七年级数学下册第六章实数6.1平方根第3课时课件新版新人教版.ppt
合集下载
6.1 平方根 课件 2023-2024学年人教版数学七年级下册

∴1.4 < < 1.5.
②∵1.412 = 1.9881,1.422 = 2.0164,
而 1.9881 < 2 < 2.0164,
∴1.41 <
< 1.42.
③∵1.4142 = 1.999396,1.4152 = 2.002225,
而 1.999396 < 2 < 2.002225,
∴1.414 <
解:∵|a+7|≥0, − − ≥0,
∴a+7=0,且2a-3b-4=0,
解得a=-7,b=-6.
∴ − = =13.
练习
1.下列说法正确的是 ( A )
A.25是625的算术平方根
B.±4是16的算术平方根
C.-6是(-6)2的算术平方根
D.0.01是0.1的算术平方根
1
1
4
2
0.36
0.6
表一:已知一个正数,求这个正数的平方.
表二:已知一个正数的平方,求这个正数.
表一和表二
中的两种运
算有什么关
系?
探究新知
填表:
正方形的面积/dm2
1
9
16
36
正方形的边长/dm
1
3
4
6
实际上是已知一个正数的平方,
求这个正数的问题.
知识归纳
算术平方根的概念
(1) 一般地,如果一个正数x的平方等于a,即x2=a,那么
关系?你从中得出什么结论?
知识归纳
平方根的概念、开平方
(1)一般地,如果一个数的平方等于 a,那么这个数叫做
a 的平方根或二次方根.
●这就是说 x2 = a,那么 x 叫做 a 的平方根.
②∵1.412 = 1.9881,1.422 = 2.0164,
而 1.9881 < 2 < 2.0164,
∴1.41 <
< 1.42.
③∵1.4142 = 1.999396,1.4152 = 2.002225,
而 1.999396 < 2 < 2.002225,
∴1.414 <
解:∵|a+7|≥0, − − ≥0,
∴a+7=0,且2a-3b-4=0,
解得a=-7,b=-6.
∴ − = =13.
练习
1.下列说法正确的是 ( A )
A.25是625的算术平方根
B.±4是16的算术平方根
C.-6是(-6)2的算术平方根
D.0.01是0.1的算术平方根
1
1
4
2
0.36
0.6
表一:已知一个正数,求这个正数的平方.
表二:已知一个正数的平方,求这个正数.
表一和表二
中的两种运
算有什么关
系?
探究新知
填表:
正方形的面积/dm2
1
9
16
36
正方形的边长/dm
1
3
4
6
实际上是已知一个正数的平方,
求这个正数的问题.
知识归纳
算术平方根的概念
(1) 一般地,如果一个正数x的平方等于a,即x2=a,那么
关系?你从中得出什么结论?
知识归纳
平方根的概念、开平方
(1)一般地,如果一个数的平方等于 a,那么这个数叫做
a 的平方根或二次方根.
●这就是说 x2 = a,那么 x 叫做 a 的平方根.
新人教版七的级数学下册第六章6.1平方根课件

目前户外活动中刺激度排行 榜名列榜首是“蹦极”。 “蹦极”就是跳跃者站在约 40米以上(相当于10层 楼高)高度的桥梁、 塔顶、 高楼、吊车甚至热气球上, 把一端固定的一根长长的橡 皮条绑在踝关节处 然后两 臂伸开,双腿并拢,头朝下 跳下去。绑在跳跃者踝部的 橡皮条很长,足以使跳跃者 在空中享受几秒钟的“自由 落体”。
二.课堂小练 (1) 求 22,( 3)2,52,( 6)2,72,
02的 值 , 对 于 任 意 数a,a2 ?
(2)求( 4)2,( 9)2,( 25)2,( 49)2, ( 0)2的值,对于任意非负数a,( a)2 ?
