s2=sqrt(x2);zhi1=vpa(s1,4)zhi2=vpa(s2,4)然后保存并命名为SQRT.M 即可3用matlab 计算的值,其中a=2.3,b=4.89.()f x >> syms a b >> a=2.3;b=4.89;>> sqrt(a^2+b^2)/abs(a-b)ans = 2.08644用matlab 计算函数在x=处的值.()f x =3π>> syms x >> x=pi/3;>> sqrt(sin(x)+cos(x))/abs(1-x^2)ans = 12.09625用matlab 计算函数在x=1.23处的值.()arctan f x x =+>> syms x >> x=1.23;>> atan(x)+sqrt(log(x+1))ans = 1.78376 用matlab 计算函数在x=-2.1处的值.()()f x f x ==>> syms x >> x=-2.1;>> 2-3^x*log(abs(x))ans =1.92617 用蓝色.点连线.叉号绘制函数在[0,2]上步长为0.1的图像.>> syms x y>> x=0:0.2:2;y=2*sqrt(x);>> plot(x,y,'b.-')8 用紫色.叉号.实连线绘制函数在上步长为0.2的图像.ln 10y x =+[20,15]-->> syms x y>> x=-20:0.2:-15;y=log(abs(x+10));>> plot(x,y,'mx-')ln 10[20,y x =+--9 用红色.加号连线 虚线绘制函数在[-10,10]上步长为0.2的图像.sin(22x y π=->> syms x y;>> x=-10:0.2:10;y=sin(x/2-pi/2);>> plot(x,y,'r+--')10用紫红色.圆圈.点连线绘制函数在上步长为0.2的图像.sin(2)3y x π=+[0,4]πsin(2)sin()[0,4]322x y x y πππ=+=->> syms x y >> x=0:0.2:4*pi;y=sin(2*x+pi/3);>> plot(x,y,'mo-.')11 在同一坐标中,用分别青色.叉号.实连线与红色.星色.虚连线绘制y=与.y =>> syms x y1 y2>> x=0:pi/50:2*pi;y1=cos(3*sqrt(x));y2=3*cos(sqrt(x));>> plot(x,y1,'cx-',x,y2,'r*--')12 在同一坐标系中绘制函数这三条曲线的图标,并要求用两种方法加234,,y x y x y x ===各种标注.234,,y x y x y x ===>> syms x y1 y2 y3;>> x=-2:0.1:2;y1=x.^2;y2=x.^3;y3=x.^4;plot(x,y1,x,y2,x,y3);13 作曲线的3维图像2sin x t y t z t ⎧=⎪=⎨⎪=⎩>> syms x y t z >> t=0:1/50:2*pi;>> x=t.^2;y=sin(t);z=t;>> stem3(x,y,z)14 作环面在上的3维图像(1cos )cos (1cos )sin sin x u v y u v z u =+⎧⎪=+⎨⎪=⎩(0,2)(0,2)ππ⨯>> syms x y u v z>> u=0:pi/50:2*pi;v=0:pi/50:2*pi;>>x=(1+cos(u)).*cos(v);y=(1+cos(u)).*sin(v);z=sin(u);>> plot3(x,y,z)15 求极限0lim x +→0lim x +→>> syms x y >> y=sin(2^0.5*x)/sqrt(1-cos(x));>> limit(y,x,0,'right') ans = 216 求极限1201lim (3x x +→>> syms y x >> y=(1/3)^(1/(2*x));>> limit(y,x,0,'right') ans = 017求极限lim x >> syms x y >> y=(x*cos(x))/sqrt(1+x^3);>> limit(y,x,+inf) ans = 018 求极限21lim (1x x x x →+∞+->> syms x y >> y=((x+1)/(x-1))^(2*x);>> limit(y,x,+inf) ans = exp(4)19 求极限01cos 2lim sin x xx x →->> syms x y >> y=(1-cos(2*x))/(x*sin(x));>> limit(y,x,0) ans = 220 求极限 x →>> syms x y >> y=(sqrt(1+x)-sqrt(1-x))/x;>> limit(y,x,0) ans = 121 求极限2221lim 2x x x x x →+∞++-+>> syms x y >> y=(x^2+2*x+1)/(x^2-x+2);>> limit(y,x,+inf) ans = 122 求函数y=的导数5(21)arctan x x -+>> syms x y >> y=(2*x-1)^5+atan(x);>> diff(y) ans = 10*(2*x - 1)^4 + 1/(x^2 + 1)23 求函数y=的导数2tan 1x x y x=+>> syms y x>> y=(x*tan(x))/(1+x^2);>> diff(y)ans =tan(x)/(x^2 + 1) + (x*(tan(x)^2 + 1))/(x^2 + 1) - (2*x^2*tan(x))/(x^2 + 1)^224 求函数的导数3tan x y e x -=>> syms y x >> y=exp^(-3*x)*tan(x)>> y=exp(-3*x)*tan(x) y = exp(-3*x)*tan(x) >> diff(y) ans = exp(-3*x)*(tan(x)^2 + 1) - 3*exp(-3*x)*tan(x)25 求函数y=在x=1的导数22ln sin 2x x π+>> syms x y >> y=(1-x)/(1+x);>> diff(y,x,2) ans = 2/(x + 1)^2 - (2*(x - 1))/(x + 1)^3 >> syms x y >> y=2*log(x)+sin(pi*x/2)^2;>> dxdy=diff(y) dxdy = 2/x + pi*cos((pi*x)/2)*sin((pi*x)/2)zhi=subs(dxdy,1)zhi = 226 求函数y=的二阶导数01cos 2lim sin x x x x →-11x x-+>> syms x y>> y=(1-x)/(1+x);>> diff(y,x,2) ans = 2/(x + 1)^2 - (2*(x - 1))/(x + 1)^327 求函数的导数;>> syms x y >> y=((x-1)^3*(3+2*x)^2/(1+x)^4)^0.2;>> diff(y) ans = (((8*x + 12)*(x - 1)^3)/(x + 1)^4 + (3*(2*x + 3)^2*(x - 1)^2)/(x + 1)^4 - (4*(2*x + 3)^2*(x - 1)^3)/(x + 1)^5)/(5*(((2*x + 3)^2*(x - 1)^3)/(x + 1)^4)^(4/5))28在区间()内求函数的最值.,-∞+∞43()341f x x x =-+>> f='-3*x^4+4*x^3-1';>> [x,y]=fminbnd(f,-inf,inf)x =NaN y = NaN >> f='3*x^4-4*x^3+1';>> [x,y]=fminbnd(f,-inf,inf)x = NaN y = NaN29在区间(-1,5)内求函数发的最值.()(f x x =->> f='(x-1)*x^0.6';>> [x,y]=fminbnd(f,-1,5)x =0.3750y = -0.3470>> >> f='-(x-1)*x^0.6';>> [x,y]=fminbnd(f,-1,5)x = 4.9999y = -10.505930 求不定积分(ln 32sin )x x dx -⎰(ln 32sin )x x dx -⎰>> syms x y >> y=log(3*x)-2*sin(x);>> int(y) ans = 2*cos(x) - x + x*log(3) + x*log(x)31求不定积分2sin x e xdx ⎰>> syms x y>> y=exp(x)*sin(x)^2;>> int(y)ans =-(exp(x)*(cos(2*x) + 2*sin(2*x) - 5))/1032. 求不定积分 >> syms x y >> y=x*atan(x)/(1+x)^0.5;>> int(y)Warning: Explicit integral could not be found. ans = int((x*atan(x))/(x + 1)^(1/2), x)33.计算不定积分2(2cos )x x x e dx --⎰>> syms x y >> y=1/exp(x^2)*(2*x-cos(x));>> int(y)Warning: Explicit integral could not be found. ans = int(exp(-x^2)*(2*x - cos(x)), x)34.计算定积分10(32)xe x dx -+⎰>> syms x y >> y=exp(-x)*(3*x+2);>> int(y,0,1) ans = 5 - 8*exp(-1)10(32)x e x dx -+⎰35.计算定积分0x →120(1)cos x arc xdx+⎰>> syms y x>> y=(x^2+1)*acos(x);>> int(y,0,1)ans =11/936.计算定积分10cos ln(1)x x dx +⎰>> syms x y >> y=(cos(x)*log(x+1));>> int(y,0,1)Warning: Explicit integral could not be found. ans = int(log(x + 1)*cos(x), x == 0..1)37计算广义积分;2122x x dx +∞++-∞⎰>> syms y x >> y=(1/(x^2+2*x+2));>> int(y,-inf,inf) ans = pi 38.计算广义积分;20x dx x e +∞-⎰>> syms x y>> y=x^2*exp(-x);>> int(y,0,+inf)ans =2。
数学模型习题参考解答

