浙教版八年级下数学期末复习试题及答案
浙教版八年级下册数学期末测试卷及含答案

浙教版八年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、在代数式中,字母x的取值范围是()A.x>1B.x≥1C.x<1D.x2、如图所示,在菱形ABCD中,点E,F分别是AB,AC的中点,如果菱形的周长为16,那么EF等于()A.4B.8C.12D.23、下列计算正确的是()A. B. C. D.4、若(k﹣1)x2﹣2kx﹣1=0是关于x的一元二次方程,则k的取值范围是()A.k≠﹣1B.k≠1C.k≠0D.k≥15、在□ ABCD中, AD=2AB,点E为边AD的中点. 则∠ BEC的度数为()A.60°B.90°C.120°D.150°6、如果E,F,G,H是四边形ABCD四条边的中点,要使四边形EFGH是矩形,那么四边形ABCD应具备的条件是( )A.一组对边平行而另一组对边不平行B.对角线相等C.对角线互相垂直D.对角线相等且互相平分7、下列函数中,自变量的取值范围是x>3的是()A.y=x﹣3B.C.D.8、是关于的一元二次方程的解,则()A. B. C. D.9、下列二次根式是最简二次根式的是()A. B. C. D.10、益阳市某年6月上旬的最高气温如下表所示:日期 1 2 3 4 5 6 7 8 9 10最高气温(℃)30 28 30 32 34 32 26 30 33 35那么这10天的最高气温的平均数和众数分别是()A.32,30B.31,30C.32,32D.30,3011、一元二次方程x2﹣x﹣2=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根12、下面的图形是天气预报中的图标,其中既是轴对称图形又是中心对称图形的是()A. B. C. D.13、下列各图中,∠1=∠2的图形的个数有()A.3B.4C.5D.614、若是反比例函数,则m满足的条件是()A.m≠0B.m=3C.m=3或m=0D.m≠3且m≠015、下面是小秋同学做的四道题:①=4x2;②(a≥0);③(a>0);④(a>0).你认为他做得正确的有()A.1道B.2道C.3道D.4道二、填空题(共10题,共计30分)16、若有意义,则a的取值范围为________.17、方程(m+1)x2+2x-1=0有两个不相等的实数根,则m的范围为________.18、已知(x﹣y+1)2+ =0,则x+y的值为________.19、若数据3,a, 3,5,3的平均数是3,则这组数据众数是________;a的值是________;方差是________.20、如图,菱形ABCD的边长为4,∠B=120°.点P是对角线AC上一点(不与端点A重合),则线段AP+PD的最小值为________.21、如图,正方形ABCD中,△ABC绕点A逆时针旋转到AB′C′,AB′,AC′分别交对角线BD于点EF,若AE=8,则EF•ED的值为________.22、若+(b-2)2=0,则a b的值是________.23、已知一元二次方程2x²+bx+c=0的两个根为x1=1和x2=2,则b=________,c=________。
浙教版八年级(下)期末数学试卷及答案

浙教版数学八年级下册期末试卷一、选择题(本題有10小题,每小题3分,共30分.每小题只有一个选项是正确的,不选、多选、错选均不给分)1.(3分)下列方程中属于一元二次方程的是()A.2x﹣1=3x B.x2=4 C.x2+3y+1=0 D.x3+1=x2.(3分)已知点(2,1),则它关于原点的对称点坐标为()A.(1,2)B.(2,﹣1)C.(﹣2,1)D.(﹣2,﹣1)3.(3分)下列运算正确的是()A.B.C.×=4 D.4.(3分)若点A(﹣2,3)在反比例函数y=的图象上,则k的值是()A.﹣6 B.﹣2 C.2 D.65.(3分)甲、乙、丙、丁四位选手各10次射击成绩的平均数和方差如下表:选手甲乙丙丁平均数(环)9.29.29.29.2方差(环2)0.0350.0150.0250.027则这四人中成绩发挥最稳定的是()A.甲B.乙C.丙D.丁6.(3分)在▱ABCD中,∠B+∠D=216°,则∠A的度数为()A.36°B.72°C.80°D.108°7.(3分)将一元二次方程x2﹣4x+1=0配方后,原方程可化为()A.(x+2)2=5 B.(x﹣2)2=5 C.(x﹣2)2=3 D.(x﹣4)2=15 8.(3分)反比例函数y=图象上有三个点(x1,y1),(x2,y2),(x3,y3),若x1<x2<0<x3,则y1,y2,y3的大小关系是()A.y2<y1<y3B.y1<y2<y3C.y3<y1<y2D.y3<y2<y1 9.(3分)如图,在矩形ABCD中,AB=2,BC=10,E、F分别在边BC,AD上,BE =DF.将△ABE,△CDF分别沿着AE,CF翻折后得到△AGE,△CHF.若AG分别平分∠EAD,则GH长为()A.3 B.4 C.5 D.710.(3分)如图,正方形ABCD的边长为3,点EF在正方形ABCD内.若四边形AECF恰是菱形连结FB,DE,且AF2﹣FB2=3,则菱形AECF的边长为()A.B.C.2 D.二、填空题(本题有8小题,每小题3分,共24分)11.(3分)二次根式有意义,则x的取值范围是.12.(3分)已知一组数据4,4,5,x,6,6的众数是6,则这组数据的中位数是.13.(3分)若一元二次方程x2﹣3x+c=0有两个相等的实数根,则c的值是.14.(3分)在周长为18cm的平行四边形中,相邻两条边的长度比为1:2,则这个平行四边形的较短的边长cm.15.(3分)已知多边形的内角和等于外角和的1.5倍,则这个多边形的边数为.16.(3分)工人师傅给一幅长为120cm,宽为40cm的矩形书法作品装裱,作品的四周需要留白如图所示,已知左、右留白部分的宽度一样,上、下留白部分的宽度也一样,而且左侧留白部分的宽度是上面留白部分的宽度的2倍,使得装裱后整个挂图的面积为7000cm2,设上面留白部分的宽度为xcm,可列得方程为.17.(3分)如图,在正方形ABCD中,G是对角线BD上的点,GE⊥CD,GF⊥BC,E,F 分别为垂足,连结EF.设M,N分别是AB,BG的中点,EF=5,则MN的长为.18.(3分)如图,▱OABC的顶点A的坐标为(2,0),B,C在第一象限.反比例函数y1=和y2=的图象分别经过C,B两点,延长BC交y轴于点D.设P是反比例函数y1=图象上的动点.若△POA的面积是△PCD面积的2倍,△POD的面积等于2k﹣8,则k的值为.三、解答题(本题有6小题,共46分)19.(8分)(1)计算:(2)解方程x2+6x=020.(6分)某校为了对甲、乙两个班的综合情况进行评估,从行规、学风、纪律三个项目亮分,得分情况如下表行规学风纪律甲班838890乙班938685(1)若根据三项得分的平均数从高到低确定名次,那么两个班级的排名顺序怎样?(2)若学校认为这三个项目的重要程度有所不同,而给予“行规”“学风”“纪律”三个项目在总分中所占的比例分别为20%,30%,50%,那么两个班级的排名顺序又怎样?21.(6分)如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫格点.已知点A在格点,请在给定的网格中按要求画出图形.(1)以A为顶点在图甲中画一个面积为21的平行四边形且它的四个顶点都在格点.(2)以A为顶点在图乙中画一个周长为20的菱形且它的四个顶点都在格点.22.(8分)如图,矩形OABC放置在平面直角坐标系上,点A,C分别在x轴,y轴的正半轴上,点B的坐标是(4,m),其中m>4.反比例函数y=(x>0)的图象交AB交于点D.(1)BD=(用m的代数式表示).(2)设点P为该反比例函数图象上的动点,且它的横坐标恰好等于m,连结PB,PD.①若△PBD的面积比矩形OABC面积多8,求m的值.②现将点D绕点P逆时针旋转90°得到点E,若点E恰好落在x轴上,直接写出m的值.23.(8分)暑假期间,某景区商店推出销售纪念品活动,已知纪念品每件的进货价为30元,经市场调研发现,当该纪念品的销售单价为40元时,每天可销售280件;当销售单价每增加1元,每天的销售数量将减少10件.[销售利润=销售总额﹣进货成本)(1)若该纪念品的销售单价为45元时,则当天销售量为件.(2)当该纪念品的销售单价为多少元时,该产品的当天销售利润是2610元.(3)该纪念品的当天销售利润有可能达到3700元吗?若能请求出此时的销售单价;若不能,请说明理由.24.(10分)如图1,AB=10,P是线段AB上的一个动点,分别以AP,BP为边,在AB的同侧构造菱形APEF和菱形PBCD,P,E,D三点在同一条直线上,连结FP,BD,设射线FE与射线BD交于G.(1)当G在点E的右侧时,求证:四边形FGBP是平形四边形;(2)连结DF,PG,当四边形DFPG恰为矩形时,求FG的长;(3)如图2,设∠ABC=120°,FE=2EG,记点A与C之间的距离为d,直接写出d 的所有值.参考答案与试题解析一、选择题(本題有10小题,每小题3分,共30分.每小题只有一个选项是正确的,不选、多选、错选均不给分)1.B2.D3.C4.A5.B6.B 7.C8.A9.B10.D二、填空题(本题有8小题,每小题3分,共24分)11.x≥3.12.5.5 13.14.3 15.5 16.(120+4x)(40+2x)=7000.17.2.5 18.6.4三、解答题(本题有6小题,共46分)19.解:(1)原式=3﹣=2;(2)x2+6x=0,x(x+6)=0,x=0,x+6=0,x1=0,x2=﹣6.20.解:(1)甲班算术平均数:(83+88+90)÷3=87,乙班的算术平均数:(93+86+85)÷3=88,因此第一名是乙班,第二名是甲班,答:根据三项得分的平均数从高到低确定名次,乙班第一,甲班第二.(2)甲班的总评成绩:83×20%+88×30%+90×50%=88,乙班的总评成绩:93×20%=86×30%+85×50%=86.9∵88>86.9∴甲班高于乙班,答:两个班级的排名顺序发生变化,甲班第一,乙班第二.21.解:(1)如图甲所示:平行四边形ABCD即为所求;(2)如图乙所示:菱形ABCD即为所求.22.解:(1)当x=4时,y==4,∴点D的坐标为(4,4),∴BD=AB﹣AD=m﹣4.故答案为:m﹣4.(2)①过点P作PF⊥AB于点E,则PF=m﹣4,如图1所示.∵△PBD的面积比矩形OABC面积多8,∴BD•PF﹣OA•OC=8,即(m﹣4)2﹣4m=8,整理,得:m2﹣16m=0,解得:m1=0(舍去),m2=16.②过点P作PM⊥AB于点M,作PN⊥x轴于点N,如图2所示.∵∠DOM+∠MPE=90°,∠MPE+∠EPN=90°,∴∠DPM=∠EPN.在△DPM和△EPN中,,∴△DPM≌△EPN(AAS),∴PM=PN.∵点P在反比例函数y=(x>0)的图象上,∴点P的坐标为(m,),∴PM=m﹣4,PN=,∴m﹣4=,解得:m1=2+2,m2=2﹣2(舍去).∴若点E恰好落在x轴上时,m的值为2+2.23.解:(1)280﹣(45﹣40)×10=230(件).故答案为:230.(2)设该纪念品的销售单价为x元(x>40),则当天的销售量为[280﹣(x﹣40)×10]件,依题意,得:(x﹣30)[280﹣(x﹣40)×10]=2610,整理,得:x2﹣98x+2301=0,整理,得:x1=39(不合题意,舍去),x2=59.答:当该纪念品的销售单价为59元时,该产品的当天销售利润是2610元.(3)不能,理由如下:设该纪念品的销售单价为y元(y>40),则当天的销售量为[280﹣(y﹣40)×10]件,依题意,得:(y﹣30)[280﹣(y﹣40)×10]=3700,整理,得:y2﹣98y+2410=0.∵△=(﹣98)2﹣4×1×2410=﹣36<0,∴该方程无解,即该纪念品的当天销售利润不能达到3700元.24.证明:(1)∵四边形APEF是菱形∴AP∥EF,∠APF=∠EPF=∠APE,∵四边形PBCD是菱形∴PB∥CD,∠CDB=∠PDB=∠CDP∴∠APE=∠PDC∴∠FPE=∠BDP∴PF∥BD,且AP∥EF∴四边形四边形FGBP是平形四边形;(2)若四边形DFPG恰为矩形∴PD=FG,PE=DE,EF=EG,∴PD=2EF∵四边形APEF是菱形,四边形PBCD是菱形∴AP=EF,PB=PD∴PB=2EF=2AP,且AB=10∴PB==FG(3)如图,点G在DP的右侧,连接AC,过点C作CH⊥AB,交AB延长线于点H,∵FE=2EG,∴PB=FG=3EG,EF=AP=2EG∵AB=10∴AP+PB=5EG=10∴EG=2,∴AP=4,PB=6=BC,∵∠ABC=120°,∴∠CBH=60°,且CH⊥AB∴BH=BC=3,CH=BH=3∴AH=13∴AC===14若点G在DP的左侧,连接AC,过点C作CH⊥AB,交AB延长线于点H∵FE=2EG,∴PB=FG=EG,EF=AP=2EG∵AB=10,∴3EG=10∴EG=∴BP=BC=∵∠ABC=120°,∴∠CBH=60°,且CH⊥AB∴BH=BC=,CH=BH=∴AH=∴AC==综上所述:d=14或。