练习:1. (m 1)2 3,则m 4或 -2 。
2.若 (a 2)2 2 a,则a的取值范围是 a≤ 2 。
三.讲授新课
练习.求下列各数的算术平方根,并用“ < ” 分别 把被开方数和算术平方根连接起来 1,4,9,16,25
解:1 1 4 2 9 3 16 4 25 5 比较结果:1 < 4 < 9 < 16 < 25
1 4 9 16 25
结论:被开方数大的数算术平方根也大
若a b 0则 a b 0
(2)依次按键
3136 = (或 3136
)
显示:56
所以 3136 56
三.例题讲解
例2:宇宙飞船离开地球进入轨道正常运行的速度v要大于第一宇宙速度v(1 米 / 秒) 而小于第二宇宙速度v(2 米 / 秒)
v v 其中 2 gR, 2 2gR,g 9.8米 / 秒2 ,
1
2
R是地球半径,R 6400000米
2.若已知 7.45 2.729,y 272.9; 那么y 745 00 。
七年级数学下册 第六章 实数 6.1 平方根 第3课时 平方根课件下册数学课件

12/6/2021
第3课时 平方根
18.计算: (1) 24614;
(2)± 1600; (3)± -1232; (4) 1-59.
解:(1)因为 24614=16649,而1832=16649,所以 (2)因为(±40)2=1600,所以± 1600=±40.
24614=183.
(3)因为±1232=-1322,所以± -1322=±132.
12/6/2021
第3课时 平方根
21.已知 2a-1 的平方根是±3,3a+b-1 的平方根是±4,求 a 和 b 的值.
解:由题意,得 2a-1=9,所以 a=5;3a+b-1=16,所以 b=2.
12/6/2021
第3课时 平方根
22.小红在玻璃店买了一块正方形玻璃,好奇的小林通过各种测 量得知其厚度为 1 厘米,质量为 6.75 千克,且知道这种玻璃每立 方厘米的质量为 1.2 克,你能算出这块正方形玻璃的边长吗?
第3课时 平方根
B规律方法综合练
15.如果± x2=±16,那么 x 的值为( C ) A.16 B. 16 C.±16 D.± 16
12/6/2021
第3课时 平方根
16.下列五个命题:①只有正数才有平方根;②-2 是 4 的平方根; ③5 的平方根是 5;④± 3都是 3 的平方根;⑤(-2)2 的平方根是 -2;⑥-32 的平方根是±3.其中正确的命题是( D ) A.①②③ B.③④⑤ C.③④⑥ D.②④
12/6/2021
第3课时 平方根
知识点 2 平方根的性质
5.下列说法正确的有( B ) ①-1 是-1 的平方根;②-1 是 1 的平方根;③-1 没有平方根; ④1 的平方根是 1. A.1 个 ቤተ መጻሕፍቲ ባይዱ.2 个 C.3 个 D.4 个
第3课时 平方根
18.计算: (1) 24614;
(2)± 1600; (3)± -1232; (4) 1-59.
解:(1)因为 24614=16649,而1832=16649,所以 (2)因为(±40)2=1600,所以± 1600=±40.
24614=183.
(3)因为±1232=-1322,所以± -1322=±132.
12/6/2021
第3课时 平方根
21.已知 2a-1 的平方根是±3,3a+b-1 的平方根是±4,求 a 和 b 的值.
解:由题意,得 2a-1=9,所以 a=5;3a+b-1=16,所以 b=2.
12/6/2021
第3课时 平方根
22.小红在玻璃店买了一块正方形玻璃,好奇的小林通过各种测 量得知其厚度为 1 厘米,质量为 6.75 千克,且知道这种玻璃每立 方厘米的质量为 1.2 克,你能算出这块正方形玻璃的边长吗?