综合题目参考答案1. 赛程安排(2002年全国大学生数学建模竞赛D 题) (1)用多种方法都能给出一个达到要求的赛程.(2)用多种方法可以证明n 支球队“各队每两场比赛最小相隔场次r 的上界”(如n =5时上界为1)是⎥⎦⎤⎢⎣⎡-23n ,如: 设赛程中某场比赛是i ,j 两队, i 队参加的下一场比赛是i ,k 两队(k ≠j ),要使各队每两场比赛最小相隔场次为r ,则上述两场比赛之间必须有除i ,j ,k 以外的2r 支球队参赛,于是32+≥r n ,注意到r 为整数即得⎥⎦⎤⎢⎣⎡-≤23n r . (3)用构造性的办法可以证明这个上界是可以达到的,即对任意的n 编排出达到该上界的赛程.如对于n =8, n =9可以得到:1A 2A 3A 4A 5A 6A 7A 8A每两场比赛相隔场次数相隔场次总数 1A × 1 5 9 13 17 21 25 3,3,3,3,3,3 18 2A 1 × 20 6 23 11 26 16 4,4,4,3,2,2 19 3A5 20 × 24 10 27 15 2 2,4,4,4,3,2 19 4A 96 24 × 28 24 3 19 2,2,4,4,4,3 19 5A 13 23 10 28 × 4 187 2,2,2,4,4,4 18 6A 17 11 27 14 4 × 8 22 3,2,2,2,4,4 17 7A 21 26 15 3 18 8 × 12 4,3,2,2,2,4 17 8A25 1621972212×4,4,3,2,2,2171A2A3A 4A5A 6A 7A 8A 9A每两场比赛相隔场次数 相隔场 次总数1A × 36 6 31 11 26 16 21 1 4,4,4,4,4,4,4, 28 2A 36 × 2 27 7 22 12 17 32 4,4,4,4,4,4,3 27 3A6 2 × 35 15 30 20 25 10 3,3,4,4,4,4,4 26 4A 31 27 35 × 3 18 8 13 23 4,4,4,4,3,3,3 25 5A 11 7 15 3 × 34 24 29 19 3,3,3,3,4,4,4 24 6A 26 22 30 18 34 × 4 9 14 4,4,3,3,3,3 23 7A 16 12 20 8 24 4 × 33 28 3,3,3,3,3,3,4 22 8A 21 17 25 13 29 9 33 × 5 3,3,3,3,3,3,3, 21 9A13210231914285×3,4,3,4,3,4,324可以看到, n =8时每两场比赛相隔场次数只有2,3,4, n =9时每两场比赛相隔场次数只有3,4,以上结果可以推广,即n 为偶数时每两场比赛相隔场次数只有22-n ,12-n ,2n,n 为奇数时只有23-n ,21-n . (4)衡量赛程优劣的其他指标如平均相隔场次 记第i 队第j 个间隔场次数为ij c ,2,2,1,,,2,1-==n j n i ,则平均相隔场次为∑∑=-=-=n i n j ij c n n r 121)2(1r 是赛程整体意义下的指标,它越大越好.可以计算n =8,n =9的r ,并讨论它是否达到上界.相隔场次的最大偏差 定义||,r c Max f ij j i -=∑-=--=21|)2(|n j ij r n c Max gf 为整个赛程相隔场次的最大偏差,g 为球队之间相隔场次的最大偏差,它们都是越小越好.可以计算n =8,n =9的f ,g ,并讨论它是否达到上界.参考文献工程数学学报第20卷第5期2003 2. 影院座位设计建立满意度函数),(βαf ,可以认为α和β无关, ()()βαβαh g f -=),(,g ,h 取尽量简单的形式,如αα=)(g ;0)(=βh (030≤β),0)(h h =β)30(0>β. (1)可030≤β将作为必要条件,以α最大为最佳座位的标准.在上图中以第1排座位为坐标原点建立坐标轴x ,可以得到⎪⎭⎫⎝⎛+----⎪⎭⎫ ⎝⎛+--=⎪⎭⎫⎝⎛+--=d x x h c H d x x c H d x x c H θθαθβtan arctan tan arctan ,tan arctan β是x 的减函数.可得x ≈1.7m,即第3(或4)排处030=β.又通过计算或分析可知α也是x 的减函数,所以第3(或4)排处是最佳座位.(2)设定一个座位间隔l (如0.5m), x 从0(或030≤β处)到d D -按l 离散,对于)20~0(00θ计算α的平均值,得020=θ时其值最大.(3)可设地板线是x 的二次曲线2bx ax +,寻求a ,b 使α的平均值最大. 实际上,还应考虑前排不应挡住后排的视线.3.节水洗衣机(1996年全国大学生数学建模竞赛B 题)该问题不要求对洗衣机的微观机制(物理、化学方面)深入研究,只需要从宏观层次去把握.宏观上洗衣的基本原理是用洗涤剂通过漂洗把吸附在衣物上的污物溶于水中,再脱去污水带走污物;洗衣的过程是通过“加水——漂洗——脱水”程序的反复运行,使残留在衣物的污物越来越少,直到满意的程度;洗涤剂也是不希望留在衣物上的东西,可将“污物”定义为衣物上原有污物与洗涤剂的总和.假设每轮漂洗后污物均匀地溶于水中;每轮脱水后衣物含水量为常数c .0x ~初始污水量,~k u 第k 轮加水量,k x ~第k 轮脱水量),,2,1( =k .设每轮脱水前后污物在水中的浓度不变.于是cx c u x c xc u x c x u x n n n =+=+=--11221110,,, , 得到)()(210c u c u u c x x n n n ++=. 