新课标九年级数学复习强效提升分数精华版一元二次方程的应用
新课标九年级数学中考复习强效提升分数精华版函数及其图象的综合应用

专题: 函数及其图象的综合应用一、基础练习1.(中招凉山州)二次函数y =ax 2+bx +c 的图象如图所示,反比例函数y =ax与正比例函数y =bx 在同一坐标系内的大致图象是 ( )2.(中招杭州)如图,函数y 1=x -1和函数y 2=2x的图象相交于点M(2,m),N(-1,n).若x >2x+1,则x 的取值范围是 ( ) A .x <-1或0<x <2 B .x <-1或x >2 C .-1<x <0或0<x <2 D .-1<x <0或x >2 3.(中招宜昌)如图,直线y =x +2与双曲线y =3m x在第二象限有两个交点,那么m 的取值范围在数轴上表示为 ( )4.(中招枣庄)如图,函数y 1=x 和y 2=13x +43的图象相交于(-1,1),(2,2)两点.当y 1>y 2时,x 的取值范围是 ( )A .x <-1B .-1<x <2C .x >2D .x <-1或x >2 5.(中招台州)如图,反比例函数y =mx的图象与一次函数y =k x +b 的图象交于点M 、N ,已知点M 的坐标为(1,3),点N 的纵坐标为-1,根据图象信息可得关于x 的方程mx=k x +b 的解为 ( )A .-3,1B .-3,3C .-1,1D .3,-16.(中招潍坊)已知一元二次方程ax 2+bx +c =0(a >0)的两个实数根x 1、x 2满足x 1+x 2=4和x 1·x 2=3,那么二次函数y =ax 2+bx +c(a >0)的图象有可能是 ( )二、典例。
一次函数与二次函数的综合应用例1、(中招海门市)某校八年级(1)班共有学生50人,据统计原来每人每年用于购买饮料的平均支出是a 元.经测算和市场调查,•若该班学生集体改饮某品牌的桶装纯净水,则年总费用由两部分组成,一部分是购买纯净水的费用,另一部分是其他费用780元,其中,纯净水的销售价(元/桶)与年购买总量y (桶)之间满足如图所示关系. (1)求y 与x 的函数关系式;(2)若该班每年需要纯净水380桶,且a 为120时,请你根据提供的信息分析一下:•该班学生集体改饮桶装纯净水与个人买材料,哪一种花钱更少?(3)当a 至少为多少时,该班学生集体改饮桶装纯净水一定合算?从计算结果看,•你有何感想(不超过30字)?(3)设该班每年购买纯净水的费用为W 元,则W=xy=x (-80x+720)=-80(x- ) 2 +•1620. ∴当x= 时,W 最大值=1620.要使饮用桶装纯净水对学生一定合算, 则50a≥W 最大值+780,•即50a •≥1620+780.解之得,a≥48. 所以a 至少为48元时班级饮用桶装纯净水对学生一定合算,由此看出,饮用桶装纯净水不仅能省钱,而且能养成勤俭节约的好习惯. 二次函数与图象信息类有关的实际应用问题例2、 一蔬菜基地种植的某种绿色蔬菜,根据今年的市场行情,预计从5月1•日起的50天内,它的市场售价y 1与上市时间x 的关系可用图(a )的一条线段表示;•它的种植成本y 2与上市时间x 的关系可用图(b )中的抛物线的一部分来表示. (1)求出图(a )中表示的市场售价y 1与上市时间x 的函数关系式. (2)求出图(b )中表示的种植成本y 2与上市时间x 的函数关系式.(3)假定市场售价减去种植成本为纯利润,问哪天上市的这种绿色蔬菜既不赔本也不赚钱?(市场售价和种植成本的单位:元/千克,时间单位:天)例3.甲乙两人同时从相距90千米的A地前往B地,甲乘汽车乙乘摩托车,甲到达B地停留半小时后返回A地,1.求甲从B地返回A地的过程中,y与x之间的函数解析式并写出自变量x的取值范围。
新课标九年级数学中考复习强效提升分数精华版二次函数复习纲要及习题

初三数学二次函数复习纲要及习题二次函数的几个基本名词:抛物线的顶点、对称轴和开口方向 大纲要求:1.理解二次函数的概念;2.会把二次函数的一般式化为顶点式,确定图象的顶点坐标、对称轴和开口方向,会用描点法画二次函数的图象;3.会平移二次函数y =ax 2(a ≠0)的图象得到二次函数y =a(ax +m)2+k 的图象,了解特殊与一般相互联系和转化的思想;4.会用待定系数法求二次函数的解析式; 5.利用二次函数的图象,了解二次函数的增减性,会求二次函数的图象与x 轴的交点坐标和函数的最大值、最小值,了解二次函数与一元二次方程和不等式之间的联系。
