水箱中水-电化学法处理解读
电化学水处理技术

电化学水处理技术作者:荣福林来源:《世界家苑·学术》2018年第04期摘要:目前世界各国对工业废水的处理研究甚多,其中电化学法设备占地面积小,操作灵活,排污量小,不仅可以处理无机污染物,也可以处理有机污染物,甚至连一些无法生物降解的有毒有机物与某些含重金属污水都可用此方法进行处理;再加上风力、核电等新兴发电技术的大力发展和推广应用带来的电能成本降低,使得电化学方法在治理废水方面具有更大的优势。
关键词:电化学法;水处理;技术1电化学法的分类电化学水处理技术的基本原理是使污染物在电极上发生直接电化学反应或间接电化学转化,即直接电解和间接电解。
1)直接电解直接电解是指污染物在电极上直接被氧化或还原而从废水中去除。
直接电解可分为阳极过程和阴极过程。
阳极过程就是污染物在阳极表面氧化而转化成毒性较小的物质或易生物降解的物质,甚至发生有机物无机化,从而达到削减、去除污染物的目的。
阴极过程就是污染物在阴极表面还原而得以去除,主要用于卤代烃的还原脱卤和重金属的回收。
2)间接电解间接电解是指利用电化学产生的氧化还原物质作为反应剂或催化剂,使污染物转化成毒性更小的物质。
间接电解分为可逆过程和不可逆过程。
可逆过程(媒介电化学氧化)是指氧化还原物在电解过程中可电化学再生和循环使用。
不可逆过程是指利用不可逆电化学反应产生的物质,如具有强氧化性的氯酸盐、次氯酸盐、H2O2和O3等氧化有机物的过程。
[1]电化学法处理废水的工艺有很多种,其中以微电解技术、电催化技术应用的最为广泛,这里简单介绍一下微电解技术和电催化技术的原理及应用。
2微电解技术原理:微电解技术是目前处理高浓度有机废水的一种理想工艺,该工艺用于高盐、难降解、高色度废水的处理不但能大幅度地降低COD和色度,还可大大提高废水的可生化性。
微电解法,又称内电解法、铁还原法、铁碳法、零价铁法等。
该方法处理废水的原理是:利用铁屑中的铁合碳组分构成微小原电池的正极和负极,以充入的废水为电解质溶液,发生氧化-还原反应,形成原电池。
电化学水处理

四、重金属离子废水处理
• 与传统的二维电极相比,电沉积法的三维电极能够增加电 解槽的面体比,且因粒子间距小而增大了物质传质速度, 提高电流效率和处理效果。利用三维电极主要是处理含 Cu2+和Hg2+等的重金属废水,三维电极所提供的特殊表面 和很大的传质速率,能有效地处理稀溶液,这种电极能在 几分钟内将金属质量浓度从100 mg/L降至0.1 mg/L,除去 重金属离子的效率高,需要的空间少。离子交换树脂与铜 粒等比例混合制成的复合三维电极固定床电化学反应器, 用于处理低浓度含铜废水,且无须加入支持电解质(如硫 酸),出口铜质量浓度为0.008 mg/L,达到国家排放标准。
2、酚类
• 目前,国内外对于含酚废水的研究较多,此类废水来源广、 污染重,是芳香化合物的代表。电化学氧化含酚废水的影 响因素有苯酚初始浓度、废水pH值、电流密度、支持电解 质种类等。周明华等[4]以经氟树脂改性的β -PbO2为阳极, 处理含酚模拟废水,在电压为7.0 V,pH值为2.0的条件下, 其COD可降至60 mg/L以下,挥发酚可完全去除。匡少平等 在隔离阴、阳极室条件下进行了电化学法降解含酚废水试 验,苯酚的转化率达95%以上;同时,分别对铅电极和钛 上电沉积二氧化铅的电极作为阳极进行了对比试验,发现 Ti/PbO2电极对苯酚的降解更加彻底。
6、其他电化学方法
• 电吸附、离子交换辅助电渗析以及电化学膜分离 等技术不仅可以用作清洁生产工艺,预防环境污 染,而且它们也是有效的工业废水处理方法。电 吸附法可以用来分离水中低浓度的有机物和其他 物质;离子交换辅助电渗析法具有可多样化设计、 适用范围广等优点,已成为环保开发应用的热点 技术;电化学膜分离技术是利用膜两侧的电势差 进行物质分离,常用于气态污染物的分离。
电化学水处理技术

一、电化学基本概念
4、电极
一、电化学基本概念
电极
阴极、阳极:按照电荷的流动方向分
一、电化学基本概念
电极
按照电化学体系中的作用分
工作电极(working electrode) 辅助电极(counter electrode) 参比电极(reference electrode)
一、电化学基本概念
二、电化学水处理技术
4、主要技术
电化学氧化 电化学还原 电吸附 电凝聚 电渗析
二、电化学水处理技术
4.1电化学氧化(阳极过程)
利用不溶性阳极的直接电解氧化作用,或阳极反应产物(Cl2、 ClO-、O2)间接的氧化作用,降解消除水中的氰、酚以及COD、 S2-等污染物。
直接氧化