(完整版)浙教版八年级下数学期末试卷及答案

浙教版八年级(下)数学期末试卷 班级 姓名 得分一、精心选一选: (每小题3分,共30分)1、代数式12x x --在实数范围内有意义,则x 的取值范围是( )。
A 、x ≥2 B 、x ≥1 C 、x ≠2 D 、x ≥1且x ≠22.计算:32121823-+()()的值为( )(A )6 (B ) 0 (C )6 (D )-63.一个多边形的内角和等于外角和的一半,那么这个多边形是( )(A )三角形 (B )四边形 (C )五边形 (D )六边形4. 用配方法将方程x 2+6x-11=0变形为( )(A) (x-3)2=20 (B) (x+3)2=20 (C)(x+3)2=2 (D)(x-3)2=25.已知一道斜坡的坡比为1:3,坡长为24米,那么坡高为( )米。
(A )38 (B )12 (C ) 34 (D )66.平行四边形一边长为10 ,则它的两条对角线可以是( )(A )6 ,8 (B )8, 12 (C) 8, 14 (D) 6, 147.下列图形中,不是中心对称图形的是( ).8.如图,矩形ABCD 沿AE 折叠,使点D 落在BC 边上的F 点处, 如果∠BAF=60°,那么∠DAE 等于( ).(A )15° (B )30° (C )45° (D )60°9.如图,四边形ABCD 是正方形,延长BC 至点E ,使CE=CA ,连结AE 交CD•于点F ,•则∠AFC 的度数是( ).(A )150° (B )125° (C )135° (D )112.5°第8题第9题10.小许拿了一张正方形的纸片如图甲,沿虚线对折一次得图乙.•再对折一次得图丙.然后用剪刀沿图丙中的虚线(虚线与底边平行)剪去一个角.打开后的形状是(• ).二、专心填一填:(每小题3分,共30分)11.使13-4x有意义的x的值是_______________。
浙教版八年级下册数学期末考试试题及答案

浙教版八年级下册数学期末考试试卷一、单选题1.若2m y x=+是反比例函数,则m 必须满足( ) A .m ≠0 B .m =-2 C .m =2 D .m ≠-2 2.下列图形中,是中心对称图形但不是轴对称图形的是( )A .B .C .D . 3.已知一个多边形的内角和是它的外角和的5倍,那么这个多边形的边数是( ) A .9 B .10 C .11 D .124.用反证法证明命题“四边形四个内角中至少有一个角大于等于90︒”,我们应该假设( ) A .四个角都小于90︒ B .最多有一个角大于或等于90︒C .有两个角小于90︒D .四个角都大于或等于90︒5.对于反比例函数3y x=,下列说法错误的是( ) A .其图象经过第一、三象限 B .过点(1,3)C .当0x <时,y 随x 增大而增大D .当0x >时,y 随x 增大而减小 6.小敏不慎将一块平行四边形玻璃打碎成如图的四块,为了能在商店配到一块与原来相同的平行四边形玻璃,他带了两块碎玻璃,其编号应该是( )A .①,②B .①,④C .③,④D .②,③ 7.如图,在边长为6的菱形ABCD 中,60DAB ∠=︒,E 为AB 的中点,F 是AC 上的一动点,则EF BF +的最小值为( )A .B .6C .3D .8.已知点A (﹣2,y 1),B (a 、y 2),C (3,y 3)在反比例函数y =﹣4x的图象上,且﹣2<a <0,则y 1,y 2,y 3的大小关系是( )A .y 2<y 1<y 3B .y 3<y 2<y 1C .y 3<y 1<y 2D .y 1<y 2<y 3 9.如图,在直角坐标系中,正ABC ∆的顶点在反比例函数()0k y k x=>的图象上,BC 与x 轴平行,点,A B 的横坐标分别为1,4,则k 的值是( )A .B .C .D .610.如图,一个长方形ABCD 是由四块小长方形拼成(四块小长方形放置时既不重叠,也没有空隙),其中②和③两块长方形的形状大小完全相同,如果要求出①和④两块长方形的周长之差,则只要知道哪条线段的长( )A .EFB .FGC .GHD .FH二、填空题11.在平面直角坐标系中,点P (3,﹣5)关于原点对称的点的坐标是_____.12.菱形ABCD 的边长为5,对角线6AC =,则菱形ABCD 的面积是___________. 13.如图,A 是反比例函数图象上一点,过点A 作AB y ⊥轴于点B ,点P 在x 轴上,ABP △面积为2,则这个反比例函数的解析式为_______.14.如图,在Rt ABC 中,90,3,4B AB BC ∠=︒==,点D 为BC 上一动点(不与点C 重合),以AD ,CD 为一组邻边作平行四边形ADCE ,当DE 的值最小时,平行四边形ADCE 的周长..为_____.15.已知四边形ABCD 是矩形,点E 是矩形ABCD 的边上的点,且EA EC =.若6AB =,AC =DE 的长是___.16.如图,菱形ABCD 的形状和大小保持不变,将菱形ABCD 绕点B 旋转适当角度得到菱形A 'BC 'D ',边A 'D 与AD ,DC 交于E ,F (D ,E ,F 不重合),连接EB ,FB .在旋转过程中:①EB 平分∠AED ';②FB 平分∠A 'FC ;③△DEF 的周长是一个定值;④S △DEF +2S △BEF =12S 菱形ABCD ,判断正确的是 .三、解答题17.如图分别是4×5的网格,点A ,B 均在格点上,请按要求画出下列图形,所画的图形的各个顶点均在格点上.(1)请在图中画一个四边形ABCD ,使得四边形ABCD 为轴对称图形;(2)请在图中画一个四边形ABEF ,使得四边形ABEF 为中心对称图形且不是轴对称图形.18.如图,双曲线m y x=与直线y kx b =+相交于点M ,N ,且点M 的坐标为(1,3),点N 的纵坐标为(,1)t -.(1)求反比例函数与一次函数解析式.(2)根据图象信息可得关于x 的不等式m kx b x<+的解为_______.19.将矩形纸片ABCD 沿对角线BD 对折,使点A 落在点F 处,DF 交CB 于点E .已知30ADB ∠=︒.(1)求CBF ∠的度数.(2)求证:EF EC =.20.已知常数a (a 是整数)满足下面两个要求:①关于x 的一元二次方程ax 2+3x ﹣1=0有两个不相等的实数根;②反比例函数y=22a x+的图象在二,四象限. (1)求a 的值;(2)在所给直角坐标系中用描点法画出y=22a x+的图象,并根据图象写出: 当x >4时,y 的取值范围 ;当y <1时,x 的取值范围是.21.如图,在平行四边形ABCD 中,过点D 作DE AB ⊥于点E ,点F 在边CD 上,且FC AE =,连结AF ,BF .(1)试判断四边形DEBF 的形状,并说明理由;(2)若6,8,10CF BF DF ===,求证:AF 平分DAB ∠.22.如图所示,OAB 的顶点A 在反比例函数(0)k y k x=>的图像上,直线AB 交y 轴于点C ,且点C 的纵坐标为5,过点A 、B 分别作y 轴的垂线AE 、BF ,垂足分别为点E 、F ,且1AE =.(1)若点E 为线段OC 的中点,求k 的值;(2)若OAB 为等腰直角三角形,90AOB ∠=︒,其面积小于3.①求证:OAE BOF ≌△△;②把1212x x y y -+-称为()11,M x y ,()22,N x y 两点间的“ZJ 距离”,记为,()d M N ,求(,)(,)d A C d A B +的值.23.定义:有一组邻边垂直且对角线相等的四边形称为垂等四边形.(1)写出一个已学的特殊平行四边形中是垂等四边形的是_________;(2)如图1,在33⨯方格纸中,A ,B ,C 在格点上,请画出两个符合条件的不全等的垂等四边形,使AC ,BD 是对角线,点D 在格点上.(3)如图2,在正方形ABCD 中,点E ,F ,G 分别在AD ,AB ,BC 上,四边形DEFG 是垂等四边形,且90,EFG AF CG ∠=︒=.①求证:EG DG =;②若BC n BG =⋅,求n 的值;24.(实践发现)对折矩形纸片ABCD ,使AD 与BC 重合,得到折痕EF ,把纸片展平;再一次折叠纸片,使点A 落在EF 上的点N 处,并使折痕经过点B ,得到折痕BM ,把纸片展平,连结AN ,如图①.(1)折痕BM ______(填“是”或“不是”)线段AN 的垂直平分线;请判断图中ABN 是什么特殊三角形?答:_______;进一步计算出MNE ∠=______︒;(2)继续折叠纸片,使点A 落在BC 边上的点H 处,并使折痕经过点B ,得到折痕BG ,把纸片展平,如图②,则GBN ∠=______︒;(拓展延伸)(3)如图,折叠矩形纸片ABCD ,使点A 落在BC 边上的点A '处,并且折痕交BC 边于点T ,交AD 边于点S ,把纸片展平,连结AA '交ST 于点O ,连结AT .求证:四边形SATA '是菱形;(解决问题)(4)如图④,矩形纸片ABCD 中,10,26AB AD ==,折叠纸片,使点A 落在BC 边上的点A '处,并且折痕交AB 边于点T ,交AD 边于点S ,把纸片展平.同学们小组讨论后,得出线段BA '的长度有1,4,7,11.请写出以上4个数值中你认为正确的数值为______.参考答案1.D【详解】根据反比例函数的定义.即y=kx(k≠0),只需令m+2≠0,所以m≠-2.故选D.2.C【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、是中心对称图形,也是轴对称图形,故本选项不合题意;B、是轴对称图形,不是中心对称图形,故本选项不符合题意;C、是中心对称图形但不是轴对称图形,故本选项符合题意;D、是轴对称图形,不是中心对称图形,故本选项不符合题意;故选:C.【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.D【分析】根据多边形的内角和公式(n-2)•180°与外角和定理列出方程,然后求解即可.【详解】解:设这个多边形是n边形,根据题意得,(n-2)•180°=5×360°,解得n=12.故选:D.【点睛】本题考查了多边形的内角和公式与外角和定理,多边形的外角和与边数无关,任何多边形的外角和都是360°.4.A【详解】解:应该假设四个角都小于90 .故选A.5.C【分析】首先确定当k>0,然后根据反比例函数的性质即可得到答案.【详解】解:∵k=3>0,∴图像经过第一、第三象限,A正确;当x=1时,y=3,因此函数过点(1,3),B正确;当x<0时,y随x增大而减小,C错误;当x>0时,y随x增大而减小,D正确.故选:C.【点睛】本题考查反比例函数的性质,掌握好反比例函数的性质是解决本题的关键.6.D【分析】确定有关平行四边形,关键是确定平行四边形的四个顶点,由此即可解决问题.【详解】只有②③两块角的两边互相平行,且中间部分相联,角的两边的延长线的交点就是平行四边形的顶点,∴带②③两块碎玻璃,就可以确定平行四边形的大小.故选D.【点睛】本题考查平行四边形的定义以及性质,解题的关键是理解如何确定平行四边形的四个顶点,四个顶点的位置确定了,平行四边形的大小就确定了,属于中考常考题型.7.A【分析】根据菱形的对角线互相垂直平分,点B关于AC的对称点是点D,连接ED,EF+BF最小值等于ED的长,然后解直角三角形即可求解.【详解】解:如图,连接BD,∵菱形ABCD中,∠DAB=60°,∴△ABD是等边三角形,∵在菱形ABCD中,AC与BD互相垂直平分,∴点B、D关于AC对称,如图,连接ED,则ED的长就是所求的EF+BF的最小值,∵E为AB的中点,∠DAB=60°,∴DE⊥AB,∴ED=∴EF+BF的最小值为故选:A.【点睛】本题主要考查了菱形的性质和解直角三角形,关键是判断出ED的长就是所求的EF+BF的最小值.8.C【分析】根据0k<,双曲线在第二四象限,在图象的每一支上,随x的增大而增大,逐一分析即可.