低功耗运放设计及在便携设备中的应用
一款高增益、低功耗、宽带宽全差分运放设计

一款高增益、低功耗、宽带宽全差分运放设计周吉;龚敏;高博【摘要】基于SMIC 0.18 μm工艺模型设计了一种低电压1.8 V下的高增益、低功耗、宽输出摆幅、宽带宽的运算放大器电路.采用增益自举技术的折叠共源共栅结构极大地提高了增益,并采用辅助运放电流缩减技术有效地降低了功耗,且具有开关电容共模反馈(SC-CMFB)电路.在Cadence spectre平台上仿真得到运放具有极高的开环直流增益(111.2 dB)和1.8V的宽输出摆幅,单位增益带宽576 MHz,相位裕度为58.4°,功耗仅为0.792 mW,在1 pF的负载时仿真得到0.1%精度的建立时间为4.597 ns,0.01%精度的建立时间为4.911 ns.【期刊名称】《电子与封装》【年(卷),期】2016(016)005【总页数】5页(P26-30)【关键词】低功耗;运算放大器;高增益;宽带宽;折叠共源共栅【作者】周吉;龚敏;高博【作者单位】四川省微电子技术重点实验室,四川大学物理学院,成都610064;四川省微电子技术重点实验室,四川大学物理学院,成都610064;四川省微电子技术重点实验室,四川大学物理学院,成都610064【正文语种】中文【中图分类】TN402运算放大器(简称运放)是许多模拟系统和混合信号系统中一个完整且关键的部分,随着无线通讯技术和CMOS集成电路制造工艺技术的迅猛发展,电源电压越来越低,功耗要求越来越小,但数模混合信号系统对分辨率和速度的要求却越来越高,因此高性能的运放设计成为了必要[1]。
根据模拟电路设计的“八边形法则[1]”,运放的关键性能参数如增益、速度、功耗、输出摆幅等参数相互制约,这对高性能放大器的设计提出了许多难题。
因此,设计同时具有高增益、宽带宽、宽输出摆幅并且低功耗的放大器便成为了本设计的难点[1,2,3]。
高速、高精度的应用需要运放具有很高的增益和带宽,而这必然会增加运放的功耗,Mersi A.等发表的文献中采用两级带补偿结构的运放功耗仅为0.86 mW[4],而这种结构对进一步提高运放带宽等有一定的局限性,本文采用了一种不同的低功耗运放结构,希望解决这个问题。
基于移动设备的D类放大器前置放大器的设计

【 A b s t r a c t 】A l o w p o w e r a n d l o w n o i s e p r e a m p l i i f e r o f c l a s s D p o w e r a m p l i i f e r b a s e d o n t h e S MI C 0 . 1 8 I x m p r o c e s s i s p r e s —
, ,
组成 , 这 里 采用 P M O S作 为 输 入 端 , 一 方
在 图 2中, 与 、 与 、 与 、 与
面可 以让 共模 输 入 电平 较低 , 另外 一 方 面, 由 于 P MO S较低 的载 流子 迁移 率 而使 运 算 放 大器 有 较低
的衬 底噪声 和 闪烁 噪声 , 从 而降低 了输 人参 考 噪声 。
p o r t a b l e p r o d u c t s .