内容(1)二次函数及其图象如果y=ax 2+bx+c(a,b,c 是常数,a ≠0),那么,y 叫做x 的二次函数。
二次函数的图象是抛物线,可用描点法画出二次函数的图象。
(2)抛物线的顶点、对称轴和开口方向抛物线y=ax 2+bx+c(a ≠0)的顶点是)44,2(2a b ac a b --,对称轴是abx 2-=,当a>0时,抛物线开口向上,当a<0时,抛物线开口向下。
抛物线y=a (x+h )2+k(a ≠0)的顶点是(-h ,k ),对称轴是x=-h.考查重点与常见题型:考查二次函数的定义、性质,有关试题常出现在选择题中,如: 已知以x 为自变量的二次函数y =(m -2)x 2+m 2-m -2额图像经过原点, 则m 的值是1.综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系内考查两个函数的图像,试题类型为选择题,如:如图,如果函数y =kx +b 的图像在第一、二、三象限内,那么函数 y =kx 2+bx -1的图像大致是( )2.考查用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性的综合题,如: 已知一条抛物线经过(0,3),(4,6)两点,对称轴为x =53,求这条抛物线的解析式。
新课标九年级数学中考复习强效提升分数精华版综合题

综合题综合题一直是中考复习最后阶段的重点和难点.综合题所考查的内容涉及初中代数或几何中若干不同的知识点,这就需要我们既要扎实地掌握好数学基础知识,又具备灵活综合运用数学知识解决问题的能力.在近年的中考命题中,综合题的难度有所下降,形式与内容也有一定程度的创新. (Ⅰ)方程型综合题 【简要分析】方程是贯穿初中代数的一条知识主线.方程型综合题也是中考命题的热点,中考中的方程型综合题主要有两类题:一类是与地、一元二次方程根的判别式、根与系数有关的问题,另一类是与几何相结合的问题. 【典型考题例析】例1:已知关x 的一元二次方程 230x x m +-=有实数根. (1)求m 的取值范围(2)若两实数根分别为1x 和2x ,且1x x +221211x x +=求m 的值.例2:已知关于x 的方程2(2)20a x ax a +-+=有两个不相等的实数根1x 和2x ,并且抛物线2(21)25y x a x a =-++-与x 轴的两个交点分别位于点(2,0)的两旁.(1) 求实数a 的取值范围. 当1222x x +=时,求a 的值.说明 运用一元二次方程根的差别式时,要注意二次项系数不为零,运用一元二次方程根与系数的关系时,要注意根存在的前提,即要保证△≥0.例3: 如图2-4-18,090B ∠=,O 是AB 上的一点,以O 为圆心,OB 为半径的圆与AB 交于点E ,与AC 切于点D .若AD=23,且AB 的长是关于x 的方程280x x k -+=的两个实数根.(1)求⊙O 的半径.(2)求CD 的长. 【提高训练1】1.已知关于x 的方程221(1)104x k x k -+++=的两根是一矩形两邻边的长.(1)k 取何值时,方程有两个实数根?(2)当矩形的对角线长为5时,求k 的值. 2.已知关于x 的方程222(1)230x m x m m -++--=的两个不相等的实数根中有一个根为0,是否存在实数k ,使关于x 的方程22()520x k m x k m m ----+-=的两个实数根1x 、2x 之差的绝对值为1?若存在,求出k 的值;若不存在,请说明图2-4-18EDCBAO理由.3.已知方程组221y xy kx ⎧=⎨=+⎩有两个不相等的实数解.(1)求k 有取值范围.(2)若方程组的两个实数解为11x x y y =⎧⎨=⎩和22x x y y =⎧⎨=⎩是否存在实数k ,使11221x x x x ++=?若存在,求出k 的值;若不存在,请说明理由.4.如图2-4-19,以△ABC 的直角边AB 为直径的半圆O 与斜边AC 交于点D ,E 是BC 边的中点,连结DE .(1)DE 与半圆O 相切吗?若不相切,请说明理由.(2)若AD 、AB 的长是方程210240x x -+=的个根,求直角边BC 的长. 【提高训练1答案】1.