【详解】解:∵反比例函数y=﹣4x中的k=﹣4<0,∴双曲线在第二四象限,在图象的每一支上,随x的增大而增大,∵﹣2<a<0,∴y2>y1>0,∵C(3,y3)在第四象限,∴y3<0,∴y3<y1<y2,故选:C.【点睛】本题考查了反比例函数的性质,熟练地应用反比例函数的性质是解题的关键.9.B如图,作AH BC ⊥于H .由点,A B 的横坐标分别为1,4,可得3BH =;在Rt △AHB 中,可得AH =()4,B n ,则(1,A n +,根据反比例函数图象上点的特征可得 (4n n 1⨯+=,由此即可求得k= 【详解】作AH BC ⊥于H .∵点,A B 的横坐标分别为1,4,∴3BH =;在Rt △AHB 中,可得AH =设()4,B n ,则(1,A n +,∴(4n n 1⨯+=,解得∴k=故选B .【点睛】本题考查了反比函数图象上点的特征,正确做出辅助线,熟练运用反比函数图象上点的特征是解决问题的关键.10.B【分析】设标号为②和③的两块长方形的长为x 、宽为y ,根据题意表示出标号为①和④的周长,并作差即可求解.设标号为②和③的两块长方形的长为x 、宽为y ,根据题意,标号为①的长方形的周长为2()AD y x -+,标号为④的长方形周长为2()AD x y -+,所以标号为①和④两块长方形的周长之差为:2()2()4()4AD y x AD x y x y FG -+--+=-=, 故只要知道线段FG 的长度.故选:B .【点睛】本题主要考查整式加减的应用,能够表示出标号为①和④的周长是关键.11.(﹣3,5)【分析】根据两个点关于原点对称时,它们的坐标符号相反,即可得答案.【详解】点P (3,﹣5)关于原点对称的点的坐标是(﹣3,5),故答案为:(﹣3,5).【点睛】本题主要考查平面直角坐标系中,关于原点的两个点的坐标变化规律,掌握两个点关于原点对称时,它们的坐标符号相反,是解题的关键.12.24【分析】根据菱形的对角线互相垂直,再利用勾股定理求出另一条对角线的长度,根据菱形的面积计算方法求解即可;【详解】如图所示,∵菱形ABCD 的边长为5,∴5AD AB DC BC ====,AC BD ⊥,又∵6AC =,∴3AO =,∴4DO ==,∴8BD =,∴菱形ABCD 的面积11682422AC BD ==⨯⨯=;故答案是24.【点睛】 本题主要考查了菱形的性质,结合勾股定理计算是解题的关键.13.4y x = 【分析】设反比例函数的解析式是:k y x=,设A 的点的坐标是(,)m n ,则AB m =,OB n =,mn k =.根据三角形的面积公式即可求得mn 的值,则k 的值即可求得,进而可以求得函数的解析式.【详解】解:设反比例函数的解析式是:k y x=,设A 的点的坐标是(,)m n . 则AB m =,OB n =,mn k =.ABP ∆的面积为2, ∴122AB OB =,即122mn = 4mn ∴=,则4k mn ==.则反比例函数的解析式是:4yx =.故答案是:4yx =.【点睛】本题考查反比例函数系数k的几何意义,过双曲线上的任意一点分别一条坐标轴作垂线,连接点与原点,与坐标轴围成三角形的面积是1||2k.本知识点是中考的重要考点,同学们应高度关注.14.4+【分析】根据题意,可知当DE⊥AE时,DE取得最小值,然后根据题目中的数据,即可得到A D、CD的长,从而可以得到当DE的值最小时,平行四边形ADCE周长.【详解】解:当DE⊥AE时,DE取得最小值,设此时CD=x,∵四边形ADCE是平行四边形,∴CD=AE,AD=CE,BC∥AE,∵∠B=90°,DE⊥AE,∴四边形BAED是矩形,∴BD=AE,∴BD=CD=x,∵BC=BD+CD,BC=4,∴BD=CD=2,∵AB=3,∠B=90°,∴AD∴当DE的值最小时,平行四边形ADCE周长为:故答案为:4+【点睛】本题考查平行四边形的性质、矩形的判定与性质、垂线段最短,解答本题的关键是明确题意,利用数形结合的思想解答.15.83 【分析】根据EA EC =,则E 在AC 的中垂线上,作AC 的中垂线交,DC AB 于12,,E E 交AC 于O ,所以:如图的12,E E 都符合题意,先证明四边形12AE CE 是菱形,再利用菱形的性质与勾股定理可得答案.【详解】解: EA=EC ,E ∴在AC 的中垂线上,作AC 的中垂线交,DC AB 于12,,E E 交AC 于O ,所以:如图的12,E E 都符合题意,矩形,ABCD//,AB DC ∴12,CE O AE O ∴∠=∠21,,OA OC AOE COE =∠=∠21,AOE COE ∴≌21,OE OE ∴=12,,OA OC AC E E =⊥∴ 四边形12AE CE 是菱形,1122,AE E C CE AE ∴===6AB =,AC =90ABC ∠=︒ ,2,BC ∴==2,AD ∴=设1,DE x = 则116,CE AE x ==-()22262,x x ∴-=+8,3x ∴= 18,3DE ∴= 218106,33AE AE ∴==-=2DE ∴=DE ∴的长为:83故答案为:83 【点睛】 本题考查的是矩形的性质,菱形的判定与性质,勾股定理的应用,线段的垂直平分线的性质,掌握以上知识是解题的关键.16.①②③.【分析】过点B 作BH A D ''⊥于H ,BM AD ⊥于M ,BN CD ⊥于N ,利用角平分线的判定定理证明选项①、②是否正确,再利用全等三角形的性质证明DEF 的周长2DM =为定值,即可判断③ ;根据Rt △BEM ≌Rt △BEH ,Rt △BMA ≌Rt △BNC ,Rt △BFN ≌Rt △BFH , 得到S △BEM =S △BEH ,S △BMA =S △BNC ,S △BFN =S △BFH ,S △DEF +2S △BEF =S 四边形DMBN ,但是∠A 不一定为60°,即AM 不一定等于12AB ,由此判断④.【详解】如图,过点B 作BH ⊥A ′D ′于H ,BM ⊥AD 于M ,BN ⊥CD 于N .∵菱形BA′D′C′是由菱形ABCD旋转得到,菱形的每条边上的高相等,∴BM=BH=BN,∵BH⊥A′D′于H,BM⊥AD于M,BN⊥CD于N,∴BE平分∠AED′,BF平分∠A′FC,故选项①②正确,∵∠BME=∠NHE=90°,BE=BE,BM=BH,∴Rt△BEM≌Rt△BEH(HL),∴EH=EM,同法可证,FH=FN,∴△DEF的周长=DE+EF+DF=DE+EM+DF+FN=DM+DN,∵∠BMA=∠BNC=90°,BM=BN,BA=BC,∴Rt△BMA≌Rt△BNC(HL),∴AM=CN,∵DA=DC,∴DM=DN,∴△DEF的周长=2DM=定值,故③正确,∵Rt△BEM≌Rt△BEH,Rt△BMA≌Rt△BNC,Rt△BFN≌Rt△BFH,∴S△BEM=S△BEH,S△BMA=S△BNC,S△BFN=S△BFH,∴S△DEF+2S△BEF=S四边形DMBN,∵∠A不一定为60°,∴AM不一定等于12 AB,∴S△DEF+2S△BEF≠12S菱形ABCD,故④错误;故答案为:①②③.【点睛】旋转的性质、菱形的性质、全等三角形的判定与性质、三角形面积等知识,是重要考点,难度较易,掌握相关知识是解题关键.17.(1)见解析;(2)见解析.【分析】(1)作点A、B关于某直线的对称点得到等腰梯形ABCD;(2)把AB平移得到平行四边形ABEF.【详解】(1)如图①,如图,四边形ABCD为所作;(2)如图②,四边形ABEF为所作.【点睛】本题考查了作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了轴对称变换.18.(1)3yx=,y=x+2;(2)-3<x<0或x>1【分析】(1)先把M点坐标代入myx=求出m的值,从而得到反比例函数解析式,再把B(1,n)代入反比例函数解析式求出n的值,然后把A和B点坐标分别代入y=kx+b得到a、b的方程组,再解方程组求出a和b的值,于是可得到一次函数解析式;(2)根据函数图象,找出一次函数图象在反比例函数图象上方所对应的自变量的范围即可.【详解】解:(1)把点M(1,3)代入myx=得m=1×3=3,所以反比例函数解析式为3yx =,把N(t,-1)代入3yx=得t=-3,把M(1,3)、N(-3,-1)分别代入y=kx+b得331 k bk b+=⎧⎨-+=-⎩,解得12kb=⎧⎨=⎩,所以一次函数解析式为y=x+2;(2)∵当-3<x<0或x>1时,一次函数的值大于反比例函数的值,∴关于x的不等式mkx bx<+的解为-3<x<0或x>1.故答案为-3<x<0或x>1.【点睛】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了观察函数图象的能力.19.(1)30°,(2)见解析【分析】(1)由矩形纸片ABCD沿对角线BD对折可得:∠ADB=∠BDF=30°,从而∠DEC=60°即可求出答案;(2)由矩形纸片ABCD沿对角线BD对折可得:AB=BF,从而得CD=BF,然后根据AAS 可证Rt△BFE和Rt△DCE全等,即可证EF=E C.【详解】解:(1)由矩形纸片ABCD沿对角线BD对折可得:∠ADB=∠BDF=30°,∴∠ADF=60°,∵四边形ABCD是矩形,∴AD∥BC,∠A=90°,∴∠ADF=∠DEC=60°,∴∠BEF=∠DEC=60°,∴∠CBF=180°-∠BEF-∠BFE=180°-60°-90°=30°,(2)证明:在矩形ABCD中,AD=BC,AB=DC,由矩形纸片ABCD沿对角线BD对折可得:AB=BF,∠F=∠A=90°,∴CD=BF,在△BFE 和△DCE 中,BFE DCE BEF DEC BF CD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BFE ≌△DCE (AAS ),∴EF =E C .【点睛】本题主要考查了矩形的性质,翻折的性质,全等三角形的判定与性质,明确翻折前后对应角相等、对应边相等是解题的关键.20.(1) a=﹣2;(2) ﹣12<y <0,x <﹣2或x >0. 【分析】(1)先根据关于x 的一元二次方程ax 2+3x-1=0有两个不相等的实数根求出a 的取值范围,再由反比例函数y =2a 2x+的图象在二,四象限得出a 的取值范围,由a 为整数即可得出a 的值;(2)根据a 的值得出反比例函数解析式,画出函数图象,由函数图象即可得出结论.【详解】(1)∵方程有两个不相等的实数根,∴△=9+4a >0,得a >﹣94且a≠0; ∵反比例函数图象在二,四象限,∴2a+2<0,得a <﹣1,∴﹣94<a <﹣1, ∵a 是整数,∴a=﹣2;(2)∵a=﹣2,∴反比例函数的解析式为y=﹣2x, 其函数图象如图所示:当x>4时,y的取值范围﹣12<y<0;当y<1时,x的取值范围是x<﹣2或x>0.故答案为﹣12<y<0,x<﹣2或x>0.【点睛】本题考查的是反比例函数的性质,根据题意画出函数图象,利用函数图象求出不等式的解集是解答此题的关键.21.(1)见解析;(2)见解析【分析】(1)先证四边形DEBF是平行四边形,再由DE⊥AB,可得结论;(2)根据矩形的性质求出∠BFC=90°,根据勾股定理求出BC,求出AD=DF,推出∠DAF=∠DF A,求出∠DAF=∠BAF,即可得出答案.【详解】解:证明:(1)∵四边形ABCD是平行四边形,∴DC∥AB,DC=AB,∵CF=AE,∴CD-CF=AB-AE,∴DF=BE且DC∥AB,∴四边形DEBF是平行四边形,又∵DE⊥AB,∴∠DEB=90°,∴平行四边形DEBF是矩形;(2)∵四边形DEBF为矩形,∴∠BFC =90°,∵CF =6,BF =8,∴BC ,∴AD =BC =10,∴AD =DF =10,∴∠DAF =∠DF A ,∵AB ∥CD ,∴∠F AB =∠DF A ,∴∠F AB =∠DF A ,∴AF 平分∠DA B .【点睛】本题考查了平行四边形的性质和判定,矩形的性质和判定,勾股定理,平行线的性质,角平分线定义的应用,能综合运用性质进行推理是解此题的关键.22.(1)52;(2)①见解析;②8. 