在最终污物量与初始污物量之比0/x x n 小于给定的清洁度条件下,求各轮加水量k u ),,1(n k =,使总用水量最小,即∑=nk k u u Min k 1()ε<++)(..21c u c u u c t s n n等价于)()(21c u c u u Min n u k +++++α=++)()(..21c u c u u t s na 为常数可得c u c u u n +==+= 21,即第n ~2轮加水量u u k =(常数),第1轮加水量c u u +=1.令cx u =,问题简化为nx Min u n ,ε<⎪⎭⎫ ⎝⎛+nx t s 11.. 其解为0→x ,即0→u ,而∞→n .这与实际上是不合理的.应该加上对u 的限制:21v u v ≤≤.则得max min n n n ≤≤,其中 max min n n n ≤≤,1)/1ln(2min +⎥⎦⎤⎢⎣⎡+=c v n α这样,n为有限的几个数,可一一比较,具体数据计算从略.参考文献:《数学的实践与认识》第27卷第1期,19974.教师工资调整方案(1995年美国大学生数学建模竞赛B 题)题目对职称提升年限表述得不甚清楚(如未提及助理教授的提升),教龄也未区分是什么职称下工作的年限,所以应该作出一些相应的简化假设.按所给信息,工资仅取决于职称和教龄.建立新方案的一种办法是将职称折合成教龄,如定义x=教龄t+7×k (对于讲师、助理教授、副教授、教授,k 分别取值0,1,2,3),然后寻求工资函数I(x),使之满足题目的要求,如I(0)=27000,I(7)=32000等,以及x 较大时022<dxId .另一种办法是职称、教龄分别对待,工资函数J(k,t)从多种函数中选择,如最简单的线性函数J(k,t)=k k k k b a t b a ,,+(k=0,1,2,3)根据一定条件确定.按照第一种办法得到的新工资方案,以职称和教龄综合指标为x 的教师的工资都应为I(x),而人们的目前工资会低于或高于它.根据题目要求,高工资不应降低,低工资则应逐渐提高,尽快达到理想值I(x).需要做的只是根据每人(目前)工资与(理想值的)差额,制定学校提供的提薪资金的分配方案.它应该是简单、合理、容易被人接受的.按以上原则可以建立不同的模型,应通过检验比较其恶劣.检验可基于题目所给数据,按照提薪计划运行若干年,考察接近理想方案的情况,即用过渡时期的情况检验模型;也可进行随机模拟,按照一定规则随机产生数据(可以包括聘用、提职、解聘、退休的人数和时间等),再按照提薪计划运行,考察接近理想方案的情况.参考文献:叶其孝,《大学生数学建模竞赛辅导教材》(四),湖南教育出版社,2001 5. 一个飞行管理问题(1995年全国大学生数学建模竞赛A 题) 设ij a 为第i 架飞机与第j 架飞机的碰撞角(即)8arcsin(ijij r a =其中ij r 为这两架飞机连线的长度),ij β为第i 架飞机相对于第j 架飞机的相对速度(矢量)与这两架飞机连线(从i 指向j 的矢量)的夹角(以连线矢量为基准,逆时针方向为正,顺时针方向为负),i θ为第架飞机飞行方向角调整量.本问题中的优化目标函数可以有不同的形式:如使所有飞机的最大调整量最小;所有飞机的调整量绝对值之和最小等.以所有飞机的调整量绝对值之和最小,可以得到如下的数学规划模型:∑=61i i Min θs.t. ,)(21ij j i ij a >++θθβ j i j i ≠=,6,,1,30≤i θ , 6,,1 =i为了利用LINGO 求解这个数学规划模型,可以首先采用其他数学软件计算出ij α和ij β.其实,ij α和ij β也是可以直接使用LINGO 来计算的,这相当于解关于ij α和ij β的方程,只是解方程并非LINDO 软件的特长,这里我们作为一个例子,看看如何利用LINGO 计算ij α,可输入如下模型到LINGO 求解ij α:MIDEL : 1]SETS:2] PLANE/1..6/:x0,y0; 3] link(plane,plane):alpha,sin2: 4]ENDSETS5] @FOR(LINK(I,J)|I#NE#J:6] sin2(I,J)=64/((X0(I)-X0(J))*(X0(I)-X0(J))+ 7] (Y0(I)-Y0(J))*(Y0(I)-Y0(J))); 8] );9] @FOR(LINK(I,J)|I#NE#J:10] (@SIN(alpha*3./180.0))^2=SIN2; 11] ); 12]DATA:13] X0=150,85,150,145,130,0; 14] Y0=140,85,155,50,150,0; 15]endata END 计算结果如下:ija j=1 2 3 4 5 6i =1 0.000 0 5.391232.2315.091820.96342.23452 5.391 2 0.0000 4.804 0 6.61355.807 9 3.81593 32.2310 4.8040.000 0 4.364722.83372.12554 5.091 8 6.6135 4.364 7 0.0004.4.537 2.98985 20.9634 5.807922.83374.53770.000 0 2.30986 2.234 5 3.8159 2.125 5 2.98982.309 8 0.000ijβ也可类似地利用LINGO求得,计算结果如下:ijβj=1 2 3 4 5 6i =1 0.000109.263 6-128.250 024.179 8173.065 