(1)32k ≥ (2)2k = 2.存在,24k =-或 3.(1)12k < (2)满足条件的k 存在,3k =- 4.(1)相切,证明略 (2)35(Ⅱ)函数型综合题 【简要分析】中考中的函数综合题,聊了灵活考查相关的基础知识外,还特别注重考查分析转化能力、数形结合思想的运用能力以及探究能力.此类综合题,不仅综合了《函数及其图象》一章的基本知识,还涉及方程(组)、不等式(组)及几何的许多知识点,是中考命题的热点.善于根据数形结合的特点,将函数问题、几何问题转化为方程(或不等式)问题,往往是解题的关键. 【典型考题例析】例1:如图2-4-20,二次函数的图象与x 轴交于A 、B 两点,与y 轴交于点C ,点C 、D 是二次函数图象上的一对对称点,一次函数的图象过点B 、D .(1)求D 点的坐标.(2)求一次函数的解析式.(3)根据图象写出使一次函数值大于二次函数的值的x 的取值范围.说明:本例是一道纯函数知识的综合题,主要考查了二次函的对称性、对称点坐标的求法、一次函数解析式的求法以及数形结合思想的运用等.例2 如图2-4-21,二次函数2(0)y ax bx c a =++≠的图象与x 轴交于A 、B 两点,其中A 点坐标为(-1,0),点C (0,5)、D (1,8)在抛物线上,M 为抛物线的顶点.(1)求抛物线的解析式. (2)求△MCB 的面积.说明:以面积为纽带,以函数图象为背景,结合图2-4-19E O D CBA图2-4-203yx321-3-2-1OCBANM D C BA O图2-4-21y x常见的平面几何图形而产生的函数图象与图形面积相结合型综合题是中考命题的热点.解决这类问题的关键是把相关线段的长与恰当的点的坐标联系起来,必要时要会灵活将待求图形的面积进行分割,转化为特殊几何图形的面积求解.例3 :已知抛物线2(4)24y x m x m =-+-++与x 轴交于1(,0)A x 、2(,0)B x ,与y 轴交于点C ,且1x 、2x 满足条件1212,20x x x x <+=(1)求抛物线的角析式;(2)能否找到直线y kx b =+与抛物线交于P 、Q 两点,使y 轴恰好平分△CPQ 的面积?求出k 、b 所满足的条件.说明 本题是一道方程与函数、几何相结合的综合题,这类题主要是以函数为主线.解题时要注意运用数形结合思想,将图象信息与方程的代信息相互转化.例如:二次函数与x 轴有交点.可转化为一元二次旗号有实数根,并且其交点的横坐标就是相应一元二次方程的解.点在函数图象上,点的坐标就满足该函数解析式等.例4 已知:如图2-4-23,抛物线2y ax bx c =++经过原点(0,0)和A (-1,5).(1)求抛物线的解析式.(2)设抛物线与x 轴的另一个交点为C .以OC 为直径作⊙M ,如果过抛物线上一点P 作⊙M 的切线PD ,切点为D ,且与y 轴的正半轴交于点为E ,连结MD .已知点E 的坐标为(0,m ),求四边形EOMD 的面积.(用含m 的代数式表示)(3)延长DM 交⊙M 于点N ,连结ON 、OD ,当点P 在(2)的条件下运动到什么位置时,能使得DON EOMD S S ∆=四边形?请求出此时点P 的坐标. 【提高训练2】1.已知抛物线的解析式为2(21)y x m x m m =--+-,(1)求证:此抛物线与x 轴必有两个不同的交点.(2)若此抛物线与直线34y x m =-+的一个交点在y 轴上,求m 的值.2.如图2-4-24,已知反比例函数12y x=的图象与一次函数4y kx =+的图象相交于P 、Q 两点,并且P 点的纵坐标是6.(1)求这个一次函数的解析式.(2)求△POQ 的面积.3.在以O 这原点的平面直角坐标系中,抛物线2(0)y ax bx c a =++≠与y 轴交于点C (0,3).与xA D EP N My O 图2-4-21xCy xB 'M GBAO f x () = 2⋅x2轴正半轴交于A 、B 两点(B 点在A 点的右侧),抛物线的对称轴是2x =,且32A O C S ∆=.(1)求此抛物线的解析式.(2)设抛物线的顶点为D ,求四边形ADBC 的面积.4.OABC 是一张平放在直角坐标系中的矩形纸片,O 为原点,点A 在x 轴上,点C 在y 轴上,OA=10,OC=6.