【分析】(1)由点E 为线段OC 的中点,可得E 点坐标为50,2⎛⎫ ⎪⎝⎭,进而可知A 点坐标为:51,2A ⎛⎫ ⎪⎝⎭,代入解析式即可求出k ;(2)①由OAB 为等腰直角三角形,可得AO OB =,再根据同角的余角相等可证AOE FBO ∠=∠,由AAS 即可证明OAE BOF ≌△△;②由“ZJ 距离”的定义可知,()d M N 为MN 两点的水平距离与垂直距离之和,故(,)(,)d A C d A B BF CF +=+,即只需求出B 点坐标即可,设点(1,)A m ,由OAE BOF ≌△△可得(,1)B m -,进而代入直线AB 解析式求出k 值即可解答.【详解】解:(1)∵点E 为线段OC 的中点,OC=5, ∴1522OE OC ==,即:E 点坐标为50,2⎛⎫ ⎪⎝⎭, 又∵AE ⊥y 轴,AE=1, ∴51,2A ⎛⎫ ⎪⎝⎭,∴55122k =⨯=.(2)①在OAB 为等腰直角三角形中,AO OB =,90AOB ∠=︒,∴90AOE FOB ∠+∠=︒,又∵BF ⊥y 轴,∴90FBO FOB ∠+∠=︒,∴AOE FBO ∠=∠在OAE △和BOF 中90AEO OFB AOE FBO AO OB∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴()OAE BOF AAS ≌△△,②解:设点A 坐标为(1,)m ,∵OAE BOF ≌△△∴BF OE m ==,1OF AE ==,∴(,1)B m -,设直线AB 解析式为::5AB l y kx =+,将AB 两点代入得:则551k mkm +=⎧⎨+=-⎩.解得1132k m =-⎧⎨=⎩,2223k m =-⎧⎨=⎩.当2m =时,2OE =,OA 532AOB S =<△,符合;∴(,)(,)()()d A C d A B AE CE BF AE OE OF +=++-++111CE OE OE =++-++12CE OE =++1CO OE =++152=++8=,当3m =时,3OE =,OA =53AOB S =>△,不符,舍去;综上所述:(,)(,)8d A C d A B +=.【点睛】此题属于代几综合题,涉及的知识有:反比例函数、一次函数的性质及求法、三角形全等的判定及性质、等腰直角三角形性质等,熟练掌握三角形全等的性质和判定和数形结合的思想是解本题的关键.23.(1)矩形(答案不唯一);(2)见解析;(3)①见解析;②3 2【分析】(1)矩形的邻边垂直且对角线相等,则矩形是垂等四边形;(2)根据垂等四边形的定义画出两个符合条件的不全等的垂等四边形即可;(3)①由SAS证得△ADF≌△CDG(SAS),得出DF=DG,再由垂等四边形定义得出EG=DF,即可得出结论;②过点G作GH⊥AD于H,则四边形CDHG为矩形,得出CG=DH,由①得EG=DG,由等腰三角形的性质得DH=EH,推出CG=DH=EH,证明△BFG为等腰直角三角形,得出∠GFB=45°,再证明△AEF为等腰直角三角形,得出AE=AF=CG,则AE=EH=DH,推出BC=3AE,BG=2AE,即可得出结果.【详解】解:(1)∵矩形的邻边垂直且对角线相等,∴矩形是垂等四边形,故答案为:矩形;(2)由垂等四边形的定义画出两个符合条件的不全等的垂等四边形,如图1所示:∵∠ABC=90°,BD=AC∴四边形ABCD是垂等四边形;(3)①证明:∵四边形ABCD是正方形,∴AD=CD,∠A=∠C=90°,在△ADF和△CDG中,AD CDA C AF CG=⎧⎪∠=∠⎨⎪=⎩,∴△ADF ≌△CDG (SAS ),∴DF =DG ,∵四边形DEFG 是垂等四边形,∴EG =DF ,∴EG =DG ;②过点G 作GH ⊥AD 于H ,如图2所示:则四边形CDHG 为矩形,∴CG =DH ,由①得:EG =DG ,∵GH ⊥DE ,∴DH =EH ,∴CG =DH =EH ,∵四边形ABCD 是正方形,∴∠A =∠B =90°,AB =BC =CD =AD ,∵AF =CG ,∴AB -AF =BC -CG ,即BF =BG ,∴△BFG 为等腰直角三角形,∴∠GFB =45°,∵∠EFG =90°,∴∠EF A =180°-90°-45°=45°,∴△AEF 为等腰直角三角形,∴AE=AF=CG,∴AE=EH=DH,∴BC=3AE,BG=2AE,∵BC=nBG,∴n=3322 BC AEBG AE==.【点睛】本题是四边形综合题,考查了垂等四边形的定义、正方形的性质、矩形的判定与性质、等腰三角形的性质、等腰直角三角形的判定与性质、全等三角形的判定与性质等知识;正确理解垂等四边形的定义、证明△BFG和△AEF都为等腰直角三角形是解题的关键.24.(1)是,等边三角形,60;(2)15;(3)见解析;(3)7,9【分析】(1)由折叠的性质可得AN=BN,AE=BE,∠NEA=90°,BM垂直平分AN,∠BAM=∠BNM=90°,可证△ABN是等边三角形,由等边三角形的性质和直角三角形的性质可求解;(2)由折叠的性质可得∠ABG=∠HBG=45°,可求解;(3)由折叠的性质可得AO=A'O,AA'⊥ST,由“AAS”可证△ASO≌△A'TO,可得SO=TO,由菱形的判定可证四边形SATA'是菱形;(4)先求出AT的范围,即可求解.【详解】解:(1)如图①∵对折矩形纸片ABCD,使AD与BC重合,∴EF垂直平分AB,∴AN=BN,AE=BE,∠NEA=90°,∵再一次折叠纸片,使点A落在EF上的点N处,∴BM垂直平分AN,∠BAM=∠BNM=90°,∴AB=BN,∴AB=AN=BN,∴△ABN是等边三角形,∴∠EBN=60°,∴∠ENB=30°,∴∠MNE=60°,故答案为:是,等边三角形,60;(2)∵折叠纸片,使点A落在BC边上的点H处,∴∠ABG=∠HBG=45°,∴∠GBN=∠ABN-∠ABG=15°,故答案为:15;(3)∵折叠矩形纸片ABCD,使点A落在BC边上的点A'处,∴ST垂直平分AA',∴AO=A'O,AA'⊥ST,∵AD∥BC,∴∠SAO=∠TA'O,∠ASO=∠A'TO,∴△ASO≌△A'TO(AAS)∴SO=TO,∴四边形ASA'T是平行四边形,又∵AA'⊥ST,∴四边形SATA'是菱形;(4)∵折叠纸片,使点A落在BC边上的点A'处,∴AT=A'T,在Rt△A'TB中,A'T>BT,∴AT>10-AT,∴AT>5,∵点T在AB上,∴当点T与点B重合时,AT有最大值为10,∴5<AT≤10,∴正确的数值为7,9,故答案为:7,9.【点睛】本题是几何变换综合题,考查了矩形的性质,菱形的判定,全等三角形的判定和性质,折叠的性质,等边三角形的判定和性质等知识,灵活运用这些性质进行推理是本题的关键.。
浙教版八年级(下)期末数学试卷及答案

浙教版八年级(下)期末数学试卷及答案题号一二三总分得分一、选择题(本大题共10小题,共40分)1.2022年北京冬奥会会徽“冬梦”以汉字“冬”为灵感来源,将中国传统文化和奥林匹克元素巧妙结合.下面是历届奥运会会徽中的部分图形,其中既是轴对称图形,也是中心对称图形的是( )A. B. C. D.2.方程x2−4x−6=0经配方后,可化为( )A. (x−2)2=10B. (x+2)2=10C. (x−2)2=8D. (x+2)2=83.用反证法证明命题“三角形中至少有一个内角大于或等于60°”时,首先应假设这个三角形中( )A. 每一个内角都大于60°B. 每一个内角都小于60°C. 有一个内角大于60°D. 有一个内角小于60°4.如图,在四边形ABCD中,∠A=120°,∠C=70°,将△BMN沿MN翻折,得到△EMN.若ME//AD,EN//DC,则∠D的度数为( )A. 65°B. 75°C. 85°D. 95°5.已知点(−4,y1),(−1,y2),(2,y3)都在反比例函数y=m2+1(m为常数)的图象上,那么y1,y2,y3的大小关系是x( )A. y1<y2<y3B. y3<y2<y1C. y2<y1<y3D. y1<y3<y26.将抛物线y=x2−6x+5先向右平移1个单位长度,再向上平移2个单位长度,得到的抛物线的函数表达式为( )A. y=(x−4)2−6B. y=(x−1)2−3C. y=(x−2)2−2D. y=(x−4)2−27.如图,一块长方形场地ABCD的长AB与宽AD的比为2:1,DE⊥AC于点E,BF⊥AC于点F,连接BE,DF,则四边形DEBF与长方形ABCD的面积比为( )A. 310B. 12C. 35D. 238.如图,菱形ABCD的四个顶点均在坐标轴上,对角线AC、BD交于原点O,DF⊥AB交AC于点G,反比例函数y=4√3x(x>0)的图象经过线段DC的中点E,若BD=8,则AG的长为( )A. 3√3B. 8√33C. 2√3 D. 4√339.抛物线y=ax2+bx+c(a>0)经过(−2,m),(1,m)两点,若点A(x1,y1),B(x2,y2)也在抛物线上,且满足x1<x2,x1+x2<−1,则y1,y2的大小关系为( )A. y1>y2B. y1<y2C. y1=y2D. 无法确定10.由四个全等的直角三角形和一个小正方形EFGH组成的大正方形ABCD如图所示.连结AF,CH,设正方形ABCD的面积为S1,正方形EFGH的面积为S2,四边形AFCH的面积为S3.若S1=S2+S3,则下面结论一定正确的是( )A. ∠EAF=45°B. ∠BAE=60°C. BE=2AED. BE=3AE二、填空题(本大题共6小题,共30分)11.已知式子2√1−x有意义,则x的取值范围是______.第2页,共20页12.一个多边形的内角和是其外角和的4倍,则这个多边形的边数是______.13.若菱形ABCD的两条对角线长分别为一元二次方程x2−7x+12=0的两个实数根,则菱形ABCD的面积为______.14.2021年6月17日,中国第7艘载人航天飞船“神州12号”圆满发射成功,激励更多的年轻人投身航天事业.现对学员们进行招飞前考核,其中某位学员心理素质、身体素质、科学头脑、应变能力四项测试得分分别为86分、85分、88分、90分,若按照心理素质、身体素质、科学头脑、应变能力的占比为4:3:2:1的比例确定总分,则该名学员的总分为______分.15.如图,在平面直角坐标系中,平行四边形OABC的顶点C在x轴的正半轴上,点A是第一象限内一点,反比例函数y=8x的图象经过点A,与BC边交于点D,若△OCD与△ABD的面积相等,则△OAD的面积为______.16.如图1,平行四边形ABCD中两条对角线AC、BD交于点O,AB=10,点P从顶点B出发,沿B→C→D以每秒1cm的速度匀速运动到点D,图2是点P运动过程中线段OP的长度y与时间t的函数关系图象,其中M、N分别是两段曲线的最低点,则点M的横坐标为______,点N的纵坐标为______.三、解答题(本大题共8小题,共80分)17.计算:(1)(√48−√2)−(√18+3√13);(2)(√3−2)2+√12−√32÷√118.18.如图是由边长为1的小正方形构成的6×6的网格,点A,B均在格点上.(1)在图1中画出以AB为对角线的正方形ACBD,点C,D为格点.(2)在图2中画出以AB为边且周长最大的平行四边形ABCD,点C,D为格点(画一个即可).19.为了响应市“科学应对、群防群控、增强体质、战胜疫情”的号召,学校决定开展多项体育活动比赛,从八年级同学中任意选取40人,平均分成甲、乙两个小组进行“引体向上”体能测试,根据测试成绩绘制出如下的统计表和统计图(成绩均为整数,满分为10分).甲组成绩统计表成绩78910人数1955请根据上面的信息,解答下列问题:(1)甲组成绩的众数是______;(2)m=______,乙组成绩的中位数是______;2=0.81,求出乙组成绩的方差,并判断哪个小组的成绩更加稳定?(3)已知甲组成绩的方差S甲(m≠0)的图象交于点A(1,2)和B(−2,a),与y轴交于点20.如图,一次函数y1=kx+b(k≠0)与反比例函数y2=mxM.(1)求一次函数和反比例函数的解析式;(2)在y轴上取一点N,当△AMN的面积为3时,求点N的坐标;<0的解集.(请直接写出答案)(3)求不等式kx+b−mx第4页,共20页21.如图1,在四边形ABCD中,AB//DC,AB=AD,对角线AC、BD交于点O,AC平分∠BAD.(1)求证:四边形ABCD是菱形;(2)如图2,点E是CD边上一点,将四边形ADEB沿着BE翻折得到四边形A′D′EB,若点D′恰好落在边DC的中点处,且BD′=2√2,求菱形ABCD的周长.22.“燃情冰雪,一起向未来”,北京冬奥会于2022年2月4日如约而至,某商家看准商机,进行冬奥会吉祥物“冰墩墩”纪念品的销售,每个纪念品进价40元.规定销售单价不低于44元,且不高于60元.销售期间发现,当销售单价定为44元时,每天可售出300个,由于销售火爆,商家决定提价销售.