2018年七年级数学(上)期中试卷

合集下载

七年级数学上册-期中、期末、月考真题-2017-2018学年安徽省宣城市宁国市(d片)城西学校等四校联考七年级(

七年级数学上册-期中、期末、月考真题-2017-2018学年安徽省宣城市宁国市(d片)城西学校等四校联考七年级(

2017-2018学年安徽省宣城市宁国市(d片)城西学校等四校联考七年级(上)期中数学试卷一、选一选,比比谁细心(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,把这个正确的选项填在下面表格的相应位置)1.(3分)(2008•乐山)|3.14﹣π|的值为()A.0 B.3.14﹣πC.π﹣3.14 D.0.142.(3分)(2010秋•合浦县期末)下列各对数中互为相反数的是()A.32与﹣23B.﹣23与(﹣2)3C.﹣32与(﹣3)2D.(﹣3×2)2与23×(﹣3)3.(3分)(2017秋•宁国市期中)若a是最大的负整数,b是绝对值最小的有理数,c是倒数等于它本身的自然数,则a2017+2018b+c2019的值为()A.2017 B.2018 C.2019 D.04.(3分)(2017秋•宁国市期中)我国的国土面积是960万平方公里,其中960万,用科学记数法可表示为()A.9.6×102B.96×102 C.9.6×106D.9.6×1055.(3分)(2017秋•宁国市期中)数a的近似数为1.50,那么a的真实值的范围是()A.1.495<a<1.505 B.1.495≤a<1.505C.1.45<a<1.55 D.1.45≤a<1.556.(3分)(2017秋•宁国市期中)若X表示一个两位数,y表示一个三位数,把X放在y的左边,组成的五位数可表示为()A.X+y B.100X+y C.100 X+1000 y D.1000 X+y7.(3分)(2007春•锦江区校级期末)对于下列式子:①ab;②x2﹣xy﹣;③;④⑤m+n.以下判断正确的是()A.①③是单项式B.②是二次三项式C.①⑤是整式D.②④是多项式8.(3分)(2014秋•山西期末)将多项式4a2b+2b3﹣3ab2﹣a3按字母b的降幂排列正确的是()A.4a2b﹣3ab2+2b3﹣a3B.﹣a3+4a2b﹣3ab2+2b3C.﹣3ab2+4a2b﹣a3+2b3D.2b3﹣3ab2+4a2b﹣a39.(3分)(2015秋•铁力市期末)多项式2x﹣3y+4+3kx+2ky﹣k中没有含y的项,则k应取()A.k= B.k=0 C.k=﹣D.k=410.(3分)(2017秋•宁国市期中)下面是小芳做的一道多项式的加减运算题,但她不小心把一滴墨水滴在了上面.(﹣x2+3xy﹣y2)﹣(﹣x2+4xy﹣y2)=﹣x2+y2,阴影部分即为被墨迹弄污的部分.那么被墨汁遮住的一项应是()A.﹣7xy B.+7xy C.﹣xy D.+xy二、填一填,看看谁仔细(本大题共5个小题,每小题3分,共15分)11.(3分)(2017秋•宁国市期中)近似数6.20×108精确到位.12.(3分)(2010秋•肥西县期末)单项式﹣是次单项式,系数为.13.(3分)(2016秋•单县期末)观察下列各式:13=1213+23=3213+23+33=6213+23+33+43=102…猜想:13+23+33+…103=.14.(3分)(2017秋•宁国市期中)如图是一个简单的数值运算程序,当输入n 的值为3时,则输出的结果为.15.(3分)(2016秋•宜春期末)如果代数式2x2+3x+7的值为8,那么代数式4x2+6x ﹣9的值是.三.解答题:16.(15分)(2017秋•宁国市期中)计算(1)﹣22+|5﹣8|+24÷(﹣3)×(2)(﹣﹣+)÷.(3)|﹣|+|﹣|+…+|﹣|.17.(8分)(2017秋•宁国市期中)若|3x+6|+(3﹣y)2=0,求多项式3y2﹣x2+(2x﹣y)﹣(x2+3y2)的值(先化简,再求值).18.(10分)(2017秋•宁国市期中)某检修小组乘一辆检修车沿铁路检修,规定向东走为正,向西走为负,小组的出发地记为0,某天检修完毕时,行驶记录(单位:千米)如下:+10,﹣2,+3,﹣1,+9,﹣3,﹣2,+11,+3,﹣4,+6.(1)问收工时,检修小组距出发地有多远?在东侧还是西侧?(2)若检修车每100千米耗油15升,求从出发到收工共耗油多少升.19.(10分)(2017秋•宁国市期中)某自行车厂一周计划生产700辆自行车,平均每天生产自行车100辆,由于各种原因,实际每天生产量与计划每天生产量相比有出入.下表是某周的自行车生产情况(超计划生产量为正、不足计划生产量为负,单位:辆):此题不难,但要仔细阅读哦!(1)根据记录可知前三天共生产自行车辆;(2)产量最多的一天比产量最少的一天多生产辆;(3)若该厂实行按生产的自行车数量的多少计工资,即计件工资制.如果每生产一辆自行车就可以得人民币60元,超额完成任务,每超一辆可多得15元;若不足计划数的,每少生产一辆扣20元,那么该厂工人这一周的工资总额是多少?20.(12分)(2017秋•宁国市期中)迪雅服装厂生产一种夹克和T恤,夹克每件定价100元,T恤每件定价50元.厂方在开展促销活动期间,向客户提供两种优惠方案:①买一件夹克送一件T恤;②夹克和T恤都按定价的80%付款.现某客户要到该服装厂购买夹克30件,T恤x件(x>30).(1)若该客户按方案①购买,夹克需付款元,T恤需付款元(用含x的式子表示);若该客户按方案②购买,夹克需付款元,T恤需付款元(用含x的式子表示);(2)若x=40,通过计算说明按方案①、方案②哪种方案购买较为合算?(3)若两种优惠方案可同时使用,当x=40时,你能给出一种更为省钱的购买方案吗?试写出你的购买方案,并说明理由.2017-2018学年安徽省宣城市宁国市(d片)城西学校等四校联考七年级(上)期中数学试卷参考答案与试题解析一、选一选,比比谁细心(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,把这个正确的选项填在下面表格的相应位置)1.(3分)(2008•乐山)|3.14﹣π|的值为()A.0 B.3.14﹣πC.π﹣3.14 D.0.14【分析】首先判断3.14﹣π的正负情况,然后利用绝对值的定义即可求解|.【解答】解:∵3.14﹣π<0,∴|3.14﹣π|=π﹣3.14.故选:C.【点评】此题主要考查了绝对值的定义,解题时先确定绝对值符号中代数式的正负再去绝对值符号.2.(3分)(2010秋•合浦县期末)下列各对数中互为相反数的是()A.32与﹣23B.﹣23与(﹣2)3C.﹣32与(﹣3)2D.(﹣3×2)2与23×(﹣3)【分析】只是符号不同的两个数称为互为相反数.互为相反数的两个数的和是0.【解答】解:32+(﹣23)≠0;﹣23+(﹣2)3≠0;﹣32+(﹣3)2=0;(﹣3×2)2+23×(﹣3)≠0.故互为相反数的是﹣32与(﹣3)2.故选:C.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.3.(3分)(2017秋•宁国市期中)若a是最大的负整数,b是绝对值最小的有理数,c是倒数等于它本身的自然数,则a2017+2018b+c2019的值为()A.2017 B.2018 C.2019 D.0【分析】根据已知求出a=﹣1,b=0,c=1,代入求出即可.【解答】解:∵a是最大的负整数,b是绝对值最小的有理数,c是倒数等于它本身的自然数,∴a=﹣1,b=0,c=1,∴a2017+2018b+c2019=(﹣1)2017+2018×0+12019=0.故选:D.【点评】本题考查了绝对值、倒数、负数和求代数式的值等知识点,能根据题意求出a、b、c的值是解此题的关键.4.(3分)(2017秋•宁国市期中)我国的国土面积是960万平方公里,其中960万,用科学记数法可表示为()A.9.6×102B.96×102 C.9.6×106D.9.6×105【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:960万用科学记数法表示9.6×106,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.(3分)(2017秋•宁国市期中)数a的近似数为1.50,那么a的真实值的范围是()A.1.495<a<1.505 B.1.495≤a<1.505C.1.45<a<1.55 D.1.45≤a<1.55【分析】根据四舍五入的方法可知1.50可能是后一位入1得到,也可能是舍去后一位得到,找到其最大值和最小值即可确定范围.【解答】解:当a舍去千分位得到1.50,则它的最大值不超过1.505;当a的千分位进1得到1.50,则它的最小值是1.495.所以a的范围是1.495≤a<1.505.故选B.【点评】主要考查了近似数的确定.本题需要注意的是得到1.50可能是舍也可能是入得到的,找到其最大值和最小值即可确定范围.6.(3分)(2017秋•宁国市期中)若X表示一个两位数,y表示一个三位数,把X放在y的左边,组成的五位数可表示为()A.X+y B.100X+y C.100 X+1000 y D.1000 X+y【分析】由y表示一个三位数,把x放在y的左边,也就是把x扩大1000倍,由此表示出这个五位数即可.【解答】解:这个五位数就可以表示为1000x+y.故选:D.【点评】此题考查列代数式,掌握整数的计数方法是解决问题的关键.7.(3分)(2007春•锦江区校级期末)对于下列式子:①ab;②x2﹣xy﹣;③;④⑤m+n.以下判断正确的是()A.①③是单项式B.②是二次三项式C.①⑤是整式D.②④是多项式【分析】分别根据单项式、多项式的次数与项数、整式及多项式的定义作答.【解答】解:式子①ab;②;③;④;⑤中,①是单项式,故A错误;②不是整式,不是多项式,故②错误;①⑤是整式,故C正确;⑤是多项式,故D错误.故选:C.【点评】本题考查了单项式、多项式及多项式的次数与项数、整式的定义.单项式的定义:数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式.几个单项式的和叫做多项式.多项式中次数最高的项的次数叫做多项式的次数.多项式的组成元素的单项式,即多项式的每一项都是一个单项式,单项式的个数就是多项式的项数,如果一个多项式含有a个单项式,次数是b,那么这个多项式就叫b次a项式.单项式和多项式统称为整式.8.(3分)(2014秋•山西期末)将多项式4a2b+2b3﹣3ab2﹣a3按字母b的降幂排列正确的是()A.4a2b﹣3ab2+2b3﹣a3B.﹣a3+4a2b﹣3ab2+2b3C.﹣3ab2+4a2b﹣a3+2b3D.2b3﹣3ab2+4a2b﹣a3【分析】字母b的最高次数为3,然后按照字母b的指数从高到低进行排列即可.【解答】解:4a2b+2b3﹣3ab2﹣a3按字母b的降幂排列为2b3﹣3ab2+4a2b﹣a3.故选:D.【点评】本题主要考查了多项式,解题的关键是熟记按照某一个字母的指数从高到低进行排列叫按这个字母降幂排列.9.(3分)(2015秋•铁力市期末)多项式2x﹣3y+4+3kx+2ky﹣k中没有含y的项,则k应取()A.k= B.k=0 C.k=﹣D.k=4【分析】原式合并后,根据结果不含y,确定出k的值即可.【解答】解:原式=(3k+2)x+(2k﹣3)y+4﹣k,由结果不含y,得到2k﹣3=0,即k=.故选:A.【点评】此题考查了多项式,熟练掌握多项式的项的定义是解本题的关键.10.(3分)(2017秋•宁国市期中)下面是小芳做的一道多项式的加减运算题,但她不小心把一滴墨水滴在了上面.(﹣x2+3xy﹣y2)﹣(﹣x2+4xy﹣y2)=﹣x2+y2,阴影部分即为被墨迹弄污的部分.那么被墨汁遮住的一项应是()A.﹣7xy B.+7xy C.﹣xy D.+xy【分析】根据题意得出整式相加减的式子,再去括号,合并同类项即可.【解答】解:由题意得,被墨汁遮住的一项=(﹣x2+3xy﹣y2)﹣(﹣x2+4xy ﹣y2)﹣(﹣x2+y2)=﹣x2+3xy﹣y2+x2﹣4xy+y2+x2﹣y2=﹣xy.故选:C.【点评】本题考查的是整式的加减,熟知整式的加减实质上是合并同类项是解答此题的关键.二、填一填,看看谁仔细(本大题共5个小题,每小题3分,共15分)11.(3分)(2017秋•宁国市期中)近似数6.20×108精确到百万位.【分析】根据近似数的精确度求解.【解答】解:近似数6.20×108精确到百万位.故答案为百万.【点评】本题考查了近似数和有效数字:从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.12.(3分)(2010秋•肥西县期末)单项式﹣是5次单项式,系数为﹣.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:根据单项式定义得:单项式﹣是5次单项式,系数为﹣.【点评】确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.注意π属于数字因数.13.(3分)(2016秋•单县期末)观察下列各式:13=1213+23=3213+23+33=6213+23+33+43=102…猜想:13+23+33+…103=3025.【分析】由题意可知:从1开始的连续自然数的立方和等于这些数的和的平方,由此得出答案即可.【解答】解:∵13=12,13+23=(1+2)2,13+23+33=(1+2+3)2,13+23+33+43=(1+2+3+4)2…∴13+23+33+…+103=(1+2+3+4+…+10)2=552=3025,故答案为:3025.【点评】本题考查数字变化规律,观察出从1开始的连续自然数的立方和等于这些数的和的平方是解题的关键.14.(3分)(2017秋•宁国市期中)如图是一个简单的数值运算程序,当输入n 的值为3时,则输出的结果为30.【分析】由题意可知,当n2﹣n>28时,则输出结果,否则返回重新计算.【解答】解:当n=3时,∴n2﹣n=32﹣3=6<28,返回重新计算,此时n=6,∴n2﹣n=62﹣6=30>28,输出的结果为30.故答案为:30.【点评】本题考查代数求值问题,涉及程序运算的知识,需要正确理解该程序的运算结构.15.(3分)(2016秋•宜春期末)如果代数式2x2+3x+7的值为8,那么代数式4x2+6x ﹣9的值是﹣7.【分析】观察题中的两个代数式2x2+3x和4x2+6x,可以发现4x2+6x=2(2x2+3x),因此由2x2+3x+7的值为8,求得2x2+3x=1,再代入代数式求值.【解答】解:∵2x2+3x+7=8,∴2x2+3x=1,∴4x2+6x﹣9=2(2x2+3x)﹣9=2﹣9=﹣7,故本题答案为:﹣7.【点评】代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取代数式2x2+3x的值,然后利用“整体代入法”求代数式的值.三.解答题:16.(15分)(2017秋•宁国市期中)计算(1)﹣22+|5﹣8|+24÷(﹣3)×(2)(﹣﹣+)÷.(3)|﹣|+|﹣|+…+|﹣|.【分析】(1)根据幂的乘方、绝对值、有理数的乘除法和加法可以解答本题;(2)先把除法转化为乘法,然后根据乘法分配律即可解答本题;(3)先去掉绝对值符号,然后根据有理数的加减法可以解答本题.【解答】解:(1)﹣22+|5﹣8|+24÷(﹣3)×=﹣4+3+24×(﹣)×=﹣4+3﹣=;(2)(﹣﹣+)÷=(﹣﹣+)×36==﹣27﹣8+15=﹣20.(3)|﹣|+|﹣|+…+|﹣|===.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.17.(8分)(2017秋•宁国市期中)若|3x+6|+(3﹣y)2=0,求多项式3y2﹣x2+(2x﹣y)﹣(x2+3y2)的值(先化简,再求值).【分析】原式去括号合并得到最简结果,利用非负数的性质求出x与y的值,代入计算即可求出值.【解答】解:由题意得:3x+6=0,3﹣y=0,∴x=﹣2 y=3,3y2﹣x2+(2x﹣y)﹣(x2+3y2)=3y2﹣x2+2x﹣y﹣x2﹣3y2=﹣2x2+2x﹣y,当x=﹣2,y=3时,﹣2x2+2x﹣y=﹣2×(﹣2)2+2×(﹣2)﹣3=﹣8﹣4﹣3=﹣15.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.18.(10分)(2017秋•宁国市期中)某检修小组乘一辆检修车沿铁路检修,规定向东走为正,向西走为负,小组的出发地记为0,某天检修完毕时,行驶记录(单位:千米)如下:+10,﹣2,+3,﹣1,+9,﹣3,﹣2,+11,+3,﹣4,+6.(1)问收工时,检修小组距出发地有多远?在东侧还是西侧?(2)若检修车每100千米耗油15升,求从出发到收工共耗油多少升.【分析】(1)求得记录的数的和,根据结果即可确定所处的位置;(2)求得记录的数的绝对值的和,乘以0.15即可求解.【解答】解:(1)由题意得:+10﹣2+3﹣1+9﹣3﹣2+11+3﹣4+6=30答:收工时,检修小组距出发地有30千米,在东侧;(2)由题意得:10+2+3+1+9+3+2+11+3+4+6=54,54×15÷100=8.1(升)答:共耗油8.1升.【点评】本题考查了正负数,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.19.(10分)(2017秋•宁国市期中)某自行车厂一周计划生产700辆自行车,平均每天生产自行车100辆,由于各种原因,实际每天生产量与计划每天生产量相比有出入.下表是某周的自行车生产情况(超计划生产量为正、不足计划生产量为负,单位:辆):此题不难,但要仔细阅读哦!(1)根据记录可知前三天共生产自行车303辆;(2)产量最多的一天比产量最少的一天多生产27辆;(3)若该厂实行按生产的自行车数量的多少计工资,即计件工资制.如果每生产一辆自行车就可以得人民币60元,超额完成任务,每超一辆可多得15元;若不足计划数的,每少生产一辆扣20元,那么该厂工人这一周的工资总额是多少?【分析】(1)根据有理数的加法,可得答案;(2)根据最多的减最少的,可得答案;(3)根据每辆自行车的价格乘以自行车的辆数,可得基本工资,根据超额的数量乘以每辆的奖金,可得奖金,根据每辆的扣款乘以少生产的辆数,可得扣款金额,根据有理数的加法,可得答案.【解答】解:(1)3×100+(8﹣2﹣3)=303;故答案为:303;(2)16﹣(﹣11)=27;故答案为:27;(3)8﹣2﹣3+16﹣9+10﹣11=9,(700+9)×60+(8+16+10)×15+(﹣2﹣3﹣9﹣11)×20=42540+510﹣500=42550(元).答:这一周的工资总额是42550元.【点评】本题考查了正数和负数,利用了有理数的加法得出生产数量,利用每辆自行车的价格乘以自行车的辆数.20.(12分)(2017秋•宁国市期中)迪雅服装厂生产一种夹克和T恤,夹克每件定价100元,T恤每件定价50元.厂方在开展促销活动期间,向客户提供两种优惠方案:①买一件夹克送一件T恤;②夹克和T恤都按定价的80%付款.现某客户要到该服装厂购买夹克30件,T恤x件(x>30).(1)若该客户按方案①购买,夹克需付款3000元,T恤需付款50(x﹣30)元(用含x的式子表示);若该客户按方案②购买,夹克需付款2400元,T 恤需付款40x元(用含x的式子表示);(2)若x=40,通过计算说明按方案①、方案②哪种方案购买较为合算?(3)若两种优惠方案可同时使用,当x=40时,你能给出一种更为省钱的购买方案吗?试写出你的购买方案,并说明理由.【分析】(1)该客户按方案①购买,夹克需付款30×100=3000;T恤需付款50(x﹣30);若该客户按方案②购买,夹克需付款30×100×80%=2400;T恤需付款50×80%×x;(2)把x=40分别代入(1)中的代数式中,再求和得到按方案①购买所需费用=30×100+50(40﹣30)=3000+500=3500(元),按方案②购买所需费用=30×100×80%+50×80%×40=2400+1600=4000(元),然后比较大小;(3)可以先按方案①购买夹克30件,再按方案②只需购买T恤10件,此时总费用为3000+400=3400(元).【解答】解:(1)3000;50(x﹣30);2400;40x;(2)当x=40,按方案①购买所需费用=30×100+50(40﹣30)=3000+500=3500(元);按方案②购买所需费用=30×100×80%+50×80%×40=2400+1600=4000(元),所以按方案①购买较为合算;(3)先按方案①购买夹克30件,再按方案②购买T恤10件更为省钱.理由如下:先按方案①购买夹克30件所需费用=3000,按方案②购买T恤10件的费用=50×80%×10=400,所以总费用为3000+400=3400(元),小于3500元,所以此种购买方案更为省钱.【点评】本题考查了列代数式:利用代数式表示文字题中的数量之间的关系.也考查了求代数式的值.。

