湖北省武汉市东西湖区2018年九年级上数学期中试卷(含答案)
湖北省武汉市武昌区2018届九年级上学期数学期中考试试卷

第1页,总17页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………湖北省武汉市武昌区2018届九年级上学期数学期中考试试卷考试时间:**分钟 满分:**分姓名:____________班级:____________学号:___________题号 一 二 三 四 五 总分 核分人得分注意事项:1、填写答题卡的内容用2B铅笔填写2、提前 15 分钟收取答题卡第Ⅰ卷 客观题第Ⅰ卷的注释评卷人 得分一、单选题(共10题)1. 下列图形是中心对称图形的是( )A .B .C .D .2. 设二次函数y 1=a (x ﹣x 1)(x ﹣x 2)(a≠0,x 1≠x 2)的图象与一次函数y 2=dx+e (d≠0)的图象交于点(x 1 , 0),若函数y=y 1+y 2的图象与x 轴仅有一个交点,则( )A . a (x 1﹣x 2)=dB . a (x 2﹣x 1)=dC . a (x 1﹣x 2)2=dD . a (x 1+x 2)2=d3. 抛物线y=2(x ﹣3)2+1的顶点坐标是( )A . (3,1)B . (3,﹣1)C . (﹣3,1)D . (﹣3,﹣1)4. 如图,在平面直角坐标系中,点B,C,E 在y 轴上,Rt△ABC 经过变换得到Rt△ODE,若点C 的坐标为(0,1),AC=2,则这种变换可以是( )答案第2页,总17页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………A . △ABC 绕点C 顺时针旋转90°,再向下平移3个单位长度B . △ABC 绕点C 顺时针旋转90°,再向下平移1个单位长度 C . △ABC 绕点C 逆时针旋转90°,再向下平移1个单位长度D . △ABC 绕点C 逆时针旋转90°,再向下平移3个单位长度5. 一元二次方程x 2+x ﹣1=0的根的情况是( )A . 有两个不相等的实数根B . 有两个相等的实数根C . 没有实数根D . 无法判断6. 方程2x 2+4x ﹣6=0两根之积等于( ) A . 3 B . ﹣6 C . 6 D . ﹣37. 把抛物线y=﹣ x 2向下平移3个单位长度再向左平移2个单位长度的解析式为( )A . y=﹣(x+2)2+3 B . y=﹣ (x+2)2﹣3 C . y=﹣(x+3)2﹣2 D . y=﹣(x ﹣3)2+28. 如图,在△ABC 中,△CAB=65°,将△ABC 在平面内绕点A 旋转到△AB′C′的位置,使CC′△AB ,则旋转角的度数为( )A.30° B.40° C.50°D . 65°第3页,总17页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………9. 若二次函数y=x 2+bx+c 的图象的对称轴是经过点(2,0)且平行于y 轴的直线,且过点(5,5),则关于x 的方程x 2+bx+c=5的解为( )A . x 1=0或x 2=4B . x 1=1或x 2=5C . x 1=﹣1或 x 2=5D . x 1=1或x 2=﹣510. 要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场,根据时间和场地等条件,赛程计划安排7天,每天安排4场比赛,设比赛组织者应邀请x 个队参赛,则x 满足的关系式为( )A . x(x+1)=28B . x(x -1)=28C . x(x+1)=28D . x(x -1)=28第Ⅱ卷 主观题第Ⅱ卷的注释评卷人 得分一、填空题(共6题)1. 方程x 2﹣3x+1=0的二次项系数是 ;一次项系数是 ;常数项是 .2. 若a 2﹣3b=5,则6b ﹣2a 2= .3. 函数y=x 2﹣x+1的图象与y 轴的交点坐标是 .4. 有一人患了流感,经过两轮传染后共有64人患了流感,按照这样的速度,平均每人传染 人.5. 如图是抛物线形拱桥,当拱顶离水面2m 时,水面宽4m ,则水面下降1m 时,水面宽度增加 m .6. 如图,一段抛物线:y=﹣x (x ﹣3)(0≤x≤3),记为C 1 , 它与x 轴交于点O ,A 1;将C 1绕点A 1旋转180°得C 2 , 交x 轴于点A 2;将C 2绕点A 2旋转180°得C 3 , 交x 轴于点A 3; …答案第4页,总17页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………如此进行下去,直至得C 13 . 若P (37,m )在第13段抛物线C 13上,则m= .评卷人得分二、计算题(共1题)7. 解方程:(1)x 2+2x ﹣1=0(2)x (x+4)=3x+12. 评卷人得分三、作图题(共1题)8. 如图是由边长为1的小正三角形组成的网格图,点O 和△ABC 的顶点都在正三角形的格点上,将△ABC 绕点O 逆时针旋转120°得到△A′B′C′.(1)在网格中画出旋转后的△A′B′C′;(2)以O 为原点AB 所在直线为x 轴建立坐标系直接写出A′、B′、C′三点的坐标.第5页,总17页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………评卷人 得分四、综合题(共5题)9. 某网店打出促销广告:最潮新款服装30件,每件售价300元.若一次性购买不超过10件时,售价不变;若一次性购买超过10件时,每多买1件,所买的每件服装的售价均降低3元.已知该服装成本是每件200元,设顾客一次性购买服装x 件时,该网店从中获利y 元.(1)求y 与x 的函数关系式,并写出自变量x 的取值范围;(2)顾客一次性购买多少件时,该网店从中获利最多?10. 如图:△ABC 、△ECD 都是等边三角形,且B 、C 、D 在同一直线上.(1)求证:BE=AD ;(2)△EBC 可以看做是△DAC 经过平移、轴对称或旋转得到,请说明得到△EBC 的过程. 11. 已知关于x 的一元二次方程(x -3)(x -2)=|m|.(1)求证:对于任意实数m ,方程总有两个不等的实数根;(2)若方程的一个根是1,求m 的值及方程的另一个根.12. 如图,已知二次函数y=ax 2+bx+3的图象过点A (﹣1,0),顶点坐标为(1,m ).答案第6页,总17页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………(1)求该二次函数的关系式和m 值;(2)结合图象,解答下列问题:(直接写出答案) ①当x 取什么值时,该函数的图象在x 轴下方? ②当﹣1<x <2时,直接写出函数y 的取值范围.13. 如图1,在平面直角坐标系中,抛物线C 1:y=ax 2+bx ﹣a 2关于y 轴对称且有最小值﹣1.(1)求抛物线C 1的解析式;(2)在图1中抛物线C 1顶点为A ,将抛物线C 1绕点B 旋转180°后得到抛物线C 2 , 直线y=kx ﹣2k+4总经过一定点M ,若过定点M 的直线与抛物线C 2只有一个公共点,求直线l 的解析式.(3)如图2,先将抛物线 C 1向上平移使其顶点在原点O ,再将其顶点沿直线y=x 平移得到抛物线C 3 , 设抛物线C 3与直线y=x 交于C 、D 两点,求线段CD 的长.第7页,总17页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………参数答案1.【答案】:【解释】: 2.【答案】: 【解释】:3.【答案】: 【解释】:4.【答案】: 【解释】:5.【答案】:【解释】:答案第8页,总17页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………6.【答案】:【解释】:7.【答案】:【解释】:8.【答案】:【解释】:第9页,总17页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………9.【答案】: 【解释】: 10.