经市场调研发现,销售单价每上涨1元,每天销量减少10个.(1)求当每个纪念品的销售单价是多少元时,商家每天获利2640元;(2)将纪念品的销售单价定为多少元时,商家每天销售纪念品获得的利润w元最大?最大利润是多少元?23.阅读理解:【材料一】若三个非零实数x,y,z中有一个数的平方等于另外两个数的积,则称三个实数x,y,z构成“友好数”.【材料二】若关于x的一元二次方程ax2+bx+c=0(a≠0)的两根分别为x1,x2,则有x1+x2=−ba ,x1⋅x2=ca.问题解决:(1)实数4,6,9可以构成“友好数”吗?请说明理由;(2)若M1(t,y1),M2(t−1,y2),M3(t+1,y3)三点均在函数y=kx(k为常数且k≠0)的图象上,且这三点的纵坐标y1,y2,y3构成“友好数”,求实数t的值;(3)设三个实数x1,x2,x3是“友好数”且满足0<x1<x3<x2,其中x1,x2是关于x的一元二次方程nx2+mx+ n=0(n≠0)的两个根,x3是抛物线y=ax2+bx+c(a≠0)与x轴的一个交点的横坐标.①a+b+c的值等于______;②设x=ba ,y=b2+aca2,求y关于x的函数关系式.24.平移是一种基本的几何图形变换,利用平移可将分散的条件相对集中,以达到解决问题的目的.如图1,在四边形ABCD中,AD//BC,AC⊥BD,若AC=3,BD=5,求AD+BC的值.小明发现,平移AC至DE,构造平行四边形ACED,经过推理和计算能够使问题得到解决(如图2).【求解体验】(1)请根据小明的思路求AD+BC的值.【尝试应用】(2)如图3,在矩形ABCD和平行四边形ABEF中,连结DF、AE交于点G,连接DB.若AE=DF=DB,求∠FGE的度数;【拓展延伸】(3)如图4,在(2)的条件下,连结BF,若AB=AD,FG=2,求△BDF的面积.第6页,共20页答案和解析1.【答案】D【解析】解:A.既不是轴对称图形,也不是中心对称图形,故此选项不合题意;B.是轴对称图形,不是中心对称图形,故此选项不合题意;C.既不是轴对称图形,也不是中心对称图形,故此选项不合题意;D.既是轴对称图形,也是中心对称图形,故此选项符合题意.故选:D.根据轴对称图形以及中心对称图形的定义解决此题.本题主要考查轴对称图形以及中心对称图形的定义,熟练掌握轴对称图形以及中心对称图形的定义是解决本题的关键.2.【答案】A【解析】解:∵x2−4x−6=0,∴x2−4x=6,则x2−4x+4=6+4,即(x−2)2=10,故选:A.将常数项移到方程的右边,两边都加上一次项系数一半的平方配成完全平方式后即可得.本题主要考查解一元二次方程,解一元二次方程常用的方法有:直接开平方法、因式分解法、公式法及配方法,解题的关键是根据方程的特点选择简便的方法.3.【答案】B【解析】解:反证法证明命题“三角形中至少有一个角大于或等于60°”时,首先应假设这个三角形中每一个内角都小于60°,故选:B.反证法的步骤中,第一步是假设结论不成立,反面成立,可据此进行判断.本题考查的是反证法的应用,反证法的一般步骤是:①假设命题的结论不成立;②从这个假设出发,经过推理论证,得出矛盾;③由矛盾判定假设不正确,从而肯定原命题的结论正确.4.【答案】C【解析】解:∵ME//AD,EN//DC,∠A=120°,∠C=70°,∴∠BME=∠A=120°,∠ENB=∠C=70°,∵将△BMN沿MN翻折得△EMN,∴∠EMN=∠BMN=60°,∠ENM=∠MNB=35°,∠E=∠B,∴∠E=∠B=180°−60°−35°=85°,∴∠D=360°−120°−70°−85°=85°,故选:C.由平行线的性质得出∠BME=120°,∠ENB=70°,再由翻折变换的性质得出∠EMN=∠BMN=60°,∠ENM=∠MNB=35°,进而求出∠B的度数,即可得出∠D的度数.此题主要考查了翻折变换的性质、平行线的性质、三角形内角和定理以及多边形内角和定理等知识,熟练掌握翻折变换的性质是解题关键.5.【答案】C【解析】解:∵m2≥0,∴m2+1≥0,∴反比例函数y=m2+1(m为常数)的图象位于第一三象限,且在每一个象限内y随x的增大而减小,x∵(−2,y1),(−1,y2),(2,y3)都在反比例函数图象上,∴0<y2<y1,y3>0,∴y2<y1<y3.故选:C.先判断出函数图象位于第一三象限,在每一个象限内y随x的增大而减小判断出y1、y2、y3的大小关系,然后即可选取答案.本题考查了反比例函数图象上点的坐标特征,熟练掌握反比例函数的性质是解题的关键.6.【答案】D【解析】解:∵y=x2−6x+5,∴y=(x−3)2−4.∴将抛物线y=(x−3)2−4先向右平移1个单位长度,再向上平移2个单位长度得到的抛物线对应的函数表达式为:y=(x−3−1)2−4+2,即y=(x−4)2−2.故选:D.利用二次函数图象的平移规律,左加右减,上加下减,进而得出答案.此题主要考查了二次函数与几何变换,正确记忆图形平移规律是解题关键.7.【答案】C第8页,共20页【解析】解:∵四边形ABCD是矩形,∴AB//CD,AD=BC,∠ABC=90°,∴∠DAE=∠BCF,∵BF⊥AC,DE⊥AC,∴∠AED=∠CFB=90°,BF//DE,在△ADE和△CBF中,{∠DAE=∠BCF ∠AED=∠CFB AD=CB,∴△ADE≌△CBF(AAS),∴DE=BF,又∵BF//DE,∴四边形DEBF是平行四边形.设AD=BC=x,则CD=AB=2x,∴AC=√AB2+BC2=√(2x)2+x2=√5x,∵DE⊥AC于点E,∴DE=AD×CDAC =√5x=2√55x,在△ADE中,AE=√x2−(2√55x)2=√55x,同理CF=√55x,∴EF=AC−AE−CF=3√55x,∴S四边形DEBF =EF×DE=3√55x⋅2√55x=65x2,∵S矩形ABCD=x×2x=2x2,∴四边形DEBF与矩形ABCD的面积之比为65:2=3:5;故选:C.由AAS证明△ADE≌△CBF得出BF=DE.由BF//DE,即可得出四边形DEBF是平行四边形.设AD=x,则AB=2x,由勾股定理求出AC,再求出DE、CF、EF的长,计算出四边形DEBF与矩形ABCD的面积,再作比值即可.本题考查了矩形的性质、平行四边形的判定、全等三角形的判定与性质、平行线的判定与性质、勾股定理等知识;熟练掌握平行四边形的判定,证明三角形全等是解题的关键.8.【答案】B【解析】解:过E作y轴和x的垂线EM,EN,设E(b,a),∵反比例函数y=4√3x(x>0)的图象经过点E,∴ab=4√3,∵四边形ABCD是菱形,∴BD⊥AC,DO=12BD=4,∵EN⊥x,EM⊥y,∴四边形MENO是矩形,∴ME//x,EN//y,∵E为CD的中点,∴OD=2a,OC=2b,∴DO⋅CO=16√3,∴CO=4√3,∴tan∠DCO=DOCO =√33.∴∠DCO=30°,∵四边形ABCD是菱形,∴∠DAB=∠DCB=2∠DCO=60°,∠1=30°,AO=CO=4√3,∵DF⊥AB,∴∠2=30°,∴DG=AG,设DG=r,则AG=r,GO=4√3−r,∵AD=AB,∠DAB=60°,∴△ABD是等边三角形,∴∠ADB=60°,∴∠3=30°,在Rt△DOG中,DG2=GO2+DO2,∴r2=(4√3−r)2+42,解得:r=8√33,∴AG=8√33.故选:B.过E作y轴和x的垂线EM,EN,证明四边形MENO是矩形,设E(b,a),根据反比例函数图象上点的坐标特点可得ab=第10页,共20页4√3,进而可计算出CO长,根据三角函数可得∠DCO=30°,再根据菱形的性质可得∠DAB=∠DCB=2∠DCO=60°,∠1=30°,AO=CO=4√3,然后利用勾股定理计算出DG长,进而可得AG长.此题主要考查了反比例函数和菱形的综合运用,关键是掌握菱形的性质:菱形对角线互相垂直平分,且平分每一组对角,反比例函数图象上的点横纵坐标之积=k9.【答案】A【解析】解:∵抛物线y=ax2+bx+c(a>0)经过(−2,m),(1,m),∴抛物线开口向上,对称轴为直线x=−2+12=−12,∵x1<x2,x1+x2<−1,∴x1+x22<−12,∴y1>y2.故选:A.由抛物线经过(−2,m),(1,m)及a>0可得抛物线开口方向及对称轴,由x1<x2,x1+x2<−1可得x1+x22<−12,进而判断.本题考查二次函数图象上点的坐标特征,解题关键是掌握二次函数的性质,掌握二次函数与方程及不等式的关系.10.【答案】D【解析】解:∵△ABE≌△BCF≌△DAH,∴AE=BF,AH=BE=CF,∵S1=S2+S3,∴AB2=EF2+CF×EF,∵AB2=AE2+BE2,∴EF2+CF×EF=AE2+BE2,∴(BE−BF)2+BE×(BE−BF)=AE2+BE2,∴BE2+AE2−2BE×AE+BE2−BE×AE=AE2+BE2,∴3BE×AE=BE2,∴BE=3AE,故选:D.由全等三角形的性质可得AE=BF,AH=BE=CF,由面积关系和勾股定理可求解.本题考查了正方形的性质,勾股定理,全等三角形的性质,掌握正方形的性质是解题的关键.11.【答案】x<1【解析】解:∵二次根式子√1−x在实数范围内有意义,∴1−x>0,解得:x<1,∴x的取值范围是:x<1.故答案为:x<1.直接利用二次根式的性质得出x的取值范围.本题主要考查了二次根式有意义的条件,正确把握二次根式的性质是解题关键.12.【答案】10【解析】解:设这个多边形的边数为n,则该多边形的内角和为(n−2)×180°,依题意得:(n−2)×180°=360°×4,解得:n=10,∴这个多边形的边数是10.故答案为:10.设这个多边形的边数为n,根据内角和公式以及多边形的外角和为360°即可列出关于n的一元一次方程,解方程即可得出结论.本题考查了多边形内角与外角,解题的关键是根据多边形内角和公式得出方程(n−2)×180°=360°×4.13.【答案】6【解析】解:x2−7x+12=0,由根与系数的关系可得x1⋅x2=12,∴菱形的两条对角线的乘积为12,∴S菱形ABCD =12×12=6,故答案为:6.由根与系数的关系可得菱形的两条对角线的乘积为12,再求面积即可.本题考查一元二次方程根与系数的关系,熟练掌握一元二次方程根与系数的关系,菱形面积的求法是解题的关键.14.【答案】86.5【解析】解:该名学员的总分为86×4+85×3+88×2+90×14+3+2+1=86.5(分),故答案为:86.5.根据加权平均数的定义列式计算即可.第12页,共20页本题主要考查加权平均数,解题的关键是掌握加权平均数的定义.15.【答案】6【解析】解:过点A作AM⊥x轴于点M,过点B作BN⊥x轴于点N,∴S△AOM=S△DON=12×4=2,∵四边形OABC是平行四边形,∴OA//BC,∵△OCD与△ABD的面积相等,∴CD=BD,∵反比例函数y=8x的图象经过点A,与BC边交于点D,∴设D(8n ,n),则A(4n,2n),∴S△AOD=S△AOD+S菱形AMND −S△DON=S菱形AMND=12(2n+n)(8n−4n)=6.故答案为:6.过点A作AM⊥x轴于点M,过点B作BN⊥x轴于点N,则S△AOM=S△DON=12×4=2,根据平行四边形的性质和△OCD与△ABD的面积相等得出D是BC的中点,故设D(8n ,n),则A(4n,2n),然后根据S△AOD=S△AOD+S菱形AMND−S△DON=S菱形AMND求得即可.本题考查了平行四边形的性质,反比例函数图象上点的坐标特征,反比例函数系数k的几何意义,解题的关键是表示出A、D的坐标.16.【答案】103√5【解析】解:由图可知点P在BC上运动时,OP先变小后变大,由图象可知:点P从B向C运动时,OP的最大值为5√5,最小值为5,∴BO=5√5,OC=5√2,由于M是曲线部分的最低点,此时OP最小,如下图,过O作OP1⊥BC于点P1,OP1=5,∴由勾股定理得:BP=√OB2−OP12=√(5√5)2−52=10,1∴点M的横坐标为10;过点O作OP2⊥CD于点P2,如下图,∵四边形ABCD是平行四边形,∴OD=OB,由图象可知:点P从C向D运动时,OC=5√2,又OD=OB=5√5,∴设CP2=x,则P2D=5√5−x,∴(5√202−2=(5√5)2−(5√5−x)2,解得:x=√5,即CP2=√5,∴OP2=√OC2−CP22=√(5√2)2−(√5)2=3√5,∴点N的纵坐标为3√5.故答案为:10,3√5.由图可知点P在BC上运动时,OP先变小后变大,出OP的最大值和最小值,过O作OP1⊥BC点P1,则可求得OB=OC= 5√5,OC=5√2;而点P从C向D运动时,OP先变小后变大,过点O作OP2⊥CD于点P2,利用勾股定理求解即可.