2017-2018年七年级上册数学期中试卷及答案

2017-2018年七年级上册数学期中试卷及答案

1 在代数式 x2 + 5, - 1, x 2 -3 x + 2, π , 5 , x 2 +x + 1 中,整式有(位 … 姓… C 、 -5abc 2 的系数是 -5 D 、 2 a + b是一次单项式 …… … … … … … … 2017~2018 学年第一学期考试七年级数学试卷题号 一 二 三 四 总分得分一、选择题(每小题 3 分,共 30 分)1xA 、3 个B 、4 个C 、5 个D 、6 个)… … 号 … 座装 … … … … … … … … 订 … … 名 … … … … … … 线 … … … … … 级 … 班… … …2、我国教育事业快速发展,去年普通高校招生人数达 540 万人,用科学记数法表示 540 万人为( )A 、5.4 ×102 人B 、0.54×104 人C 、5.4 ×106 人D 、5.4×107 人3、一潜水艇所在的海拔高度是-60 米,一条海豚在潜水艇上方 20 米,则海豚所在的高度是海拔( )A 、-60 米B 、-80 米C 、-40 米D 、40 米4、原产量 n 吨,增产 30%之后的产量应为( )A 、(1-30%)n 吨B 、(1+30%)n 吨C 、(n+30%)吨D 、30%n 吨5、下列说法正确的是( )①0 是绝对值最小的有理数 ②相反数大于本身的数是负数③数轴上原点两侧的数互为相反数 ④两个数比较,绝对值大的反而小A 、①②B 、①③C 、①②③D 、①②③④6、如果 0 < a < 1 ,那么 a 2 , a, 1 之间的大小关系是aA 、 a < a 2 < 1B 、 a 2 < a < 1C 、 1 < a < a 2D 、 1 < a 2 < aa a a a7、下列说法正确的是( )1A 、0.5ab 是二次单项式B 、 x 和 2x 是同类项( ) 9 38、已知:A和B都在同一条数轴上,点A表示-2,又知点B和点A相距5个单位长度,则点B表示的数一定是()A、3B、-7C、7或-3D、-7或39、一个多项式与x2-2x+1的和是3x-2,则这个多项式为()A、x2-5x+3B、-x2+x-1C、-x2+5x-3D、x2-5x-1310、观察下列算式:31=3,32=9,33=27,34=81,35=243,36=729,…,通过观察,用你所发现的规律确定32016的个位数字是()A、3B、9C、7D、1二、填空题(每题3分,共15分)11、单项式-2πxy2的系数是____________。