114.474 92 109.263 60.000 0-88.871 1-42.243 6-92.304 89.000 03 -128.250 0-88.871 10.00012.476 3-58.786 20.310 84 24.179 8-42.243 612.476 30.000 05.969 2-3.525.65 173.065 1-92.304 8-58.786 25.969 20.000 01.914 46 14.479.000.310 -3.5 1.910.04 9 0 0 8 256 4 4 00 0于是,该飞机管理的数学规划模型可如下输入LINGO求解:MODEL:1]SETS2] plane/1..6/:cita:3] link(plane,plane):alpha,beta;4]ENDSETS5] min=@sum(plane:@abs(cita));6] @for(plane(I):7] @bnd(-30,cita(I),30);8] );9] @fpr(link(I,j)|I#NE#J:10] @ABS(beta(I,J)+0.5*cit(I)+0.5*cita(J))11] >alpha(I,J);12] );13]DATA:14] A;[JA=0.000 0 5.391.2…..…2.309 8 0.000 020] ;21] BETA=0.000 010 9.263 6………1.914 4 0.000 027] ;28]enddataEND[注] alpha,beta中数据略去,见上面表格.求解结果如下:OPTIMUM FOUND AT STEP 197SOLUTION OBJECTIVE VALUE= 3.630V ARIABLE V ALUE REDUCED COSTCITA(1) 0.E-06 -1.000 000 CITA(2) -0.E-05 -0.715 033 4CITA(3) 2.557 866 1.000 000 CITA(4) -0.E-04 0.E+00 CITA(5) 0.E-05 -1.000 000 CITA(6) 1.071 594 0.E+00 ………. (以下略)由此可知最优解为:︒︒≈≈07.1,56.263θθ (其它调整角度为0).评注:如果将目标改为最大调整量最小,则可进一步化简得到线形规划模型,也可用LINDO 或LINGO 求解.参考文献:《数学的实践与认识》第26卷第1期,1996 6. 降落伞的选择这个优化问题的决策变量是降落伞数量n 和每一个伞的半径r ,可先将n 和r 看作连续变量,建立优化模型,求得最优解后,再按题目要求作适当调整.目标函数之降落伞的费用,可以根据表1数据拟合伞面费用1C 与伞的半径r 的关系。
数学建模作业及答案

数学建模作业姓名:叶勃学号:班级:024121一:层次分析法1、 分别用和法、根法、特征根法编程求判断矩阵1261/2141/61/41A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦11/2433217551/41/711/21/31/31/52111/31/5311A ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦的特征根和特征向量(1)冪法求该矩阵的特征根和特征向量 程序为:#include<iostream> #include<math.h> using namespace std;#define n 3 //三阶矩阵#define N 20 #define err 0.0001 //幂法求特征值特征向量 void main(){cout<<"**********幂法求矩阵最大特征值及特征向量***********"<<endl; int i,j,k;double A[n][n],X[n],u,y[n],max;cout<<"请输入矩阵:\n"; for(i=0;i<n;i++) for(j=0;j<n;j++)cin>>A[i][j]; //输入矩阵 cout<<"请输入初始向量:\n"; for(i=0;i<n;i++)cin>>X[i]; //输入初始向量 k=1; u=0;while(1){ max=X[0]; for(i=0;i<n;i++) {if(max<X[i]) max=X[i]; //选择最大值 }for(i=0;i<n;i++)y[i]=X[i]/max; for(i=0;i<n;i++)X[i]=0;for(j=0;j<n;j++)X[i]+=A[i][j]*y[j]; //矩阵相乘}if(fabs(max-u)<err){cout<<"A的特征值是 :"<<endl; cout<<max<<endl; cout<<"A的特征向量为:"<<endl; for(i=0;i<n;i++) cout<<X[i]/(X[0]+X[1]+X[2])<<" ";cout<<endl;break;}else{if(k<N) {k=k+1;u=max;} else {cout<<"运行错误\n";break;}}} }程序结果为:(2)和法求矩阵最大特征值及特征向量程序为:#include<stdio.h>#include<iostream>#include<math.h> using namespace std;#define n 3 //三阶矩阵#define N 20void main(){int i,j,k;double