本题考查了动点与函数图象的理解和应用、平行四边形的性质、勾股定理,把图形和图象结合解得线段的长度是解决本题的关键.17.【答案】解:(1)原式=4√3−√2−3√2−√3=3√3−4√2.(2)原式=7−4√3+2√3−3√3=7−5√3.【解析】(1)根据二次根式的加减运算法则即可求出答案.(2)根据二次根式的加减运算法则以及乘除运算法则即可求出答案.本题考查二次根式的混合运算,解题的关键是熟练运用二次根式的加减运算以及乘除运算法则,本题属于基础题型.第14页,共20页18.【答案】解:(1)如图1中,四边形ACBD 即为所求;(2)如图2中,四边形ABCD 即为所求.【解析】(1)根据要求画出图形即可;(2)根据平行四边形的定义以及题目要求画出图形即可.本题考查作图−应用与设计作图,正方形的判定和性质,平行四边形的判定和性质等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.19.【答案】8 3 8【解析】解:(1)甲组成绩出现次数最多的是8, 所以甲组成绩的众数是8, 故答案为:8;(2)m =20−2−9−6=3(人),乙组成绩的中位数是第10、11个数的平均数, 则中位数是≥8+82=8,故答案为:3,8;(3)乙组平均成绩是:x −=120×(2×7+9×8+6×9+3×10)=8.5(分),乙组的方差是:S 乙2=120×[2×(7−8.5)2+9×(8−8.5)2+6×(9−8.5)2+3×(10−8.5)2]=0.75; ∵S 乙2<S 甲2,∴乙组的成绩更加稳定.(1)用总人数减去其他成绩的人数,即可求出m ;(2)再根据中位数和众数的定义即可求出甲组成绩的众数和乙组成绩的中位数;(3)先求出乙组的平均数,再根据方差公式求出乙组的方差,然后进行比较,即可得出答案第16页,共20页此题考查了平均数、众数和方差的有关内容,解题的关键是正确理解统计图.20.【答案】解:(1)∵y 2=mx 过点A(1,2),∴m =1×2=2, 即反比例函数:y 2=2x ,当x =−2时,a =−1,即B(−2,−1), ∵y 1=kx +b 过A(1,2)和B(−2,−1), 则{k +b =2−2k +b =−1,解得{k =1b =1, ∴y 1=x +1;(2)当x =0时,代入y =x +1中得,y =1,即M(0,1), ∵S △AMN =12⋅MN ⋅|x A |=3且x A =1,∴MN =6, ∴N(0,7)或(0,−5);(3)由图象可知,不等式kx +b −m x<0的解集为x <−2或0<x <1.【解析】(1)用待定系数法即可求解;(2)由S △AMN =12MN ⋅|x A |=3且x A =1,即可求解; (3)根据图形可知,当y 2=m x(m ≠0)的图象在一次函数y 1=kx +b(k ≠0)上方的部分对应的x 的取值范围即可.本题考查的是反比例函数综合运用,涉及到一次函数的性质、面积的计算、数形结合思想等,有一定的综合性,难度不大.21.【答案】(1)证明:∵AB//CD ,∴∠CAB =∠DCA , ∵AC 平分∠BAD , ∴∠CAB =∠DAC , ∴∠DCA =∠DAC , ∴CD =AD , 又∵AD =AB , ∴CD =AB ,∴四边形ABCD 是平行四边形, 又∵AD =AB ,∴四边形ABCD是菱形;(2)解:∵四边形ABCD是菱形,∴BC=DC,∵四边形ADEB沿着BE翻折得到四边形A′D′EB,且D′恰好为DC的中点,∴BE⊥CD,设D′E=DE=x则CD′=2x,BC=DC=4x,∴CE=CD′+D′E=2x+x=3x,在Rt△BCE中,由勾股定理得:BE=√BC2−CE2=√(4x)2−(3x)2=√7x,在Rt△BD′E中,由勾股定理得:BE2+D′E2=BD′2,即(√7x)2+x2=(2√2)2,解得:x=1(负值已舍去),∴BC=4,∴菱形ABCD周长为:4BC=4×4=16.【解析】(1)先证四边形ABCD是平行四边形,由AD=AB,即可得出结论;(2)由折叠的性质得出BE⊥CD,设D′E=DE=x则CD′=2x,BC=DC=4x,CE=3x,由勾股定理求出BE=√7x,再由BE2+D′E2=BD′2,即(√7x)2+x2=(2√2)2,解得x=1,则BC=4,即可得出结果.本题考查了平行四边形的判定、菱形的判定与性质、平行线的性质、等腰三角形的判定与性质、折叠的性质、勾股定理等知识;熟练掌握菱形的判定与性质和折叠的性质是解题的关键.22.【答案】解:(1)设每件纪念品销售价上涨x元,根据题意得:(x+44−40)(300−10x)=2640,整理得:x2−26x+144=0,∴(x−8)(x−18)=0,解得:x1=8,x2=18,∵销售单价不高于60元,∴x=8,答:当每个纪念品的销售单价是52元时,商家每天获利2640元;(2)根据题意得:w=(x+44−40)(300−10x)=−10x2+260x+1200=−10(x−13)2+2890,∵−10<0,二次函数图象开口向下,对称轴为直线x=13,∴当x=13时,w最大,最大值为2890,∵13+44=57<60,∴当纪念品的销售单价定为57元时,商家每天销售纪念品获得的利润w最大,最大利润是2890元.【解析】(1)设每件纪念品销售价上涨x元,可得:(x+44−40)(300−10x)=2640,即可解得当每个纪念品的销售单价是52元时,商家每天获利2640元;(2)w=(x+44−40)(300−10x)=−10(x−13)2+2890,由二次函数性质可得当纪念品的销售单价定为57元时,商家每天销售纪念品获得的利润w最大,最大利润是2890元.本题考查一元二次方程和二次函数的应用,解题的关键是读懂题意,列出方程和函数关系式.23.【答案】0【解析】解:(1)∵62=4×9,∴4,6,9可以构成“友好数”;(2)∵y1,y2,y3构成“友好数”,∴有三种可能:①y12=y2y3,由题得x12=x2x3,即t2=(t−1)(t+1),无解,②y22=y1y3,由题得x22=x1x3,即(t−1)2=t(t+1),解得t=13,③y32=y1y2,由题得x32=x1x2,即(t+1)2=t(t−1),解得t=−13,∴满足条件的t=13或t=−13.(3)①∵三个实数x1,x2,x3是“友好数”,且满足0<x1<x3<x2,∴x32=x1⋅x2,∵x1,x2是关于x的一元二次方程nx2+mx+n=0(n≠0)的两个根,∴x1⋅x2=nn=1,∴x32=1,而0<x3,∴x3=1,∴x3=1是抛物线y=ax2+bx+c(a≠0)与x轴的一个交点的横坐标,∴a+b+c=0;故答案为:0;②由①得:a+b+c=0,两边同除以a得:1+ba +ca=0,∴ca =−ba−1=−x−1,第18页,共20页∴y=b2+aca2=(ba)2+ca=x2−x−1,∴y关于x的函数关系式为:y=x2−x−1.(1)根据62=4×9,知4,6,9可以构成“友好数”;(2)根据y1,y2,y3构成“友好数”,分三种可能:①y12=y2y3,由题得x12=x2x3,即t2=(t−1)(t+1),无解,②y22=y1y3,由题得x22=x1x3,即(t−1)2=t(t+1),解得t=13,③y32=y1y2,由题得x32=x1x2,即(t+1)2=t(t−1),解得t=−13;(3)①由三个实数x1,x2,x3是“友好数”,且满足0<x1<x3<x2,可得x32=x1⋅x2,而x1,x2是关于x的一元二次方程nx2+mx+n=0(n≠0)的两个根,有x1⋅x2=nn=1,即可得x3=1,故a+b+c=0;②由a+b+c=0,得:1+ba +ca=0,即得ca=−ba−1=−x−1,从而y=b2+aca2=(ba)2+ca=x2−x−1.本题考查二次函数综合应用,涉及新定义“友好数”,反比例函数,一元二次方程等知识,解题的关键是理解“友好数”概念及分类思想的应用.24.【答案】解:(1)如图2,过点D作DE//AC交BC的延长线于E,又∵AD//BC,AC=3,∴四边形ADEC是平行四边形,∴DE=AC=3,AD=CE,∵CE+BC=BE,∴AD+BC=BE,∵DE//AC,AC⊥BD∴∠BDE=90°,又∵BD=5,∴BE=√BD2+DE2=√52+32=√34∴AD+BC=BE=√34,(2)连结AC、CE,如图3,∵矩形ABCD,ABEF为平行四边形,∴DC//AB//EF且DC=AB=EF,∴DFEC为平行四边形,∴DF=CE,∵ABCD为矩形,∴AC=DB,∵AE=DF=DB∴AE=CE=AC,即△ACE是一个等边三角形,∴∠AEC=60°,∵DF//CE,∴∠FGE=∠AEC=60°;(3)设AC与BD相交于点Q,如图4,∵四边形ABCD是矩形,且AB=AD,∴ABCD为正方形,∴AC与BD互相垂直平分,∵EA=EC,BA=BC,∴BE是线段AC的中垂线,又∵BD也是线段AC的中垂线,∴E、B、D三点共线,∵AF//BE,∠AEC=30°,∴∠FAE=∠AEB=12∴∠AFG=∠FGE−∠FAE=30°,∵FG=2,∴BE=AF=2√3,在Rt△AEQ中,设AQ=x,则QE=x+2√3,AE=AC=2x,∴x2+(x+2√3)2=(2x)2,解得:x=3+√3,x=−3+√3(负的舍去),∵AF//DE,x×2x=12+6√3.∴S△BDF=S△DAB=12【解析】(1)如图2,过点D作DE//AC交BC的延长线于E,可证得四边形ADEC是平行四边形,进而得出∠BDE=90°,运用勾股定理即可求得答案;(2)连结AC、CE,如图3,可证得DFEC为平行四边形,再证得△ACE是一个等边三角形,即可求得答案;(3)设AC与BD相交于点Q,如图4,可证得ABCD为正方形,进而推出E、B、D三点共线,设AQ=x,则QE=x+2√3,AE=AC=2x,利用勾股定理建立方程求解即可求得答案.本题是四边形综合题,考查了平行四边形的判定与性质、矩形的性质、正方形的判定和性质、等边三角形的判定与性质、三角形面积、勾股定理等.综合性较强,有一定的难度.第20页,共20页。
浙教版八年级下册数学期末练习卷(含答案)

浙教版八年级下册数学期末练习卷一、选择题(共10题;共30分)1.(3分)下列式子中,x可以取−1和2的是( )A.1x−2B.x−1C.x+2D.x2−2 2.(3分)既是轴对称图形又是中心对称图形的是( )A.B.C.D.3.(3分)如图,在▱ABCD中,∠A+∠C=80°,则∠D=( )A.140°B.40°C.70°D.80°4.(3分)将一元二次方程x2-x-1=0配成(x+p)2=q的形式,则p的值是( )A.-1B.1C.12D.−125.(3分)牛顿曾说过:“反证法是数学家最精良的武器之一”那么我们用反证法证明:“在一个三角形中,至少有一个内角小于或等于60°”时,第一步先假设( )A.三角形中有一个内角小于60°B.三角形中有一个内角大于60°C.三角形中没有一个内角小于60°D.三角形中每个内角都大于60°6.(3分)甲、乙、丙、丁四名射击运动员进行射击测试,每人10次射击成绩的平均数(单位:环).及方差s2(单位:环2)如下表所示,根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择( )甲乙丙丁A.甲B.乙C.丙D.丁7.(3分)《算法统宗》是中国古代数学名著,作者是明代数学家程大位.书中记载了一道“荡秋千”问题:“平地秋千未起,踏板一尺离地;送行二步与人齐,五尺人高曾记;仕女佳人争蹴,终朝笑语欢嬉;良工高士素好奇,算出索长有几?”译文:“秋千静止的时候,踏板高地1尺,将它往前推送两步(两步=10尺)时,此时踏板升高到离地5尺,秋千的绳索始终拉得很直,试问秋千绳索有多长?”如图,若设秋千绳索长为x尺,则可列方程为( )A.x2+102=(x+1)2B.x2+102=x2C.(x−4)2+10=x2D.x2+102=(x−4)28.(3分)已知点A(x₁,y₁),B(x₂,y₂)在反比例函数y =6的图象上,且:x1<0<x2,则下列结论x一定正确的是( )A.y₁+y₂<0B.y₁+y₂>0C.y₁<y₂D.y₁>y₂9.(3分)如图所示,正方形ABCD的顶点B,C在x轴的正半轴上,反比例函数y=k(k≠0)在第一象限x的图.象经过顶点A(m,m+3)和CD上的点E,且OB−CE=1,过点E的直线l交x轴于点F,交y轴于点G(0,−3),则OF的长为( )A.4.5B.5C.5.4D.610.