2018-2019学年江西省南昌市七年级(上)期中数学试卷

2018-2019学年江西省南昌市七年级(上)期中数学试卷

2018-2019 学年江西省南昌市七年级(上)期中数学试卷一、选择题(本大题共8 小题 ,每小题 3 分,共 24分 )在每小题给出的四个选项中,只有一项是正确的 ,请将正确答案前的字母填入题后的括号内,每小题选对得 3 分 ,选错、不选或多选均得零分 .1.( 3 分)在 4, 1.5, 0,﹣ 2 四个数中,属于正分数的是()A .4B .1.5C. 0D.﹣ 22.( 3 分)若 a 的相反数为 1,则 a2019 是()A .2019B .﹣ 2019C. 1D.﹣ 13.( 3 分)计算 1﹣ 3+5﹣ 7+9 =( 1+5+9 )+(﹣ 3﹣ 7)是应用了()A .加法交换律B.加法结合律C.分配律D.加法交换律与结合律4.( 3 分)《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数.若收入80 元记作 +80元,则﹣ 60 元表示()A.收入 60 元B.收入 20 元C.支出 60 元D.支出 20 元5.( 3 分)化简 x+y﹣( x﹣ y)的最后结果是()A .2x+2yB .2y C. 2x D. 06.( 3 分)若两个非零的有理数a、b,满足: |a|= a,|b|=﹣ b,a+b< 0,则在数轴上表示数a、 b 的点正确的是()A .B.C.D.7.( 3 分)某种细菌在培养过程中,每半小时分裂一次(由一个分裂成两个),若这种细菌由 1 个分裂为64 个,则这个过程要经过()A.1 小时B.2 小时C.3 小时D.4 小时8.( 3 分)按某种标准,多项式a 2﹣ 2a﹣ 1 与 ab+b+2 属于同一类,则下列符合此类标准的多项式是()22C. a+3b﹣ 22A .x ﹣ yB .a+4x+3D. x y+y﹣ 1二、填空题(本大题共6小题,每小题 3分,共 18分)9.(3 分)中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4400000000人,这个数用科学记数法表示为.第1页(共 13页)10.( 3分)数轴上点 A 表示﹣ 1,点 B 表示 2,则表示 A、 B 两点间的距离是.11.(3 分)若多项式22.x +kxy+4x﹣ 2xy+y﹣1 不含 xy 项,则 k 的值是12.( 3分)在﹣ 1,2,﹣ 3,4 中,任取 3 个不同的数相乘,则其中最小的积是.13.( 322.分)若 a ﹣ 2a=﹣ 1,则 3﹣ 2a +4a 的值是14.( 3 分)有一列数:0, 1, 3, 4,12, 13, 39, 40, 120, a, b, c,这串数是由小明按照一定的规则写下米的,他第 1 次写下 0,1,第 2 次接着写“ 3,4”,第 3 次接着写“ 12,13”,第 4 次接着写“39, 40”,就这样一直接着往下写,则这列数中的a=, b =, c=.三、解答题(本大题共4小题,每小题 6分,共 24分)15.( 6分)计算:( 1)(﹣ 1 )×+(﹣ 1 )×(﹣ 2 );( 2)﹣ 32+( 5﹣× 42)÷(﹣ 1 )16.( 6分)化简:22( 1) 2( x y﹣ 3x)﹣ 3( x y﹣ 2x﹣1)( 2) 4x 2﹣ [7x2﹣ 3( x2﹣ x) ]17.( 6分)若 |a|= 4, |b|< 2,且 b 为整数.(1)求 a, b 的值;(2)当 a, b 为何值时, a+b 有最大值或最小值?此时,最大值或最小值是多少?18.( 6 分)已知 A= 3a 22﹣ ab﹣ 2a, B=﹣ a +ab﹣ 2.( 1)求 4A﹣ 3( A﹣ B)的值;( 2)若 A+3B 的值与 a 的取值无关,求 b 的值.四、解答题(本大题共3小题,每小题 8分,共 24分)19.( 8 分)用“⊕”定义一种新运算,对于任意的有理数a, b,都有 a⊕ b= |a|+b.(1)求(﹣ 1⊕2)⊕(﹣ 3)的值;(2)当 x, y 满足什么条件时,“ x⊕ y”与“ y⊕ x”的值互为相反数.20.( 8 分)学校需要到印刷厂印刷x 份材料,甲印刷厂提出:每份材料收0.2 元印刷费,另收 200 元的制版费;乙印刷厂提出:每份材料收0.4 元印刷费,不收制版费.( 1)求两印刷厂各收费多少元?(用含x 的代数式表示)( 2)若学校要印刷1500 份材料,不考虑其他因素,选择哪家印刷厂比较合算?请通过第2页(共 13页)计算说明理由.21.(8 分)一个三位数,它的个位数字为a,十位数字比个位数字的 2 倍小 1,百位数字比个位数字大 6.(1)用含 a 的代数式表示这个三位数;(2)根据题目中的条件, a 的取值可能是多少?此时相应的三位数是多少?五、探究题 (本大题共 1 小题 ,共 10 分 )22.( 10 分) A、 B、 C 为数轴上三点,若点 C 到点 A 的距离是点C 到点 B 的距离的 2 倍,则称点 C 是( A,B)的奇异点,例如图 1 中,点 A 表示的数为﹣ 1,点 B 表示的数为2,表示 1 的点 C 到点 A 的距离为2,到点 B 的距离为 1,则点 C 是( A, B)的奇异点,但不是( B, A)的奇异点.( 1)在图 1 中,直接说出点 D 是( A, B)还是( B, C)的奇异点;( 2)如图 2,若数轴上M、N 两点表示的数分别为﹣ 2 和 4,( M,N)的奇异点K 在 M、N 两点之间,请求出K 点表示的数;( 3)如图 3,A、B 在数轴上表示的数分别为﹣20 和 40,现有一点P 从点 B 出发,向左运动.①若点 P 到达点 A 停止,则当点P 表示的数为多少时,P、A、B 中恰有一个点为其余两点的奇异点?②若点 P 到达点 A 后继续向左运动,是否存在使得P、A、 B 中恰有一个点为其余两点的奇异点的情况?若存在,请直接写出此时PB 的距离;若不存在,请说明理由.第3页(共 13页)2018-2019 学年江西省南昌市七年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共8 小题 ,每小题 3 分 ,共 24 分 )在每小题给出的四个选项中,只有一项是正确的 ,请将正确答案前的字母填入题后的括号内,每小题选对得 3 分 ,选错、不选或多选均得零分 .1.( 3 分)在 4, 1.5, 0,﹣ 2 四个数中,属于正分数的是()A .4B.1.5C.0D.﹣ 2【分析】利用正分数定义判断即可.【解答】解:在 4, 1.5,0,﹣ 2 四个数中,属于正分数的是 1.5,故选: B.【点评】此题考查了有理数,熟练掌握正分数的定义是解本题的关键.2.( 3 分)若 a 的相反数为 1,则 a2019 是()A .2019B .﹣ 2019C. 1D.﹣ 1【分析】直接利用相反数的定义结合有理数的乘方运算法则计算得出答案.【解答】解:∵ a 的相反数为1,∴ a=﹣ 1,则 a 2019=(﹣ 1)2019=﹣ 1.故选: D.【点评】此题主要考查了相反数的定义,正确得出 a 的值是解题关键.3.( 3 分)计算1﹣ 3+5﹣ 7+9 =( 1+5+9 )+(﹣ 3﹣ 7)是应用了()A .加法交换律B.加法结合律C.分配律D.加法交换律与结合律【分析】根据加法交换律与结合律即可求解.【解答】解:计算 1﹣3+5﹣ 7+9=( 1+5+9)+(﹣ 3﹣ 7)是应用了加法交换律与结合律.故选: D.【点评】考查了有理数的加减混合运算,方法指引:① 在一个式子里,有加法也有减法,根据有理数减法法则,把减法都转化成加法,并写成省略括号的和的形式.② 转化成省略括号的代数和的形式,就可以应用加法的运算律,使计算简化.4.( 3 分)《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若第4页(共 13页)其意义相反,则分别叫做正数与负数.若收入80 元记作 +80 元,则﹣ 60 元表示()A .收入 60 元B .收入 20 元C.支出 60 元D.支出 20 元【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:根据题意,若收入80 元记作 +80 元,则﹣ 60 元表示支出60 元.故选: C.【点评】本题考查了正数和负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.5.( 3 分)化简x+y﹣( x﹣ y)的最后结果是()A .2x+2yB .2y C. 2x D. 0【分析】原式去括号合并即可得到结果.【解答】解:原式= x+y﹣x+y=2y.故选: B.【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.6.( 3 分)若两个非零的有理数a、b,满足: |a|= a,|b|=﹣ b,a+b< 0,则在数轴上表示数a、 b 的点正确的是()A.B.C.D.【分析】根据 |a|=a 得出 a 是正数,根据|b|=﹣ b 得出 b 是负数,根据a+b< 0 得出 b 的绝对值比 a 大,在数轴上表示出来即可.【解答】解:∵ a、 b 是两个非零的有理数满足:|a|= a, |b|=﹣ b, a+b< 0,∴ a> 0, b< 0,∵ a+b<o,∴ |b|> |a|,∴在数轴上表示为:故选: B.【点评】本题考查了数轴,绝对值,有理数的加法法则等知识点,关键是确定出a> 0,b <0, |b|> |a|.7.( 3 分)某种细菌在培养过程中,每半小时分裂一次(由一个分裂成两个),若这种细菌第5页(共 13页)由 1 个分裂为 64 个,则这个过程要经过()A .1 小时B .2 小时C .3 小时D .4 小时【分析】 每半小时分裂一次,一个变为2 个,实际是 21个.分裂第二次时, 2 个就变为了 22个.那么经过 3 小时,就要分裂 6 次.根据有理数的乘方的定义可得.【解答】 解:由题意可得: 2n = 64=26,则这个过程要经过: 3 小时.故选: C .【点评】 本题考查了有理数的乘方在实际生活中的应用,应注意观察问题得到规律.8.( 3 分)按某种标准,多项式 a 2﹣ 2a ﹣ 1 与 ab+b+2 属于同一类,则下列符合此类标准的多项式是()22 C . a+3b ﹣ 2 2A .x ﹣ yB .a +4x+3 D . x y+y ﹣ 1【分析】 直接利用多项式次数与项数确定方法分析得出答案.【解答】 解:∵多项式 a 2﹣ 2a ﹣ 1 与 ab+b+2 属于同一类,∴它们都是二次三项式,2A 、 x ﹣y ,是二次二项式,不合题意;2B 、 a +4x+3 ,是二次三项式,符合题意;C 、 a+3b ﹣ 2,是一次三项式,不合题意;2D 、x y+y ﹣ 1,是三次三项式,不合题意;故选: B .【点评】 此题主要考查了多项式,正确把握多项式次数与项数确定方法是解题关键.二、填空题(本大题共6小题,每小题 3分,共 18分)9.(3 分)中国倡导的 “一带一路” 建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4400000000 人,这个数用科学记数法表示为4.4× 109.【分析】 科学记数法的表示形式为a × 10n的形式,其中 1≤ |a|< 10,n 为整数.确定n的值时, 要看把原数变成 a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值> 1 时, n 是正数;当原数的绝对值<1 时, n 是负数.【解答】 解:将 4400000000 用科学记数法表示为4.4× 109.故答案为: 4.4×109.【点评】 此题考查科学记数法的表示方法.科学记数法的表示形式为a × 10n的形式,其中 1≤ |a|< 10, n 为整数,表示时关键要正确确定 a 的值以及 n 的值.第6页(共 13页)10.( 3 分)数轴上点 A 表示﹣ 1,点 B 表示 2,则表示A、 B 两点间的距离是3.【分析】数轴上两点之间的距离等于这两点的数的差的绝对值,即较大的数减去较小的数.【解答】解: 2﹣(﹣ 1)= 3.故表示 A、 B 两点间的距离是3.故答案为: 3.【点评】此题考查了数轴上两点之间的距离的计算方法:右边的数减去左边的数.2211.(3 分)若多项式 x +kxy+4x﹣ 2xy+y ﹣1 不含 xy 项,则 k的值是 2.【分析】直接利用多项式中不含xy 项,得出 k﹣2= 0,进而得出答案.22【解答】解:∵多项式 x +kxy+4x﹣ 2xy+y ﹣1 不含 xy 项,∴kxy﹣ 2xy= 0,解得: k= 2.故答案为: 2.【点评】此题主要考查了合并同类项,正确合并同类项是解题关键.12.( 3 分)在﹣ 1,2,﹣ 3,4 中,任取 3 个不同的数相乘,则其中最小的积是﹣24 .【分析】根据有理数的乘法和有理数的大小比较求出最小的积即可得解.【解答】解:最小的积= 2×(﹣ 3)× 4=﹣ 24.故答案为:﹣ 24.【点评】本题考查了有理数的乘法,有理数的大小比较,熟记运算法则并确定出最小乘积的列式是解题的关键.2213.( 3 分)若 a ﹣ 2a=﹣ 1,则3﹣ 2a +4a 的值是 5 .【分析】根据整体代入求值解答即可.22【解答】解:把 a ﹣ 2a=﹣ 1代入 3﹣ 2a +4 a= 3﹣ 2×(﹣ 1)= 5,故答案为: 5【点评】此题考查代数式求值,关键是根据整体代入求值解答.14.( 3 分)有一列数:0, 1, 3, 4,12, 13, 39, 40, 120, a, b, c,这串数是由小明按照一定的规则写下米的,他第 1 次写下 0,1,第 2 次接着写“ 3,4”,第 3 次接着写“ 12,13”,第 4 次接着写“ 39, 40”,就这样一直接着往下写,则这列数中的a=121,b =363 , c= 364 .【分析】由所写数字的规律得到,每次所写两个数为连续的两个整数,且第 1 个数为上第7页(共 13页)一次所写的两个数中的第2 个数的三倍,利用此方法可分别计算出 a 、 b 、 c 的值.【解答】 解: 3= 3× 1, 4= 3+1;12= 3× 4, 13=12+1;39= 3× 13, 40= 39+1 ;120= 40× 3, a = 120+1 = 121;b = 121× 3= 363,c = 363+1= 364.故答案为 121; 363; 364.【点评】 本题考查了规律型:数字的变化类:认真观察、仔细思考,利用数字与序号数的关系解决这类问题.三、解答题(本大题共4小题,每小题 6分,共 24分)15.( 6 分)计算:( 1)(﹣ 1 )×+(﹣ 1 )×(﹣ 2 );( 2)﹣ 32+( 5﹣× 42)÷(﹣ 1 )【分析】( 1)原式先计算乘法运算,再计算加减运算即可求出值;( 2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【解答】 解:( 1)原式=﹣× + ×=﹣ 2+3= 1;( 2)原式=﹣ 9+3×(﹣)=﹣ 9﹣ 2=﹣ 11.【点评】 此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.16.( 6 分)化简:22( 1) 2( x y ﹣ 3x )﹣ 3( x y ﹣ 2x ﹣1)( 2) 4x 2﹣ [7x 2﹣ 3( x 2﹣ x ) ]【分析】( 1)先去括号,再合并同类项即可;( 2)先去小括号,再去中括号,然后合并同类项即可.22【解答】 解:( 1)原式= 2x y ﹣ 6x ﹣ 3x y+6x+3 2=﹣ x y+3;222( 2)原式= 4x ﹣ [7x ﹣ 3x +3 x]222= 4x ﹣ 7x +3x ﹣ 3x第8页(共 13页)=﹣ 3x .【点评】 本题考查了整式的加减, 整式加减的实质就是去括号、 合并同类项. 去括号时,要注意两个方面:一是括号外的数字因数要乘括号内的每一项;二是当括号外是“﹣”时,去括号后括号内的各项都要改变符号.17.( 6 分)若 |a|= 4, |b|< 2,且 b 为整数.( 1)求 a , b 的值;( 2)当 a , b 为何值时, a+b 有最大值或最小值?此时,最大值或最小值是多少?【分析】( 1)直接利用绝对值的性质得出a ,b 的值;( 2)直接利用( 1)中所求,分别分析得出答案.【解答】 解:( 1)∵ |a|= 4,∴ a =± 4.∵ |b|< 2,且 b 有整数,∴ b =﹣ 1, 0, 1;( 2)当 a = 4, b = 1 时, a+b 有最大值为 5;当 a =﹣ 4, b =﹣ 1 时, a+b 有最小值为 5.【点评】 此题主要考查了绝对值,正确分类讨论是解题关键.2 218.( 6 分)已知 A = 3a ﹣ ab ﹣ 2a , B =﹣ a +ab ﹣ 2.( 1)求 4A ﹣ 3( A ﹣ B )的值;( 2)若 A+3B 的值与 a 的取值无关,求 b 的值. 【分析】( 1)先化简,然后把A 和B 代入求解;( 2)根据题意可得 A+3B =( 2b ﹣ 2) a ﹣ 6 与 a 的取值无关,即化简之后 a 的系数为 0,据此求 b 值即可.22【解答】 解:( 1)∵ A =3a ﹣ ab ﹣2a , B =﹣ a +ab ﹣2, ∴原式= 4A ﹣3A+3B = A+3B=( 3a 2﹣ ab ﹣ 2a ) +3 (﹣ a 2+ab ﹣ 2)= 3a 2﹣ ab ﹣ 2a ﹣ 3a 2+3ab ﹣6= 2ab ﹣2a ﹣ 6.( 2)∵ A+3B =( 2b ﹣2) a ﹣ 6 与 a 的取值无关,∴ 2b ﹣2= 0,解得 b = 1.第9页(共 13页)【点评】本题考查了整式的加减,解答本题的关键是掌握去括号法则以及合并同类项法则.四、解答题(本大题共3小题,每小题 8分,共 24分)19.( 8 分)用“⊕”定义一种新运算,对于任意的有理数a, b,都有 a⊕ b= |a|+b.(1)求(﹣ 1⊕2)⊕(﹣ 3)的值;(2)当 x, y 满足什么条件时,“ x⊕ y”与“ y⊕ x”的值互为相反数.【分析】( 1)原式利用题中的新定义计算即可求出值;(2)根据题中的新定义将各式化简,利用相反数性质判断即可.【解答】解:( 1)∵﹣ 1⊕2= |﹣ 1|+2=3,∴(﹣ 1⊕ 2)⊕(﹣ 3)= 3⊕(﹣ 3)= |3|+(﹣ 3)= 0;(2)由题意,得( x⊕ y)+( y⊕ x)= 0,即 |x|+y+|y|+x= 0,∴ |x|+|y|=﹣ x﹣ y,∴ |x|=﹣ x,|y|=﹣ y,∴当 x≤0, y≤ 0 时,“ x⊕y”与“ y⊕ x”的值互为相反数.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.20.( 8 分)学校需要到印刷厂印刷x 份材料,甲印刷厂提出:每份材料收0.2 元印刷费,另收 200 元的制版费;乙印刷厂提出:每份材料收0.4 元印刷费,不收制版费.( 1)求两印刷厂各收费多少元?(用含x 的代数式表示)(2)若学校要印刷 1500 份材料,不考虑其他因素,选择哪家印刷厂比较合算?请通过计算说明理由.【分析】( 1)甲印刷厂收费表示为:甲厂每份材料印刷费×材料份数x+制版费,乙印刷厂收费表示为:乙厂每份材料印刷费×材料份数x;( 2)先把 x= 1500 代入( 1)中所求的代数式,分别计算出此时甲、乙两印刷厂的收费,然后比较即可.【解答】解:( 1)甲印刷厂收费是0.2x+200 (元).乙印刷厂收费是0.4x(元).(2)当 x= 1500 时,甲印刷厂收费是0.2× 1500+200= 500(元).乙印刷厂收费是0.4× 1500= 600(元)∵500< 600,第 10 页(共 13 页)∴甲印刷厂比较合算.【点评】此题考查代数式求值,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出用含材料份数x 来表示甲、乙两印刷厂的收费的代数式.注意题中甲印刷厂的收费=印刷x 份材料的费用 +制版费,乙印刷厂的收费=印刷x 份材料的费用.21.(8 分)一个三位数,它的个位数字为a,十位数字比个位数字的 2 倍小 1,百位数字比个位数字大6.(1)用含 a 的代数式表示这个三位数;(2)根据题目中的条件, a 的取值可能是多少?此时相应的三位数是多少?【分析】( 1)根据三位数表示方法解答即可;(2)根据题意得出 a 的几种取值解答即可.【解答】解:( 1)当个位数字为 a 时,则十位数字为2a﹣ 1,百位数字为a+6,∴这个三位数是100( a+6) +10 ( 2a﹣ 1) +a= 121a+590,( 2)由题意,可知 a 的取值是1,2, 3.当a=1 时,三位数是 711,当a=2 时,三位数是 832,当a=3 时,三位数是 953.【点评】本题考查了列代数式:把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式.五、探究题 (本大题共 1 小题 ,共 10 分 )22.( 10 分) A、 B、 C 为数轴上三点,若点 C 到点 A 的距离是点C 到点 B 的距离的 2 倍,则称点 C 是( A,B)的奇异点,例如图 1 中,点 A 表示的数为﹣ 1,点 B 表示的数为2,表示 1 的点 C 到点 A 的距离为2,到点 B 的距离为 1,则点 C 是( A, B)的奇异点,但不是( B, A)的奇异点.( 1)在图 1 中,直接说出点 D 是( A, B)还是( B, C)的奇异点;( 2)如图 2,若数轴上M、N 两点表示的数分别为﹣ 2 和 4,( M,N)的奇异点K 在 M、N 两点之间,请求出K 点表示的数;( 3)如图 3,A、B 在数轴上表示的数分别为﹣20 和 40,现有一点P 从点 B 出发,向左运动.①若点 P 到达点 A 停止,则当点P 表示的数为多少时,P、A、B 中恰有一个点为其余两第 11 页(共 13 页)点的奇异点?②若点 P 到达点 A 后继续向左运动,是否存在使得P、A、 B 中恰有一个点为其余两点的奇异点的情况?若存在,请直接写出此时PB 的距离;若不存在,请说明理由.【分析】( 1)根据“奇异点”的概念解答;( 2)设奇异点表示的数为x,根据“奇异点”的定义列出方程并解答;( 3)① 需要分类讨论:当点P 是( B, A)的奇异点;当点 A 是( B,P)的奇异点;当点 B 是( A,P)的奇异点.② 同上,需要分类讨论.【解答】解:( 1)在图 1 中,点 D 到点 A 的距离为1,到点 B 的距离为2,∴点 D 是( B, C)的奇异点,不是(A, B)的奇异点;(2)设奇异点表示的数为 x,则由题意,得 x﹣(﹣ 2)= 2( 4﹣x).解得 x=2.∴( M, N)的奇异点表示的数是2;( 3)① 设点 P 表示的数为y.当点 P 是( A, B)的奇异点时,则有 y+20= 2( 40﹣ y),解得 y=20.当点 P 是( B, A)的奇异点时,则有 40﹣ y= 2(y+20),解得 y=0.当点 A 是( B, P)的奇异点时,第 12 页(共 13 页)则有 40+20= 2(y+20),解得 y=10.当点 B 是( A, P)的奇异点时,则有 40+20= 2(40﹣ y),解得 y= 10.∴当点 P 表示的数是0 或 10 或 20 时,P、A、 B 中恰有一个点为其余两点的奇异点.②当点 P 为( B, A)的奇异点时,PB= 120;当点 A 为( P, B)的奇异点时,PB= 180;当点 A 为( B, P)的奇异点时,PB= 90;当点 B 为( P, A)的奇异点时,PB= 120.【点评】考查了数轴,一元一次方程的应用,解题的关键是掌握“奇异点”的概念和运算法则,找出题中的等量关系,列出方程并解答,难度一般.第 13 页(共 13 页)。