(1)如图2-4-25,在AB 上取一点M ,使得△CBM 沿CM 翻折后,点B 落在x 轴上,记作B ′点,求所B ′点的坐标.(2)求折痕CM 所在直线的解析式.(3)作B ′G ∥AB 交CM 于点G ,若抛物线216y x m =+过点G ,求抛物线的解析式,交判断以原点O 为圆心,OG 为半径的圆与抛物线除交点G 外,是否还有交点?若有,请直接写出交点的坐标. 5.如图2-4-26,在Rt △ABC 中,∠ACB=900,BC AC >,以斜边AB 所在直线为x 轴,以斜边AB 上的高所在的直线为y 轴,建立直角坐标系,若2217OA OB +=,且线段OA 、OB 的长是关于x 的一元二次方程22(3)0x mx m -+-=的两根.(1)求点C 的坐标.(2)以斜边AB 为直径作圆与y 轴交于另一点E ,求过A 、B 、E 三点的抛物线的解析式,并画出此抛物线的草图.(3)在抛物线的解析式上是否存在点P ,使△ABP 和△ABC 全等?若相聚在,求出符合条件的P 点的坐标;若不存在,请说明理由. 【提高训练2答案】1.(1)22[(21)]4()10m m m ∆=----=>,∴抛物线与x 轴必有两个不同的交点.(2)15m =-+或15m =--.2.(1)4y x =+.(2)16POQ S ∆=.3.(1)243y x x =-+.(2)4ADBC S =四边形.4.(1)B ′(8,0);(2)163y x =-+ (3)抛物线方程为212263y x =-.除了交点G 外,另有交点为点G 关于y 轴的对称点,其坐标为(-8,103).5.(1)C (0,2).(2)213222y x x =--.(3)存在,其坐标为(0,-2)和(3,-2).(Ⅲ)几何型综合题 【简要分析】几何型综合题包括几何论证型综合题和几何计算型综合题两大类,一般以相似为中心,以圆为重点,还常与代数综合.它以知识上的综合性与中考中的重要E图2-4-25Cy BAO f x () = 2⋅x 2性而引人注目.值得一提的是,在近两年各地的中考试题,几何综合题的难度普遍下降,出现了一大批探索性试题,根据新课标的要求,减少几何中推理论证的难度,加强探索性训练,将成为几何型综合题命题的新趋势. 【典型考题例析】例1:如图2-4-27,四边形ABCD 是正方形,△ECF 是等腰直角三角形,其中CE=CF ,G 是CD 与EF 的交点.(1)求证:△BCF ≌△DCE . (2)若BC=5,CF=3,∠BFC=900,求DG :GC 的值.例2:已知如图2-4-28,BE 是⊙O 的走私过圆上一点作⊙O 的切线交EB 的延长线于P .过E 点作ED ∥AP交⊙O 于D ,连结DB 并延长交PA 于C ,连结AB 、AD . (1)求证:2AB PB BD = .(2)若PA=10,PB=5,求AB 和CD 的长. 例2:如图2-4-29,⊙1O 和⊙2O 相交于A 、B 两点,圆心1O 在⊙2O 上,连心线1O 2O 与⊙1O 交于点C 、D ,与⊙2O 交于点E ,与AB 交于点H ,连结AE .(1)求证:AE 为⊙1O 的切线. (2)若⊙1O 的半径r=1,⊙2O 的半径32R =,求公共弦AB 的长. (3)取HB 的中点F ,连结1O F ,并延长与⊙2O 相交于点G ,连结EG ,求EG 的长例4 如图2-4-30,A 为⊙O 的弦EF 上的一点,OB 是和这条弦垂直的半径,垂足为H,BA 的延长线交⊙O 于点C ,过点C 作⊙O 的切线与EF 的延长线交于点D . (1)求证:DA=DC(2)当DF :EF=1:8且DF=2时,求AB AC 的值.(3)将图2-4-30中的EF 所在的直线往上平移到⊙O 外,如图2-4-31,使EF 与OB 的延长线交⊙O 于点C ,过点C 作⊙O 的切线交EF 于点D .试猜想DA=DC是否仍然成立,并证明你的结论. 【提高训练3】1.如图2-4-32,已知在△ABC 中,AB=AC ,D 、E 分别是AB 和BC 上的点,连结DE 并延长与AC 的延长线相交于点F .若DE=EF ,求证:BD=CF . 2.点O 是△ABC 所在平面内一动点,连结OB 、OC ,并将AB 、OB 、OC 、AC 的中点D 、E 、F 、G 依次连结,如果DEFG 能构成图2-4-28C321OEPB A O 2O 1H GF EDBCA图2-4-28图2-4-27G F ED C B AK 图2-4-30H FE DOC BA O GFE D CBA四边形.