【答案】:【解释】: 【答案】:答案第10页,总17页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………【解释】:【答案】:【解释】:【答案】:【解释】:【答案】:【解释】:…………外…………○…………装…………○…………订…………○…………线…………姓名:____________班级:____________学号:___________…………内…………○…………装…………○…………订…………○…………线…………【答案】:【解释】:…………外…………○…………装…………○…………订…………○…………线…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………内…………○…………装…………○…………订…………○…………线…………【答案】:【解释】:…………外…………○…………装…………○…………订…………○…………线…………姓名:____________班级:____________学号:___________…………内…………○…………装…………○…………订…………○…………线…………(1)【答案】:(2)【答案】: 【解释】:(1)【答案】:…………外…………○…………装…………○…………订…………○…………线…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………内…………○…………装…………○…………订…………○…………线…………(2)【答案】:【解释】:(1)【答案】:(2)【答案】:【解释】:(1)【答案】:…………外…………○…………装…………○…………订…………○…………线…………姓名:____________班级:____________学号:___________…………内…………○…………装…………○…………订…………○…………线…………(2)【答案】:【解释】: (1)【答案】: (2)【答案】: 【解释】: (1)【答案】: (2)【答案】:【解释】:…………外…………○…………装…………○…………订…………○…………线…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………内…………○…………装…………○…………订…………○…………线…………(1)【答案】:(2)【答案】:(3)【答案】:【解释】:…………外…………○…………装…………○…………订…………○…………线…………姓名:____________班级:____________学号:___________…………内…………○…………装…………○…………订…………○…………线…………。
2017-2018东西湖区九上期中试卷

东西湖区2017~2018学年 度上学期九年级数学期中测试卷一、 选一选,比比谁细心(本大题共10小题,每小题3分,共30分)1.一元二次方程4x (x +2)=25化成一般形后二次项的系数、一次项的系数和常数项分别是( )A .4、2、25B .4、8、25C .4、2、-25D .4、8、-253.用配方法解方程x 2-2x -5=0时,原方程应变形为( )A .(x +1)2=6B .(x +2)2=9C .(x -1)2=6D .(x -2)2=93.如果-2是方程x 2-m =0的一个根,则m 的值为( )A .4B .-4C .2D .-24.将二次函数y =(x -1)2的图象先向右平移1个单位,再向上平移1个单位后顶点为( )A .(0,1)B .(2,1)C .(1,-1)D .(-2,1)5.下列四个图中是中心对称图形的是( )6.已知x 1、x 2是一元二次方程x 2-3x -1=0的两个根,则x 1+x 2的值为( )A .3B .-3C .1D .-17.如图,在同一平面内,将△ABC 绕A 点逆时针旋转到△ADE 的位置.若AC ⊥DE ,∠ABD =62°,则∠ACB 的度数为( )A .56°B .44°C .40°D .34°8.函数y =kx 2-6x +3的图象与x 轴有交点,则k 的取值范围是( )A .k <3B .k <3且k ≠0C .k ≤3D .k ≤3且k ≠09.某市2018年应届初中毕业生人数约6.8万,比去年减少约0.2万,其中报名参加中考的学生人数约6.5万,比去年增加0.3万,下列结论:① 与2017年相比,2018年该市应届初中毕业生人数下降了%1008.62.0⨯ ② 与2017年相比,2018年该市应届初中毕业生报名参加中考人数增加了%1005.63.0⨯ ③ 与2017年相比,2018年该市应届初中毕业生报名参加中考人数占应届初中毕业生人数的百分比提高了%100)72.68.65.6(⨯-.其中正确的结论个数是( ) A .0 B .1 C .2 D .310.下列命题:① 若b =a +c 时,一元二次方程ax 2+bx +c =0一定有实数根;② 若方程ax 2+bx +c =0有两个不相等的实数根,则方程cx 2+bx +a =0也一定有两个不相等实数根;③ 若二次函数y =ax 2+c ,当取x 1、x 2(x 1≠x 2)时,函数值相等,则当x 取x 1+x 2时函数值为0;④ 若b 2-4ac >0,则二次函数y =ax 2+bx +c 的图像与坐标轴的公共点的个数是2或3,其中正确结论的个数是( )A .1个B .2个C .3个D .4个二、填一填, 看看谁仔细(本大题共6小题,每小题3分,共18分)11.一元二次方程x 2-x =0的解是____________12.函数y =4(x -3)2+7的顶点坐标是__________13.已知点A (3,4),将OA 绕原点O 逆时针旋转90°得到OA ′,则点A ′的坐标是__________14.若二次函数y =kx 2+x +1的函数值恒为正数,则k 的取值范围是__________15.如图,在平面直角坐标系中,将△ABO 绕点A 顺时针旋转到△AB 1C 1的位置,点B 、O 分别落在点B 1、C 1处,点B 1在x 轴上,再将△AB 1C 1绕点B 1顺时针旋转到△A 1B 1C 2的位置,点C 2在x 轴上,将△A 1B 1C 2绕点C 2顺时针旋转到△A 2B 2C 2的位置,点A 2在x 轴上,依次(无滑动)进行下去…….若点A (35,0)、B (0,4),则点B 2018的坐标为_____________16.如图,在△ABC 中,∠ACB =90°,D 为边AB 的中点,E 、F 分别为边AC 、BC 上的点,且AE =AD ,BF =BD .若DE =2,DF =2,则AB 的长为__________三、 解一解,试试谁更棒(本大题共8小题,共72分)17.(本题8分)请按指定的方法解方程,否则不得分(1) x 2-4x -21=0(配方法) (2) x 2-x -5=0(公式法)18.(本题8分)已知关于x 的方程x 2+2x +1-p 2=0(1) 若p =2,x 1、x 2是方程x 2+2x +1-p 2=0的两根,求(1+x 1)(1+x 2)的值(2) 求证:无论p 为何值,方程总有两个实数根19.(本题8分)一个二次函数,当自变量x =0时,函数值y =-1;当x =-2与21时,y =0(1) 求这个二次函数的解析式(2) 当y >0时,x 的取值范围是__________(直接写出结果)20.(本题8分)如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(1,1)、B(5,1)、C(4,4)(1) 将△ABC向左平移5个单位得到△A1B1C1,写出△A1B1C1三顶点的坐标(2) 将△ABC绕原点O逆时针旋转90°后得到△A2B2C2,请你写出三顶点的坐标(3) △A1B1C1与△A2B2C2重合部分的面积为__________(直接写出)21.(本题8分)世博会中国国家馆的平面示意图如图,其外框是一个大正方形,中间四个全等的小正方形(阴影部分)是支撑展馆的核心筒,标记了字母的五个全等的正方形是展厅.已知核心筒的边长比展厅的边长的一半多一米,外框的面积刚好是四个核心筒面积和的9倍,求核心筒的边长22.(本题10分)某公司计划从甲、乙两种产品中选择一种生产并销售,每年产销x件.已其中a为常数,且80≤a≤100(1) 若产销甲乙两种产品的年利润分别为y1万元、y2万元,直接写出y1、y2与x的函数关系式(2) 分别求出产销两种产品的最大年利润(3) 为获得最大年利润,该公司应该选择产销哪种产品?请说明理由23.(本题10分)在Rt △ABC 中,AB =AC ,OB =OC ,∠A =90°,∠MON =α,分别交直线AB 、AC 于点M 、N(1) 如图1,当α=90°时,求证:AM =CN(2) 如图2,当α=45°时,问线段BM 、MN 、AN 之间有何数量关系,并证明之(3) 如图3,当α=45°时,旋转∠MON ,问线段之间BM 、MN 、AN 有何数量关系?并证明之24.(本题12分)如图,已知一次函数y 1=x +b 的图象l 与二次函数y 2=-x 2+mx +b 的图象C ′都经过点B (0,1)和点C ,且图象C ′过点A (52-,0)(1) 求y 1和y 2的解析式(2) 设使y 2>y 1成立的x 取值的所有整数和为n ,若n 是关于x 的方02211=-+⎪⎭⎫ ⎝⎛-+x x a a 的根,求a 的值(3) 若点F 、G 在图象C ′上,长度为22的线段DE 在线段BC 上移动,EF 与DG 始终平行于y 轴.当四边形DEFG 的面积最大时,在x 轴上求点P ,使PD +PE 最值小,求出点P 的坐标。
