集成运放的分类及应用

合集下载

集成运放基本概念

集成运放基本概念

集成运放基本概念引言集成运放(Operational Amplifiers,简称为Op Amps)是一种重要的电子元件,广泛应用于模拟电路、信号处理、滤波、放大和计算等领域。

本文将介绍集成运放的基本概念,包括定义、特性、工作原理和常见应用。

定义集成运放是一种具有非常高的电压增益、宽带宽和差模输入阻抗的放大器。

它由多个晶体管和被动元件(如电阻和电容等)组成,通常采用芯片封装形式。

基本特性集成运放具有以下几个基本特性:1. 高增益集成运放的电压增益非常高(一般可达105-106之间),可将微弱的输入信号放大到较大的输出信号。

2. 宽带宽集成运放具有较宽的频带宽度,可放大较高频率的信号。

常见的集成运放的带宽在几十kHz到几百MHz之间。

3. 差模输入阻抗高差模输入阻抗是指集成运放对差模输入信号的接受能力,其值一般在几十兆欧姆到几百兆欧姆之间。

高差模输入阻抗可避免输入信号被影响和干扰。

4. 共模抑制比高共模抑制比是指集成运放对共模输入信号的抵抗能力,其值一般在几十分贝到几百分贝之间。

高共模抑制比可消除共模信号的影响,提高信号质量。

5. 输入和输出阻抗低输入和输出阻抗是指集成运放对输入和输出信号的阻碍程度,其值一般在几欧姆到几百欧姆之间。

低输入和输出阻抗可实现有效的信号耦合和传输。

工作原理集成运放的工作原理基于电流和电压的线性关系。

它接收输入信号并放大,然后将放大后的信号输出。

其基本工作原理如下:1.输入阶段:集成运放的输入阶段通常由差模输入对组成,一个对是非反相输入端,另一个对是反相输入端。

输入阶段将输入信号分别送入两对输入端。

2.差模输入放大:输入阶段的两对输入端把输入信号转换成差模信号。

差模输入信号经过放大器放大后,再次转换为单端信号传递给输出阶段。

3.输出阶段:输出阶段会将差模信号转换为单端输出信号,经过放大后输出。

输出阶段通常使用一个功放级或者输出级来实现。

集成运放的内部结构和指标会对其工作性能产生重要影响,如输入端偏置电压、共模范围、功率消耗、失调电流等。

集成运放的分类与特点

集成运放的分类与特点

模拟运放的分类及特点模拟运算放大器从诞生至今,已有40多年的历史了。

最早的工艺是采用硅NPN 工艺,后来改进为硅NPN-PNP 工艺。

在结型场效应管技术成熟后,又进一步的加入了结型场效应管工艺。

当MOS 管技术成熟后,特别是CMOS 技术成熟后,模拟运算放大器有了质的飞跃,一方面解决了低功耗的问题,另一方面通过混合模拟与数字电路技术,解决了直流小信号直接处理的难题。

经过多年的发展,模拟运算放大器技术已经很成熟,性能曰臻完善,品种极多。

按照集成运算放大器的功能和性能来分,集成运算放大器可分为如下几类。

1、通用型运算放大器通用型运算放大器实际就是具有最基本功能的最廉价的运放,是以通用为目的而设计的。

这类器件的主要特点是价格低廉、产品量大面广,其性能指标能适合于一般性使用。

目前对通用型的定义还不十分明确,此型的性能尚没有明确的标准。

可以大致认为,在不要求有突出参数指标情况下使用的运放就称之为通用型。

但是,由于运放的整体性能普遍提高,通用型的标准也有相对上浮趋势。

即过去的某些高性能运放,现在可能就变成了通用型。

根据实际参数指标,目前下列运放被划分为通用型:单运放系列中的uA709、uA741、MC1456、LM301A 、LF351、TL081等;双运放系列中的LM358、RC4558、MC1458、LF353、TL082等;四运放系列中的LM324、MC3403、LF347、TL084等。