使有机物或还原性无机物氧化为无害物质, 对于难降解有毒有机物转化有意义
一、电化学基本概念
6、原电池与电解池
电解池
(electrolytic cell)
二、电化学水处理技术
1、定义
电化学水处理技术是指在外加电场的 作用下,在特定的电化学反应器内, 通过一定的化学反应、电化学过程或 物理过程,对废水中的污染物进行降 解的过程。
二、电化学水处理技术
2、基本原理 阳极过程:有机物氧化
直 接 电 解 原 理 间 接 电 解
阴极过程:卤代烃、重金属
可逆过程:金属氧化物高低价态 转化 不可逆过程:产生的强氧化性物质 或自由基
二、电化学水处理技术
3、电化学技术的优点
1、 环境兼容性高 电化学技术中使用清洁、有效的电 子作为强氧化还原试剂, 是一种基本对环境无污染的 “绿色”生产技术。 2、多功能性 电化学过程具有直接或间接氧化与还原、 相分离、浓缩与稀释、生物杀伤等功能,能处理到 1 ×10-6L的气、液体和固体污染物。 3、能量高利用率 与其他一些过程相比, 电化学过程可 在较低温度下进行。它不受卡诺循环的限制,能量利 用率高。通过控制电位、合理设计电极与电解池,减 小能量损失。 4、经济实用 设备、操作简单, 费用低。
电力行业循环冷却水系统中电化学法工程实例

TECHNOLOGY AND INFORMATION102 科学与信息化2023年4月下电力行业循环冷却水系统中电化学法工程实例王芊倩上海洗霸科技股份有限公司 上海 200437摘 要 伴随环保达标排放政策的进一步深入和完善,面对当前“双碳”目标倒逼驱动下的零排放工作,火电企业作为用水大户迫切需要以更经济、更高效的技术装备和手段实现零排放。
以安徽某电厂循环水系统为例进行综合分析,针对其循环水(循环水量140620m ³/h )的运行情况,采用电化学法的工艺进行处理,最终使循环水系统排污减量, 为电力行业循环冷却水的处理技术提供参考。
关键词 电化学;循环水;浓缩倍数Example of Electrochemical Engineering in Circulation Cooling Water System in Electric Power Industry Wang Qian-qianShanghai Emperor of Cleaning Hi-tech Co., Ltd., Shanghai 200437, ChinaAbstract With the further deepening and improvement of the environmental protection emission standard policy, facing zero emission driven by the current “double carbon” target, thermal power enterprises, as large water users, urgently need to achieve zero emission with more economic and more efficient technical equipment and means. Taking the circulating water system of a power plant in Anhui province as an example for comprehensive analysis, according to the operation of the circulating water (circulating water amount 140,620 m³/h), the electrochemical method is adopted to reduce the sewage discharge of the circulating water system. It provides a reference for the treatment technology of circulating cooling water in the electric power industry.Key words electrochemistry; circulating water; concentrated multiple引言火电行业水系统是重要生产辅助单元,一般会有工业水处理、脱盐水处理、循环水处理、工业废水处理、回用水处理和脱硫废水处理系统等,各水处理系统间相互关联、相互制约,水质、水量的差异对全厂水系统的稳定运行起着决定性的作用。
电化学废水处理