第3课时 平方根
B规律方法综合练
15.如果± x2=±16,那么 x 的值为( C ) A.16 B. 16 C.±16 D.± 16
12/6/2021
第3课时 平方根
16.下列五个命题:①只有正数才有平方根;②-2 是 4 的平方根; ③5 的平方根是 5;④± 3都是 3 的平方根;⑤(-2)2 的平方根是 -2;⑥-32 的平方根是±3.其中正确的命题是( D ) A.①②③ B.③④⑤ C.③④⑥ D.②④
12/6/2021
第3课时 平方根
知识点 2 平方根的性质
5.下列说法正确的有( B ) ①-1 是-1 的平方根;②-1 是 1 的平方根;③-1 没有平方根; ④1 的平方根是 1. A.1 个 ቤተ መጻሕፍቲ ባይዱ.2 个 C.3 个 D.4 个
人教版七年级下册数学第6章《平方根》教学优质课件

求一个数a的平方根的运算,叫做开平方.
知1-讲
平方
开平方
+1 1
-1
+2 4
-2
+3 9
-3
+1 1
-1
+2 4
-2
+3 9
-3
知1-讲
例1 下列说法中正确的是( D ) A.9的平方根是±3,应表示为92=±3 B.±3是9的平方根,应表示为± 9 =3 C.9开平方能得到9的平方根,即 9 =±3 D.9的算术平方根是3,应表示为 9=3
知1-练
(来自《练习册》)
知识点 2 平方根的性质
议一议 (1)一个正数有几个平方根? (2)0有几个平方根? (3)负数呢?
知2-讲
平方根的性质
知2-讲
(1)平方根的性质:
一个正数有两个平方根;0只有一个平方
根,它是0本身;负数没有平方根.
(2)平方根的表示方法:
正数a有两个平方根,一个是a的算术平
(3)因为 ( 7 )2 49 ,所以 49 7 .
39
93
(来自教材)
总结
知2-讲
求一个式子的值,先分析式子的意义,特别是看 清它表示的是算术平方根还是平方根,就是看清符号, 最后的结果不改变它的正负性.
(来自《练习册》)
1 判断下列说法是否正确: (1) 0的平方根是0; (2) 1的平方根是1; (3) -1的平方根是-1; (4) 0.01是0.1的一个平方根.
a (a 0)
知4-讲
知4-练
1 下列结论正确的是( A )
A.- (6)2 =-6 C. (16)2=±16
B .(- 3 )2=9
人教版七年级下册第六章 实数6.1平方根(共41张ppt)

§6.1 平方根
(第1课时)
——算术平方根
学校要举行美术作品比赛,小欧很高兴,他想裁 出一块面积为25 dm2 的正方形画布,画上得 意之作参加比赛,则画布的边长应为多少?
思路
正方形的面积等于边长的平方 ∵ 52 = 25 ∴ 画布边长应为 5 dm
根 据前一题的思路填表
正方形 的面积
1
9
16
36
4 25
正方形 的边长
1
3
4
6
2 5
前面的问题, 实际上是已知一个正数的平方,求这 个正数的问题
定义
一般地,如果一个正数 x 的平方等于 a,
即x2 = a,那么这个正数 x 叫做 a 的算术平方根
a 的算术平方根记作 a 读作 “ 根号a ” 规定:0的算术平方根等于0
被开方数 根号
a
要注意 算术平方根具有双重非负性
• 从上题可以看出,被开方数越大,对应的算术平 方根也越大,这个结论对所有正数都成立。
4.练习
1、课本P41,练习第1题 2、求下列各式的值: 9 2 ( 1) 1 ;(2) 25;(3) 4;(4) 0 . 解:(1) 1 1 ;
9 3 ( 2) ; 25 5
(3) 42 4 ; ( 4) 0 0 .
3 ( 1) 9的算术平方根是__
3 ( 2) 9 的算术平方根是__
0.1 ( 3) 0.01的算术平方根是__
( 4)10- 6的算术平方根是__
4 ( 5) (- 4)2的算术平方根是__ 10 ( 6) 10的算术平方根是__
1.2 6 36=__ 1.44=__
1 3 2 25=__ 5 2 =__ 4
,若
(第1课时)
——算术平方根
学校要举行美术作品比赛,小欧很高兴,他想裁 出一块面积为25 dm2 的正方形画布,画上得 意之作参加比赛,则画布的边长应为多少?