人教部编版七年级数学上册期中测试卷 (19)

人教部编版七年级数学上册期中测试卷 (19)

安徽省阜阳市2017-2018学年七年级数学上学期期中试题一、选择题(每小题4分,共40分)1.﹣5的倒数是()A.5 B.﹣5 C.D.﹣2. 下列说法不正确的是()A.任何一个有理数的绝对值都是正数.B.0既不是正数也不是负数.C.有理数可以分为正有理数,负有理数和零.D. 0的绝对值等于它的相反数.3. 冰箱冷冻室的温度为-6 ℃,此时房间内的温度为20 ℃,则房间内的温度比冰箱冷冻室的温度高( )A. 26 ℃B. 14 ℃C. -26 ℃D. -14 ℃4.下列运算中,正确的是( )A.3a+2b=5abB.2a3+3a2=5a5C.4a2b﹣3ba2=a2bD.5a2﹣4a2=15. 在﹣0.1428中用数字3替换其中的一个非0数码后,使所得的数最大,则被替换的字是() A.1B.2 C.4 D.86.大于﹣4.8而小于2.5的整数共有()A.7个 B.6个C.5个D.4个7. 已知2-++=,则a b的值是()a b2(3)0A.-6B. 6C. -9D.98.如图,数轴上A,B两点分别对应实数a,b,则下列结论正确的是()A.a+b>0 B.ab>0 C.a﹣b>0 D.|a|﹣|b|>09.为鼓励节约用电,某地对居民用户用电收费标准作如下规定:每户每月用电如果不超过100度,那么每度电价按0.58元收费;如果超过100度,那么超过部分每度电价按0.65元收费.某户居民在一个月内用电x 度(x>100),他这个月应缴纳电费是()元.A.0.58x B.0.65x C.0.58x+7 D.0.65x﹣710. 一列数:0,1,2,3,6,7,14,15,30,___ ,____ ,____,这串数是由小明按照一定的规则写下来的,他第一次写下“0,1”,第二次接着写“2,3”,第三次接着写“6,7”,第四次接着写“14,15”,就这样一直接着往下写,那么这列数的后面三个数应该是()A. 31,32,64B. 31,62,63C. 31,32,33D. 31,45,46二、填空题(每小题5分,共20分)11.在-2 ,-15,9, 0 ,10- 这五个有理数中,最大的数是 ,最小的数是 .12. 中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4400000000人,这个数用科学记数法表示为___________.13.若23m a b +与43(2)n a b -是同类项,且它们的和为0,则mn = .14.一个三位数,个位数字为a ,十位数字比个位数字少2,百位数字比个位数字多1,那么这个三位数是 _______________ .三、解答题(本大题共40分)15.计算:(每小题4分,共16分)(1) 17+(-14)-(-13)-6; (2) 12×()(3) 19×(-18) (4)16. (6分)把下列各数在数轴上表示出来,并用“<”把它们连接起来.﹣2, 3,﹣1, 2.5, 0.17. (6分)先化简,再求值:(2x+3y)﹣4y﹣(3x+y),其中x=﹣3,y=2.18. (6分)阜阳市出租车收费标准是:起步价5元,可乘3千米;超过3千米,超过部分每千米2.4元.(1)若某人乘坐了x(x>3)千米的路程,则他应支付的费用是多少?(2)若某人乘坐的路程为10千米,那么他应支付的费用是多少?19. (6分)已知a是绝对值等于4的负数,b是最小的正整数,c的倒数的相反数是-2,求:(5abc+3a2)-2 (a2+2abc) 的值.四、(本大题共36分)20. (12分)已知有理数a、b、c在数轴上对应点的位置如图所示.化简:|a﹣b|+|b﹣c|﹣|c﹣a|+|b+c|.21. (12分)农业银行的储蓄员小王在办理业务时,约定存入为正,取出为负.2017年11月14日他办理了6笔业务:-78000元、-65000元、+125000元、-31000元、-42000元、+24000元.⑴若他早上领取备用金500000元,那么下班时应交回银行多少元钱?⑵若每办一笔业务,银行发给业务量的0.1%作为奖励,那么这天小王应得奖金多少元?22. (12分)为了迎接阜阳九中校园文化艺术节的召开,现要从七、八年级学生中抽调a人参加“校园集体舞”、“广播体操”、“唱红歌”等训练活动,其中参加“校园集体舞”人数是抽调人数的1还多3人,参4少2人,其余的参加“唱红歌”活动,若抽调的每个学生只参加了加“广播体操”活动人数是抽调人数的12一项活动。

武汉武大附中2018-2019学年上学期期中考试七年级数学试题 (1)

武汉武大附中2018-2019学年上学期期中考试七年级数学试题 (1)