(1)如图2-4-33,当O 点在△ABC 内时,求证四边形DEFG 是平行四边形.(2)当点O 移动到△ABC 外时,(1)中的结论是否成立?画出图形,并说明理由.(3)若四边形DEFG 为矩形,O 点所在位置应满足什么条件?试说明理由.3.如图2-4-35,等腰梯形ABCD 中,AD ∥BC ,∠DBC=450.翻折梯形ABCD ,使点B 重合于点D ,折痕分别交边AB 、BC 于点F 、E .若AD=2,BC=8,求:(1)BE 的长.(2)∠CDE的正切值.4.如图2-4-35,四边形ABCD 内接于⊙O ,已知直径AD=2,∠ABC=1200,∠ACB=450,连结OB 交AC 于点E .(1)求AC 的长.(2)求CE :AE 的值.(3)在CB 的延长上取一点P ,使PB=2BC ,试判断直线PA 和⊙O 的位置关系,并加以证明你的结论.5.如图2-4-36,已知AB 是⊙O 的直径,BC 、CD 分别是⊙O 的切线,切点分别为B 、D ,E 是BA 和CD 的延长线的交点.(1)猜想AD 与OC 的位置关系,并另以证明.(2)设AD OC 的值为S ,⊙O 的半径为r ,试探究S 与r 的关系.(3)当r=2,1sin 3E ∠=时,求AD 和OC 的长.【提高训练3答案】1.过D 作DG ∥AC 交BC 于G ,证明△DGE ≌△FCE 2.(1)证明DG ∥EF 即可 (2)结论仍然成立,证明略 (3)O 点应在过A 点且垂直于BC 的直线上(A 点除外),说理略. 3.(1)BE=5 (2)3tan 5CDE ∠= 4.(1)3AC = (2)1:2CE AE =(3)∵1:2CE AE =,PB=2BC ,∴CE :AE=CB :PB .∴BE ∥AP .∴AO ⊥AP .∴PA 为⊙O 的切线 5.(1)AD ∥OC ,证明略 (2)连结BD ,在△ABD 和△OCB 中,∵AB 是直径,∴∠ADB=∠OBC=900.又∵∠OCB=∠BAD ,∴Rt △ABD ∽Rt △OCB .∴AD ABOB OC=.222S AD OC AB OB r r r ==== ,∴22S r = (3)433AD =,23OC =(Ⅳ)动态几何综合题【简要分析】函数是中学数学的一个重要概念.加强对函数概念、图象和性质,以及函数思想方法的考查是近年中考试题的一个显著特点.大量涌现的动态几何问题,即建立几何中元素的函数关系式问题是这一特点的体现.这类题目的三乱扣帽子解法是抓住变化中的“不变”.以“不变”应“万变”.同时,要善于利用相似三角形的性质定理、勾股定理、圆幂定理、面积关系,借助议程为个桥梁,从而得到函数关系式,问题且有一定的实际意义,因此,对函数解析式中自变量的取值范围必须认真考虑,一般需要有约束条件.图2-4-34F ED C B A O 图2-4-35PE DCBA图2-4-36OE DCBA【典型考题例析】例1:如图2-4-37,在直角坐标系中,O 是原点,A 、B 、C 三点的坐标分别为A (18,0)、B (18,6)、C (8,6),四边形OABC 是梯形.点P 、Q 同时从原点出发,分别作匀速运动,其中点P 沿OA 向终点A 运动,速度为每秒1个单位,点Q 沿OC 、CB 向终点B 运动,当这两点有一点到达自己的终点时,另一点也停止运动.(1)求出直线OC 的解析式.(2)设从出发起运动了t 秒,如果点Q 的速度为每秒2个单位,试写出点Q 的坐标,并写出此时t 的取值范围.(3)设从出发起运动了t 秒,当P 、Q 两点运动的路程之和恰好等于梯形OABC 的周长的一半时,直线PQ 能否把梯形的面积也分成相等的两部分?如有可能,请求出t 的值;如不可能,请说明理由.例2: 如图2-5-40,在Rt △PMN 中,∠P=900,PM=PN ,MN=8㎝,矩形ABCD 的长和宽分别为8㎝和2㎝,C 点和M 点重合,BC 和MN 在一条直线上.令Rt △PMN 不动,矩形ABCD 沿MN 所在直线向右以每秒1㎝的速度移动(图2-4-41),直到C 点与N 点重合为止.设移动x 秒后,矩形ABCD 与△PMN 重叠部分的面积为y ㎝2.