工业废水处理中, 电化学废水处理 技术可以与其他 废水处理技术相 结合,提高废水 处理的效率和效
果。
城市污水处理厂 农村污水处理站
工业废水处理设施 船舶废水处理系统
农村生活废水 农业种植废水 养殖业废水 农村工业废水
医疗废水含有大量的细菌、病毒和化学物质,直接排放会对环境和人体健康造成严重危害。
电化学废水处理
汇报人:
目录
添加目录标题
电化学废水处理技术 概述
电化学废水处理工艺 流程
电化学废水处理的应 用场景
电化学废水处理的经 济性分析
电化学废水处理的未 来发展与挑战
添加章节标题
电化学废水处理技 术概述
电化学反应:利 用电场作用,使 废水中的有害物 质发生氧化还原 反应,转化为无 害物质
电解池:电化学 反应的场所,分 为阳极和阴极, 通电后发生氧化 和还原反应
电流密度:单位 时间内通过电解 池的电量,影响 处理效果和处理 速度
电压:电解池中 两电极之间的电 位差,影响电解 反应的进行和能 耗
早期电化学废水处理技术:采用电解法,处理效果不稳定
中期电化学废水处理技术:出现电絮凝、电渗析等工艺,提高了处理效率
国际合作与交流:加强国际合作与交流,引进国外先进技术和管理经验,推动电化学废水处理产业的国际化发展。
能源消耗:电化学 过程需要大量能源, 可能增加处理成本
设备维护:设备易 受腐蚀和结垢,需 要定期清洗和维护
废水成分复杂:不同 废水成分对处理效果 产生影响,需要针对 性调整处理工艺
新型材料研发:研发 高效、低成本的新型 电极和催化剂,提高 处理效率并降低能耗
现代电化学废水处理技术:采用三维电极、脉冲电源等先进技术,进一步优化处理效果
循环冷却水电化学处理技术

精品整理
循环冷却水电化学处理技术
一、技术概述
通过电化学反应,在反应室(阴极)内壁附近水发生还原反应,水中的结垢物质析出并附着在内壁上,定期去除沉积的水垢,维持循环水水质平衡;在电极(阳极)附近水中的氯离子发生氧化反应产生游离氯(≥0.8mg/L)、OH-等物质,持续控制系统中细菌和藻类的滋生。
二、技术优势
不需要添加化学阻垢、缓蚀、杀菌药剂;减轻了传统循环水系统排污水造成的二次污染
三、适用范围
淡水循环冷却水处理
四、技术指标
浊度:≤20mg/L
pH值:8.0~8.5
电导率:≤5000μs/cm
Cl--:≤1000mg/L
钙硬度(以CaCO3计):≤850mg/L
总碱度(以CaCO3计):≤300mg/L
总铁:≤1.0mg/L
铜离子:≤100ug/L。
污水处理电化学处理技术

污水处理电化学处理技术高级氧化技术一般针对难降解有机废水,如医药、化工、染料工业废水以及含有难处理的有毒物质物质等.第一节电化学处理技术一、基本原理与特点1. 原理电化学氧化法主要用于有毒难生物降解有机废水的处理,电化学水处理技术的基本原理是使污染物在电极上发生直接电化学反应或间接电化学而得到转化,从而达到削减和去除污染物的目的。
根据不同的氧化作用机理,可分为直接电解和间接电解。
1 ) 直接电解直接电解是指污染物在电极上直接被氧化或还原而从废水中去除今直接电解可分为阳极过程和阴极过程。
阳极过程就是污染物在阳极表面氧化而转化成毒性较小的物质或易生物降解的物质,甚至发生有机物无机化,从而达到削减、去除污染物的目的。
阴极过程就是污染物在阴极表面还原而得以去除,阴极过程主要用于卤代经的还原脱卤和重金属的回收,如卤代有机物的卤素通过阴极还原发生脱卤反应,从而可以提高有机物的可生化性.直接电解过程伴随着氧气析出,氧的生成使氧化降解有机物的电流效率降低,能秏升高,因此,阳极材料对电解的影响很大.2 ) 间接电解间接电解是指利用电化学产生的氧化还原物质作为反应剂或催化剂,使污染物转化成毒性小的物质。
间接电解分为可逆过程和不可逆过程。
可逆过程(媒介电化学氧化)是指氧化还原物在电解过程中可电化学再生和循环使用。
不可逆过程是指利用不可逆电化学反应产生的物质,如具有强氧化性的氯酸盐、次氯酸盐、H202和O2等氧化有机物的过程,还可以利用电化学反应产生强氧化性的中间体,包括溶剂化电子、•HO、•H02/02 等自由基。
2. 电化学水处理技术的特点1)电化学方法既可以单独使用,又可以与其他处理方法结合使用,如作为前处理方法,可以提高废水的生物降解性;2)一般电化学处理工艺只能针对特定的废水,处理规模小,且处理效率不高;3)有的电化学水处理工艺需消耗电能,运行成本大。
二、电化学反应器与电极电化学反应器按反应器的工作方式分类可分为:间歇式、置换流式和连续搅拌箱式电化学反应器。
1)中水回用预处理常用工艺技术