武大附中2018~2019学年度第一学期期中考试七年级数学试卷一、选择题(共12题,每小题3分,共36分)1.我国古代《九章算术》中主有“今两算得失相反,要令正负以名之”意义是今有两数若其意义相反,则分别叫做正数与负数.如果向北走5步记作+5步,那么向南走7步记作( ) A .+7步B .-7步C .+12步D .-2步2.2018的相反数是( ) A .-2018B .2018C .20181-D .201813.一条数学信息在一周内被转发了2180000次,将数据2180000用科学记数法表示为( ) A .2.18×106B .2.18×105C .21.8×106D .21.8×1054.单项式352yx 的系数与次数分别是( )A .35和3 B .3和3 C .35和2 D .3和25.下列去括号正确的是( ) A .a -(b -c )=a -b -cB .x 2-[-(-x +y )]=x 2-x +yC .m -2(p -q )=m -2p +qD .a +(b -2c )=a +b +2c 6.下列各数:|-2|、-(-2)2、-(-2)、(-2)3中,负数的个数有( )A .1个B .2个C .3个D .4个7.如果a +b +c =0,且|a |>|b |>|c |,则下列说法中可能成立的是( ) A .a 、b 为正数,c 为负数 B .a 、c 为正数,b 为负数 C .b 、c 为正数,a 为负数D .a 、c 为负数,b 为负数 8.若a <0,b >0,化简|a |+|3b |-|a -2b |结果是( )A .bB .5b -2aC .-5bD .2a +b9.如图所示,圆的周长为4个单位长度,在圆周的4等分点处标上字母A 、B 、C 、D ,先将圆周上的字母A 对应的点与数轴的数字1所对应的点重合.若将圆沿着数轴向左滚动,那么数轴上的-2019所对应的点是圆周上字母( ) A .A B .BC .CD .D10.已知a 、b 、c 为非零的实数,则||||||||bc bcac ac ab ab a a +++的可能值的个数为( ) A .4B .5C .6D .711.把2张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为m ,宽为n )的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示.阴影部分刚好能分割成两张形状大小不同的小长方形卡片(如图③),则分割后的两个阴影长方形的周长之和是( )A .4mB .2(m +n )C .4nD .4(m -n ) 12.适合|2a +5|+|2a -3|=8的整数a 的值有( ) A .4个B .5个C .7个D .9个二、填空题(每题3分,共18分)13.近似数2.018精确到百分位结果是___________ 14.化简9a -5a 的结果是___________15.若多项式2x 2+3x +7的值为10,则多项式6x 2+9x -7的值为___________16.已知a 、b 为常数,且三个单项式4xy 2、axy b 、-5xy 相加得到的和仍然是单项式,则a +b 的值是___________17.我们常用的数是十进制数,计算机程序使用的是二进制数(只有数码0和1),它们两者之间可以互相换算,如将(101)2,(1011)2换算成十进制数分别是(101)2=1×22+0×21+1=4+0+1=5,(1011)2=1×23+0×22+1×21+1=11.按此方式,将二进制(10110)2换算成十进制数的结果是___________18.现有七个数:-1、-2、-2、-4、-4、-8、-8,将它们填入图1(三个圆两两相交分成7个部分)中,使得每个圆内部的4个数之积相等.设这个积为m ,如图2给出了一种填法,此时m =64,在所有的填法中,m 的最大值为___________三、解答题(共8题,共66分)19.(本题16分)计算:(1) 10-(-19)+(-5)-167(2) 26)2131()1(4÷⨯-⨯--(3) 2782411)813318(833⨯÷-⨯(4) 727199)36(⨯-20.(本题12分)先化简,再求值: (1) )3123()31(22122y x y x x +-+--,其中x =-2,32=y (2)21a 2b -5ac -(3a 2c -a 2b )+(3ac -4a 2c ),其中a =-1,b =2,c =-221.(本题8分)某厂一周计划生产700个玩具,平均每天生产100个,由于各种原因实际每天产量与计划量相比有出入,如表是某周每天的生产情况(增产为正,减产为负,单位:个)星期 一 二 三 四 五 六 日 增+6-3-5+11-8+14-9(1) 根据记录可知前三天共生产个(2) 产量最多的一天比产量最少的一天多生产个(3) 该厂实行计件工资制,每生产一个玩具50元.若按周计算,超额完成任务,超出部分每个65元;若未完成任务,生产出的玩具每个只能按45元发工资,那么该厂工人这一周的工资总额是多少?22.(本题8分)观察下面三行数:第1列 第2列 第3列 第4列 …… 第n 列 -3 9 a 81 …… r 1 -3 9 b …… s -210c82……t(1) 直接写出a 、b 、c 的值 (2) 直接写出r 、s 、t 的值(3) 设x 、y 、z 分别为第①②③行的第2019个数,求x +6y +z 的值23.(本题8分)有若干个数,第一个数记为a 1,第2个数记为a 2,第3个数记为a 3,……,第n 个数记为a n .若211-=a ,从第二个数起,每一个数都是“1”与它前面那个数的差的倒数 (1) 直接写出a 2、a 3、a 4的值(2) 根据以上结果,计算a 1+a 2+a 3+……+a 2017+a 201824.(本题8分)已知整式P =x 2+x -1,Q =x 2-x +1,R =-x 2+x +1,若一个次数不高于二次的整式可以表示为aP +bQ +cR (其中a 、b 、c 为常数),则可以进行如下分类: ① 若a ≠0,b =c =0,则称该整式为P 类整式 ② 若a ≠0,b ≠0,c =0,则称该整式为PQ 类整式 ③ 若a ≠0,b ≠0,c ≠0,则称该整式为PQR 类整式 ……(1) 模仿上面的分类方式,请给出R 类整式和QR 类整式的定义若___________,则称该整式为“R 类整式”,若___________,则称该整式为“QR 类整式” (2) 说明整式x 2-5x +5为“PQ 类整式”(3) x 2+x +1是哪一类整式?说明理由25.(本题6分)一个能被13整除的自然数我们称为“十三数”,“十三数”的特征是:若把这个自然数的末三位与末三位以前的数字组成的数之差,如果能被13整除,那么这个自然数就一定能被13整除.例如:判断383357能不能被13整除,这个数的末三位数字是357,末三位以前的数字组成的数是383,这两个数的差是383-357=26,26能被13整除,因此383357是“十三数”(1) 判断3253和254514是否为“十三数”,请说明理由(2) 若一个四位自然数,千位数字和十位数字相同,百位数字与个位数字相同,则称这个四位数为“间同数”① 求证:任意一个四位“间同数”能被101整除② 若一个四位自然数既是“十三数”,又是“间同数”,求满足条件的所有四位数的最大值与最小值之差附加题四、填空题(每题4分,共16分) 26.计算)111933139911()115933539951(++÷++的值是___________ 27.如图所示,是一个运算程序示意图,若第一次输入k 的值为125,则第2018次输出的结果是___________28.一天,童威从下午三点钟步行到当天晚上八点钟,他先走的是平路,然后爬山,到达山顶后就沿原路先下山,再走平路,回到出发点.已知他在平路每小时走2公里,爬山每小时走1.5公里,下山每小时走3公里,则童威一共走了___________公里29.九格幻方有如下规律:处于同一横行、同一竖行、同一斜对角线上的三个数的和都相等(如图1),则图2的九格幻方中x 为___________(用含a 的式子表示)五、解答题(共2个小题,共14分)29.(本题8分)一串数一次排列为:、、、、、、、、、、、、、、4344434241313233323121222111……(1)117是第___________个数,第1946个数是___________ (2) 计算前面1946项的和。

余姚市2017-2018学年七年级数学上学期期中试题 浙教版

余姚市2017-2018学年七年级数学上学期期中试题 浙教版

亲爱的同学:这份试卷将再次记录你的自信、沉着、智慧和收获,我们一直投给你信任的目光……浙江省余姚市2017-2018学年七年级数学上学期期中试题一、选择题(每小题3分,共36分) 1. 3的倒数是( )A.13 B. 13- C. 3 D. -32. 计算:(-8)+(+5)=( )A. 3B. -3C. 13D. -133. 下面给出的四条数轴中画得正确的是( )A. B.C.D.4. 今年余姚市上半年接待国内外游客650多万人次,实现旅游总收入61亿元,其中,61亿用科学计数法表示是( ) A. 86.110⨯B. 86110⨯C. 96.110⨯D. 96110⨯5. 按要求对0.05019分别取近似值,下面结果错误的是( )A. 0.1(精确到0.1)B. 0.05(精确到0.001)C. 0.050(精确到0.001)D. 0.0502(精确到0.0001)6. 下列说法正确的是( )A. 绝对值最小的数是0B. 带根号的都是无理数C. 无限小数是无理数D.3π是分数 7. 下列说法错误的是( )A. 一个数同零相乘仍得0B. 一个数同1相乘,仍得这个数C. 一个数同-1相乘得这个数的相反数D. 互为相反数的积是18. 在3.14,227,,-π,0.5032-,0.818118111811118……(相邻两个8 之间依次多一个1),这7个实数中无理数的个数为( ) A. 3B. 4C. 5D. 69. 有一个两位数,十位数字是a ,个位数字是b ,若把它们的位置交换,得到新的两位数 是 ( )A. abB. baC. 10b a +D. 10a b +10. 小明同学设计了一个计算程序,如图,如果输入的数是2,那么输出的结果是( )A. -2B. 2C. -6D. 611. 将3( 3.14)-,4( 3.14)-,5( 3.14)-从小到大排列正确的是( )A. 345( 3.14)( 3.14)( 3.14)-<-<- B. 543( 3.14)( 3.14)( 3.14)-<-<- C. 534( 3.14)( 3.14)( 3.14)-<-<-D. 354( 3.14)( 3.14)( 3.14)-<-<-12. 下面两个多位数1248624…… ,6248624…… ,都是按照如下方法得到的:将第一位 数字乘以2,若积为一位数,将其写在第2位上,若积为两位数,则将其个位数字写在 第2位.对第2位数字再进行如上操作得到第3位数字……,后面的每一位数字都是由 前一位数字进行如上操作得到的.当第1位数字是3时,仍按如上操作得到一个多位数,则这个多位数前100位的所有数字之和是( )A .495B .497C .501D .503一、填空题(每小题3分,共18分) 13. -7的绝对值是__________.14.__________.15. 数轴上点A 对应的数为﹣2,与点A 相距5个单位长度的点所对应的数为__________. 16. 化简:|π-4|+|3-π|=__________.17. 用“★”定义新运算:对于任意有理数a 、b 都有a ★21b b =+,例如7★4=241+=17,那么m ★(m ★2)=__________.18. 已知6的小数部分为a ,6的小数部分为b ,则()2017a b +=__________.三、解答题(第19题6分,第20、21、22、23、24题各8分,第25、26题各10分,共66分) 19. 计算(1))2.0(2.1(8.7---+)(2))543221(30+-⨯-20. 计算(1)322)2132()6(--⨯-(2)227163-+-21. 画数轴,并将下列各数及其相反数表示在数轴上,再把所有的数按照从小到大的顺序用“<”连接.212,-3,5,3,22. 在一次数学测验中,七年级(4)班的平均分为86分,•如果把高于平均分的部分记作正数,不足平均分的部分记作负数(1)李洋得了90分,应记作多少?(2)刘红的成绩记作-5分,她实际得分是多少? (3)李洋和刘红相差多少分?23. 出租车司机小李某天下午营运全是在东西走向的大道上行驶,如果规定向东行驶为正,向西行驶为负,这天下午行车里程如下(单位:千米):+10,-3,+16,-11,+12,-10,+5,-15,+18,-16 (1)当最后一名乘客被送到目的地时,与出车地点的距离为多少千米? (2)若每千米的营业额为7元,则这天下午营业额为多少?24. 如图1,这是由8个同样大小的立方体组成的魔方,体积为64. (1)求出这个魔方的棱长.(2)图中阴影部分是一个正方形ABCD ,求出阴影部分的面积及其边长.(3)把正方形ABCD 放到数轴上,如图2,使得A 与﹣1重合,那么D 在数轴上表示的数为__________.25. 阅读下面的文字,完成后面的问题:我们知道:111122=-⨯, 1112323=-⨯, 1113434=-⨯ 那么(1)145=⨯_____________;=⨯22211________________; (2)用含有n 的等式表示你发现的规律________________________; (3)如果()2120a ab -+-=求)2017)(2016(1...)2)(2(1)1)(1(11++++++++++b a b a b a ab 的值.26. 数轴是一个非常重要的数学工具,它使数和数轴上的点建立起对应关系,揭示了数与点之间的内在联系,它是“数形结合”的基础。