思路
正方形的面积等于边长的平方 ∵ 52 = 25 ∴ 画布边长应为 5 dm
根 据前一题的思路填表
正方形 的面积
1
9
16
36
4 25
正方形 的边长
1
3
4
6
2 5
前面的问题, 实际上是已知一个正数的平方,求这 个正数的问题
定义
一般地,如果一个正数 x 的平方等于 a,
即x2 = a,那么这个正数 x 叫做 a 的算术平方根
a 的算术平方根记作 a 读作 “ 根号a ” 规定:0的算术平方根等于0
被开方数 根号
a
要注意 算术平方根具有双重非负性
• 从上题可以看出,被开方数越大,对应的算术平 方根也越大,这个结论对所有正数都成立。
4.练习
1、课本P41,练习第1题 2、求下列各式的值: 9 2 ( 1) 1 ;(2) 25;(3) 4;(4) 0 . 解:(1) 1 1 ;
9 3 ( 2) ; 25 5
(3) 42 4 ; ( 4) 0 0 .
3 ( 1) 9的算术平方根是__
3 ( 2) 9 的算术平方根是__
0.1 ( 3) 0.01的算术平方根是__
( 4)10- 6的算术平方根是__
4 ( 5) (- 4)2的算术平方根是__ 10 ( 6) 10的算术平方根是__
1.2 6 36=__ 1.44=__
1 3 2 25=__ 5 2 =__ 4
,若
新人教版七年级数学下册第六章《 实数》优质公开课课件

注意:计算过程中要多保留一位!
如图是两个边长1的正方形 拼成的长方形, 其面积是2. √2 现剪下两个角重新拼成一个 正方形, 新正方形的边长是√ _____ 2 下图数轴中, 正方形的对角线长 为√ ____, 以原点为圆心, 对角线长为 2 半径画弧截得一点, 该点 与原点的距离是____, √2 √2 该点表示的数是√ ____. 2
9的平方根是
3
已知 1.7201 1.311 , 17.201 4.147, 那么0.0017201 的平方根是
0.04147
已知 2.36 1.536, 23.6 4.858,
掌Байду номын сангаас握 规 律
若 x 0.4858 , 则x是
3 3
0.236
已知 5.25 1.738, 52.5 3.744, 则 5250的值是 17.38
本章知识结 构图 开平方
算术平方根
乘 方
互为逆运算
开 方
平方根
开立方
立方根
负的平方根
有理数
实数
无理数
平方根、立方根 概念及性质
1.算术平方根的定义:
一般地,如果一个正数x的平方等于 a,即 x =a,那么这个正数x叫做a的 算术平方根。a的算术平方根记为 , 读作“根号a”,a叫做被开方数。
2
特殊:0的算术平方根是0。
2
4.立方根的定义:
一般地,如果一个数的立方等于a,那 么这个数就叫做a的立方根,也叫做a的 三次方根.记作 3 . a 其中a是被开方数,3是根指数,符号 3 “ ”读做“三次根号”.
5.立方根的性质:
一个正数有一个正的立方根; 一个负数有一个负的立方根, 零的立方根是零。
6.1 平方根(第3课时) 初中数学人教版七年级下册教学课件1

一般地,如果一个数的平方等于 a,那么这个数叫做 a 的平方根或二次方根. 这就是说,如果 x2=a,那么 x 叫做 a 的平方根. 例如,3 和 -3 是 9 的平方根,简记为 ±3 是 9 的平方根.
已知一个数,求它的平方的运算,叫做平方运算.
平方
+1
-1
1
+2
-2
4
+3
-3
9
反之,已知一个数的平方,求这个数的运算叫什么?
(2)2459; 解:±
2459=±57.
(3)21245; 解:± 22154=±85.
(4) 49.
解:∵ 49=7, ∴ 49的平方根为± 7.