(3分)如图,在正方形ABCD中,已知点P是线段AB上的一个动点(点P与点A不重合),作CQ⊥DP 交AD于点Q.现以PQ,CQ为邻边构造平行四边形PECQ,连接BE,则∠BEP+∠PQC的最小值为( )A.90°B.45°C.22.5°D.60°二、填空题(共6题;共18分)11.(3分)若二次根式x−4在实数范围内有意义,则x的取值范围是 .12.(3分)下面是某班23名女同学每分钟仰卧起坐的测试情况统计表:个数/个3538424548人数35744则该班女同学每分钟仰卧起坐个数的中位数是 .13.(3分)若n边形的每一个外角都是40°,则n的值为 14.(3分)已知关于x的一元二次方程a x2+bx+c=0满足a−b+c=0,则方程必有一个根为 .15.(3分)如图,用4张全等的直角三角形纸片拼成的图案,若直角三角形纸片的较长直角边为4,拼成的中间小正方形面积为1,则四边形ABCD的面积为 .16.(3分)如图,A,C是正比例函数y=x的图象与反比例函数y=4的图象的交点,过点A作AD⊥xx轴于点D,过点C作CB⊥x轴于点B,则四边形ABCD的周长为 .三、解答题(共8题;共72分)17.(8分)计算.(1)(4分)8+32−18(2)(4分)12+|3−2|+(12)−118.(8分)解方程:(1)(4分)x2+6x=−3;(2)(4分)x(x−7)=8(7−x)19.(6分)在“书香进校园”读书活动中,为了解学生课外读物的阅读情况,随机调查了部分学生的课外阅读量.绘制成不完整的扇形统计图(图1)和条形统计图(图2),其中条形统计图被墨汁污染了一部分.(1)(2分)条形统计图中被墨汁污染的人数为 人.“8本”所在扇形的圆心角度数为 °;(2)(2分)求被抽查到的学生课外阅读量的平均数和中位数;(3)(2分)随后又补查了m名学生,若已知他们在本学期阅读量都是10本,将这些数据和之前的数据合并后,发现阅读量的众数没改变,求m的最大值.20.(6分)如图,△ABC的中线BE、CF相交于点G,已知点P,Q分别是BG,C的中点.(1)(3分)求证:四边形EFPQ是平行四边形;(2)(3分)若FG⊥BF,请判断FP与GE的数量关系,并说明理由.21.(8分)如图,一次函数y=-x+4的图象与反比例函数y=kx(k≠0)在第一象限的图象交于A(1,a)和B(b,1)两点,与x轴交于点C,与y轴交于点D.(1)(3分)求点B的坐标和反比例函数的表达式;(2)(2分)直接写出当x>0时,不等式-x+4-kx>0的解集;(3)(3分)若点P在y轴上,且△APB的面积为3,求点P的坐标.22.(10分)如图,将一张矩形纸片ABCD沿着对角线BD向上折叠,顶点C落到点E处,BE交AD于点F.(1)(3分)求证:△ABF≌△EDF;(2)(7分)如图,过点D作DG∥BE,交BC于点G,连接FG交BD于点O.①判断四边形BFDG的形状,并说明理由;②若AB=6,AD=8,求FG的长.23.(12分)根据以下素材,探索完成任务.如何改造硬纸板制作无盖纸盒?背景学校手工社团小组想把一张长50cm,宽40cm的矩形硬纸板,制作成一个高5cm,容积4680c m3的无盖长方体纸盒,且纸盒的长不小于32cm (纸板的厚度忽略不计).方案初始方案:将矩形硬纸板竖着裁剪xcm(阴影部分),剩余纸板的四周各剪去一个同样大小的正方形.改进方案:将矩形硬纸板竖着裁剪xcm ,横着裁剪ycm (阴影部分),剩余纸板的四周各剪去一个同样大小的正方形.问题解决任务1判断方案请通过计算判断初始方案是否可行?任务2改进方案改进方案中,当x =y 时,求x 的值.任务3探究方案当裁剪后能制作成符合要求的纸盒时,写出y关于x 的函数关系式.24.(14分) 阅读材料:已知a ,b 为非负实数,∵a +b−2ab =(a )2+(b )2−2a ⋅b =(a −b )2≥0,∴a +b ≥2ab ,当且仅当“a =b ”时,等号成立.这个结论就是著名的“均值不等式”,“均值不等式”在一类最值问题中有着广泛的应用.例:已知x >0,求代数式x +4x最小值.解:令a =x ,b =4x ,则由a +b ≥2ab ,得x +4x ≥2x ⋅4x =4.当且仅当x =4x,即x =2时,代数式取到最小值,最小值为4.根据以上材料解答下列问题:(1)(3分)已知x >0,则当x = 时,代数式x +3x到最小值,最小值为 ;(2)(3分)用篱笆围一个面积为100m 2的矩形花园,则当这个矩形花园的长、宽各为多少时,所用的篱笆最短?最短的篱笆的长度是多少米?(3)(5分)已知x >0,则自变量x 取何值时,代数式xx 2−2x +9取到最大值?最大值为多少?(4)(3分)若x 为任意实数,代数式xx 2+4x +5的值为m ,则m 范围为 .答案解析部分1.【答案】C2.【答案】B3.【答案】A4.【答案】D5.【答案】D6.【答案】D7.【答案】C8.【答案】C9.【答案】C10.【答案】B11.【答案】x≥412.【答案】4213.【答案】914.【答案】x=-115.【答案】2516.【答案】45+417.【答案】(1)解:原式=22+32-32=22(2)解:原式=23+2-3+2=4+318.【答案】(1)x1=−3+6,x2=−3−6(2)x1=7,x2=−819.【答案】(1)4;108(2)被调查同学阅读量的平均数为8.7本,中位数为9本(3)m的最大值为320.【答案】(1)证明:∵BE、CF是△ABC的中线,∴EF 是△ABC 的中位线,∴EF ∥BC ,EF =12BC ,∵P 、Q 分别是BG 、CG 的中点,∴ PQ 是△BCG 的中位线,∴PQ ∥BC ,PQ =12BC ,∴EF ∥OQ ,EF =PQ ,∴四边形EFPQ 是平行四边形;(2)解:FP =GE ,理由如下:∵四边形EFPQ 是平行四边形,∴GP =GE ,∵FG ⊥BF ∴∠BFG =90°,又∵P 是BG 中点,∴FP =GP =12BG .∴FP =GE .21.【答案】(1)解:把点B(b ,1)代人y=-x+4 ,得1=-b+4 ,解得b=3,∴B(3,1).∵反比例函数y=kx(k≠0)的图象经过点B ,∴ k=3×1=3,∴反比例函数的表达式为y=3x.(2)1<x<3(3)解:当x=0时,则y=-x+4=4,∴点D 的坐标为(0,4),设点P 的坐标为(0,y).∵ S △APB =S △BPD -S △APD =12PD·xp-12PD·x=3,∴12×(3-1)PD=3,∴PD=3,∴点P 的坐标为(0,1)或(0,7).22.【答案】(1)证明:∵四边形ABCD 是矩形∴∠A =∠C ,AB =CD又∵矩形ABCD 沿BD 折叠∴∠C =∠E ,CD =ED ∴∠A =∠E ,AB =DE在△ABF 和△EDF 中{∠A =∠E ∠AFB =∠EFD AB =DE∴△ABF≌△EDF (AAS )(2)解:①四边形BFDG 是菱形,理由如下:∵四边形ABCD 是矩形∴FD ∥BG又∵DG ∥BF ,FD ∥BG ∴四边形BFDG 是平行四边形又∵四边形BFDG 是平行四边形,DF =BF ∴四边形BFDG 是菱形②∵四边形ABCD 是矩形,AB =6,AD =8∴BD =AB 2+AD 2=62+82=10,OB =12BD =5设BF =DF =x ,则AF =AD−DF =8−x 在Rt △ABF 中,A B 2+A F 2=B F 2∴62+(8−x )2=x 2解得:x =254,即BF =254∴FO =BF 2−OB 2=(254)2−52=154∴FG =2FO =15223.【答案】解:任务1:根据题意得:(50−x−2×5)×(40−2×5)×5=4680,解得:x =8.8,此时长方体盒子的长为:50−8.8−2×5=31.2(cm)<32cm ∴初始方案是不可行;任务2:当x =y 时,根据题意得:(50−x−2×5)×(40−x−2×5)×5=4680, 解得:x 1=4或x 2=66,当x 1=4时,盒子的长为50−2×5−4=36>32,符合题意; 当x 2=66时,盒子的长为50−2×5−66=−26<32,不符合题意;∴x 的值为4;任务3:y =30−93640−x,24.【答案】(1)3;23(2)解:设这个矩形的长为x 米,篱笆周长为y 米,根据题意,用篱笆围一个面积为100m 2的矩形花园,则矩形的宽为100x米,∴y =2(x +100x )≥4x ⋅100x=40,当且仅当x =100x时,取等号,即当x =10时,函数有最小值,最小值为40,∴这个矩形花园的长、宽均为10米时,所用的篱笆最短,最短的篱笆的长度是40米(3)解:∵x >0,∴y =xx 2−2x +9=1x−2+9x =1x +9x −2,又∵x +9x ≥2x ⋅9x=6,当且仅当x =9x 时,即当x =3时,(x +9x)取最小值,最小值为6,∴此时y 有最大值,最大值为y =16−2=14,∴自变量x =3时,函数y =x x 2−2x +9取最大值,最大值为14.(4)−52−1≤m ≤52−1。
(完美版)浙教版八年级下册数学期末测试卷及含答案

浙教版八年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、下列说法不正确的是()A.方程x 2=x有一根为0B.方程x 2﹣1=0的两根互为相反数C.方程(x﹣1)2﹣1=0的两根互为相反数D.方程x 2﹣x+2=0无实数根2、对于任意的正数m,n定义运算※为:m※n=计算(3※2)×(8※12)的结果为( )A.2-4B.2C.2D.203、等腰梯形ABCD中,E、F、G、H分别是各边的中点,则四边形EFGH的形状是()A.平行四边形B.矩形C.菱形D.正方形4、下列根式.是最简二次根式的是()A. B. C. D. (n是正整数)5、下列图形中,既是轴对称图形又是中心对称图形的是().A. B. C. D.6、已知O是矩形ABCD的对角线的交点,AB=6,BC=8,则点O到AB、BC的距离分别是()A.3、5B.4、5C.3、4D.4、37、下列命题正确是()A.点(1,3)关于x轴的对称点是(﹣1,3)B.函数 y=﹣2x+3中,y随x的增大而增大C.若一组数据3,x,4,5,6的众数是3,则中位数是3 D.同圆中的两条平行弦所夹的弧相等8、下列命题正确的是()A.对角线相等的四边形是矩形B.对角线互相垂直且相等的四边形是正方形C.对角线互相垂直的四边形是菱形D.两组对角分别相等的四边形是平行四边形9、如图,在矩形中无重叠放入面积为16和12的两张正方形纸片,则图中空白部分的面积为()A. B. C. D.10、用配方法解方程x2-6x-8=0时,配方结果正确的是()A.(x-3) 2=17B.(x-3) 2=14C.(x-3) 2=1D.(x-6) 2=4411、下列四幅图片,是中心对称图形的是()A. B. C. D.12、为了某小区居民的用水情况,随机抽查了10户家庭的月用水量,结果如下表:月用水量4 5 6 9(吨)户数 3 4 2 1则关于这10户家庭的约用水量,下列说法错误的是()A.中位数是5吨B.极差是3吨C.平均数是5.3吨D.众数是5吨13、已知关于x的一元二次方程(k﹣1)x2﹣x+ =0有实数根,则k的取值范围是()A.k为任意实数B.k≠1C.k≥0D.k≥0且k≠114、如图是用围棋棋子在6×6的正方形网格中摆出的图案,棋子的位置用有序数对表示,如A点为(5,1),若再摆一黑一白两枚棋子,使这9枚棋子组成的图案既是轴对称图形又是中心对称图形,则下列摆放正确的是()A.黑(1,5),白(5,5)B.黑(3,2),白(3,3)C.黑(3,3),白(3,1)D.黑(3,1),白(3,3)15、在反比例函数y=图象的每条曲线上,y都随x的增大而增大,则k的取值范围是()A.k>1B.k>0C.k≥1D.﹣l≤k<1二、填空题(共10题,共计30分)16、在平行四边形ABCD中,对角线AC、BD的交点,AC⊥BC且AB=10厘米,AD=6厘米,则OB=________.17、正方形的A1B1P1P2顶点P1、P2在反比例函数y=(x>0)的图象上,顶点A 1、B1分别在x轴、y轴的正半轴上,再在其右侧作正方形P2P3A2B2,顶点P3在反比例函数y=(x>0)的图象上,顶点A2在x轴的正半轴上,则点P3的坐标为________.18、在矩形ABCD中,AB=4,BC=3,取CD中点E,连接BD、BE,将沿BE翻折成为,过点C作CM⊥BF于M,则CM+FC=________.19、“反证法”证明命题“等腰三角形的底角是锐角”时,是先假设________20、如图,在矩形ABCD中,点E、F分别在AB、DC上,BF∥DE,若AD=12cm,AB=7cm,且AE:EB=5:2,则阴影部分的面积为________ cm221、已知,是方程的两根,则________.22、已知平行四边形ABCD中,∠B=4∠A,则∠C=________23、某种商品原价是120元,经两次降价后的价格是100元,求平均每次降价的百分率.