通用型运算放大器因为其自己身的特点,应用面很广。

主要应用在技术要求适中的地方,以能满足工作要用,经济又实用为准。

通用型集成运放适用于放大低频信号。

在实际选用时,应尽量选用通用型运算放大器,因为它们容易购得且性价比高。

但其缺点是不能满足一点技术指标要求高的产品应用,不能满足一些特殊的技术服务只有通用型不能满足要求时,才能选用专用型,这样即可降低成本,又容易保证货源。

在通用型运放中,741A μ(单运放)、LM358(双运放)、LM324(四运放)及以场效应管为输入级的LF356等是目前应用最为广泛的集成运算放大器。

集成运算放大器原理及应用(含习题)

集成运算放大器原理及应用(含习题)

集成运算放大器原理及应用将电路的元器件和连线制作在同一硅片上,制成了集成电路。

随着集成电路制造工艺的日益完善,目前已能将数以千万计的元器件集成在一片面积只有几十平方毫米的硅片上。

按照集成度(每一片硅片中所含元器件数)的高低,将集成电路分为小规模集成电路(简称SSI) ,中规模集成电路(简称MSI), 大规模集成电路(简称LSI)和超大规模集成电路(VLSI)。

运算放大器实质上是高增益的直接耦合放大电路,集成运算放大器是集成电路的一种,简称集成运放,它常用于各种模拟信号的运算,例如比例运算、微分运算、积分运算等,由于它的高性能、低价位,在模拟信号处理和发生电路中几乎完全取代了分立元件放大电路。

集成运放的应用是重点要掌握的内容,此外,本章也介绍集成运放的主要技术指标,性能特点与选择方法。

一、集成运算放大器简介1. 集成运放的结构与符号1. 结构集成运放一般由4部分组成,结构如图1所示。

142图1 集成运放结构方框图其中:输入级常用双端输入的差动放大电路组成,一般要求输入电阻高,差摸放大倍数大,抑制共模信号的能力强,静态电流小,输入级的好坏直接影响运放的输入电阻、共模抑制比等参数。

中间级是一个高放大倍数的放大器,常用多级共发射极放大电路组成,该级的放大倍数可达数千乃数万倍。

输出级具有输出电压线性范围宽、输出电阻小的特点,常用互补对称输出电路。

偏置电路向各级提供静态工作点,一般采用电流源电路组成。

2. 特点:○1硅片上不能制作大容量电容,所以集成运放均采用直接耦合方式。

○2运放中大量采用差动放大电路和恒流源电路,这些电路可以抑制漂移和稳定工作点。

○3电路设计过程中注重电路的性能,而不在乎元件的多一个和少一个○4用有源元件代替大阻值的电阻○5常用符合复合晶体管代替单个晶体管,以使运放性能最好3. 集成运放的符号从运放的结构可知,运放具有两个输入端v P和v N和一个输出端v O,这两个输入端一个称为同相端,另一个称为反相端,这里同相和反相只是输入电压和输出电压之间的关系,若输入正电压从同相端输入,则输出端输出正的输出电压,若输入正电压从反相端输入,则输出端输出负的输出电压。