1)中水回用预处理常用工艺技术水资源是人类生存和发展的基础,随着人口增加和工业化进程的加快,水资源的短缺和污染问题日益突出。
为了解决这一问题,中水回用技术应运而生。
中水回用是指将生活污水、工业废水等经过处理后再次利用的过程,既可以解决水资源短缺问题,又可以有效减轻水污染的程度。
而中水回用预处理则是指在中水回用过程中对中水进行预处理的工艺技术。
中水回用预处理常用的工艺技术有多种,下面将逐一介绍。
首先是物理处理技术。
物理处理技术主要包括沉淀和过滤两种方法。
沉淀是利用颗粒物质在水中的重力沉降原理,通过添加混凝剂使悬浮物凝聚成较大的颗粒,随后通过沉淀池将其从水中剥离出来。
过滤则是通过过滤介质(如砂、活性炭等)将悬浮物和微生物截留下来,达到净化水质的目的。
其次是化学处理技术。
化学处理技术主要包括氧化、还原、中和等方法。
氧化是利用氧化剂将有机物氧化成无机物或可生物降解物的过程,常用的氧化剂有臭氧、氯等。
还原则是通过还原剂将水中的氧化物还原成较低价态的物质,以达到净化水质的目的。
中和则是通过加入碱性或酸性物质,使水中的酸碱度达到中性,以消除水中的酸碱性物质对环境的影响。
再次是生物处理技术。
生物处理技术主要利用微生物对有机物的降解作用来净化水质。
常见的生物处理技术有好氧生物处理和厌氧生物处理两种。
好氧生物处理是指在含氧条件下,利用好氧菌降解有机物质,生成二氧化碳和水。
而厌氧生物处理则是在无氧或缺氧条件下,利用厌氧菌将有机物质转化为沼气和沉淀物。
最后是高级氧化技术。
高级氧化技术是指利用高能量的光、电、超声波等方式产生的氧化剂,将有机物质氧化成无害的物质。
常见的高级氧化技术有紫外光氧化、电化学氧化等。
紫外光氧化是利用紫外线照射水中的有机物质,通过光解反应将其氧化分解。
电化学氧化则是利用电解反应产生的氧化剂将有机物质氧化成无机物。
中水回用预处理常用的工艺技术包括物理处理技术、化学处理技术、生物处理技术和高级氧化技术。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
水箱中水-电化学法处理
摘要:利用研制的电极电解水产生强氧化剂,进行杀灭微生物、除铁改善水箱中水质的实验。
结果表明,水流单程通过处理,杀菌率>99%,电耗
≤0.1kWh/m3;除铁率>99%,电耗≤0.08kWh/m3。
通过检测水中溶解氧含量的变化确认杀藻效果。
循环处理水箱中的水,水中总铁含量从14mg/L降至
≤0.3mg/L,细菌总数从104个/mL降至≤30个/mL。
用处理后的水冲洗小便
池,消除了尿垢。
关键词:水处理电化学杀菌除铁
Electrochemical Treatment of Water in Water Tanks
Abstract:Experiments of water treatment for killing mocrobe and removing iron to improve the quality of the water in water tanks were conducted using a strong oxidizing agent produced during electrolysis of water by a self-develped electrode.The results showed that by once - through treatment of water flow,bacteria killing rate was >99%with electrical power consumption ≤ 0.1 kWh/m3,and iron removal rate was > 99%with electrical power consumption ≤ 0.08 kWh/m3.The algae removal effect was examined by measuring the dissolved oxygen content in the water.With cyclic treatment of water in water tanks,the total iron content in the water dropped from 14 mg/L to ≤ 0.3mg/L,and the total number of bacteria from 104 cfu/mL to ≤30 cfu/mL.When the treated water was used in flushing urinal,
urinous scale was eliminated.