【 K e y w o r d s 】l o w n o i s e ;l o w p o w e r ;c h o p p e r ; f u l l y —d i f f e r e n t i a l
1 引 言
大器模 块在 整个 D类 音频 功放 系统 中的功 能就 是调
艺时, M O S F E T 的器件噪声 可以表示为
-
2 ( + )
㈩
式 中, V 为 MO S管的等效噪声 , 单位为 V ; k为波
尔 兹曼 常 数 , k=1 . 3 8 X 1 0 J / K; T为 温 度 ; g 为 MO S管 跨 导 ; K f 为 闪烁 噪 声 系数 , 典 型 值 为 3× 1 0 V / F; C 。 为单 位面 积 的栅 氧化 层 电容 ; 和
详解运放七大应用电路设计

详解运放七大应用电路设计运放(Operational Amplifier,简称OPAMP)是一种高增益、直流耦合、差分放大器电路,常用于各种模拟电路和信号处理电路中。
它具备高增益、高输入阻抗、低输出阻抗、宽带宽等特点,适用于各种应用场景。
以下是运放的七大应用电路设计:1. 反相放大器(Inverting Amplifier):用于放大输入信号,但输出信号与输入信号具有180度相位差。
在反相放大器中,输入信号通过一个电阻R1作用在运放的反相端,而反相端还通过一个电阻R2与运放的输出端相连。
这种电路可以得到具有指定放大倍数的输出信号。
2. 同相放大器(Non-Inverting Amplifier):该电路与反相放大器结构类似,但是反相输入引脚和接地相连,而非反相输入引脚通过一个电阻与输出端相连。
同相放大器输出信号与输入信号相位相同。
3. 集成运放比例器(Integrator):该电路可将输入信号积分,输出信号与输入信号成正比。
集成运放比例器的电路还包括一个电容器,它与运放的反相输入端连接。
当输入信号施加到运放的非反相输入端时,电容器开始充电,导致运放的输出电压变化。
4. 集成运放微分器(Differentiator):该电路可对输入信号进行微分,输出信号与输入信号的导数成正比。
微分器电路使用一个电容器连接到运放的反相输入端,而电容器的另一端通过一个电阻与运放的输出端相连。
当输入信号通过电容器时,运放的输出电压变化,产生与输入信号的导数成正比的输出信号。
5. 增益调节器(Gain Adjuster):该电路可以通过改变反馈电阻值Rf来调整放大倍数。
增益调节器电路结合了反相放大器和用变阻器替代常规反馈电阻的电路设计。
通过改变变阻器的阻值,可以调节输出信号的放大倍数。
7. 限幅放大器(Clamp Amplifier):该电路可以将输入信号限制在一个特定范围内,并且不受输入信号的变化影响。
限幅放大器电路使用二极管来限制输入信号的范围。
集成运放的类型及应用

集成运放的类型及应用集成运放(即集成式运算放大器)是一种高增益、高输入阻抗以及低输出阻抗的电子放大器,广泛应用于电路设计和信号处理等领域。
下面将详细介绍集成运放的类型及应用。
1. 类型:目前,常见的集成运放有多种类型,包括普通运放、仪表运放、高速运放、低功耗运放等。
普通运放:普通运放是最常见的一种集成运放,具有宽带宽、高增益、高输入阻抗和低输出阻抗的特点。
它的主要应用领域包括信号放大、滤波、理想运算放大器电路设计等。
仪表运放:仪表运放是一种精密运放,具有高共模抑制比、低偏置电流和低噪声的特点。
它的主要应用领域包括电压、电流、温度等测量,以及精密仪器和设备的信号放大等。
高速运放:高速运放是一种具有高增益带宽积(GBW)和快速响应特性的运放,适用于高频信号处理和快速信号放大等应用。
它的主要应用领域包括通信系统、高速数据传输、高速采样和测量等。
低功耗运放:低功耗运放是针对低电源电压和低功耗要求而设计的集成运放。
它可以在低电源电压下正常工作,并具有低静态功耗和低失调电压的特点。
它的主要应用领域包括移动设备、便携式仪器和电池供电系统等。
2. 应用:集成运放作为一种重要的电子器件,在电路设计和信号处理等领域应用广泛。
下面列举一些常见的应用示例:信号放大:集成运放最常见的应用就是信号放大。
通过调整运放的增益,可以将微弱的传感器信号放大到适合后续处理的范围,如压力传感器、温度传感器等。
滤波器:集成运放可以被用来设计各种类型的滤波器,如低通滤波器、高通滤波器、带通滤波器等。
滤波器的设计可以通过选择运放的反馈电阻和电容来实现。
运算放大器电路设计:运算放大器电路是运放最重要的应用之一。
基于运算放大器的电路可以实现加法、减法、乘法、除法、积分、微分等运算,并被广泛应用于模拟电路设计、自动控制系统等领域。
电压和电流测量:仪表运放常用于电压和电流测量。
通过仪表运放的高共模抑制比和低偏置电流特性,可以实现高精度和高稳定性的电压和电流测量。
9种不同类型心电监护仪的设计方案,包括便携式、远

9种不同类型心电监护仪的设计方案,包括便携式、远
随着人们生活节奏加快,人口逐渐老龄化,心脏疾病成为危害人类健康和生命的主要疾病之一。
心电监护系统为心脏病人诊断和治疗提供了一个有效的手段,对心脏疾病的防治和诊断具有重大的意义,本文为大家介绍几种心电监护仪的设计方案,包括便携式,低功耗,远程监控等类型。
基于Android 的低功耗移动心电监控系统的设计方案
本文通过研究人体心电信号的各项主要特征和实际监测应用需求,设计开发了一套无线传感心电信息监测系统,该系统通过嵌入内衣穿戴的智能电极对心电信号进行采集处理,并通过目前已成为移动设备标配的蓝牙无线数据网络将心电数据发送至Android 智能监控终端进行接收数据的存储、管理和分析。