7.若x-3是4的平方根,则x的值为( C )
A.2 B.±2 C.1或5 D.16
8.m的平方根是n+1和n-5,那么mn=__1_8_.
9.下列各数有没有平方根?如果有,求出它的平方根;
1
无
4
导入新知
填空: (1) 32= 9 ,(-3)2=
9;
(3) 0.82 = 0.64 ,(-0.8)2 = 0.64 .
反过来,如果已知一个数的平方,怎样求 这个数呢?
新知 平方根的定义及性质 思考 如果一个数的平方等于 9,这个数是多少?
完成下列表格.
x2
1
16
36
49
x 1或-1 4或-4 6或-6 7或-7
+1
-1
1
+2
-2
4
+3
-3
9
求一个数 a 的平方根的运算,叫做开平方.平方与开平方 互为逆运算.
解:(1) 因为 (±10)2 = 100,所以 100 的平方根是 ±10; (3)因为 (±0.5)2 = 0.25,所以 0.25 的平方根是 ±0.5.
人教版七年级数学下册6.1第3课时 平方根 课件(共25张PPT)

∴ 3x + 5y = 25. ∴ 3x + 5y 的平方根为±5.
四 课堂小结
➢ 正数有两个平方根,它们互为相反数; ➢ 0 的平方根是 0; ➢ 负数没有平方根.
课后作业
1.从课后习题中选取; 2.完成练习册本课时的习题。
5 3
2
25 9
,
因此
25 9
的平方根是
5 3
与
-5 3
.
即±
25 9
=±
5 3
.
(3)1.21. 有两个平方根
解: 由于1.12 1.21,
因此1.21的平方根是1.1与−1.1.
即± 1.21=± 1.1.
知识点2:平方与开方的关系
已知一个数,求它的平方的运算,叫作平方运算.
平方
+1
-1
1
根据上面的研究过程填表:
x2 1 16
0
49
4
25
x ±1 ±4
0
±7 ±2
5
如果我们把±1、±4、0、±7、±2 分别叫做1、
16、0、49、245
5
的平方根,你能类比算术平方根的
概念,给出平方根的概念吗?
如果有一个数 x,使得x2= a,那么我们把 x 叫 作 a 的一个平方根,也叫作二次方根.
2. 判断下列说法是否正确:
(1)75
是
25 的一个平方根;
49
正确.
(2) 6是 6 的算术平方根; 正确.
(3) 16 的值是±4; (4)(-4)2 的平方根是 -4.
不正确,是 4. 不正确,是 ±4.
3. 填一填。 (1)a的一个平方根是3,则另一个平方根是 − 3 ,
四 课堂小结
➢ 正数有两个平方根,它们互为相反数; ➢ 0 的平方根是 0; ➢ 负数没有平方根.
课后作业
1.从课后习题中选取; 2.完成练习册本课时的习题。
5 3
2
25 9
,
因此
25 9
的平方根是
5 3
与
-5 3
.
即±
25 9
=±
5 3
.
(3)1.21. 有两个平方根
解: 由于1.12 1.21,
因此1.21的平方根是1.1与−1.1.
即± 1.21=± 1.1.
知识点2:平方与开方的关系
已知一个数,求它的平方的运算,叫作平方运算.
平方
+1
-1
1
根据上面的研究过程填表:
x2 1 16
0
49
4
25
x ±1 ±4
0
±7 ±2
5
如果我们把±1、±4、0、±7、±2 分别叫做1、
16、0、49、245
5
的平方根,你能类比算术平方根的
概念,给出平方根的概念吗?
如果有一个数 x,使得x2= a,那么我们把 x 叫 作 a 的一个平方根,也叫作二次方根.
2. 判断下列说法是否正确:
(1)75
是
25 的一个平方根;
49
正确.
(2) 6是 6 的算术平方根; 正确.
(3) 16 的值是±4; (4)(-4)2 的平方根是 -4.
不正确,是 4. 不正确,是 ±4.
3. 填一填。 (1)a的一个平方根是3,则另一个平方根是 − 3 ,