Key words:water treatment;electrochemistry;bacteria killing;
iron removal
随着社会经济的发展和生活水平的提高,城市居民对用水质量的要求日益增高,但工业化生产排放的废水对水源的污染也越来越大。
按传统的自来水处理方法,只有增大加氯的剂量。
由于水中有机物含量增加,这样做难免会产生“三致”物质。
而且,即使投入更多的氯,也难以保证在管道末梢的余氯值大于0.05mg/L,往往发现建筑物的供水管道和屋顶水箱中细菌和藻类滋生的现象。
微生物分泌的粘液吸附水中杂质,淤积在管壁上形成粘泥层,增加对水流
的阻力;在粘泥覆盖下,管道表面因贫氧形成浓差电池,引起管壁锈蚀,使流出的水发黄带铁腥味。
对此,我们在实验的基础上,在建筑物的水箱处增加一级电化学水处理,可以起到杀菌、杀藻、除铁的作用,有效地改善了水质。
该方法不需添加化学药剂,无二次污染,可以根据水质调节用电量。
1 杀菌[1][2][3]
1.1 作用机理
根据电解的原理,研制的阳极,以钛板或钛棒为基体,用高温热解氧化法在表面生成含铱等贵金属氧化物的涂层。
该电极在电解过程中自身不溶解,催
化产生具有极强杀生能力的活性物质,如OH自由基、初生态O、H
2O
2
和O
3
等活
性氧;水中存在的氯离子,被激活成ClO
2
、HClO、ClO-等活性氯协同杀菌。
微生物表面带负电,在电场力的作用下向阳极迁移。
电极与水的界面存在的双电层电场强度较高,如微生物被电场吸引或随水流冲进双电层,会因触电致死,
用电杀菌具有广谱性的杀菌效果,不会产生耐药性;产生的H
2O
2
和余氯赋予水
体持续抑菌的能力。
1.2 实验装置和实验方法
根据上述工作机理,研制出杀菌灭藻电水处理器,有平板型和圆柱型两种型式,结构如图1所示。
阳极采用有表面涂层的钛板或钛棒,阴极采用不锈钢。
水流从处理器的下部流入,上部流出,额定流量为1m3/h。
两种形式处理器的阳极面积相同,平板型耗电量较低,圆柱型强度较高。
检验杀菌效果的组合实验装置如图2所示,水箱容积1.0m3带搅拌器;水流由离心式水泵提供,用流量计控制流量。
实验用水为配水,自来水经活性炭过滤后流入水箱,加人自行培养的细菌并搅拌均匀,原水细菌总数在106个/mL左右。
过滤水经邻联甲苯胺方法比色确认无余氯。
培养菌种从自来水中采取。
水流一次通过处理器,在处理器进、出口处用无菌瓶取水样,立即检测,用标准平皿法37℃培养48h后计算细菌总数。
1.3 实验结果与讨论
水流单程通过处理,消耗的电功率与杀菌效果的关系如图3所示。
由图3可见,很小的电功率即可产生杀菌效果,随着电功率的增大,杀菌率迅速提高,在电功率50W左右杀菌率达到99%以上,折合成每立方米水耗电
0.05kWh。
如果采用循环处理的方法,使处理器中没有耗尽的杀菌性活性物质在管道和水箱中继续起作用,可以节约更多的电能或处理更多的水量。
3 除铁[4][5]
3.1 作用机理
根据氧化加过滤的方法去除水中铁离子。
采用不溶性电极电解水时,阳极生成氧气,阴极产生氢气。