基于Linux 和MiniGUI 的心电监护仪设计
本介绍一种基于Linux 和MiniGUI 的心电监护系统,能够满足患者随时随地对心电进行方便快捷的监测,及时地发现异常情况并采取有效的措施,从而更好地保护人们的身体健康。
基于TMS320LF2407A DSP 的心电监护系统分析
本文设计了一种以TMS320LF2407A DSP 为信号处理器的心电监护系统,该系统把心电信号的采集、分析和显示集成于一体,而且系统体积小、成本低、便于携带、实用性强。
基于S3C2410 设计三导联远程心电监护
本方案是基于S3C2410 设计三导联远程心电监护系统,可以对心脏病患者进行实时监护。
具有无线传输功能,因而患者可以不受时间和空间的限制使用本系统。
系统的24 小时无间断心电图记录功能,足以捕捉突发性的异常心电数据,为医护人员提供有力的诊断依据。
电子硬件编程工程师岗位面试题及答案

电子硬件编程工程师岗位面试题及答案1.请介绍一下您的电子硬件编程背景和经验。
答:我持有电子工程学位,拥有五年以上的硬件编程经验。
在上一家公司,我负责设计和开发嵌入式系统,包括处理器选择、电路设计以及FPGA编程。
2.在嵌入式系统中,您是如何选择处理器的?答:在选择处理器时,我首先考虑了应用的要求,功耗限制,以及性能需求。
例如,在一个实时数据处理的项目中,我选择了一款具有高性能浮点运算能力的ARMCortex□M系列处理器。
3.请描述一次您成功解决电路设计中的问题的经历。
答:在之前的项目中,我面对电源噪声导致的干扰问题。
通过仔细分析电源线路,我实施了有效的滤波和隔离措施,成功地减小了系统中的噪声水平,确保了信号的稳定性。
4.您在FPGA编程中的经验是什么?答:我曾经设计过一个基于FPGA的高性能数据处理模块,通过使用Verilog语言编写硬件描述语言,实现了对大规模数据的并行处理。
这提高了系统的响应速度和处理能力。
5.如何处理硬件故障排除?答:我通常采用分步骤的方法,首先通过硬件分析工具检查电路连接和信号质量,然后逐步深入分析可能的故障原因。
在一个项目中,我成功地通过逻辑分析仪追踪并修复了一个时序问题。
6.请说明您在电源管理方面的经验。
答:我在设计过程中考虑了功耗优化,采用了低功耗组件,并实施了动态电压调整策略。
这在一次低功耗设备项目中,将系统待机功耗降低到最低水平时取得了显著成果。
7.如何确保您的硬件设计符合EMC要求?答:我在设计中采用了阻抗匹配、电磁屏蔽和滤波等技术,以减小电磁辐射和提高抗干扰性。
我还进行了实际的EMC测试,并在需要时进行修改,确保设计符合标准。
8.您在多层PCB设计中的经验是什么?答:我在多层PCB设计中有丰富的经验,通过合理的层间规划和信号布局,降低了信号串扰和电磁干扰。
在一个高密度PCB项目中,我成功地实现了稳定的信号完整性。
9.请描述一次您在团队中协作完成项目的经验。
运算放大器 应用场景

运算放大器应用场景运算放大器(Operational Amplifier,简称为Op Amp)是一种电子器件,被广泛应用于各种电路中。
它具有高增益、高输入阻抗、低输出阻抗等特点,可用于信号放大、滤波、比较、积分、微分等各种运算。
本文将介绍运算放大器的应用场景,并探讨其在各个领域中的重要作用。
1. 音频放大器在音响系统中,运算放大器常被用作音频信号的放大器。
通过调整运算放大器的电路参数,可以实现音频信号的放大和音质的改善。
同时,运算放大器还可以实现音量控制、均衡调节等功能,使音响系统具备更好的音频性能。
2. 仪器测量运算放大器可以用于仪器测量中的信号放大和滤波。
例如,在温度测量中,传感器输出的微弱信号需要经过放大才能被测量仪器准确读取。
运算放大器的高增益和低噪声特性使其成为理想的信号放大器,在仪器测量领域得到广泛应用。
3. 控制系统运算放大器在控制系统中扮演着重要角色。
例如,在温度控制系统中,通过测量温度传感器输出的信号,经过运算放大器放大后,与设定温度进行比较,从而控制加热或制冷设备的工作状态。
运算放大器的高增益和高精度使得控制系统更加稳定和可靠。
4. 模拟计算机运算放大器广泛应用于模拟计算机中,用于模拟各种物理现象和过程。
例如,在模拟电路中,运算放大器可以模拟电压、电流、电阻等元件,实现各种电路的运算。
在仿真实验中,运算放大器可以模拟各种物理变量,帮助学生理解和掌握物理原理。
5. 信号处理运算放大器在信号处理中的应用非常广泛。
例如,在音频信号处理中,运算放大器可以实现音频信号的滤波、均衡、混音等功能。
在图像信号处理中,运算放大器可以实现图像的增强、滤波、边缘检测等功能。
运算放大器的高增益和高精度使其成为信号处理领域的重要工具。
6. 通信系统运算放大器在通信系统中也有重要应用。
例如,在调制解调器中,运算放大器可以实现信号的解调和解码。
在电视接收机中,运算放大器可以实现信号的放大和解调,使电视机能够接收到清晰的图像和声音。
低压低功耗运算放大器的设计

摘要当今社会便携式电子产品已成为人们消费的主流,为了延长所用电池的寿命,驱使IC产品朝着低压低功耗的方向发展。
同时为了提高集成度降低成本,晶体管尺寸也在不断的降低。
所有这些使得电源电压变的越来越低,而晶体管的闭值电压并没有发生变化,结果对模数混合信号系统中的模拟电路设计提出了极大的挑战。
运算放大器作为大多数模拟系统中最基本模块,要求其在低压情况下具有高增益和宽带宽。