人教版2018年秋九年级数学上册期中试卷(含答案解析)

人教版2018年秋九年级数学上册期中试卷(含答案解析)2018年秋季九年级数学上册期中检测题,共120分,时间限制120分钟。
一、选择题(共30分)1.方程(x+2)^2=4的根是()A。
x1=4,x2=-4B。
x1=0,x2=-4C。
x1=0,x2=2D。
x1=0,x2=42.下列四个图形中,不是中心对称图形的是()A.B.C.D.3.将y=x^2+4x+1化为y=a(x-h)^2+k的形式,h,k的值分别为()A。
2,-3B。
-2,-3C。
2,-5D。
-2,-54.在同一坐标系中一次函数y=ax-b和二次函数y=ax^2+bx的图像可能为()A.B.C.D.5.如图,△ODC是由△OAB绕点O顺时针旋转30°后得到的图形,若点D恰好落在AB上,且∠AOC的度数为100°,则∠DOB的度数是()无图,无法判断)6.用配方法解方程3x^2-6x+1=0,则方程可变形为()A。
(x-3)^2=0B。
3(x-1)^2=0C。
(x-1)^2=0D。
(3x-1)^2=17.某商品原价800元,连续两次降价a%后售价为578元,下列所列方程正确的是()A。
800(1+a%)^2=578B。
800(1-a%)^2=578C。
800(1-2a%)=578D。
800(1-a^2%)=5788.将抛物线y=3x^2向右平移2个单位,再向上平移3个单位,得到抛物线的解析式是()A。
y=3(x+2)^2+3B。
y=3(x+2)^2-3C。
y=3(x-2)^2+3D。
y=3(x-2)^2-39.把一个物体以初速度v(米/秒)竖直向上抛出,在不计空气阻力的情况下,物体的运动路线是一条抛物线,且物体的上升高度h(米)与抛出时间t(秒)之间满足:h=vt-gt^2(其中g是常数,取10米/秒^2)。
某时,XXX在距地面2米的O点,以10米/秒的初速度向上抛出一个小球,抛出2.1秒时,该小球距地面的高度是()A。
2017-2018学年湖北省武汉市东西湖区九年级上期中数学(有答案)

东西湖区2017~2018学年度上学期九年级数学期中测试卷一、选一选,比比谁细心(本大题共10小题,每小题3分,共30分)1.一元二次方程4(+2)=25化成一般形后二次项的系数、一次项的系数和常数项分别是() A .4、2、25 B .4、8、25C .4、2、-25D .4、8、-253.用配方法解方程2-2-5=0时,原方程应变形为() A .(+1)2=6B .(+2)2=9C .(-1)2=6D .(-2)2=93.如果-2是方程2-m =0的一个根,则m 的值为() A .4B .-4C .2D .-24.将二次函数y =(-1)2的图象先向右平移1个单位,再向上平移1个单位后顶点为() A .(0,1)B .(2,1)C .(1,-1)D .(-2,1)5.下列四个图中是中心对称图形的是()6.已知1、2是一元二次方程2-3-1=0的两个根,则1+2的值为() A .3B .-3C .1D .-17.如图,在同一平面内,将△ABC 绕A 点逆时针旋转到△ADE 的位置.若AC ⊥DE ,∠ABD =62°,则∠ACB 的度数为() A .56°B .44°C .40°D .34°8.函数y =2-6+3的图象与轴有交点,则的取值范围是() A .<3B .<3且≠0C .≤3D .≤3且≠09.某市2018年应届初中毕业生人数约6.8万,比去年减少约0.2万,其中报名参加中考的学生人数约6.5万,比去年增加0.3万,下列结论:①与2017年相比,2018年该市应届初中毕业生人数下降了%1008.62.0⨯ ②与2017年相比,2018年该市应届初中毕业生报名参加中考人数增加了%1005.63.0⨯ ③与2017年相比,2018年该市应届初中毕业生报名参加中考人数占应届初中毕业生人数的百分比提高了%100)72.68.65.6(⨯-.其中正确的结论个数是()www.wh111 A .0 B .1 C .2 D .310.下列命题:①若b =a +c 时,一元二次方程a 2+b +c =0一定有实数根;②若方程a 2+b +c =0有两个不相等的实数根,则方程c 2+b +a =0也一定有两个不相等实数根;③若二次函数y =a 2+c ,当取1、2(1≠2)时,函数值相等,则当取1+2时函数值为0;④若b2-4ac>0,则二次函数y=a2+b+c的图像与坐标轴的公共点的个数是2或3,其中正确结论的个数是()A.1个B.2个C.3个D.4个二、填一填, 看看谁仔细(本大题共6小题,每小题3分,共18分)11.一元二次方程2-=0的解是____________12.函数y=4(-3)2+7的顶点坐标是__________13.已知点A(3,4),将OA绕原点O逆时针旋转90°得到OA′,则点A′的坐标是__________ 14.若二次函数y=2++1的函数值恒为正数,则的取值范围是__________15.如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B、O分别落在点B、C1处,点B1在轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在轴上,将△A1B1C2 15,0)、绕点C2顺时针旋转到△A2B2C2的位置,点A2在轴上,依次(无滑动)进行下去…….若点A(3B(0,4),则点B的坐标为_____________201816.如图,在△ABC中,∠ACB=90°,D为边AB的中点,E、F分别为边AC、BC上的点,且AE=AD,BF=BD.若DE=2,DF=2,则AB的长为__________三、解一解,试试谁更棒(本大题共8小题,共72分)17.(本题8分)请按指定的方法解方程,否则不得分(1) 2-4-21=0(配方法)(2) 2--5=0(公式法)18.(本题8分)已知关于的方程2+2+1-p2=0(1) 若p=2,1、2是方程2+2+1-p2=0的两根,求(1+1)(1+2)的值(2) 求证:无论p为何值,方程总有两个实数根1时,y=019.(本题8分)一个二次函数,当自变量=0时,函数值y=-1;当=-2与2(1) 求这个二次函数的解析式(2) 当y>0时,的取值范围是__________(直接写出结果)20.(本题8分)如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(1,1)、B(5,1)、C(4,4)(1) 将△ABC向左平移5个单位得到△A1B1C1,写出△A1B1C1三顶点的坐标(2) 将△ABC绕原点O逆时针旋转90°后得到△A2B2C2,请你写出三顶点的坐标(3) △A1B1C1与△A2B2C2重合部分的面积为__________(直接写出)21.(本题8分)世博会中国国家馆的平面示意图如图,其外框是一个大正方形,中间四个全等的小正方形(阴影部分)是支撑展馆的核心筒,标记了字母的五个全等的正方形是展厅.已知核心筒的边长比展厅的边长的一半多一米,外框的面积刚好是四个核心筒面积和的9倍,求核心筒的边长22.