2018-2019学年七年级(上)期中数学试卷参考答案与试题解析

2018-2019学年七年级(上)期中数学试卷参考答案与试题解析

2018-2019学年七年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共计36分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的序号填在括号内)1.(3分)在数轴上,原点及原点右边的点表示的数是()A.正数B.负数C.非正数D.非负数分析:本题可根据数轴的定义,原点表示的数是0,原点右边的点表示的数是正数,都是非负数.解答:解:依题意得:原点及原点右边所表示的数大于或等于0.故选D.点评:解答此题只要知道数轴的定义即可.在数轴上原点左边表示的数为负数,原点右边表示的数为正数,原点表示数0.2.(3分)当x=1时,代数式2x+5的值为()A. 3 B. 5 C.7 D.﹣2考点:代数式求值.专题:计算题.分析:将x=1代入代数式2x+5即可求得它的值.解答:解:当x=1时,2x+5=2×1+5=7.故选:C.点评:本题考查代数式的求值问题,直接把值代入即可.3.(3分)计算:﹣32+(﹣2)3的值是()A.0 B.﹣17 C.1D.﹣1考点:有理数的乘方.专题:计算题.分析:根据有理数的乘方法则计算:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0.解答:解:﹣32+(﹣2)3=﹣9﹣8=﹣17.故选B.点评:本题考查了有理数的乘方法则,解题的关键是牢记法则,此题比较简单,易于掌握.4.(3分)x增加2倍的值比x扩大5倍少3,列方程得()A.2x=5x+3 B.2x=5x﹣3 C.3x=5x+3 D.3x=5x﹣3考点:由实际问题抽象出一元一次方程.专题:和差倍关系问题.分析:首先理解题意,x增加2倍即是3x,x扩大5倍即为5x,从而列出方程即可.解答:解:因为x增加2倍的值应为x+2x=3x,x扩大5倍即为5x,所以由题意可得出方程:3x=5x﹣3.故选D.点评:此题的关键是理解增加和扩大的含义,否则很容易出错.5.(3分)方程2x+a﹣4=0的解是x=﹣2,则a等于()A.﹣8 B.0 C. 2 D.8考点:方程的解.分析:方程的解就是能够使方程左右两边相等的未知数的值,即利用方程的解代替未知数,所得到的式子左右两边相等.解答:解:把x=﹣2代入方程2x+a﹣4=0,得到:﹣4+a﹣4=0解得a=8.故选D.点评:本题主要考查了方程解的定义,已知x=﹣2是方程的解实际就是得到了一个关于a 的方程.6.(3分)如果a与b互为相反数,x与y互为倒数,则代数式|a+b|﹣2xy值为()A.0 B.﹣2 C.﹣1 D.无法确定考点:有理数的减法;相反数;倒数.专题:计算题.分析:根据相反数的定义:a与b互为相反数,必有a+b=0,即|a+b|=0;x与y互为倒数,则xy=1;据此代入即可求得代数式的值.解答:解:∵a与b互为相反数,∴必有a+b=0,即|a+b|=0;又∵x与y互为倒数,∴xy=1;∴|a+b|﹣2xy=0﹣2=﹣2.故选B.点评:主要考查相反数、倒数的定义.相反数的定义:只有符号相反的两个数互为相反数,0的相反数是0.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.本题所求代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取代数式a+b和xy的值,然后利用“整体代入法”求代数式的值.7.(3分)减去2﹣x等于3x2﹣x+6的整式是()A.3x2﹣2x+8 B.3x2+8 C.3x2﹣2x﹣4 D.3x2+4考点:整式的加减.分析:设该整式为A,则A﹣(2﹣x)=3x2﹣x+6,求出A即可.解答:解:设该整式为A,∵A减去2﹣x等于3x2﹣x+6,∴A﹣(2﹣x)=3x2﹣x+6,∴A=3x2﹣x+6+2﹣x=3x2﹣2x+8.故选A.点评:本题考查的是整式的加减,熟知整式加减的法则是解答此题的关键.8.(3分)在①近似数39.0有三个有效数字;②近似数2.5万精确到十分位;③如果a<0,b>0,那么ab<0;④多项式a2﹣2a+1是二次三项式中,正确的个数有()A.1个B.2个C.3个D. 4个考点:不等式的性质;近似数和有效数字;多项式.分析:根据有效数字、精确度的定义,有理数的乘法符号法则及多项式的次数和项数的定义作答.解答:解:①正确;②近似数2.5万精确到千位,错误;③正确;④正确.故选C.点评:本题主要考查了有效数字、精确度、多项式的次数和项数的定义,以及有理数的乘法符号法则.有效数字:在四舍五入后的近似数中,从左边第一个不是0的数字起到右边最后一个精确的数位止,所有的数字都叫它的有效数字.精确度:一个近似数,四舍五入到哪一位,就叫精确到哪一位.有理数的乘法符号法则:两数相乘,同号得正,异号得负.多项式的次数:一个多项式中,次数最高项的次数叫做这个多项式的次数.多项式的项数:一个多项式含有几项,就叫几项式.9.(3分)一批电脑进价为a元,加上20%的利润后优惠8%出售,则售出价为()A.a(1+20%)B.a(1+20%)8% C.a(1+20%)(1﹣8%)D.8%a考点:列代数式.分析:此题要根据题意列出代数式.可先求加上20%的利润价格后,再求出又优惠8%的价格.解答:解:依题意可知加上20%的利润后价格为a(1+20%)又优惠8%的价格是a(1+20%)(1﹣8%)∴售出价为a(1+20%)(1﹣8%).故选C.点评:读懂题意,找到关键语列出代数式.需注意用字母表示数时,在代数式中出现的乘号,通常简写做“•”或者省略不写,数字与数字相乘一般仍用“×”号.10.(3分)已知有理数a,b在数轴上的位置如图所示,则下列结论中正确的是()A.a+b>0 B.a﹣b>0 C.a﹣1>0 D.b+1>0考点:数轴.分析:根据数轴上a|的位置可以判定a与b大小与符号;然后据此来求a、b与1的大小比较.解答:解:根据图示知:b<﹣1<0<a<1;∴a+b<0,a﹣b>0,a﹣1<0,b+1<0.故选B.点评:本题考查了数轴.解答本题时,需注意:b在﹣1的左边,a在1的左边.11.(3分)个位数字为a,十位数字为b,则这个两位数可用代数式表示为()A.ab B.ba C.10a+b D. 10b+a考点:列代数式.分析:两位数=10×十位数字+个位数字,把相关字母代入即可求解.解答:解:∵个位上的数字是a,十位上的数字是b,∴这个两位数可表示为10b+a.故选:D.点评:本题考查列代数式,找到所求式子的等量关系是解决问题的关键.用到的知识点为:两位数=10×十位数字+个位数字.12.(3分)小明在一张日历上圈出一个竖列且相邻的三个日期,算出它们的和是48,则这三天分别是()A.6,16,26 B.15,16,17 C.9,16,23 D.不确定考点:一元一次方程的应用.专题:数字问题.分析:竖列且相邻的三个日期,则上边的数总比下边的数小7,根据这个关系可以设中间的数是x,列出方程求解.解答:解:设中间的数是x,则上边的数是x﹣7,下边的数是x+7,根据题意列方程得:x+(x﹣7)+(x+7)=48解得:x=16,x﹣7=9,x+7=23这三天分别是9,16,23.故选C.点评:解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.二、填空题(本大题共10小题,每题3分,共计30分.不需写出解答过程,请把答案直接填写在横线上)13.(4分)单项式的系数是,次数是3.考点:单项式.专题:应用题.分析:根据单项式系数、次数的定义来求解.单项式中的数字因数叫做这个单项式的系数,所有字母的指数和叫做这个单项式的次数.解答:解:单项式的数字因数是,所有字母的指数和为1+2=3,所以它的系数是,次数是3.故答案为,3.点评:确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.本题注意π不是字母,是一个数,应作为单项式的数字因数.14.(4分)比较大小:﹣3<2;﹣>﹣|﹣|.考点:有理数大小比较.专题:计算题.分析:根据正数大于一切负数进行比较即可;先比较两个数的绝对值的大小,再根据两个负数相比较,绝对值大的反而小比较即可.解答:解:﹣3<2;|﹣|=,﹣|﹣|=﹣,|﹣|=,=,=,<,∴﹣>﹣|﹣|.故答案为:<,>.点评:本题考查了有理数的大小比较,熟记正数大于一切负数,两个负数相比较,绝对值大的反而小是解题的关键.15.(4分)已知:2x+3y=4,则代数式(2x+3y)2+4x+6y﹣2的值是22.考点:代数式求值.专题:整体思想.分析:把2x+3y的值整体代入所求代数式求值即可.解答:解:当2x+3y=4时,原式=(2x+3y)2+2(2x+3y)﹣2=42+2×4﹣2=22.点评:代数式求值以及整体代入的思想.16.(4分)若单项式与﹣2x m y3是同类项,则m﹣n的值为﹣1.考点:同类项.专题:计算题.分析:此题的切入点是由同类项列等式.由已知与﹣2x m y3是同类项,根据其意义可得,x2=x m,y n=y3,所以能求出m,n的值.解答:解:∵单项式与﹣2x m y3是同类项,∴x2=x m,y n=y3,∴m=2,n=3,则m﹣n=2﹣3=﹣1,故答案为:﹣1点评:此题考查了学生对同类项的理解和掌握.关键是根据题意得出关系式x2=x m,y n=y3求得m,n的值.17.(4分)如果3x5a﹣2=﹣6是关于x的一元一次方程,那么a=,方程的解x=﹣2.考点:一元一次方程的定义.专题:计算题.分析:若一个整式方程经过化简变形后,只含有一个未知数,并且未知数的次数都是1,系数不为0,则这个方程是一元一次方程.据此可得出关于m的方程,继而可求出m的值.解答:解:由一元一次方程的特点得5a﹣2=1,解得:a=,故原方程可化为3x=﹣6,解得:x=﹣2.点评:判断一元一次方程,第一步先看是否是整式方程,第二步化简后是否只含有一个未知数,且未知数的次数是1,此类题目可严格按照定义解题.18.(4分)2008年北京奥运会火炬接力传递距离约为137000千米,将137000用科学记数法表示为 1.37×105.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:137000=1.37×105,故答案为:1.37×105.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.19.(4分)某股票星期一收盘时每股18元,星期二收盘每股跌了1.8元,星期三收盘每股涨了1.1元,则星期三的收盘价为每股17.3元.考点:有理数的加减混合运算.专题:应用题.分析:根据股票的涨跌信息,转化为数学问题,这里根据具有相反意义的量规定一个为正,则另一个为负,再运用有理数的加减混合运算规则.就可以容易的得到答案.解答:解:星期三的收盘价为每股18+(﹣1.8)+1.1=17.3元.故答案为:17.3.点评:考查了有理数的加减混合运算.有理数加减混合运算的方法:有理数加减法统一成加法.方法指引:(1)在一个式子里,有加法也有减法,根据有理数减法法则,把减法都转化成加法,并写成省略括号的和的形式.(2)转化成省略括号的代数和的形式,就可以应用加法的运算律,使计算简化.20.(4分)按下面程序计算:输入x=﹣3,则输出的答案是﹣12.考点:代数式求值.专题:图表型.分析:根据程序写出运算式,然后把x=﹣3代入进行计算即可得解.解答:解:根据程序可得,运算式为(x3﹣x)÷2,输入x=﹣3,则(x3﹣x)÷2=[(﹣3)3﹣(﹣3)]÷2=(﹣27+3)÷2=﹣12所以,输出的答案是﹣12.故答案为:﹣12.点评:本题考查了代数式求值,根据题目提供程序,准确写出运算式是解题的关键.21.(4分)若m、n满足|m﹣2|+(n+3)2=0,则n m=9.考点:非负数的性质:偶次方;非负数的性质:绝对值.分析:根据非负数的性质可求出m、n的值,再将它们代入n m中求解即可.解答:解:∵m、n满足|m﹣2|+(n+3)2=0,∴m﹣2=0,m=2;n+3=0,n=﹣3;则n m=(﹣3)2=9.点评:本题考查了非负数的性质:有限个非负数的和为零,那么每一个加数也必为零.22.(4分)有两桶水,甲桶水装有180升,乙桶装有150升,要使两桶水的重量相同,则甲桶应向乙桶倒水15升.考点:一元一次方程的应用.专题:应用题.分析:要求甲桶应向乙桶倒水多少,可先设甲桶应向乙桶倒水x升,然后根据甲桶﹣倒水=乙桶+倒水这个等量关系列出方程求解.解答:解:设甲桶应向乙桶倒水x升.则180﹣x=150+x解得:x=15故填15.点评:此题的关键是找出等量关系,即:甲桶﹣倒水=乙桶+倒水.三、解答题(本大题共5小题,23至28小题每题8分,共计84分,请在指定区域内作答,解答时应写出必要文字说明、证明过程或演算步骤.)23.(16分)(1)1+(﹣1)+4﹣4(2)﹣14+(1﹣0.5)××|2﹣(﹣3)2|(3)6a2+4ab﹣4(2a2+ab)(4)2(a2﹣2ab﹣b2)+(a2+3ab+3b2)(5)3x﹣(2x+7)=32(6)=1﹣.考点:有理数的混合运算;整式的加减;解一元一次方程.专题:计算题.分析:(1)原式结合后,相加即可得到结果;(2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果;(3)原式去括号合并即可得到结果;(4)原式去括号合并即可得到结果;(5)方程去括号,移项合并,将x系数化为1,即可求出解;(6)方程去分母,去括号,移项合并,将x系数化为1,即可求出解.解答:解:(1)原式=6﹣6=0;(2)原式=﹣1+××7=﹣1+=;(3)原式=6a2+4ab﹣8a2﹣2ab=﹣2a2+2ab;(4)原式=2a2﹣4ab﹣2b2+a2+3ab+3b2=3a2﹣ab+b2;(5)方程去括号得:3x﹣2x﹣7=32,移项合并得:x=41;(6)去分母得:10x+5=15﹣3x+3.移项合并得:13x=13,解得:x=1.点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.24.(14分)有这样一道计算题:“计算2x3﹣3x2y﹣2xy2﹣x3+2xy2﹣y2﹣x3+3x2y﹣y2的值,其中x=,y=﹣1”,王聪同学把“x=”错看成“x=﹣”,但计算结果仍正确,许明同学把“y=﹣1”错看成“y=1”,计算结果也是正确的,你知道其中的道理吗?请加以说明.考点:整式的混合运算—化简求值.分析:先将2x3﹣3x2y﹣2xy2﹣x3+2xy2﹣y2﹣x3+3x2y﹣y2合并同类项,再进行分析.解答:解:将原式合并同类项得﹣2y2,此代数式与x的取值无关,所以王聪将“x=”错看成“x=﹣”,计算结果仍正确;又因为当y取互为相反数时,﹣2y2的值相同,所以许明同学把“y=﹣1”错看成“y=1”,计算结果也是正确的.点评:本题是一道生活问题,解答时要读出题中的隐含条件:把“x=”错看成“x=﹣”,但计算结果仍正确,即可考虑此代数式与x的取值无关,进而想到先合并同类项.25.(16分)某自行车厂计划一周生产自行车1400辆,平均每天生产200辆,但由于种种原因,实际每天生产量与计划量相比有出入.下表是某周的生产情况(超产记为正、减产记为负):星期一21 二三四五六日增减+5 ﹣2 ﹣4 +13 ﹣10 +16 ﹣9(1)根据记录的数据可知该厂星期四生产自行车多少辆;(2)根据记录的数据可知该厂本周实际生产自行车多少辆;(3)产量最多的一天比产量最少的一天多生产自行车多少辆;(4)该厂实行每周计件工资制,每生产一辆车可得60元,若超额完成任务,则超过部分每辆另奖15元;少生产一辆扣20元,那么该厂工人这一周的工资总额是多少?考点:有理数的加法.专题:应用题;图表型.分析:(1)该厂星期四生产自行车200+13=213辆;(2)该厂本周实际生产自行车(5﹣2﹣4+13﹣10+16﹣9)+200×7=1409辆;(3)产量最多的一天比产量最少的一天多生产自行车16﹣(﹣10)=26辆;(4)这一周的工资总额是200×7×60+(5﹣2﹣4+13﹣10+16﹣9)×(60+15)=84675辆.解答:解:(1)超产记为正、减产记为负,所以星期四生产自行车200+13辆,故该厂星期四生产自行车213辆;(2)根据题意5﹣2﹣4+13﹣10+16﹣9=9,200×7+9=1409辆,故该厂本周实际生产自行车1409辆;(3)根据图示产量最多的一天是216辆,产量最少的一天是190辆,216﹣190=26辆,故产量最多的一天比产量最少的一天多生产自行车26辆;(4)根据图示本周工人工资总额=7×200×60+9×75=84675元,故该厂工人这一周的工资总额是84675元.点评:此题主要考查正负数在实际生活中的应用,所以学生在学这一部分时一定要联系实际,不能死学.26.(12分)列方程解应用题.把一批图书分给某班学生阅读,如果每人分3本,则剩余20本,如果每人分4本,则还缺25本.这个班有多少名学生?考点:一元一次方程的应用.专题:应用题.分析:可设有x名学生,根据总本数相等和每人分3本,剩余20本,每人分4本,缺25本可列出方程,求解即可.解答:解:设有x名学生,根据书的总量相等可得:3x+20=4x﹣25,解得:x=45(名).答:这个班有45名学生.点评:本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目中书的总量相等的等量关系列出方程,再求解.27.(16分)先阅读下列解题过程,然后解答问题(1)、(2)解方程:|x+3|=2.解:当x+3≥0时,原方程可化为:x+3=2,解得x=﹣1;当x+3<0时,原方程可化为:x+3=﹣2,解得x=﹣5.所以原方程的解是x=﹣1,x=﹣5.(1)解方程:|3x﹣2|﹣4=0;(2)探究:当b为何值时,方程|x﹣2|=b+1 ①无解;②只有一个解;③有两个解.考点:同解方程.专题:应用题;分类讨论.分析:(1)首先要认真审题,解此题时要理解绝对值的意义,要会去绝对值,然后化为一元一次方程即可求得.(2)运用分类讨论进行解答.解答:答:(1)当3x﹣2≥0时,原方程可化为:3x﹣2=4,解得x=2;当3x﹣2<0时,原方程可化为:3x﹣2=﹣4,解得x=﹣.所以原方程的解是x=2或x=﹣;(2)∵|x﹣2|≥0,∴当b+1<0,即b<﹣1时,方程无解;当b+1=0,即b=﹣1时,方程只有一个解;当b+1>0,即b>﹣1时,方程有两个解.点评:此题比较难,提高了学生的分析能力,解题的关键是认真审题.。