A[n][n],w[n],M[n],u[n],W[n][n],max;cout<<"********和法求矩阵的特征根及特征向量*******"<<endl;cout<<"请输入矩阵:\n";for(i=0;i<n;i++)for(j=0;j<n;j++)cin>>A[i][j]; //输入矩阵 //计算每一列的元素和M[0]=0;M[1]=0;M[2]=0;for(i=0;i<n;i++)for(j=0;j<n;j++){M[i]+=A[j][i];}//将每一列向量归一化for(i=0;i<n;i++)for(j=0;j<n;j++){W[j][i]=A[j][i]/M[i];}//输出按列归一化之后的矩阵Wcout<<"按列归一化后的矩阵为:"<<endl;for(i=0;i<n;i++)for(j=0;j<n;j++){cout<<W[i][j]<<" ";if(j==2)cout<<endl;} //求特征向量w[0]=0;w[1]=0;w[2]=0;for(i=0;i<n;i++)for(j=0;j<n;j++){w[i]+=W[i][j];}cout<<"特征向量为:"<<endl; for(i=0;i<n;i++){u[i]=w[i]/(w[0]+w[1]+w[2]);cout<<u[i]<<" "<<endl;}//求最大特征值max=0;for(i=0;i<n;i++){w[i] = 0;for(j=0;j<n;j++){w[i] += A[i][j]*u[j];}}for(i = 0;i < n;i++){max += w[i]/u[i];}cout<<"最大特征根为:"<<endl;cout<<max/n<<endl; }运行结果为:(3)根法求矩阵最大特征值及特征向量:程序为:#include<stdio.h>#include<iostream>#include<math.h>using namespace std;#define n 3 //三阶矩阵#define N 20void main(){int i,j;double A[n][n],w[n],M[n],u[n],W[n][n],max;cout<<"********根法求矩阵的特征根及特征向量*******"<<endl; cout<<"请输入矩阵:\n";for(i=0;i<n;i++)for(j=0;j<n;j++)cin>>A[i][j]; //输入矩阵//计算每一列的元素和M[0]=0;M[1]=0;M[2]=0;for(i=0;i<n;i++)for(j=0;j<n;j++){M[i]+=A[j][i];}//将每一列向量归一化for(i=0;i<n;i++)for(j=0;j<n;j++){W[j][i]=A[j][i]/M[i];}//输出按列归一化之后的矩阵Wcout<<"按列归一化后的矩阵为:"<<endl;for(i=0;i<n;i++)for(j=0;j<n;j++){cout<<W[i][j]<<" ";if(j==2)cout<<endl;}//求特征向量//w[0]=A[0][0];w[1]=A[0][1];w[2]=A[0][2];w[0]=1;w[1]=1;w[2]=1;for(i=0;i<n;i++){for(j=0;j<n;j++){w[i]=w[i]*W[i][j];}w[i]=pow(w[i], 1.0/3);}cout<<"特征向量为:"<<endl;for(i=0;i<n;i++){u[i]=w[i]/(w[0]+w[1]+w[2]);cout<<u[i]<<" "<<endl;}//求最大特征值max=0;for(i=0;i<n;i++){w[i] = 0;for(j=0;j<n;j++){w[i] += A[i][j]*u[j];}}for(i = 0;i < n;i++){max += w[i]/u[i];}cout<<"最大特征值为:"<<endl; cout<<max/n;}运行结果为:2、编程验证n阶随机性一致性指标RI:运行结果:3、考虑景色、费用、居住、饮食、旅途五项准则,从桂林、黄山、北戴河三个旅游景点选择最佳的旅游地。
《数学建模》习题及参考答案 第一章 建立数学模型

第一章部分习题3(5). 决定十字路口黄灯亮的时间长度.4. 在1.3节“椅子能在不平的地面上放稳吗”的假设条件中,将四角的连线呈正方形改为长方形,其余不变,试构造模型并求解.5. 模仿1.4节商人过河问题中的状态转移模型,作下面这个众所周知的智力游戏:人带着猫、鸡、米过河,船除希望要人计划之外,至多能载猫、鸡、米三者之一,而当人不在场时猫要吃鸡、鸡要吃米,设计一个安全过河方案,并使渡河次数尽量地少.6. 利用1.5节表1和表3给出的1790-2000年的美国实际人口资料建立下列模型: (1) 分段的指数增长模型. 将时间分为若干段,分别确定增长率r. (2) 阻滞增长模型. 换一种方法确定固有增长率r 和最大容量x m .7. 说明1.5节中Logistic 模型(9)可以表示为()()01t t r mex t x --+=,其中t 0是人口增长出现拐点的时刻,并说明t 0与r ,x m 的关系.8. 假定人口的增长服从这样的规律:时刻t 的人口为x (t),t 到t +△t 时间内人口的增量与x m -x (t)成正比(其中为x m 最大容量). 试建立模型并求解. 作出解的图形并与指数增长模型、阻滞增长模型的结果进行比较.9(3). 甲乙两站之间有电车相通,每隔10分钟甲乙两站相互发一趟车,但发车时刻不一定相同。