电工 单元九 集成运放

电工 单元九 集成运放

实际特性
饱和区
(l)开环电压放大倍数为无穷大,A0→∞ (2)运算放大器差模输入电阻,rid→∞ (3)输出电阻为零,r0几乎为零
(1) 线性区的特点
理想运放工作在线性区时有两个重要的特点:“虚短”
和“虚断”。即 u+≈u- i+= i-≈0 “虚短”表示集成运放的同相输入端与反相输入端的电 压近似相等,如同将该两点虚假短路一样。若运放其中一个 输入端接“地”,则有u+≈u-=0,这时称“虚地”。 “虚断”表示没有电流流入运放(因为理想运放的差模
集成运放开环时输出级的输出电阻,称为开环输出电阻。r0愈小, 集成运放带负载的能力就愈强。由于集成运放采用互补对称式 射极输出电路,其r0较低,一般为几十到几百欧。
(4)最大输出电压UOM
在标称电源电压和额定负载电阻的情况下,能使集成运放 输出电压和输入电压保持不失真关系的最大输出电压,称 为集成运放的最大输出电压。一般为电源电压的70%左右
对于单级运放电路,反馈元件(例如Rf)接到同相输入端是正反馈,接到 反相输入端是负反馈。
反馈的其他分类
1.直流反馈和交流反馈——反馈的信号 直流反馈:反馈信号是直流分量的称为直流反馈,直流反馈 用于稳定静态工作点。 交流反馈:反馈信号是交流分量的称为交流反馈。 有时反馈信号中既含有直流分量又含有交流分量。
一、开环、闭环、反馈ห้องสมุดไป่ตู้概念
1、定义
集成运放有两个输入端,一个输出端。当输出端和输入端之间 不外接电路,即两者之间在外部是断开的,这称为开环状态 当用一定形式的网络(如R、C等)在外部将它们连接起来,这称 为闭环状态,又称为反馈状态。
反馈在电和非电领域都得到了广泛的应用。通常自动控制和自动调节 系统都是基于反馈原理构成的;在放大电路中适当引入反馈、可以改善放 大电路的性能

集成运放分类

集成运放分类

集成运放分类 1.5 高压运算放大器 高压运算放大器具有高的工作电压、高的输出电压和高的共 模电压,下表列出了部分常用的高压运算放大器的特性指标。
XFC60的工作电压可以达到±30V,输出电压峰-峰值可以 达到±26V;XFC87C的工作电压可以达到±45V,输出电压 峰-峰值可以达到±38V。
集成运放分类
5~50nA
高精度型
25pA以下
集成运放分类 1.2 高输入电阻运算放大器
部分常见高输入电阻运算放大器型号及主要特性参数
集成运放分类
1.4 宽带运算放大器 宽带运放的特点是单位增益带宽和闭环带宽都比通用型的更 宽,同时,高频情况下运放的输入阻抗还包括容抗,因此运 放的输入电容也成为运放输入特性的一个重要指标。
65~100dB 0.1~2MΩ 1~3mV 5~50nA 10~200nA 70~90dB 0.5~2MHz
80~120mW
集成运放分类
1.1 通用运算放大器 常见的通用运放型号及主要性能下范围内:
开环增益A0d 65~100dB;差模输入电阻rid 0.1~2MΩ
输入失调电压Ui0 1~3mV; 输入失调电流Ii0 5~50nA
输入偏置电流IB 10~200nA;共模抑制比KCMR 70~90dB
单位增益带宽fc 0.5~2MHz;功耗W
80~120mW
集成运放分类
1.2 高精度运算放大器 与通用运算放大器相比,高精度运算放大器的特点是输入噪 声低、输入失调电压低、输入失调电压温漂低、差模增益高。
集成运放分类 1.7 低功耗运算放大器 低功耗型运放具有静态功耗低、工作电源电压低等优点。通 用型运放的功耗在80~120mW之间,低功耗运放的静态功 耗要比此低得多。

集成运放的种类归纳

集成运放的种类归纳

双极型运放:一般输入偏置电流及器件功耗较大,但由于采用 多种改进技术,所以种类多、功能强。

CMOS 型运放:输入阻抗高、功耗小,可在低电源电压下工作, 初期产品精度低、增益小、速度慢,但目前已有低失调电压、低噪 声、高速度、强驱动能力的产品。

BiFET 型运放:采用双极型管和单极型管混合搭配的生产工艺, 以场效应管作输入级,使输入电阻高达 以上。

一、按工作原理分类1.电压放大型实现电压放大,输出回路等效成由电压 。

2.电流放大型 实现电流放大,输出回路等效成由电流 。

3.跨导型控制的电压源控制的电流源将输入电压转换成输出电流,输出回路等效成由电压 电流源 = , 故称跨导 。

4.互阻型 将输入电流转换成输出电压,输出回路等效成由电流 电压源 = , 二、按可控性分类1.可变增益运放控制的的量纲为电导,它是输出电流与输入电压之比,控制的的量纲为电阻,故称这种电路为互阻放大电路。