2018年河南省南阳市南召县七年级上学期数学期中试卷带解析答案

2018年河南省南阳市南召县七年级上学期数学期中试卷带解析答案

2017-2018学年河南省南阳市南召县七年级(上)期中数学试卷一、选择题(每小题3分,共30分)下列个小题均有四个答案,其中只有一个是正确的.1.(3分)5的相反数是()A.﹣5 B.5 C.﹣ D.2.(3分)我市冬季里某一天的最低气温是﹣10℃,最高气温是5℃,这一天的温差为()A.﹣5℃B.5℃C.10℃D.15℃3.(3分)下列四个有理数中:﹣3,2,0,﹣4,最小的数是()A.0 B.2 C.﹣4 D.﹣34.(3分)下列运算结果为正数的是()A.(﹣3)2 B.﹣3÷2 C.0×(﹣2017)D.2﹣35.(3分)随着“一带一路”建设的不断发展,我国已与多个国家建立了经贸合作关系,去年中哈铁路(中国至哈萨克斯坦)运输量达8200000吨,将8200000用科学记数法表示为()A.8.2×105B.82×105 C.8.2×106D.82×1076.(3分)在数轴上到原点的距离是3的点表示的有理数是()A.3 B.﹣3 C.±3 D.67.(3分)若x=﹣,y=4,则代数式3x+y﹣3的值为()A.﹣6 B.0 C.2 D.68.(3分)下列说法中正确的是()①﹣a表示的一定是负数;②多项式5a2b2﹣3ab3+2b2﹣1是四次四项式;③单项式﹣的系数为﹣;④a2b3c是六次单项式.A.①②③④B.②③④C.①③④D.①②④9.(3分)有理数a、b、c在数轴上表示如图,①a+b<0②bc≤0③c﹣a>0④;上述式子正确的个数为()A.1个 B.2个 C.3个 D.4个10.(3分)小明有一个魔术盒,当任意有理数对(a,b)进入其中时,会得到一个新的有理数:a2+b﹣1.例如,把有理数对(3,﹣2)放入其中,就会得到32+(﹣2)﹣1=6.现将有理数对(﹣1,﹣2)放入其中,则得到的结果是()A.﹣2 B.3 C.﹣3 D.2二、填空题(每小题3分,共15分).11.(3分)如果水位升高6m时的水位变化记作+6m,那么水位下降6m的水位变化记作.12.(3分)比较大小:﹣﹣.13.(3分)某商品m千克售价是a元,则这种商品9千克的售价是元.14.(3分)|x﹣2|+(y+3)2=0,则(x+y)2017=.15.(3分)按如图的计算程序计算,若开始输入的数为﹣2,则最后输出的结果是.三、解答题(8+9+9+9+9+10+11=75)16.(8分)直接写出结果①﹣1+1=②0﹣3=③﹣+=④﹣﹣=⑤﹣4×=⑥﹣2÷(﹣)=⑦(﹣)2=⑧﹣(﹣)2=.17.(9分)计算:0﹣12+(+3)﹣(﹣)﹣(+)18.(9分)计算:﹣1﹣÷(﹣)×.19.(9分)计算:﹣14﹣[1﹣(1﹣0.5×)]×[2﹣(﹣3)2].20.(9分)已知:多项式2x3y﹣4xy2+5x2﹣1(1)按x的降幂排列为:(2)当x=﹣1;y=,求该多项式的值.21.(10分)甲、乙两家商场以同样的价格出售同样的电器,但各自推出的优惠方案不同.甲商场规定:凡超过2000元的电器,超出的金额按80%收取;乙商场规定:凡超过1500元的电器,超出的金额按90%收取.某顾客购买的电器价格是x元.(1)当x=1600时,该顾客应选择在商场购买比较合算;(2)当x>2000时,分别用代数式表示在两家商场购买电器所需付的费用;(3)当x=3000时,该顾客应选择哪一家商场购买比较合算?说明理由.22.(10分)下列是数学兴趣小组在活动课上用火柴棒拼出的一列图形:仔细观察,找出规律,解答下列各题:(1)第4个图中共有根火柴棒,照这样第6个图中共有根火柴棒;(2)按照这样的规律第n个图形中共有根火柴棒(用含n的代数式表示);(3)按照这样的规律,第2012个图形中共有多少根火柴棒?23.(11分)【阅读】我们学习了有理数的加法法则与有理数的乘法法则,在学习此内容时,掌握了法则,同时也学会了分类思考,下面请探索思考.【探索】(1)若a+b=﹣5,则ab的值为:①负数②正数③0.你认为结果可能为(只填序号)(2)若a+b=﹣5,则a、b为整数,则ab的最大值为【拓展】(3)数轴上A、B两点分别对应有理数a、b,若a+b>0,试比较ab与0的大小.2017-2018学年河南省南阳市南召县七年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)下列个小题均有四个答案,其中只有一个是正确的.1.(3分)5的相反数是()A.﹣5 B.5 C.﹣ D.【解答】解:5的相反数是﹣5,故选:A.2.(3分)我市冬季里某一天的最低气温是﹣10℃,最高气温是5℃,这一天的温差为()A.﹣5℃B.5℃C.10℃D.15℃【解答】解:5﹣(﹣10),=5+10,=15(℃).故选:D.3.(3分)下列四个有理数中:﹣3,2,0,﹣4,最小的数是()A.0 B.2 C.﹣4 D.﹣3【解答】解:根据有理数比较大小的方法,可得﹣4<﹣3<0<2,∴四个有理数﹣3,2,0,﹣4中,最小的数是﹣4.故选:C.4.(3分)下列运算结果为正数的是()A.(﹣3)2 B.﹣3÷2 C.0×(﹣2017)D.2﹣3【解答】解:A、原式=9,符合题意;B、原式=﹣1.5,不符合题意;C、原式=0,不符合题意,D、原式=﹣1,不符合题意,故选:A.5.(3分)随着“一带一路”建设的不断发展,我国已与多个国家建立了经贸合作关系,去年中哈铁路(中国至哈萨克斯坦)运输量达8200000吨,将8200000用科学记数法表示为()A.8.2×105B.82×105 C.8.2×106D.82×107【解答】解:将8200000用科学记数法表示为:8.2×106.故选:C.6.(3分)在数轴上到原点的距离是3的点表示的有理数是()A.3 B.﹣3 C.±3 D.6【解答】解:若在原点的左边,则数为﹣3,若在原点的右边,则数为3,所以,在数轴上距原点3个单位长度的点表示的数是±3.故选:C.7.(3分)若x=﹣,y=4,则代数式3x+y﹣3的值为()A.﹣6 B.0 C.2 D.6【解答】解:∵x=﹣,y=4,∴代数式3x+y﹣3=3×(﹣)+4﹣3=0.故选:B.8.(3分)下列说法中正确的是()①﹣a表示的一定是负数;②多项式5a2b2﹣3ab3+2b2﹣1是四次四项式;③单项式﹣的系数为﹣;④a2b3c是六次单项式.A.①②③④B.②③④C.①③④D.①②④【解答】解:①若a是负数,则﹣a是正数,故①错误;②多项式5a2b2﹣3ab3+2b2﹣1是四次四项式,故②正确;③单项式﹣的系数为﹣,故③正确;④a2b3c是六次单项式,故④正确故选:B.9.(3分)有理数a、b、c在数轴上表示如图,①a+b<0②bc≤0③c﹣a>0④;上述式子正确的个数为()A.1个 B.2个 C.3个 D.4个【解答】解:由数轴可得a<c<0<b,可得①a+b<0,正确;②bc<0,错误;③c﹣a>0,正确;④;故④正确,正确的有3个.故选:C.10.(3分)小明有一个魔术盒,当任意有理数对(a,b)进入其中时,会得到一个新的有理数:a2+b﹣1.例如,把有理数对(3,﹣2)放入其中,就会得到32+(﹣2)﹣1=6.现将有理数对(﹣1,﹣2)放入其中,则得到的结果是()A.﹣2 B.3 C.﹣3 D.2【解答】解:∵当任意有理数对(a,b)进入其中时,会得到一个新的有理数:a2+b﹣1,∴有理数对(﹣1,﹣2)放入其中,得到的结果为:(﹣1)2+(﹣2)﹣1=1+(﹣2)+(﹣1)=﹣2,故选:A.二、填空题(每小题3分,共15分).11.(3分)如果水位升高6m时的水位变化记作+6m,那么水位下降6m的水位变化记作﹣6m.【解答】解:∵水位升高6m时的水位变化记作+6m,∴水位下降6m的水位变化记作﹣6m,故答案为﹣6m.12.(3分)比较大小:﹣>﹣.【解答】解:∵|﹣|==,|﹣|==,而<,∴﹣>﹣.故答案为:>.13.(3分)某商品m千克售价是a元,则这种商品9千克的售价是元.【解答】解:根据题意,得:,故答案为:;14.(3分)|x﹣2|+(y+3)2=0,则(x+y)2017=﹣1.【解答】解:由题意得,x﹣2=0,y+3=0,解得x=2,y=﹣3,所以,(x+y)2017=(2﹣3)2017=﹣1.故答案为:﹣1.15.(3分)按如图的计算程序计算,若开始输入的数为﹣2,则最后输出的结果是﹣10.【解答】解:(﹣2)×3﹣(﹣2)=﹣6+2=﹣4>﹣5;再次代入得,(﹣4)×3﹣(﹣2)=﹣12+2=﹣10<﹣5;即最后输出的结果是﹣10.故答案为:﹣10.三、解答题(8+9+9+9+9+10+11=75)16.(8分)直接写出结果①﹣1+1=0②0﹣3=﹣3③﹣+=﹣④﹣﹣=﹣⑤﹣4×=﹣2⑥﹣2÷(﹣)=4⑦(﹣)2=⑧﹣(﹣)2=﹣.【解答】解:①原式=0;②原式=﹣3;③原式=﹣;④原式=﹣;⑤原式=﹣2;⑥原式=4;⑦原式=;⑧原式=﹣.故答案为:①0;②﹣3;③﹣;④﹣;⑤﹣2;⑥4;⑦;⑧﹣.17.(9分)计算:0﹣12+(+3)﹣(﹣)﹣(+)【解答】解:0﹣12+(+3)﹣(﹣)﹣(+)=(﹣12+)+(3﹣)=﹣12+3=﹣918.(9分)计算:﹣1﹣÷(﹣)×.【解答】解:原式=﹣1﹣×(﹣)×(﹣)=﹣1﹣=﹣119.(9分)计算:﹣14﹣[1﹣(1﹣0.5×)]×[2﹣(﹣3)2].【解答】解:原式=﹣1﹣[1﹣(1﹣)]×(2﹣9)=﹣1﹣(1﹣)×(﹣7)=﹣1﹣×(﹣7)=﹣1+=20.(9分)已知:多项式2x3y﹣4xy2+5x2﹣1(1)按x的降幂排列为:2x3y+5x2﹣4xy2﹣1(2)当x=﹣1;y=,求该多项式的值.【解答】解:(1)按x的降幂排列为:2x3y+5x2﹣4xy2﹣1;故答案为:2x3y+5x2﹣4xy2﹣1;(2)当x=﹣1,y=时,原式=2×(﹣1)3×+5×(﹣1)2﹣4×(﹣1)×()2﹣1=﹣1+5+1﹣1=4.21.(10分)甲、乙两家商场以同样的价格出售同样的电器,但各自推出的优惠方案不同.甲商场规定:凡超过2000元的电器,超出的金额按80%收取;乙商场规定:凡超过1500元的电器,超出的金额按90%收取.某顾客购买的电器价格是x元.(1)当x=1600时,该顾客应选择在乙商场购买比较合算;(2)当x>2000时,分别用代数式表示在两家商场购买电器所需付的费用;(3)当x=3000时,该顾客应选择哪一家商场购买比较合算?说明理由.【解答】解:(1)当x=1600时,该顾客应选择在乙商场购买比较合算;(2)当x>2000时,甲商场购买电器所需付的费用为:0.8x+400,乙商场购买电器所需付的费用为:0.9x+150,(3)当x=3000时,甲商场购买电器所需付的费用为2800元,乙商场购买电器所需付的费用为2850元,所以,选择甲商场比较划算.22.(10分)下列是数学兴趣小组在活动课上用火柴棒拼出的一列图形:仔细观察,找出规律,解答下列各题:(1)第4个图中共有13根火柴棒,照这样第6个图中共有19根火柴棒;(2)按照这样的规律第n个图形中共有3n+1根火柴棒(用含n的代数式表示);(3)按照这样的规律,第2012个图形中共有多少根火柴棒?【解答】解:(1)第4个图案火柴有3×4+1=13;第6个图案中火柴有3×6+1=19;故答案为:13;19;(2)当n=1时,火柴的根数是3×1+1=4;当n=2时,火柴的根数是3×2+1=7;当n=3时,火柴的根数是3×3+1=10;所以第n个图形中火柴有3n+1,故答案为:3n+1;(3)当n=2017时,3n+1=3×2017+1=6052.23.(11分)【阅读】我们学习了有理数的加法法则与有理数的乘法法则,在学习此内容时,掌握了法则,同时也学会了分类思考,下面请探索思考.【探索】(1)若a+b=﹣5,则ab的值为:①负数②正数③0.你认为结果可能为①②③(只填序号)(2)若a+b=﹣5,则a、b为整数,则ab的最大值为6【拓展】(3)数轴上A、B两点分别对应有理数a、b,若a+b>0,试比较ab与0的大小.【解答】解:(1)若a=﹣6,b=1,则ab=﹣6,则①成立;若a=﹣2,b=﹣3,则ab=6,则②成立;若a=﹣5,b=0,则ab=0,则③成立.故答案为:①②③.(2)∵a+b=﹣5,则a、b为整数,要使得ab的最大值,则a,b必须同为负号,∵(﹣2)×(﹣3)>(﹣1)(﹣4),∴ab 的最大值为6.故答案为:6.(3)a、b 至少有一个正数,①当a、b 都为正数时,ab为正,ab>0②当一个为正数、另一个为0 时,ab=0③当一个为正数、另一个为负数;且正数的绝对值大于负数的绝对值时,ab<0.赠送:初中数学几何模型举例【模型四】几何最值模型:图形特征:l运用举例:1. △ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为AP的中点,则MF的最小值为EM FB2.如图,在边长为6的菱形ABCD中,∠BAD=60°,E为AB的中点,F为AC上一动点,则EF+BF的最小值为_________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年七年级数学(上)期中试卷
一 选择题:(每题3分,共27分)
1. 在2
11-,2.1,2-,0 ,()2--中,负数的个数有( ) A.2个 B.3个 C.4个 D.5个
2.下列说法中,不正确的是( )
(A )零是绝对值最小的数; (B )倒数等于本身的数只有1
(C )相反数等于本身的数只有0; (D )原点左边的数离原点越远就越小。