甲乙之间一中间站丙,某人每天在随机的时刻到达丙站,并搭乘最先经过丙站的那趟车,结果发现100天中约有90天到达甲站,约有10天到达乙站。
问开往甲乙两站的电车经过丙站的时刻表是如何安排的。
参考答案3(5). 司机看到黄灯后停车要有一定的刹车距离1s ,设通过十字路口的距离为2s ,汽车行驶速度为v ,则黄灯的时间长度t 应使距停车线1s 之内的汽车能通过路口,即()vs s t 21+≈其中s 1可由试验得到,或按照牛顿第二定律解运动方程,进一步可考察不同车重、不同路面及司机反应灵敏程度等因素的影响.4. 相邻两椅脚与地面距离之和分别定义为()()θθg f 和,将椅子旋转ο180,其余作法与1.3节相同.5. 人、猫、鸡、米分别记为4,3,2,1=i ,当i 在此岸时记1=i x ,否则记0=i x ,则此岸的状态可用()4321,,,x x x x s =表示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.第6题第1题解释:非线性模型待数据拟合的函数模型关于某些待定参数是非线性的,就称为非线性模型。
第2题解释:线性模型待数据拟合的函数模型关于全体待定参数都是线性的,就称为线性模型。
第10题解释:数学模型数学模型(Mathematical Model)是由数字、字母或者其他数学符号组成的,描述现实量规律的数学公式、图形或算法.第11题词解释:一阶差分方程第3题在驾驶过程中遇到突发事件会紧急刹车,从司机决定刹车到车完全停住汽车行驶的距车距离,车速越快,刹车距离越长. 请问刹车距离与车速之间具有怎样的数量关系案:6.第5题,7.第13题8.第14题9.第6题…10.第9题根据按揭贷款的等额本息还款法的算法:每月利息=本月剩余本金×贷款月利率每月本金=本月剩余本金-下月剩余本金每月月供额=每月本金+每月利息建立数学模型,并推出已知本金总额和按揭年数时月供额的计算公式.;11.第12题请详细阐述正比例函数模型进行最小二乘数据拟合的原理。
12.第15题13.第17题<根据按揭贷款的等额本金还款法的算法:每月还本付息金额=每月本金+每月利息每月本金=本金总额/还款月数每月利息=(本金总额–累计已还本金)×月利率建立数学模型,并推出已知本金总额和按揭年数时月供额的计算公式.14.第4题写出以下公式:按照最小二乘法,由样本数据计算一元线性回归模型的回归系数的点估计.…15.第7题MATLAB规定分号有哪些用途命令之后加一个分号“;”,MATLAB只执行命令,不显示结果,这样可以屏蔽掉不需要的显示。
创建数值数组时,两行之间以分号或回车换行隔开。
16.第8题什么是灵敏性分析为什么需要做灵敏性分析哪些参数需要做灵敏性分析哪些参数不需要做灵敏性分析灵敏性(sensitivity)是指当数学模型的某个参数改变时模型解答的变化程度,变化越大,模型解答对该参数的就越灵敏.$在建立数学模型解决实际问题的时候,人们自然期待模型解答对参数不算灵敏,因为在灵敏的情况下,一旦参数发生微小变化,模型的解答就会发生显著的变化,会给模型检验和模型应用带来困难. 但事实上,在科学技术各个领域广泛存在着灵敏性和临界值问题,在数学上很多数学模型也存在着灵敏性和临界值问题,当参数处于临界值附近时,模型解答会对参数高度灵敏. 人们对此非常关注又非常感兴趣. 所以不论建立什么样的数学模型,都需要仔细的做灵敏度分析.在数学建模的实践中,没必要对所有参数都进行灵敏度分析,需要对哪些参数进行灵敏度分析要从实际意义出发考虑参数的不确定程度. 有些参数实际上是稳定的,其观测值是准确可靠的;另一些参数实际上经常变动,观测、估计或预测所得的参数值往往会包含不小的误差. 显然,前一种参数没有做灵敏度分析的必要,而后一种参数的不确定性会影响模型解答的可信性,所以灵敏度分析非常有必要.17.第16题请说明MATLAB的变量名、M文件名和函数名的命名规则。
MATLAB的变量名、函数名、程序文件名的命名规则为:必须以字母开头,可以有字母、数字和下划线(不能包含其他字符,例如中文字符),区分大小写字母;可以是任意长度,但是只有前63个字符是有效的;不能和任何MATLAB关键字同名;命名应该避免使用MATLAB 系统已经安装的函数名(包括特殊值),因为这样做会导致同名函数不能使用,直到以命令“clear 变量(函数、程序文件)名”清除该变量(函数、程序文件)名为止.18.第18题回答以下问题:(1)什么是一级动力学反应…(2)写出一级动力学反应的微分方程模型及满足初始条件的特解.(3)什么是半衰期(4)为什么一级动力学反应的半衰期是一个与初始状态无关的常数19.第19题什么是数学建模数学建模有哪些步骤请简述这些步骤。