为了提高增益,传统的cascode结构由于其摆幅的降低已不再适合低压设计,这样只能通过增加级联的增益级数目来达到高增益目的。
但是由于出现了多个极点,使得多级放大器遭受了环路稳定性问题。
因此基于米勒补偿方法,该论文里提出了有源反馈频率补偿方法,该方法不仅保证了环路的稳定性,而且出现了一个左半平面零点,增加了相位裕度,降低了补偿电容尺寸,达到了宽带宽的目的,也提高了转换速率。
除此之外该论文里的运放增加了前馈增益级,这样就有效的控制了非主极点的Q值,保证了高频时补偿环路是负反馈的。
同时利用前馈跨导和输出级跨导设计了AB类输出级,提高了传输效率。
为了提高在低压环境下的信噪比,该论文里设计了具有恒定跨导和输出电流Rail-to-Rail输入级,这样就保证在整个共模输入范围内增益、带宽和转换速率是恒定的,同时也降低了补偿的难度。
相对于内部米勒补偿方法(NMC),该论文的补偿方法由于出现了左半平面零点,只需输出跨导和输入级跨导处于同一个数量级即可保证稳定性,而NMC却需要输出跨导远大于输入级跨导,因此该方法达到了低功耗的目的。
基于csmc0.5umCMOS工艺,利用speetre仿真工具,对所设计的运放进行了详细的仿真。
结果表明:在2.5V的电源电压下,功耗为1.28mw,直流增益107dB,单位增益带宽4M以上,相位裕度68℃,输入输出实现了全摆幅,达到了预期的目标。
关键词:低压低功耗;运算放大器;Rail-to-RailIAbstractIn today's society portable electronics products has become the mainstream of people consumption used to prolong battery life, drive IC products toward the direction of low-pressure low power consumption. To improve the level of integration cost reduction, transistor size is also in constant reduced. All of this makes the power supply voltage is becoming more and more low, and the transistor's closed value voltage and nothing changes of mixed signal system adc results of the analog circuit design puts forward the great challenges.Operational amplifier as most simulation system is the most basic module, asking them at low cases has high gain .And wide bandwidth. In order to improve the gain, traditional. Ascode structure because of its place of lower no longer fit for low voltage asher .Plan, so only through cascade gain levels increased the number to achieve high gain purpose. But as presented many poles .Point, make suffered a loop multi-level amplifier stability issues. So abimelech compensation method based on the thesis puts forward .The active feedback frequency compensation method, this method not only ensure the stability of the loop, and it appeared a left brain flat .Surface zero, increased phase power margin, reduced compensation capacitor size, reached a wide bandwidth purpose, but also increased the turn change rate. Besides the papers increased the op-amp feed-forward gain level, thus effectively control the main pole .The Q value, and to ensure the high frequency compensation loop is negative when. Meanwhile feedforward transconductance and output level transconductance design.The AB, improving the level of output transmitting efficiency. In order to improve the environment in the low signal-to-noise ratio, this