(本题10分)某公司计划从甲、乙两种产品中选择一种生产并销售,每年产销件.已知产销两种产品的有关信息如下表:(1)若产销甲乙两种产品的年利润分别为y 1万元、y 2万元,直接写出y 1、y 2与的函数关系式 (2) 分别求出产销两种产品的最大年利润(3) 为获得最大年利润,该公司应该选择产销哪种产品?请说明理由23.(本题10分)在Rt △ABC 中,AB =AC ,OB =OC ,∠A =90°,∠MON =α,分别交直线AB 、AC 于点M 、N(1) 如图1,当α=90°时,求证:AM =CN(2) 如图2,当α=45°时,问线段BM 、MN 、AN 之间有何数量关系,并证明之(3) 如图3,当α=45°时,旋转∠MON ,问线段之间BM 、MN 、AN 有何数量关系?并证明之24.(本题12分)如图,已知一次函数y 1=+b 的图象l 与二次函数y 2=-2+m +b 的图象C ′都经过点B (0,1)和点C ,且图象C ′过点A (52-,0)(1) 求y 1和y 2的解析式(2) 设使y 2>y 1成立的取值的所有整数和为n ,若n 是关于的方02211=-+⎪⎭⎫ ⎝⎛-+x x a a 的根,求a 的值 (3)若点F 、G 在图象C ′上,长度为22的线段DE 在线段BC 上移动,EF 与DG 始终平行于y 轴.当四边形DEFG 的面积最大时,在轴上求点P ,使PD +PE 最值小,求出点P 的坐标2017~2018学年度上学期九年级数学期中测试题参考答案及评分标准一、选一选, 比比谁细心1. D2. C3. A4. B5.C6.A7. D8. D9.B 10.B二、填一填, 看看谁仔细11.0或1 12. (3,7) 13. (-3, 4) 14.14k >15. (10090,4) 16. 三、 解一解, 试试谁更棒(本大题共9小题,共72分)17.解:⑴移项,得2421x x -=…………………………………1分配方,得2(2)25x -=…………………………………2分∴25x -=±…………………………………3分 ∴127,3x x ==-…………………………………4分⑵250x x --=1,1, 5.a b c ==-=-…………………………………1分224(1)41(5)21b ac -=--⨯⨯-=…………………………………2分∵(1)122x --±±== …………………………………3分∴12x x ==…………………………………4分 18.解:⑴-4;⑵略.每问4分. 19.解:⑴2312y x x =+-; ⑵122x x <->或.20.解:⑴111(4,1),(0,1),(1,4)A B C --.⑵222(1,1),(1,5),(4,4)A B C ---正确写出每一个点1分.⑶94. …………………………2分.21.解:设核心筒的边长为x 米,则展厅的边长为21x -()米 …………………………2分 根据题意,得22[2(1)32]94x x x -⨯+=⨯ …………………………5分解之得1233,7x x ==…………………………6分 ∵317<,不符合题意,舍去,∴3x = …………………………7分 答:核心筒的边长为3米. …………………………8分22.解:⑴13y x a =-(0100)x <≤…………………………………………1分220.11030y x x =-+-(040)x <≤…………………………………………2分⑵甲产品 :∵3>0,∴y x 随的增大而增大∴当100x =时,1300y a =-最大值 (80≤a ≤100)…………………………………………3分乙产品 :220.150220y x =--+()(040)x <≤……………………………………4分当040x <≤时,y x 随的增大而增大∴当40x=时,2210y =最大值 (万元)…………………………………………5分∴甲产品的最大利润为300a -()万元,乙产品的最大利润为210万元.……………………………6分 ⑶①当12y y >最大值最大值时,即300210a ->,90a <,∴8090a ≤<时,甲种产品利润高.…………………………………………7分 ②当12y y =最大值最大值时,即300210a -=,90a =,两种产品利润相同.……………………8分 ③当12y y <最大值最大值时,即300210a -<,90a >,∴90100a <≤时,乙种产品利润高.…………………………………………9分 综上所述:当8090a ≤<时,选甲种产品.当90a =,选择谁都一样.当90100a <≤时,选乙种产品.…………………………………………10分23.证⑴连结OA ,∵AB=AC,OB=OC ,∴OA ⊥BC, ∴∠AOC=90°………………………………………1分 ∵∠MON=90°,∴∠AOM=∠CON, ∵∠A=90°, ∴∠B=∠C=45°,∴OA=OC∴△AOM ≌△CON ………………………………………2分 ∴AM=CN ………………………………………3分⑵在BA 上截取BG=AN,连OA 、OG,由OA=OB,∠B=∠A=45°,可证△OBG ≌△OAN,…………4分 得OG=ON,∠BOG=∠AON,………………………………………5分∵∠AOB=90°,∴∠GON=90°,∵∠MON=45°,∴∠GOM=∠MON=45°……………………6分 ∴△GOM ≌△NOM,得MN=GM,∴BM= MN+AN.………………………………………7分证二:作O ⊥OM,先证△DOM ≌△EO,得OM=O,再证△BOM ≌△AO,得BM=A,证△OMN ≌△ON,得MN=N.⑶作OG ⊥OM 交AB 的延长线于点G ,∵∠AOB=90°,∴∠BOG=∠AON,可证∠OAN=∠OBG=135°,OA=OB,∴△OAN ≌△OBG, ………………………………………8分 ∴ON=OG,AN=BG,∵∠MON=45°,∴∠GOM=∠MON=45°,OM=OM ∴△GOM ≌△NOM, ………………………………………9分 ∴MN=GM,∴BM=MN-AN.………………………………………10分 证二:截取A=BM.其它方法参照给分24.解:(1)∵二次函数y 2=﹣2+m +b 经过点B (0,1)与A(2-0),∴21(2(20b m b =⎧⎪⎨-+-+=⎪⎩………………………………1分解之得41m b =⎧⎨=⎩∴l :y 1=+1;………………………………2分C ′:y 2=﹣2+4+1.………………………………3分(2)联立y 1与y 2得: +1=﹣2+4+1,解得10x =或32=x ……………………4分 当3=x 时,y 1=×+1=4,∴C (3,4).………………………………5分 使y 2>y 1成立的的取值范围为0<<3, ∴n=1+2=3.………………………………6分 代入方程得0232311=-+⨯⎪⎭⎫ ⎝⎛-+a a 解之得a =52;………………………………7分 (3)∵点D 、E 在直线l :y 1=+1上,∴设D (p , p +1),E (q , q +1),其中q >p >0.如答图1,过点E 作EH ⊥DG 于点H ,则EH =q ﹣p ,DH =(q ﹣p ).在Rt △DEH 中,由勾股定理得:H E 2+DH 2=DE 2,即(q ﹣p )2+[(q ﹣p )]2=()2, 解之得q ﹣p =2,即q =p +2.………………………………8分 ∴EH =2,E (p +2, p +3). 当=p 时,y 2=﹣p 2+4p +1, ∴G (p ,﹣p 2+4p +1),∴DG =(﹣p 2+4p +1)﹣(p +1)=﹣p 2+3p ; 当=p +2时,y 2=﹣(p +2)2+4(p +2)+1=﹣p 2+5, ∴F (p +2,﹣p 2+5)∴EF=(﹣p2+5)﹣(p+3)=﹣p2﹣p+2.S四边形DEFG =1122DEG EFGS S GD HE EF HE+=+=12(DG+EF)•EH=12[(﹣p2+3p)+(﹣p2﹣p+2)]×2=﹣2p2+2p+2………………………………9分∴当p=12时,四边形DEFG的面积取得最大值,∴D(12,32)、E(52,72).如答图2所示,过点D关于轴的对称点D′,则D′(12,32-);……………………10分连接D′E,交轴于点P,PD+PE=PD′+PE=D′E,由两点之间线段最短可知,此时PD+PE最小.设直线D′E的解析式为:y=+b,则有57221322k bk b⎧+=⎪⎪⎨⎪+=-⎪⎩………………………………11分解之得52114 kb⎧=⎪⎪⎨⎪=-⎪⎩∴直线D′E的解析式为:51124 y x=-令y=0,得1110 x=,∴P(1110,0)………………………………12分。