电压控制增益的放大电路:由外接的控制电压来 差模增益 。

来调整开环也可利用数字编码信号来控制开环差模增益 。

2.选通控制运放 此类运放的输入为多通道,输出为一个通道,即只有一个对 “地”输出电压信号。

利用输入逻辑信号的选通作用来确定电路对 哪个通道的输入信号进行放大。

如图所示。

PDF 文件使用 "pdfFactory Pro" 试用版本创建 三、按性能指标分类 通用型运放:用于无特殊要求的电路之中。

特殊型运放:为了适应各种特殊要求,某一方面性能特别突出。

1.高阻型 具有高输入电阻 的运放。

适用于测量放大电路、信号发生器 电路或取样-保持电路。

2.高速型 单位增益带宽和转换速率高的运放为高速型运放。

适用于模-数 转换器、数-模转换器、锁相环电路和视频放大电路。

3. 高精度型 高精度型运放具有低失调、低温漂、低噪声、高增益等特点。

适用于对微弱信号的精密测量和运算,常用于高精度的仪器设备中。

集成运放应用电路设计360例

集成运放应用电路设计360例

集成运放应用电路设计360例一、引言1.集成运放简介集成运放,即集成运算放大器,是一种具有高增益、宽频带、低噪声、低失真等优良特性的模拟电路。

它广泛应用于各种电子设备中,如放大器、滤波器、振荡器等电路。

2.集成运放应用电路设计的重要性集成运放应用电路设计是电子工程师必备的技能。

通过合理的设计,可以充分发挥集成运放的性能优势,实现各种功能电路。

此外,集成运放应用电路设计还具有很高的实用性和广泛的应用价值。

二、集成运放的分类与应用领域1.电压跟随器电压跟随器是一种基本型的集成运放电路,具有输入电压与输出电压相等的特性。

它广泛应用于信号放大、隔离、基准电压源等领域。

2.电压放大器电压放大器是一种常见的集成运放应用电路,用于放大输入电压信号。

根据不同的应用需求,电压放大器可分为共模放大器、差分放大器等。

3.电流放大器电流放大器是一种针对电流信号进行放大的集成运放电路。

常见于传感器信号处理电路,用于将微小电流信号放大至适合后续处理和显示的范围内。

4.运算放大器运算放大器是一种具有高增益、宽频带、低失真等性能的集成运放电路。

它广泛应用于模拟信号处理、数字信号处理、控制系统等领域。

5.滤波器滤波器是一种基于集成运放的滤波电路,用于去除噪声和干扰信号。

根据滤波器的特性,可分为低通滤波器、高通滤波器、带通滤波器等。

6.振荡器振荡器是一种基于集成运放的振荡电路,用于产生稳定的正弦波信号。

它广泛应用于通信、测量、控制等领域。

7.传感器信号处理电路传感器信号处理电路是一种将传感器输出的信号进行处理的集成运放应用电路。

常见于各种传感器信号的处理和放大,如温度传感器、压力传感器等。

集成运算放大器

集成运算放大器

量精度的影响
在集成电路的输入与输出接入不同的反馈网络,可实现不同用途的电路,例如利用集成运算放大器可
4 非常方便的完成信号放大、信号运算(加、减、乘、除、对数、反对数、平方、开方等)、信号的处理
(滤波、调制)以及波形的产生和变换
集成运算放大器
01.
集成运算放大器的种类非常多,可适用于不同的场合.运算放大器在电路中发挥重要的 作用,其应用已经延伸到汽车电子、通信、消费等各个领域,并将在支持未来技术方面 扮演重要角色
02.
在运算放大器的实际应用中,设计工程师经常遇到诸如选型、供电 电路设计、偏置电路设计、PCB设计等方面的问题
-TLeabharlann ANKS载的电源为可变电压电源,R1负载的电流也是保持固定不变,达到恒流的效果
2 1.9 热电阻测量电路