thesis designA constant transconductance and output current rall a rall to the input stage, such a guarantee in the whole input common-mode range gain, bandwidth and conversion rate is constant, but also reduce the difficulty of the compensation. Relative to the internal miller compensation method (NMC), this paper due compensation method of planar zero appeared, simply left output transconductance and input level transconductance in the same order of magnitude can guarantee stability, and then the NMC but need output transconductance far outweigh the input stage, so this method transconductance reached a low power consumption purposes.Based on sumcM0s process, use esmco. Speetre simulation tools, the design of op-amp carried on the detailed simulation. The results show that the voltage of power supply in 2.5 v, power consumption, dc gain for 1.28 mw 107dB, unity-gain bandwidth 4M above, phase margins, 68°, input/output achieved full swing, achieve the expected goal.Key words:low voltage;low power consumption; active frequency compensation Rail-to- Rail;operational amplifierII目录摘要 (I)Abstract ...................................................................................................................................... I I 1前言.. (1)1.1本研究的目的与意义 (1)1.2国内外研究文献综述 (1)1.3本研究的主要内容 (2)2运算放大器 (4)2.1放大器的原理 (4)2.2运算放大器的原理 (4)2.3理想运放和理想运放条件 (6)3运算放大器的模块分析与设计 (8)3.1运放的偏置电路设计 (8)3.2低压低功耗运算放大器的输入级设计 (9)3.3运放的增益设计 (10)3.4运放的输出级设计 (10)4低压低功耗运算放大器的整体设计 (13)4.1运放的整体结构与传输函数分析 (13)4.2运放的频率特性分析与参数设计 (17)4.3运放的整体电路 (21)5运算放大器的仿真与结果分析 (23)5.1运放的直流参数仿真 (23)5.2运放的交流参数仿真 (28)6结论 (30)参考文献 (31)致谢 (32)III- 1 -1前言1.1本研究的目的与意义近年来,随着长寿命便携式电子产品的广泛应用和高性能VLSI 系统集成的迅速发展,低功耗设计已逐渐成为当前集成电路设计的主要考虑因素之一[1]。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
低功耗运放设计及在便携设备中的应用
1.概述
近年来,以电池作为电源的电子产品得到广泛使用,设计师迫切要求采用低电压的模拟电路来降低功耗。
低电压、低功耗、低噪声的模拟电路设计技术正成为研究的热点。
从节约能源角度考虑,低的功率消耗不仅是电池驱动的便携设备的需求,即便对使用市电的大型系统也是迫切需要,它不但可以延长设备的使用时间,也可以延缓设备的老化。
运算放大器作为集成电路中最基本的单元,其重要性是众所周知的。
在低压运算放大器中,由于电源电压的降低,信号的动态范围减小,同时,噪声信号幅度相对增大,放大器的信噪比降低。
为了解决这些设计问题,帝奥微电子公司专门开发了几款低功耗低噪声运放来满足这个市场需求。
2. 背景
随着医疗电子设备产业的快速发展,用于个人保健的移动手持式医疗电子设备也同样在快速发展。
不管是手持式除颤仪还是动态血糖监视仪,设计这类产品都不是一件容易的事。
选择适当的元件满足设计规范要求、尽可能降低成本、确保设计方案的功率、特别关注产品的实际大小等等,都是在产品设计过程中必须考虑的问题。
同样随着国人安防安全意识的提高,烟雾探测设备进入千家万户,对低功耗(电池寿命长)灵敏度和可靠性高的消防产品设计提出了更高的要求。
血压监视仪的结构框图
不论是温度、脉搏、血糖读取或其它生物传感器,实施适当的信号放大调理链路都是最重要的问题。
在模拟前端电路中,运算放大器是最关键的单元,。