2018年秋九年级数学上册(武汉):期中检测题

2018年秋九年级数学上册(武汉):期中检测题学校_________ 班级__________ 姓名__________ 学号__________一、单选题1. 方程(x+2)2=4的根是()A.x1=4,x2="-4" B.x1=0,x2="-4" C.x1=0,x2="2" D.x1=0,x2=42. 下列四个图形中,不是中心对称图形的是()A.B.C.D.3. 将y=x2+4x+1化为y=a(x-h)2+k的形式,h,k的值分别为( ) A.2,-3 B.-2,-3 C.2,-5 D.-2,-54. 在同一坐标系中一次函数y=ax﹣b和二次函数y=ax2+bx的图象可能为()A.B.C.D.5. 如图,△ODC是由△OAB绕点O顺时针旋转30°后得到的图形,若点D恰好落在AB上,且∠AOC的度数为100°,则∠DOB的度数是()A.40°B.30°C.38°D.15°6. 用配方法解方程3x2﹣6x+1=0,则方程可变形为()A.(x﹣3)2=B.3(x﹣1)2=C.(3x﹣1)2=1D.(x﹣1)27. 某商品原价800元,连续两次降价a %后售价为578元,下列所列方程正确的是( )A .800(1+a%)2=578B .800(1-a%)2=578 C .800(1-2a%)=578 D .800(1-a 2%)=5788. 若将抛物线y=x 2向右平移2个单位,再向上平移3个单位,则所得抛物线的表达式为() A . B .C .D .9. 把一个物体以初速度v 0(米/秒)竖直向上抛出,在不计空气阻力的情况下,物体的运动路线是一条抛物线,且物体的上升高度h(米)与抛出时间t(秒)之间满足:h =v 0t - gt 2(其中g 是常数,取10米/秒2).某时,小明在距地面2米的O 点,以10米/秒的初速度向上抛出一个小球,抛出2.1秒时,该小球距地面的高度是( ) A .1.05米 B .-1.05米 C .0.95米 D .-0.95米10. 抛物线y =ax 2+bx +c(a≠0)的对称轴为直线x =-1,与x 轴的一个交点在(-3,0)和(-2,0)之间,其部分图象如图,则下列结论:①4ac-b 2<0;②2a-b =0;③a+b +c <0;④点(x 1,y 1),(x 2,y 2)在抛物线上,若x 1<x 2,则y 1<y 2 .正确结论的个数是( )A .1B .2C .3D .4二、填空题11. 在平面直角坐标系内,若点P (﹣1,p )和点Q (q ,3)关于原点O 对称,则pq 的值为_____.12. 已知关于的一元二次方程有一个非零实数根,则的值为_____.13. 已知二次函数的图象经过点(1,3)和(3,3),则此函数图象的对称轴与x 轴的交点坐标是___.14. 已知m是方程x2﹣x﹣1=0的一个根,则m(m+1)2﹣m2(m+3)+4的值为________15. 如图,等腰直角△ABC中,AC=BC,∠ACB=90°,点O分斜边AB为BO:OA=1:,将△BOC绕C点顺时针方向旋转到△AQC的位置,则∠AQC=___________.16. 已知函数,若使y=k成立的x值恰好有三个,则k 的值为________.三、解答题17. 解下列方程:(1)2x2﹣x=1(2)x2+4x+2=0.18. 如图,正方形ABCD的边长为6,E,F分别是AB,BC边上的点,且,将绕点D逆时针旋转,得到.求证:.当时,求EF的长.19. 已知关于x的方程x2﹣(2m+1)x+m(m+1)=0 (1)求证:方程总有两个不相等的实数根;(2)设方程的两根分别为x1、x2,求x12+x22的最小值.20. 如图,矩形ABCD的长AD=5 cm,宽AB=3 cm,长和宽都增加x cm,那么面积增加y cm2.(1)写出y与x的函数关系式;(2)当增加的面积y=20 cm2时,求相应的x是多少?21. 如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(﹣3,2),B (0,4),C(0,2).(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C1,平移△ABC,若点A的对应点A2的坐标为(0,﹣4),画出平移后对应的△A2B2C2;(2)若将△A1B1C1绕某一点旋转可以得到△A2B2C2,请直接写出旋转中心的坐标.序号 1 2 3 …图形x xyx x x x xy yx x xy yx x x x x xxy y yx x xxy y yx x xxy y yx x x…x我们把某格中字母的和所得到的多项式称为特征多项式,例如第1格的“特征多项式”为4x+y.回答下列问题:(1)第2格的“特征多项式”为____,第n格的“特征多项式”为____;(n为正整数)(2)若第1格的“特征多项式”的值为-8,第2格的“特征多项式”的值为-11.①求x,y的值;②在此条件下,第n格的“特征多项式”是否有最小值?若有,求最小值和相应的n值;若没有,请说明理由.23. 已知∠MAN=135°,正方形ABCD绕点A旋转.(1)当正方形ABCD旋转到∠MAN的外部(顶点A除外)时,AM,AN分别与正方形ABCD的边CB,CD的延长线交于点M,N,连接MN.①如图1,若BM=DN,则线段MN与BM+DN之间的数量关系是;②如图2,若BM≠DN,请判断①中的数量关系是否仍成立?若成立,请给予证明;若不成立,请说明理由;(2)如图3,当正方形ABCD旋转到∠MAN的内部(顶点A除外)时,AM,AN 分别与直线BD交于点M,N,探究:以线段BM,MN,DN的长度为三边长的三角形是何种三角形,并说明理由.24. 如图,在平面直角坐标系中,二次函数y=x2-2x-3的图象与x轴交于A,B两点,与y轴交于点C,连接BC,点D为抛物线的顶点,点P是第四象限的抛物线上的一个动点(不与点D重合).(1)求∠OBC的度数;(2)连接CD,BD,DP,延长DP交x轴正半轴于点E,且S△OCE =S四边形OCDB,求此时P点的坐标;(3)过点P作PF⊥x轴交BC于点F,求线段PF长度的最大值.。
武汉地区2018-2019学年度九年级上期中考试数学试卷含答案

武汉地区2019-2019学年度上学期期中考试九年级数学试卷一、选择题(共10小题,每小题3分,共30分)1.将方程x2-8x=10化为一元二次方程的一般形式,其中二次项系数为1,一次项系数、常数项分别是()A.-8、-10 B.-8、10 C.8、-10 D.8、102.下列四个图形分别是四场国际数学家大会的会标,其中属于中心对称图形的有()A.4个B.3个C.2个D.1个3.一元二次方程x2+3x-2=0的根的情况是()A.有两个相等的实数根 B.没有实数根 C.有两个不相等的实数根 D.无法确定4.抛物线y=-3(x+1)2-2顶点坐标是()A.(-1, 2) B.(-1,-2) C.(1,-2) D.(1,2)5. 若x1、x2是方程x2+3x-6=0的两根,则x1+x2的值是()A.-3 B.3 C.-6 D.66.某树主干长出若干数目的支干,每个支干又长出同样数目小分支,主干、支干和小分支总数是57.若设主干长出x个支干,则可列方程是()A.(1+x)2=57 B.1+x+x2=57C.(1+x)x=57 D.1+x+2x=577. 在△ABC中,∠CAB=26°,在同一平面内,将△ABC绕点A旋转α°到三角形AB'C'的位置使得CC'∥AB 则α=()A.138 B.128 C.118 D.1088.如图,半径为5的⊙A中,已知DE=6,∠BAC+∠EAD=180°,则弦BC的长为()A.41 B.61 C.11 D.89.设A(-2,y1)、B(1,y2)、C(2,y3)是抛物线y=-(x+1)2+m上的三点,则y1、y2、y3的大小关系为()A.y1>y2>y3 B.y1>y3>y2 C.y3>y1>y2 D.y2>y1>y310.