阳极反应首先产生初生态O,然后结合成O
2。
电解水产生的初生态O具有较强的氧化能力,把阳极区内的Fe2+迅速氧化成低溶解
度的时;生成的O
2
使溶解氧增加,根据式(1)的反应将水体中的Fe2+氧化成
Fe3+,Fe3+水解形成Fe(OH)
3
;固体颗粒,可以通过过滤去除。
4Fe2++O
2+10H
2
O=4Fe(OH)
3
+8H+(1)
每氧化1mg二价铁约需0.14mg溶解氧。
水中Fe2+的氧化反应速度可由式(2)表示:
4 实用实验
某大楼的20m3水箱,由于进水管道被腐蚀引起水体发黄,为解决此问题实施了除铁循环水处理,即用泵从水箱中抽水,送人处理装置处理后,再返送回水箱。
处理的水流量为1~2.5m3/h;电流6-16A;石英砂滤层的直径500mm、厚度700mm。
处理过程中,水箱的进水和出水保持使用状态,日用水量约
60m3。
在出水口取水样检测水质,结果列于表1。
表1 水箱水处理结果测试项目6月1日初装6月3日6月5日Cl-/(mg·L-1)4042.140pH6.57.07.5总铁/(mg·L-1)14.41.350.34总硬度/(mg·L-
1)(CaCO
3)247.2217.2219.2电导率/(mS·cm-1)0.7500.7320.729HCO
3
-/(mg·L-
1)156145160细菌总数/(个·L-1)10410330
表中显示,经过5d的处理,水质指标中的硬度、碱度和Cl-等基本不变,pH值增高,而含铁量大大降低,水中的细菌基本被杀灭。
处理7d后乃至连续运行数月,尽管水箱进水口处水中总铁含量>4.5mg/L,出水已处的总铁量保持低于0.3mg/L。
出水透明清洁,取样装入玻璃瓶放在窗台向阳处1星期无藻类繁殖。
同时,水中的含锰量也被降低,与此有关的研究结果另行报道。
同时,电化学处理杀灭了水中的微生物,将余氯提高到0.05mg/L以上,抑制了铁细菌和硫磺菌的繁殖,因此减少了后续管道中的污垢,防止了管道被腐蚀。
经过一段时间运行后,过滤器的滤层会被拦截下来的铁泥堵塞,使出水流速降低,为此定期对过滤器进行了反冲洗,以恢复正常使用。
每立方米水处理的耗电量约0.02kWh。
5 消除尿垢
5.1 尿垢形成
公共洗手间的小便池,如果不及时冲洗会产生黄色的尿垢。
取下垢片分析成分,发现其中主要含碳酸钙、磷酸钙等元机盐和10%左右的有机物。
图6为小便池水中的细菌总数与pH的关系。
由图6可见,便池水中细菌总数与pH值线性相关,细菌增加pH值上升。
由此推断,细菌的繁殖是产生垢的原因。
在微生物作用下尿素分解反应如式(3)和式(4)所示:
CO(NH
2)+H
2
O→2NH
3
+CO
2
(3)
NH
3+H
2
O→NH
4
++OH-(4)
分解反应产生的CO
2和部分氨挥发到大气中去,余下的氨水解生成NH
4
+和
OH-。
OH-使pH值上升,引起碳酸盐和磷酸盐沉淀,细菌繁殖产生的粘性物质将沉淀物粘附在池壁上,形成黄色的尿垢。
已经形成的垢层是微生物的良好栖身之地,自身加速增厚。