求y 与x 之间的函数关系式.NP(M)D C BA 图2-4-40NPM D C BA图2-4-41Q NNAB C DGFH T M22x图2-4-44PP图2-4-43x 22MTH FG D CBA.说明:此题是一个图形运动问题,解答方法是将各个时刻的图形分别画出,将图形 则“动”这“静”,再设法分别求解.这种分类画图的方法在解动态几何题中非常有效,它可帮我们理清思路,各个击破. 【提高训练4】 1.如图2-4-45,在ABCD 中,∠DAB=600,AB=5,BC=3,鼎足之势P 从起点D 出发,沿DC 、CB 向终点B 匀速运动.设点P 所走过的路程为x ,点P 所以过的线段与绝无仅有AD 、AP 所围成图形的面积为y ,y 随x 的函数关系的变化而变化.在图2-4-46中,能正确反映y 与x 的函数关系的是( )图2-4-37O C BA x y Q POOOOXXXXYYYY8888ABCD2.如图2-4-47,四边形AOBC 为直角梯形,OC=5,OB=%AC ,OC 所在直线方程为2y x =,平行于OC 的直线l 为:2y x t =+,l 是由A 点平移到B 点时,l 与直角梯形AOBC两边所转成的三角形的面积记为S .(1)求点C 的坐标.(2)求t 的取值范围.(3)求出S 与t 之间的函数关系式.3.如图2-4-48,在△ABC 中,∠B=900,点P 从点A 开始沿AB 边向点B 以1㎝/秒的速度移动,点Q 从点B 开始沿BC 边向点C 以2㎝/秒的速度移动.(1)如果P 、Q 分别从A 、B 同时出发,几秒后△PBQ 的面积等于8㎝2?(2)如果P 、Q 分别从A 、B 同时出发,点P 到达点B 后又继续沿BC 边向点C 移动,点Q 到达点C 后又继续沿CA 边向点A 移动,在这一整个移动过程中,是否存在点P 、Q ,使△PBQ 的面积等于9㎝2?若存在,试确定P 、Q 的位置;若不存在,请说明理由. 4.如图2-4-49,在梯形ABCD 中,AB=BC=10㎝,CD=6㎝,∠C=∠D=900.(1)如图2-4-50,动点P 、Q 同时以每秒1㎝的速度从点B 出发,点P 沿BA 、AD 、DC 运动到点C 停止.设P 、Q 同时从点B 出发t 秒时,△PBQ 的面积为1y (㎝2),求1y (㎝2)关于t (秒)的函数关系式.(2)如图2-4-51,动点P 以每秒1㎝的速度从点B 出发沿BA 运动,点E 在线段CD 上随之运动,且PC=PE .设点P 从点B 出发t 秒时,四边形PADE 的面积为2y (㎝2).求2y (㎝2)关于t (秒)的函数关系式,并写出自变量t 的取值范围.图2-4-51图2-4-50QPDC BAA BCDP Q【提高训练4答案】图2-4-47xy lCBAO图2-4-48Q P CBA8cm6cm D CBA图2-4-4910cm8cm6cm1.A 2.(1)C (1,2) (2)-10≤t ≤2 (3)S 与t 的函数关系式为215(100)20S t t t =++-≤≤或211(02)4S t t t =-+≤≤3.(1)2秒或4秒 (2)存在点P 、Q ,使得△PBQ 的面积等于9㎝2,有两种情况:①点P 在AB 边上距离A 为3㎝,点Q 在BC 边上距离点B 为6㎝时②点P 在BC 边上,距B 点3㎝时,此时Q 点就是A 点 4.(1)当点P 在BA 上运动时,21310y t =;当点P 在AD 上运动时,130y =;当点P 在DC 上运动时,190y t =-+ (2)221299025BPC PEC ABCD y S S S t t ∆∆=--=-+梯形,自变量t 的取值范围是0≤t ≤5.。
新课标九年级数学中考复习强效提升分数精华版一元二次方程

九年级数学复习资料2——一元二次方程【知识点荟萃】1、一元二次方程:只含有 个未知数,并且未知数的最高次数是 的 式方程就是一元二次方程。
2、一般表达式: 其中 是二次项, 叫二次项系数; 是一次项, 叫一次项系数, 是常数项。
3、使方程两边相等的未知数的值,就是方程的解。
4、一元二次方程的解法:(1)直接开方法,适用于能化为)((2)0x a b b +=≥ 的一元二次方程。
(2)因式分解法,即把一元二次方程变形为(x+a )(x+b )=0的形式,则(x+a )=0或(x+b )=0 (3)配方 法,即把一元二次方程配成)((2)0x a b b +=≥形式,再用直接开方法,(4)公式法,其中求根公式是 (b 2-4ac≥0)5、根的判别式:①当b 2-4ac>0时,方程有 的实数根。