如图,中,∠C=90°,AC=BC=,将△ABC绕点A顺时针方向旋转60°到△A’B’C’的位置,连接BC’,则线段BC’的长为()A. B.C. D.1二、填空题(共6小题,每小题3分,共18分)11.在平面直角坐标系中,点A(-3,2)关于原点对称点的坐标为__________B'C'BA12.如图,⊙O的直径CD=10 cm,AB是⊙O的弦,AB⊥CD,垂足为M,OM∶OC=3∶5,则AB的长为__________13.关于x的一元二次方程有实数根,则整数a的最大值是__________14.已知点A(a,m)、B(b,m)、P(a+b,n)为抛物线y=x2-2x-2上的点,则n=__________15.在平面直角坐标系中,对于平面内任一点(a,b),若规定以下三种变换:①②③; 按照以上变换有:那么__________16.已知a、b是方程x2-2x+m-1=0(m≠1)的两根,在直角坐标系下有A(a,0)、B(0,b),以AB为直径作⊙M,则⊙M的半径的最小值为_________三、解答题(共8小题,共72分)17.(本题8分)解方程:18. (本题8分)如图是一块车轮碎片的示意图,点O是这块轮片的圆心,AB=24 cm,C 是弧AB上一点,OC⊥AB,垂足为D,CD=4 cm,求原轮片的半径19.(本题8分)如图,△ABC的三个顶点都在边长为1的小正方形组成的网格的格点上,以点O为原点建立直角坐标系,回答下列问题:(1)将△ABC先向上平移5个单位,再向右平移1个单位得到△,画出△,并直接写出的坐标;(2)将△绕点(0,-1)顺时针旋转90°得到△,画出;(3)观察图形发现,是由△ABC绕点顺时针旋转度得到的。
2018年九年级(上)期中数学试题(含答案)- 精品

2018—2018学年度第一学期期中考试九年级数学试题(三年制)题号一二三总分16 17 18 19 20 21 22 23 24 25得分选择题答题栏题号 1 2 3 4 5 6 7 8 9 10答案一、选择题(本大题满分30分,每小题3分.每小题只有一个符合题意的选项,请你将正确选项的代号填在答题栏内)1.8的立方根是A.2B. ±2C. 4D. ±42.下列图形中,是中心对称图形的是A.B.C.D.3.化简154122⨯+的结果是A.52B.63C.3D.534.估算171+的值在A.2和3之间B.3和4之间C.4和5之间D.5和6之间5.一元二次方程240x x c++=中,0c<,该方程的解的情况是A.没有实数根B.有两个相等的实数根C.有两个不相等的实数根D.不能确定6.已知:如图所示,正方形ABCD是⊙O的内接四边形,点P是劣弧上不同于点C的任意一点,则∠BPC的度数是A.45°B.60°C.75°D.90°九年级数学试题(三年制)第1页(共8页)(第6题图)POBCDACD7. 用配方法解方程x 2-2x -5=0时,原方程应变形为A .(x +1)2=6B .(x +2)2=9C . (x -1)2=6D .(x -2)2=98. 如果关于x 的一元二次方程x 2+px +q =0的两根分别为x 1=2,x 2=1,那么p ,q 的值分别是A .3,2B . -3,-2C . 3,-2D . -3,29. 若关于x 的一元二次方程 (k -1)x 2+x -k 2=0的一个根为1,则k 的值为 A .-1 B .0 C .1 D .0或1 10. 如图,将半径为2cm 的圆形纸片折叠后,圆弧恰好经过圆心O , 则折痕AB 的长为 A .2cmB .3cmC .23cmD .25cm二、填空题(本大题满分15分,每小题3分,请你将答案填写在题目中的横线上)11.函数y =11-+x x 的自变量x 的取值范围为 . 12.如图,已知平行四边形ABCD 的两条对角线交于平面直角坐标系的原点,点A 的坐标为(-2,3),则点C 的坐标为 .13.点A (-2,6)到原点的距离是 .14.如图所示,若⊙O 的半径为13cm ,点p 是弦AB 上一动点,且到圆心的最短距离为5 cm ,则弦AB 的长为________cm .15.已知:如图,点E 、F 是半径为5cm 的⊙O 上两定点,点P 是直径AB 上的一动点,AB ⊥OF ,∠AOE =30°,则点P 在AB 上移动的过程中,PE +PF 的最小值是 cm .九年级数学试题(三年制)第2页(共8页)(第15题图)(第10题图)OAB(第14题图)OABP(第15题图)OABEFP (第12题图)y xABCDO三、解答题 (本大题满分55分, 解答要写出必要的文字说明或推演步骤)16.(本题满分6分)计算:①3 (12+8)②(24-21) +(81+6)17.(本题满分4分)解方程:3x (x -1)=2(x -1)九年级数学试题(三年制)第3页(共8页)18.(本题满分4分)如图,已知点A B ,的坐标分别为(0,0)(4,0),将ABC △绕点A 按逆时针方向旋转90°得到AB C ''△. (1)画出AB C ''△; (2)写出点C '的坐标; (3)求BB '的长.19.(本题满分4分)若关于x 的一元二次方程x 2+2kx +(k 2+2k -5)=0有两个实数根,分别是x 1,x 2 , ①求k 的取值范围.②若有x 1+x 2 =x 1x 2,则k 的值是多少?九年级数学试题(三年制)第4页(共8页)yO x123451234-1-2-3-4-1-2-3A B C65(第18题图)20.(本题满分4分)阅读下列材料:211+=)12)(21(12-+-=2-1,321+=)23)(32(23-+-=3-2,231+=)32)(23(32-+-=2-3,521+=)25)(52(25-+-=5-2.读完以上材料,请你计算下列各题: (1)1031+= .(2)11++n n = .(3)211++321++231++…+201120101+= .21.(本题满分5分)如图,已知AB 是⊙O 的弦,OB =2,∠B =30°,C 是弦AB 上任意一点(不与点A 、B重合),连接CO 并延长CO 交⊙O 于点D ,连接AD . (1)弦AB =________(结果保留根号); (2)当∠D =20°时,求∠BOD 的度数.九年级数学试题(三年制)第5页(共8页)OBDAC(第21题图)22.(本题满分6分)如图,要设计一幅宽为12cm ,长为20cm 的图案,其中有一横一竖的彩条,横竖彩条的宽度相等,如果要使彩条所占面积是图案面积的四分之一,应如何设计彩条的宽度?23.(本题满分7分)阅读理解:我们把d c b a称作二阶行列式,规定它的运算法则为bc ad dc ba -=.。
【精编】2017-2018学年湖北省武汉市武昌区九年级上期中数学试卷有答案.doc

2017-2018学年湖北省武汉市武昌区九年级(上)期中数学试卷一、选择题(3分×10=30分)1.(3分)下列汉字中,属于中心对称图形的是()A.B.C.D.2.(3分)方程x(x﹣2)=0的解是()A.0 B.2 C.0 或2 D.无解3.(3分)如图,在△ABC中,∠CAB=70°.在同一平面内,将△ABC 绕点A旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′=()A.30°B.35°C.40°D.50°4.(3分)菱形ABCD的一条对角线长为6,边AB的长是方程x2﹣7x+12=0的一个根,则菱形ABCD的周长为()A.16 B.12 C.16或12 D.245.(3分)将抛物线y=3x2向左平移2个单位,再向下平移1个单位,所得抛物线为()A.y=3(x+2)2﹣1 B.y=3(x﹣2)2+1C.y=3(x﹣2)2﹣1D.y=3(x+2)2+16.(3分)如图,将△ABC绕点C(0,﹣1)旋转180°得到△A'B'C,设点A的坐标为(a,b),则点A′的坐标为()A.(﹣a,﹣b)B.(﹣a.﹣b﹣1)C.(﹣a,﹣b+1)D.(﹣a,﹣b﹣2)7.(3分)如图,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,且∠OBC=45°,则下列各式成立的是()A.b﹣c﹣1=0 B.b+c﹣1=0 C.b﹣c+1=0 D.b+c+1=08.