3.下面计算正确的是( )
A .-0.25ab +4
1ba =0 B .32x -2x =3 C .3+x =3x D .32a +23a =55a 4、下列各组数中,数值相等的是( )
A 、332(2)--和
B 、2332和
C 、223(3)--和
D 、22(32)32-⨯-⨯和
5、下列算式正确的是( )
A .—3=9 ; B. ; C.1682-=-)(;D.325-=--
-)( 6.下列说法错误的是( )
A .2x 2﹣3xy ﹣1是二次三项式
B .﹣x+1不是单项式
C .的系数是
D .﹣22xab 2
的次数是6 7、 有理数a 、b 、c 在数轴上的位置如图所示,下列结论正确的是( )
A. ﹣b a c >>
B. a-b<0
C.c+b<0
D. c>|b|
8.下列式子:x 2+2, +4,
,,﹣5x ,0中,整式的个数是( ) A .6 B .5 C .4 D .3
9、下列各式中值必为正数的是( )
A 、|a|+|b|
B 、a 2+b 2
C 、a
D 、a 2
+1
222422=-b a b
a
二 填空题:(每空2分,共28分)
10、-112
的相反数是 ; 绝对值是 . 11、比-3℃低7℃的温度是 .
12、七年级有新生x 人,其中男生占45%,则该校七年级女生为 人.
13.在数轴上,点A 表示数-1,与点A 距 离3个单位长度的点表示的数是 .
14、比较大小:-32 -4
3; ―(―2) -3-. 15.① 307000000用科学记数法可表示为 ②85.90是精确到________位的数. 16. 已知单项式32b a m 与-3
214-n b a 是同类项,那么m -3n=________ 17.如果2|1|(2)0a b -++=,则2012)
(b a +的值是_____________. 18. 当x 取__________时,式子 有最小值等于_________。

19.若自然数n 使得作竖式加法n+(n+1)+(n+2)均不产生进位现象,则称n 为“可连数”,例如32是“可连数”,因为32+33+34不产生进位现象;23不是“可连数”,因为23+24+25产生了进位现象,那么小于10的“可连数”的个数为 ;
20.计算(每小题5分,共20分)
①. 12-(-18)+(-7)-15 ②.
③. -1100-(1- 0.5)×⨯31
[3-(-3)2] ④22
452(2)x xy x xy +--
2(10)8x -+
21.先化简,再求值(7分)
3y x 2+6xy -2(3xy -2)-y x 2
+1,其中x=-2,y=-1.
三、解答题(共38分)
22.(6分)画数轴,在数轴上表示下列各数,并用“﹤”号把它们连接起来
-3 +2 -1.5 0 1
23.出租车司机小李某天上午营运时是在东西走向的大街上进行的,如果规定向东为正,向西为负,他这天上午所接六位乘客的行车里程(单位:km )如下:-3,+5,-1,+1,-6,-2,问:
(1)将最后一位乘客送到目的地时,小李在什么位置?(2分)
(2)若汽车耗油量为0.2L/km(升/千米),这天上午小李接送乘客,出租车共耗油多少升?(2分)
(3)若出租车起步价为8元,起步里程为3km(包括3km),超过部分每千米1.5元,问小李这天上午接第一、二位乘客共得车费多少元?(3分)
24、a 与b 互为相反数,c 与d 互为倒数,10=x ,求 ()
()201020102cd x a b ++ 的值. (5分)
25.当2=x 时,代数式13++qx px 的值等于2016,那么当2-=x 时,求13++qx px 的值。

(5分)
26.下列是用火柴棒拼出的一列图形。

(6分)
仔细观察,找出规律,解答下列各题:
(1)第5个图中共有_____ 根火柴;
(2)第n 个图形中共有 根火柴(用含n 的式子表示);
(3)请计算第2013个图形中共有多少根火柴?
27、某年连江县“中考状元”诞生在文笔中学,为文笔中学首届中考锦上添花,为了让更多的人分享这一喜讯,学校准备印刷宣传材料,甲印刷厂提出:每份材料收0.2元印刷费,另收500元制版费;乙印刷厂提出:每份材料收0.4元印刷费,不收制版费。

(1)设印制宣传材料数量x(份),请用含x的式子表示(每空各2分)
甲印刷厂的收费元,乙印刷厂的收费元
(2)若学校准备印制3000份宣传材料,试通过计算说明选择哪家印刷厂比较合算?(3分)
(3)若学校准备印制x份宣传材料,你会如何选择?(4分)
参考答案
1.A
2.B
3.A
4.A
5.D
6.D
7.C
8.C
9.D 10.211;211
11.-10℃
12.0.55x
13.-4或2
14.>;>
15.3.07×108;百分
16.-5
17.1
18.10,8
19.3
20.(1)8;(2)-17;(3)0 ;(4)3xy
21.解:化简后原式=2x 2y+5,将x=-2,y=-1得:-3
22.略。

23.解:(1)﹣3+5﹣1+1﹣6﹣2=﹣6,答:小李在起始的西6km 的位置.
(2)|﹣3|+|+5|+|﹣1|+|+1|+|﹣6|+|﹣2|=3+5+1+1+6+2=18,
18×0.2=3.6,答:出租车共耗油3.6升.
(3)6×8+(2+3)×1.5=55.5,答:小李这天上午共得车费55.5元.
24.解:由题意可知,a+b=0,cd=1,x=±10.所以原式=100.
25.解:当x=2时,8p+2q+1=2016,所以8p+2q=2015,当x=-2时,-8p -2q+1=-2015+1=-2014.
26.根据图案可知,
(1)第5个图案中火柴有3×5+1=16;
(2)当n=1时,火柴的根数是3×1+1=4;
当n=2时,火柴的根数是3×2+1=7;
当n=3时,火柴的根数是3×3+1=10;
所以第n 个图形中火柴有3n+1.
(3)当n=2013时,3×2013+1=6040.所以第2013个图形中共有6040根火柴, 故答案为:19,3n+1,6040.
27.(1)甲印刷厂:0.2x+500,
乙印刷厂:0.4x ;
(2)当x=3000时,0.2x+500=0.2×3000+500=1100(元),
0.4x=0.4×3000=1200(元),
因为1100<1200,所以选择甲印刷厂比较合算;
(3)当0.2x+500=0.4x 时,x=2500,
所以当x<2500份时,选择乙印刷厂;
当x>2500份时,选择甲印刷厂,
当x=2500份时,甲乙相同。

相关文档
最新文档