②当b 2-4ac=0时,方程有 的实数根。
③当b 2-4ac<0时,方程没有实数根。
6、列一元二次方程解实际应用题步骤:设 列 解 验 答【考点精析】1.若关于x 的方程(-1)x 2a +=1是一元二次方程,则a 的值是( )A 、0B 、-1C 、 ±1D 、12.下列方程: ①x 2=0, ②21x-2=0, ③22x +3x=(1+2x)(2+x), ④32x =0中,一元二次方程的个数是( ) A.1个 B2个 C.3个 D.4个3.把方程(x +(2x -1)2=0化为一元二次方程的一般形式是( ) A.5x 2-4x -4=0 B.x 2-5=0 C.5x 2-2x+1=0 D.5x 2-4x+6=0 4、方程0132=+++mx xm m是关于x 的一元二次方程,则m 的值为 。
x 2-m x +8=0的一个解.则m 的值是.( )(A) 6 (B) 5 (C) 2 (D)-6举一反三1. (中招广西贵港)若关于x 的一元二次方程x 2-mx -2=0的一个根为-1,则另一个根为( ) A .1 B .-1 C .2 D .-22.(中招年河北一模)关于x 的一元二次方程(a -1) x 2+x+a 2-1=0的一个根是0,则a 的值为( )A. 1B. -1C. 1或-1D. 0 3. 已知a 是0132=+-x x 的根,则=-a a 622。
新课标九年级数学中考复习强效提升分数精华版一元二次方程 (246)

一元二次方程一.选择题1.(中招日照)如果关于x 的一元二次方程x 2+px +q =0的两根分别为x 1=2,x 2=1,那么p ,q 的值分别是( )A .-3,2 B.3,-2 C.2,-3 D.2,3 2.(中招兰州)上海世博会的某纪念品原价168元,连续两次降价a %后售价为128元. 下列所列方程中正确的是( )A .128)% 1(1682=+aB .128)% 1(1682=-a C .128)% 21(168=-a D .128)% 1(1682=-a 3.(中招玉溪)一元二次方程x 2-5x+6=0 的两根分别是x 1,x 2,则x 1+x 2等于( )A. 5B. 6C. -5D. -64.(中招桂林)一元二次方程2340x x +-=的解是 ( ). A .11x =,24x =- B .11x =-,24x = C .11x =-,24x =- D .11x =,24x =5.(中招昆明)一元二次方程220x x +-=的两根之积是( )A .-1B .-2C .1D .2 6.(中招杭州)方程 x 2 + x – 1 = 0的一个根是( ) A. 1 –5 B.251- C. –1+5 D. 251+- 7.(中招上海)已知一元二次方程 x 2 + x ─ 1 = 0,下列判断正确的是( ) A .该方程有两个相等的实数根 B .该方程有两个不相等的实数根C .该方程无实数根D .该方程根的情况不确定 8.(中招益阳)一元二次方程)0(02≠=++a c bx ax 有两个不相等...的实数根,则ac b 42-满足的条件是( ) A.ac b 42-=0 B.ac b 42->0 C.ac b 42-<0D.ac b 42-≥09. (中招滨州)一元二次方程230x kx +-=的一个根是1x =,则另一个根是( )A. 3 B .1- C .3- D .2-10. (中招常德)方程2560x x --=的两根为( ) A.6和-1 B.-6和1 C.-2和-3 D.2和311.(中招常德)2008年常德GDP 为1050亿元,比上年增长13.2%,提前两年实现了市委、市政府在“十一五规划”中提出“到中招年全年GDP 过千亿元”的目标.如果按此增长速度,那么我市今年的GDP 为( ) A .1050×(1+13.2%)2 B .1050×(1-13.2%)2 C .1050×(13.2%)2 D .1050×(1+13.2%)12.(中招绥化)方程(x -5)( x -6)=x -5的解是( )A .x =5B .x =5或x =6C .x =7D .x =5或x =713. (中招潍坊)关于x 的一元二次方程2620x x k -+=有两个不相等的实数根,则实数k 的取值范围是( )A.92k ≤B.92k <C. 92k ≥D. 92k >14.