(3分)下列图形都是按照一定规律组成,第一个图形中共有2个三角形,第二个图形中共有8个三角形,第三个图形中共有14个三角形,…,依此规律,第五个图形中三角形的个数是()A.22 B.24 C.26 D.289.(3分)如图,△ABD内接于圆O,∠BAD=60°,AC为圆O的直径.AC 交BD于P点且PB=2,PD=4,则AD的长为()A.2B.2C.2D.410.(3分)△ABC中,AB=AC,∠BAC=30°,将AB绕着点A逆时针旋转m°(0<m<360)至AD,连BD,CD,且△DBC为等腰三角形,设△DBC的面积为s,则s的值有()个.A.2 B.3 C.4.D.5二、填空题(3分×6=18分)11.(3分)某种植物主干长出若干数目的枝干,每个分支又长出同样数目的小分支,主干、枝干、小分支的总数是91,每个枝干长出小分支.12.(3分)⊙O的半径为13cm,AB,CD是⊙O的两条弦,AB∥CD,AB=24cm,CD=10cm.则AB和CD之间的距离.13.(3分)已知a,b是方程x2+2x=2的两个实数根,则+= .14.(3分)如图,⊙O的直径AB长为10,弦AC的长为6,∠ACB的角平分线交⊙O于D,则CD长为.15.(3分)设a为实数,若方程|(x+3)(x+1)|=x+a有且仅有三个实数根,则a的值为.16.(3分)如图三角形ABC中,AB=3,AC=4,以BC为边向三角形外作等边三角形BCD,连AD,则当∠BAC= 度时,AD有最大值 .三、解答题17.(8分)解方程:x 2﹣2x=8.18.(8分).已知抛物线y=x 2+bx+c 的对称轴为x=2,且过点C (0,3)(1)求此抛物线的解析式;(2)证明:该抛物线恒在直线y=﹣2x+1上方.19.(8分)如图,△ABC 三个顶点的坐标分别为A (1,1),B (4,2),C (3,4).(1)请画出△ABC 向左平移5个单位长度后得到的△A 1B 1C 1;(2)请画出△ABC 关于原点对称的△A 2B 2C 2;(3)在x 轴上求作一点P ,使△PAB 的周长最小,请画出△PAB ,并直接写出P 的坐标.20.(8分)已知,P为等边三角形内一点,且BP=3,PC=4,将BP绕点B顺时针旋转60°至BP′的位置.(1)试判断△BPP′的形状,并说明理由;(2)若∠BPC=150°,求PA的长度.21.(8分)如图,C,D两点在以AB为直径的半圆上,AD平分∠BAC.(1)求证:OD∥AC;(2)若AB=20,AD=4,求AC的长.22.(10分)某商品的进价为每件40元,如果售价为每件50元,每个月可卖出210件;如果售价超过50元但不超过80元,每件商品的售价每上涨1元,则每个月少卖1件;如果售价超过80元后,若再涨价,则每涨1元每月少卖3件.设每件商品的售价为x元,每个月的销售量为y件.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)设每月的销售利润为W,请直接写出W与x的函数关系式;(3)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?23.(10分)在△OAB,△OCD中,OA=OB,OC=OD,∠AOB=∠COD=90°.(1)若O、C、A在一条直线上,连AD、BC,分别取AD、BC的中点M、N如图(1),求出线段MN、AC之间的数量关系;(2)若将△OCD绕O旋转到如图(2)的位置,连AD、BC,取BC的中点M,请探究线段OM、AD之间的关系,并证明你的结论;(3)若将△OCD由图(1)的位置绕O顺时针旋转角度α(0°<α<360°),且OA=4,OC=2,是否存在角度α使得OC⊥BC?若存在,请直接写出此时△ABC的面积;若不存在,请说明理由.24.(12分)已知,如图,在平面直角坐标系中,点A坐标为(﹣4,0),点B坐标为(0,4),点E为射线BA上的动点(点E不与点A,B重合),抛物线上存在动点T,使得∠EOT=45°,C为y轴正半轴上一点,且OC=AB,抛物线y=﹣x2+mx+n的图象经过A,C两点.(1)求此抛物线的函数解析式;(2)若点E的横坐标为﹣3,求点T的坐标;(3)抛物线上是否存在点P,使得S△ACP =2S△ABC,若存在,求点P的坐标;若不存在,说明理由.参考答案一、选择题1.D.2.C.3.C.4.A.5.A.6.D.7.D.8.C.9.B.10.C.二、填空题11.9.12.7cm 或17cm .13.1.14.7.15.3或.16.120,7.三、解答题17.解:方程整理得:x 2﹣2x ﹣8=0, 因式分解得:(x ﹣4)(x+2)=0, 解得:x 1=4,x 2=﹣2.18.解:(1)∵抛物线y=x 2+bx+c 的对称轴为x=2, ∴﹣=2,得,b=﹣4, ∵抛物线y=x 2+bx+c 过点C (0,3), ∴c=3,∴此抛物线的解析式为:y=x 2﹣4x+3;(2)证明:设y 1=x 2﹣4x+3,y 2=﹣2x+1,则y 1﹣y 2=(x 2﹣4x+3)﹣(﹣2x+1)=x 2﹣2x+2=(x ﹣1)2+1>0, ∴y 1>y 2,∴该抛物线恒在直线y=﹣2x+1上方.19.解:(1)△A 1B 1C 1如图所示;(2)△A 2B 2C 2如图所示;(3)△PAB 如图所示,P (2,0).20.解:(1)△BPP’是等边三角形.理由:∵BP 绕点B 顺时针旋转60°至BP′,∴BP=BP′,∠PBP=60°;∴△BPP′是等边三角形.(2)∵△BPP′是等边三角形, ∴∠BPP′=60°,PP'=BP=3,∠P′PC=∠BPC ﹣∠BPP=150﹣60°=90°;在Rt△P'′PC中,由勾股定理得P′C==5,∴PA=P′C=5.21.(1)证明:∵AD平分∠BAC,∴∠CAD=∠DAO,∵OA=OD,∴∠DAO=∠ODA,∴∠CAD=∠ODA,∴OD∥AC;(2)解:连接BD、BC,作DE⊥AB于E,如图,∵AB为直径,∴∠ACB=∠ADB=90°,在Rt△ADB中,BD==4,∵•DE•AB=•AD•BD,∴DE==4,∴OE==2,∵OD∥AC,∴∠DOE=∠CAB,∴Rt△ACB∽Rt△OED,∴=,即=,∴AC=4.22.解:(1)当50≤x≤80时,y=210﹣(x﹣50),即y=260﹣x,当80<x<140时,y=210﹣(80﹣50)﹣3(x﹣80),即y=420﹣3x.则,(2)由利润=(售价﹣成本)×销售量可以列出函数关系式w=﹣x2+300x﹣10400(50≤x≤80)w=﹣3x2+540x﹣16800(80<x<140),(3)当50≤x≤80时,w=﹣x2+300x﹣10400,当x=80有最大值,最大值为7200,当80<x<140时,w=﹣3x2+540x﹣16800,当x=90时,有最大值,最大值为7500,故售价定为90元.利润最大为7500元.23.解:(1)如图1中,作BH⊥OB,AH⊥OA,连接OM延长OM交BH于P,连接ON延长ON交AH于Q,连接PQ.∵OA=OB,∠AOB=∠OAH=∠OBH=90°,∴四边形OAHB是正方形,∵CM=MB,∴OM=MB,∴∠MBO=∠MOB,∵∠MBO+∠MBP=90°,∠MOB+∠MPB=90°,∴∠MBP=∠MPB,∴BM=PM=OM,同理可证ON=NQ,∴MN=PQ,∵MC=MB,MO=MP,∠CMO=∠PMB,∴△CMO≌△BMP,∴PB=OC,同理可证AQ=OD,∵OC=OD,∴AQ=PB=OC=OD,∵OA=OB=AH=BH,∴AC=BD=PH=QH,∵PQ=PH=AC,∴MN=AC.(2)结论:OM=AD,OM⊥AD.理由:如图2中,延长OM到H,使得MH=OM,设AD交OH于G,交OB于K.∵CM=BM,∠CMO=∠BMH,OM=MH,∴△CMO≌△BMH,∴OC=BH=OD,∠COM=∠H,∴OC∥BH,∴∠OBH+∠COB=180°,∵∠AOD+∠COB=180°,∴∠OBH=∠AOD,∵OB=OA,∴△OBH≌△AOD,∴AD=OH,∠OAD=∠BOH,∵∠OAD+∠AKO=90°,∴∠BOH+∠AKO=90°,∴∠OGK=90°,∴AD ⊥OH ,[来源:]∴OM=AD ,OM ⊥AD .(3)①如图3中,当OC ⊥BC 设,作CH ⊥OAY 于H .