电路是典型的热电阻 / 电偶的测量电路,其测量思路为:将 1-10mA 的恒流源加于负载,将会在负载
3
上产生一定的电压,将该电压进行有源滤波处理,处理后在进行信号的调整(信号放大或衰减),最后 将信号送入 ADC 接口。该电路应用时,要注意在输入端施加保护,可以并 TVS,但要注意节电容对测
1.6 滤波器
集成运算放大器
由集成运放可以组成一阶滤波器和二阶滤波器,其中一阶滤波器有20dB每倍频的幅频特 性,而二阶滤波器有40dB每倍频的幅频 特性。为了阻挡由于虚地引起的直流电平,在运放的输入端 串入了输入电容Cin,为了不影响电路的幅频特性,要求这个电容是 C1的100倍以上,如果滤波器还 具有放大作用,则这个电容应是C1的1000倍以上,同时,滤波器的输出都包含了Vcc/2的直流偏 置,如果电路是最后一级,那么就必须串入输出电容
1.3 数字信号处理
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

集成运放的分类及应用
集成运放(Operational Amplifier, OP-AMP)是一种基本的电子元件,具有非常广泛的应用。

根据性能特点和应用功能的不同,可以将集成运放分为以下几类。

1. 低噪声运放:低噪声运放在信号处理、放大和传输等领域中应用广泛。

这些运放通常具有非常低的输入等效噪声、电压噪声和电流噪声,能够保持信号的高精确度。

它们常用于音频放大器、传感器信号放大、音频电平计等高要求的应用上。

2. 高速运放:高速运放具有快速的频率响应和瞬态响应,可以实现高速信号处理。

这些运放主要应用于高速数据转换、通信、视频处理、宽带放大器等领域。

高速运放还常用于模拟环路控制系统、高速采样和保持电路等。

3. 低功耗运放:低功耗运放适用于需要长时间使用,对电源的耗电量要求较低的应用。

它们通常具有低功耗和低供电电压,能够降低系统的能耗。

这种运放广泛应用于便携式设备、传感器网络、能量收集系统等。

4. 高精度运放:高精度运放能够实现精确的信号测量和放大,具有高精度的增益、低偏移电压、低温漂移等特点。

这些运放适用于精密测量、自动控制、医疗仪器等需要高精度信号处理的应用。

5. 低电压运放:低电压运放适用于低电压供电系统,能够在低电源电压下正常
工作。

这些运放通常具有低电源电压、低功耗和低电流功耗等特点。

它们广泛应用于便携式设备、电池供电系统、太阳能电池等。

6. 特殊功能运放:这类运放具有特殊的性能或功能,用于特定的应用。

例如,差分放大器用于抑制共模噪声,比较器用于信号比较和触发,自耦变压器用于隔离输入和输出信号等。

这些特殊功能运放能够满足特定应用的需求。

集成运放广泛应用于各种电路和系统中,包括:
- 信号放大和处理:可以将微弱的传感器信号放大到合适的范围,如温度传感器、压力传感器等。

- 运算放大器:可以实现加法、减法、乘法、积分、微分等运算,用于信号处理、滤波和控制电路等。

- 比较器:用于信号比较和触发,常用于开关控制、触发器电路、模拟开关等。

- 音频放大器:用于音频信号的放大和处理,如音响、耳机放大器等。

- 过程控制和自动化:用于控制系统中的反馈回路、PID控制、自动调节等。

- 数据转换和模拟计算:用于模拟和数字信号的转换与处理,如模数转换器、数字模拟转换器等。

- 激光驱动和光电测量:用于激光器驱动、光电二极管放大、光功率检测等。

总之,集成运放具有丰富的分类和广泛的应用领域。

不同类型的运放在各个领域中发挥着重要作用,并不断推动着现代电子技术的发展。

相关文档
最新文档