设平均每次降价的百分率为x,可列方程为________.24、若方程的两根,则的值为________.25、如图,在正方形ABCD中,M、N是对角线AC上的两个动点,P是正方形四边上的任意一点,且,.关于下列结论:①当△PAN是等腰三角形时,P点有6个;②当△PMN是等边三角形时,P点有4个;③DM+DN的最小值等于6.其中,一定正确的结论的序号是________.三、解答题(共5题,共计25分)26、计算: ÷- .27、已知实数a、b、c在数轴上对应点的位置如图,化简.28、如图,D是△ABC边BC上的点,连接AD,∠BAD=∠CAD,BD=CD.用两种不同方法证明AB=AC.29、如图,在平行四边形ABCD中,AQ、BN、CN、DQ分別是∠DAB、∠ABC、∠BCD、∠CDA的平分线,AQ与BN相交于点P,CN与DQ相交于点M,判断四边形MNPQ的形状,并证明你的结论.30、请判断下列问题中,哪些是反比例函数,并说明你的依据.(1)三角形的底边一定时,它的面积和这个底边上的高;(2)梯形的面积一定时,它的中位线与高;(3)当矩形的周长一定时,该矩形的长与宽.参考答案一、单选题(共15题,共计45分)1、C2、B3、C4、D5、D6、D7、D8、D9、B10、A12、B13、D14、D15、A二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、三、解答题(共5题,共计25分)26、27、29、30、。
数学浙教版八年级数学下册期末试题附答案

浙教版八年级数学(下)期末测试卷一、选择题(本题有10小题,每小题3分,共30分) 1.二次根式中,字母a 的取值范围是 ( )(A )a >-3(B )a ≥-3(C )a >3(D )a ≥32.在下列关于平行四边形的各命题中,假命题是 ( ) (A )平行四边形的对边相等 (B )平行四边形的对角相等 (C )平行四边形的对角线互相平分(D )平行四边形的对角线互相垂直3.一元二次方程x 2-4x -6=0,经过配方可变形为 ( )(A )(x -2)2=10(B )(x -2)2=6(C )(x -4)2=6(D )(x -2)2=24.在下列图形中,中心对称图形是 ( )(A )等边三角形(B )平行四边形(C )等腰梯形(D )正五边形5若92+-mx x 是一个完全平方式。
则m 的值是:----------------------------( )A 6B 6-C 6±D 以上都不对 6.下列计算正确的是 ( )(A )+=(B )-=1(C )3-=(D )3+=37.一幅平面图案,在某个顶点处由四个正多边形镶嵌而成,其中的三个分别为正三角形、正方形、正六边形,那么另外一个为 ( )(A )正三角形(B )正方形(C )正五边形(D )正六边形8.将50个数据分成五组,编成组号为①~⑤的五个组,频数颁布如下表:那么第③组的频率为 ( )(A )14(B )7(C )0.14(D )0.79.如图,已知矩形ABCD 的对角线AC 的长为10cm ,连结各边中点E 、F 、G 、H 得四边形EFGH ,则四边形EFGH 的周长为 ( )(A )20cm (B )20cm (C )20cm(D )25cm10.如图,梯形ABCD 中,AD ∥BC ,AB =CD ,AD =5,BC =8.将腰DC绕点D 逆时针方向旋转90º至DE ,连结AE ,则△ADE 的面积为 ( )(A )4(B )(C )(D )20二、填空题(本题有10小题,每小题3分,共30分) 11.数据10,5,12,7的极差为__________. 12.五边形的内角和等于__________.A BC DE FG H13.方程2x 2=6的解是__________.14.如图,四边形ABCD 是周长为20cm 的菱形,点A 的坐标是(4,0),则点B 的坐标为__________.15.在□ABCD 中,若给出四个条件:①AB =BC ,②∠BAD =90º,③AC ⊥BD ,④AC =BD .其中选择两个可推出四边形ABCD 是正方形,你认为这两个条件是__________.(填序号,只需填一组)16.写出命题“矩形的对角线互相平分且相等”的逆命题______________________________.17.数a 、b 在数轴上的位置如图:则-=__________.18.如图,□ABCD 中,AD =5,AB =3,AE 平分∠BAD 交BC边于点E ,则线段EC 的长度为__________.19.已知关于x 的一元二次方程(m +2)x 2+mx +m 2-4=0有一个根是0,则m =__________.20.设a ,b 是一个直角三角形两条直角边的长,且(a 2+b 2)(a 2+b 2+1)=12,则这个直角三角形的斜边长为__________.三、解答题(本题有6小题,共40分) 21.(6分)(1)解方程:x 2+2x -3=0; (2)计算:÷-×3.22.(8分)某地区为了增强市民的法制意识, 抽调了一部分市民进行了一次知识竞赛,竞赛 成绩(得分取整数)进行了整理后分5组, 并绘制了频数分布直方图,请结合右图提供 的信息,解答下列问题: ①抽取多少人参加竞赛?②60.5到70.5这一分数段的频数和 频率分别是多少?③这次竞赛成绩的中位数落在哪个分数段内? ④根据频数分布直方图,请你提出一个问题, 并回答你所提出的问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八(下)数学期终复习试卷(一)班级姓名得分
一、精心选一选:(每小题3分,共30分)
1.一个容量为80的样本最大值为141,最小值为50,取组距为10,则可以分成( ).
(A)10组 (B)9组 (C)8组 (D)7组
(的值为( )
2.计算:-
(A)6(B) 0 (C)6 (D)-6
3.一个多边形的内角和等于外角和的一半,那么这个多边形是()(A)三角形(B)四边形(C)五边形(D)六边形
4. 用配方法将方程x2+6x-11=0变形为()
(A) (x-3)2=20 (B) (x+3)2=20 (C)(x+3)2=2 (D)(x-3)2=2 5.已知一道斜坡的坡比为1:3,坡长为24米,那么坡高为( )米。
(A)3
4(D)6
8(B)12 (C)3
6.平行四边形一边长为10 ,则它的两条对角线可以是( )
(A)6 ,8 (B)8, 12 (C) 8, 14 (D) 6, 14
7.下列图形中,不是中心对称图形的是().
8.如图,矩形ABCD沿AE折叠,使点D落在BC边上的F点处,
如果∠BAF=60°,那么∠DAE等于().
(A)15°(B)30°(C)45°(D)60°
9.如图,四边形ABCD是正方形,延长BC至点E,使CE=CA,连结AE交CD•于点F,•则∠AFC的度数是().
(A)150°(B)125°(C)135°(D)112.5°
第8题 第9题
10.小许拿了一张正方形的纸片如图甲,沿虚线对折一次得图乙.•再对折一次得图丙.然后用剪刀沿图丙中的虚线(虚线与底边平行)剪去一个角.打开后的形状是(• ).
二、专心填一填: (每小题3分,共30分) 11.使
1
3-4x
有意义的x 的值是_______________。
12.对某班同学的身高进行统计(单位:厘米),频数分布表中165.5~170.5这一组学生人数是12,频率为0.25,则该班共有_________名同学.
13.已知AD ∥BC ,要使四边形ABCD 为平行四边形,需要增加的条件是
________________(•填一个你认为正确的条件).
14.如果方程x 2+(k -1)x -3=0的一个根为2,那么k 的值为________。
15.将命题“同角的余角相等”改写成“如果……那么……”的形式为
____________________________.. 16.顺次连接矩形各边中点得到的四边形是________________
17.请写出定理:“等腰三角形的两个底角相等”的逆定理 ______________________________________________________
18.如图:在菱形ABCD 中,∠BAD=80°,AB 的垂直平分线交对角线AC 于点F ,E•为垂足,连结DF ,则∠CDF 的度数=________
19.在平行四边形ABCD 中,AE ⊥BC 于E, AF ⊥CD 于F ,AE=4,AF=6,平行四边形ABCD 的周长为40,则平行四边形ABCD 的面积为____________________ 20.在一幅长80cm ,宽50cm 的矩形风景画的四周镶一条金色纸边,纸边的宽
度一样,作成一幅矩形挂图,如果要使整个挂图的面积是5400cm 2,设金色纸边的宽为xcm ,那么x 满足的方程是
第18题
第19题
三:耐心做一做
21.(10分)如图在平行四边形ABCD 的对角线AC 的延长线上取两点E 、F ,
使EA =CF ,求证:四边形EBFD 是平行四边形
D
F
B
C
E
F
A
D
22.(10分)某学校校园内有如图的一块矩形ABCD空地,已知BC=20m,AB=10m,学校准备在这块空地的中间一块四边形EFGH内种花,其余部分铺设草坪,并要求AE=AH=CF=CG,四边形EFGH的种花面积为112m2,求AE的长。
23.(9分)按下列要求作图:
(1)在正方形网格中三条不同实线上各取一个格点,使其中任意两点,不在同一实线上。
(2)连结三个格点,使之构成直角三角形(如图1),请在右边网格在作出三个直角三角形,使四个直角三角形互不全等。
(1) (2) (3) (4)
24.(11分)已知如图:在△ABC中,AB、BC、CA的中点分别是E、F、G,AD是高。
求证:∠EDG=∠EFG。
标 准 答 案
一、精心选一选: (每小题3分,共30分)
1、A
2、C
3、A
4、B
5、B
6、C
7、B 9、D 10、D
二、专心填一填: (每小题3分,共30分)
11、x <4
3 12、48 13、AB//CD ,或AD=BC 14、2
1
15、如果两个角是同角的余角,那么这两个角相等。
16、菱形 17、有两个角相等的三角形是等腰三角形。
18、600 19、48 20、(80+2x )(50+2x)=5400
D
F
21、证明:连结BD,交AC于点O,∵四边形ABCD为平行四边形,
∴AO=CO,BO=DO,………4分
又∵AE=CF,∴EO=FO,………3分
四边形EBFD是平行四边形
(对角线互相平分的四边形是平行四边形)………3分
22、解:设AE=AH=CF=CG=X
∵四边形ABCD为矩形,∴∠A=∠C=900,AB=CD,AD=BC。
BE=10-X=DG,BF=20-X………3分
S四EFGH=S矩ABCD-S∆AEH-S∆FCG-S∆BFE-S∆DHG………2分
20×10-2×
2
1×X2-2×
2
1×(10-X)(20-X)=112
X2-15X-56=0 X1=8,X2=7∴AE=7m或8m ………4分
23、提示:三角形边长只能是32
25
20
18
17
13
10
8
5
2、
、
、
、
、
、
、
、
、,其中能组成直角三角形有:
(1) 10
8
2、
、(2)20
18
2、
、(3)13
8
5、
、
(4)18
、(已作) (6)18
10
5、
、
8、
20
5、
13
、(5)25
(7)25
5、
5
、
17
8、
、(8)10
(9)20
10
、每对一图得3分
10、
24、证明:连结EG,
∵E,F,G分别是AB,BC,CA的中点,
1AC,
∴EF为∆ABC的中位线,EF=
2
(三角形的中位线等于第三边的一半)………3分
又∵AD⊥BC ∴∠ADC=900,DG为直角∆ADC斜边上的中线,
1AC
∴DG=
2
(直角三角形斜边上的中线等于斜边的一半),………3分∴DG=EF………1分
同理DE=FG,EG=GE,
∴∆EFG≌∆GDE(SSS)∴∠EDG=∠EFG………4分。