∵∠OCB=90°,OB=2OC ,∴∠OBC=30°,∠OCB=60°,∠COH=30°,∴CH=OC=1,BC=OC=2,∴S△ABC =S △AOB ﹣S △AOC ﹣S △BOC =6﹣2.②如图4中,作CH ⊥AO 于H .易知∠BOC=60°,∠COH=30°,可得CH=1,BC=2,∴S△ABC =S △AOB +S △BOC ﹣S △AOC =6+2,综上所述,△ABC 的面积为6+2或6﹣2.24.解:(1)∵点A 坐标为(﹣4,0),点B 坐标为(0,4), ∴OA=OB=4,AB=4,∴OC=AB=6,∴C (0,6),把A (﹣4,0)和C (0,6)代入y=﹣x 2+mx+n 得,解得,∴抛物线的解析式为y=﹣x 2﹣x+6.(2)如图1中,∵A(﹣4,0),B(0,4),∴直线AB的解析式为y=x+4,∴x=﹣3时,y=1,∴点E坐标(﹣3,1),作EG⊥OA于G,取点H(1,3),作HM⊥x轴于M,连接EH交抛物线于T.∵EG=OM=1,OG=HM=3,∠EGO=∠HMO=90°,∴△EOG≌△OHM,∴EO=OH,∠EOG=∠OHM,∴∠MOH+∠MHO=90°,∴∠EOG+∠HOM=90°,∴∠EOH=90°,∴∠OEH=∠EHO=45°,∵E(﹣3,1),H(1,3),∴直线EH的解析式为y=x+,由解得或,∵T在第二象限,∴T (,).(3)如图2中,由图象可知点P 只有在直线AC 下方,设点H (0,2),过点H 作AC 的平行线交抛物线于P 1,P 2.∵S △ACH =2S △ABC ,∴S △P1AC=S △P2AC=2S △ABC ,∵直线AC 的解析式为y=x+6,∴直线P 1P 2的解析式为y=x+2,由解得或,∴满足条件的点P 坐标为(﹣2+2,﹣1+3)或(﹣2﹣2,﹣1﹣3).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018---2018学年度上学期九年级数学期中测试卷 姓名 分数
一、选择题(3分×10=30分)
1、将一元二次方程5x 2
-1=4x 化成一般形式后,二次项的系数和一次项系数分别是( ) A 、5,-1 B 、5,4 C 、5,-4 D 、5,1
2、方程x 2
=25的解为( )
A 、x=5
B 、x=-65
C 、x=±5
D 、x=±5 3、下列函数中,当x>0时,y 随x 增大而减小的是( ) A 、y=x 2
B 、y=x -1
C 、y=
x 4
3
D 、y=-x 2 4、下列四个图形中,既是轴对称图形,又是中心对称图形的是( )
A B C D 8题图
5、关于x 的方程032)1(1
2=-+-+mx x
m m 是一元二次方程,则m 的取值是( )
A 、任意实数
B 、1
C 、―1
D 、±1
6、抛物线y=(x +2)2-3可以由抛物线y=x 2
平移得到,则下列平移过程正确的是( ) A 、先向左平移2个单位,在向上平移3个单位; B 、先向左平移2个单位,在向下平移3个单位; C 、先向右平移2个单位,在向下平移3个单位; D 、先向右平移2个单位,在向上平移3个单位;
7、已知x 1,x 2是一元二次方程x 2
―6x ―5=0的两个根,则x 1·x 2的值为( )
A 、6
B 、-6
C 、5
D 、-5 10题图
8、如图,△ABC 绕点C 按顺时针旋转150
到△DEC ,若点A 恰好在DE 上,AC ⊥DE ,则∠BAE 的度数为( )
A 、150
B 、550
C 、650
D 、75
9、今年我区高效课堂建设以“信息技术与课堂教学深度融合”为抓手,加强对教师队伍建设的投入,计划从今年起三年共投入3640万元,已知2015年已投入1000万元,设投入经费的年平均增长率为x ,根据题意,下面所列方程正确的是( )
A 、1000(1+x )2=3640
B 、1000(x 2+1)=3640
C 、1000+1000x +1000x 2=3640
D 、1000(1+x)+1000(1+x)2
=2640
10、已知二次函数y=ax 2
+bx +c(a ≠0)的图像如图,有下列5个结论:①abc>0;②b<a +c;③4a +2b +c>0;④2c<3b;⑤a +b>m(am +b)(m ≠1的实数)其中正确的结论个数有( )A 、2个 B 、3个 C 、4个 D 、5个
二、填空题(3分×6=18分)
11、已知x =-1是一元二次方程x 2
+mx +1=0的一个根,那么m 的值是_________
12、一个圆柱的高等于底面半径,写出它的表面积S 与底面半径r 的函数关系式为_________
13、已知点A (2,1),则绕原点O 逆时针旋转1800
后对应点的坐标是____________
14、一个二次函数,当自变量x=0时,函数值y=-1,当x=-2与
2
1
时,y=0,则这个二次函数的解析式是____________ 15、已知关于x 的一元二次方程ax 2
+bx +c=3的一个根为x=2,且二次函数y=ax 2
+bx +c 的对称轴是直线x=2,则抛物线的顶点坐标为______________
16、已知函数y=x 2+2(a +2)x +a 2
的图像与x 轴有两个交点,且都在x 轴的负半轴上,则a 的取值范围是_____________ 三、解答题(本大题共9小题,共72分)
17(本题6分)解方程:x 2
+3x -1=0(公式法) 18、(本题6分)一个二次函数的图像经过(0,-2),(-1,-1),(1,1)三点,求这个二次函数的解析式
19(本题6分)如果关于x 的一元二次方程x 2
+4x +a=0的两个不相等的实数根x 1,x 2满足x 1x 2-2x x -2x 2-5=0,求a 的值
20(本题7分)如图,在平面直角坐标系中,△ABC 的三个顶点的坐标分别为A(-3,-1),B (-5 ,-4),C (-2 ,-3)
(1)作出△ABC 向上平移6个单位,再向右平移7个单位的△A 1B 1C 1 (2)作出△ABC 关于y 轴对称的△A 2B 2C 2,并写出点C 2的坐标;
(3)将△ABC 绕点O 顺时针旋转900
后得到△A 3B 3C 3,请你画出旋转后的△A 3B 3C 3
21、(本题7分)请在同一坐标系中画出二次函数①221x y =
②
2
=y 置关系,指出②的开口方向、对称轴和顶点。
22(本题8分)在一块长16m 、宽12m 的矩形荒地上,小明要建造一个花园,并使花园所占的面积为荒地面积的一
半,其中花园四周小路的宽度都相等,求小路的宽。
23(本题10分)某公司拟用运营指数y 来量化考核司机的工作业绩,运营指数(y )与运输次数(n )和平均速度(x )
之间满足关系式为y=ax 2
+bnx +100,当n=1,x=30时,y=190;当n=2,x=40时,y=420 (1) 用含x 和n 的式子表示y ;
(2) 当运输次数定为3次,求获得最大运营指数时的平均速度;
(3) 若n=2,x=40,能否在n 增加m%(m>0),同时x 减少m%的情况下,而y 的值保持不变,若能,求出m 的值;若
不能,请说明理由。
参考公式:抛物线y=ax 2
+bx +c(a ≠0)的顶点坐标是(-a b 2,a
b a
c 442
-)
24(本题10分)如图,已知△ABC 是等腰三角形,顶角∠BAC=α(α<600
),D 是BC 边上的一点,连接AD ,线段AD 绕点A 顺时针旋转α到AE ,过点E 作BC 的平行线,交AB 于点F ,连接DE 、BE 、DF (1) 求证:BE=CD
(2) 若AD ⊥BC ,试判断四边形BDFE 的形状,并给出证明。
C B F
E
A
25(本题12分)在平面直角坐标系中,抛物线C 1:y=ax 2
-1 (1) 若抛物线过点A (1,0),求抛物线C 1的解析式;
(2) 将(1)中的抛物线C 1平移,使其顶点在直线L 1:y=x 上,得到抛物线C 2,若直线L 1与抛物线C 2交于点C 、D ,
求线段CD 的长;
(3) 将(1)中的抛物线C 1绕点A 旋转1800
后得到抛物线C 3,直线y=kx -2k +4与抛物线C 3只有唯一交点,求符
合条件的直线l 的解析式。
一、选择题
1、C
2、C
3、D
4、A
5、C
6、B
7、D
8、A
9、D 10、B 二、填空。