数学建模(Mathematical Modeling)是建立数学模型解决实际问题的全过程,包括数学模型的建立、求解、分析和检验四大步骤.(1)数学模型的建立,就是指从现实对象的信息提出数学问题,选择合适的数学方法,识别常量、自变量和因变量,引入适当的符号并采用适当的单位制,提出合理的简化假设,推导变量和常量所满足的数量关系,表述成数学模型.?(2)数学模型的求解,就是指运用所选择的数学方法求解数学模型.(3)数学模型的分析,就是指对数学模型的解答进行数学分析,包括对结果的误差分析或统计分析,模型对数据的灵敏度分析,模型对假设的强健性分析.(4)数学模型的检验,就是指把数学模型的解答解释成现实对象的解答,给出实际问题所需要的分析、预报、决策或控制的结果,检验现实对象的解答是否符合现实对象的信息(包括实际的现象、数据或计算机仿真),从而检验数学模型是否合理、是否适用. 如果检验的结果说明该数学模型不够合理、不适用于实际对象,首先要考虑最初从实际对象的信息提出的数学问题以及选择的数学方法是否适当,是否要重新提出数学问题、重新选择数学方法;其次要考虑在模型建立阶段所提出的简化假设是否合理,是否足够,通过修改假设,或补充假设,重新建模. 数学建模的过程往往需要经历反复和完善,直到满意.数学建模取得满意的结果以后,可以根据实际对象的需要进一步应用所建立的数学模型来解决其它实际问题,这就是模型应用.解释:最小二乘法数模型和已知数据,按照使误差平方和达到最小值的目标进行数据拟合。
13题解释:二阶差分方程17题5.第2题(接续47 酶促反应(1)和48酶促反应(2))请分析Michaelis-Menten模型非线性拟合和线性化拟合的结果有何区别原因是什么》6.第5题怎么根据鱼的长度估计重量可以假设鱼的重量W与长度L有如下关系:W=aL3+b。
利用表1的数据验证这个模型.表1 鱼的数据,重量W单位为盎司,长度l单位为英寸W13131313?14141515157.第16题8.第19题》考虑弹簧-质量系统,收集弹簧伸长的长度与弹簧末端悬挂的质量的实验数据,记录在表1(单位省略). 请计算出伸长与质量的函数关系的经验公式.表1 弹簧伸长和质量的测量数据质量50100150200250¥300伸长(质量350400450500550伸长?"9.第6题在一年之初把一对一雌一雄新生的兔子放入围栏,从第二个月开始,母兔每月生出一对一雌一雄的小兔;每对新生的兔子也从它们第二个月大开始,每月生出一对一雌一雄的小兔. 请回答以下问题:(1)从第一到第十二个月的每个月末,围栏内各有多少对兔子(2)建立差分方程模型,求出围栏内在第n个月末的兔子对数的通项公式.$10.第7题硬币有正反两面,抛质地均匀的硬币,正面和反面朝上的机会都是二分之一,请设计算法,编写MATLAB程序,模拟抛质地均匀的硬币这种随机行为。
11.第9题阅读材料合金强度与合金中的碳含量有密切关系,表1是收集到的一批数据.表1 碳含量(%)与合金强度(kg/mm2)的数据—@碳含量强度》\设自变量x为碳含量,因变量y为合金强度,用以下MATLAB脚本做一元线性回归分析的计算:x=[;;;;;;;;;;;];y=[;;;;;;;;;;;];X=[ones(size(x)),x]; [b,bint,r,rint,stat]=regress(y,X)命令窗口显示的计算结果:*b =bint =r =,12.第14题,物体在常温下的温度变化可以用牛顿冷却定律来描述:物体温度对时间的变化率与物体温度和它周围介质温度之差成正比. 写出牛顿冷却定律的微分方程模型及满足初始条件的特解.标准答案:13.第18题14.第3题}请回答以下问题:(1)写出指数增长方程及其满足初始条件的解函数;(2)指数增长方程的模型假设是什么(3)指数增长方程包含有哪些参数这些参数的实际意义是什么根据实际数据拟合这些参数的思路是什么15.第4题如果鲸鱼的数量降低至最小生存水平m,则鲸鱼将灭绝;如果鲸鱼的数量超过环境的容纳量M,则鲸鱼的数量将下降. 建立数学模型,描述鲸鱼的数量的变化.!16.第8题MATLAB的数组运算有哪几种请逐一说明。
表数组运算运算符说明+对应元素之间的加法$-对应元素之间的减法.*对应元素之间的乘法./对应元素之间的除法(左边除以右边,例如5./10=).\对应元素之间的左除法(左边除右边,例如5.\10=2)(.^对应元素之间的乘幂.'转置,遇复数不取共轭17.第10题MATLAB规定逗号有哪些用途命令之后加一个逗号,MATLAB执行命令,并显示结果。
创建数值数组时,同一行的元素用逗号或空格分隔。
输入或输出变量名之间用逗号分隔。
>18.第12题一元线性回归模型有哪些模型假设19.第15题请详细说明MATLAB有哪几种关系运算。
标准答案:表关系运算~运算运算符函数相等==eq(x,y)不等~=…ne(x,y)小于< lt(x,y)大于> gt(x,y)小于或等于…<=le(x,y)大于或等于>=ge(x,y)您的答案:题目分数::此题得分:教师未批改作业总得分:作业总批注:·名词解释:数学模型标准答案:数学模型(Mathematical Model)是由数字、字母或者其他数学符号组成的,描述现实对象数量规律的数学公式、图形或算法.您的答案:—题目分数:此题得分:2.第7题名词解释:一阶差分方程标准答案:$您的答案:题目分数:此题得分:3.第10题名词解释:二阶差分方程标准答案:》您的答案:题目分数:此题得分:4.第17题(标准答案:您的答案:题目分数:此题得分:5.第3题(接续47 酶促反应(1)和48酶促反应(2))$请分析Michaelis-Menten模型非线性拟合和线性化拟合的结果有何区别原因是什么标准答案:您的答案:题目分数:此题得分:/6.第4题怎么根据鱼的长度估计重量可以假设鱼的重量W与长度L有如下关系:W=aL3+b。
利用表1的数据验证这个模型.表1 鱼的数据,重量W单位为盎司,长度l单位为英寸标准答案:您的答案:题目分数:此题得分:>7.第13题(接续43 指数增长模型(1)和44 指数增长模型(2))请分析指数增长模型非线性拟合和线性化拟合的结果有何区别原因是什么标准答案:您的答案:~题目分数:此题得分:标准答案:。