(中招甘肃)近年来,全国房价不断上涨,某县201 0年4月份的房价平均每平方米为3600元, 比2008年同期的房价平均每平方米上涨了2000元,假设这两年该县房价的平均增长率均为x ,则关于x 的方程为( )A .()212000x +=B .()2200013600x +=C .()()3600200013600x -+=D .()()23600200013600x -+= 15.(中招包头)关于x 的一元二次方程2210x mx m -+-=的两个实数根分别是12x x 、,且22127x x +=,则212()x x -的值是( )A .1B .12C .13D .2516.二.填空题1.(中招遵义)已知012=--a a ,则=+-20093a a .2. (中招丹东)某商场销售额3月份为16万元,5月份为25万元,该商场这两个月销售额的平均增长率是 .3. (中招莱芜)某公司在2009年的盈利额为200万元,预计2011年的盈利额将达到242万元, 若每年比上一年盈利额增长的百分率相同,那么该公司在2010年的盈利额为________万元. 4.(中招遵义)如图,在宽为m 30,长为m 40的矩形地面上修建两条宽都是m 1的道路,余下部分种植花草.那么,种植花草的面积为 2m .5. (中招河北)已知x = 1是一元二次方程02=++n mx x 的一个根,则 222n mn m ++的值为 .6.(中招成都)设1x ,2x 是一元二次方程2320x x --=的两个实数根,则2211223x x x x ++的值为__________________.7.(中招无锡) 方程2310x x -+=的解是 。
新课标九年级数学中考复习强效提升分数精华版数学复习提纲

数学复习提纲第一章 实数★重点★ 实数的有关概念及性质,实数的运算 ☆内容提要☆一、重要概念1.数的分类及概念 数系表:说明:“分类”的原则:1)相称(不重、不漏)2)有标准2.非负数:正实数与零的统称。
(表为:x ≥0) 常见的非负数有:性质:若干个非负数的和为0,则每个非负担数均为0。
3.倒数: ①定义及表示法②性质:A.a ≠1/a (a ≠±1);B.1/a 中,a ≠0;C.0<a <1时1/a >1;a >1时,1/a <1;D.积为1。
4.相反数: ①定义及表示法②性质:A.a ≠0时,a ≠-a;B.a 与-a 在数轴上的位置;C.和为0,商为-1。
5.数轴:①定义(“三要素”)②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。
6.奇数、偶数、质数、合数(正整数—自然数)定义及表示:奇数:2n-1偶数:2n (n 为自然数)实数无理数(无限不循环小数)0 (有限或无限循环性数) 整数分数 正无理数 负无理数 0 实数 负数 整数 分数 无理数有理数正数整数 分数 无理数有理数│a │2a a (a ≥0)(a 为一切实数)7.绝对值:①定义(两种):代数定义:几何定义:数a 的绝对值顶的几何意义是实数a 在数轴上所对应的点到原点的距离。
②│a │≥0,符号“││”是“非负数”的标志;③数a 的绝对值只有一个;④处理任何类型的题目,只要其中有“││”出现,其关键一步是去掉“││”符号。
二、实数的运算1. 运算法则(加、减、乘、除、乘方、开方)2. 运算定律(五个—加法[乘法]交换律、结合律;[乘法对加法的] 分配律)3. 运算顺序:A.高级运算到低级运算;B.(同级运算)从“左” 到“右”(如5÷51³5);C.(有括号时)由“小”到“中”到“大”。
三、应用举例(略)附:典型例题1. 已知:a 、b 、x 在数轴上的位置如下图,求证:│x-a │+│x-b │ =b-a.2.已知:a-b=-2且ab<0,(a ≠0,b ≠0),判断a 、b 的符号。
新课标九年级数学中考复习强效提升分数精华版方案设计型问题

方案设计型问题一、考法分析方案设计型问题是指应用数学基础知识建模的方法,来按题目所呈现的要求进行计算,论证,选择,判断,设计的一种数学试题。
纵观近年来各地的中考试题,涉及方案设计与应用的试题大量涌现,它在考查学生数学创新应用能力方面可谓独树一帜,新颖别致.本文从历年中考试题中,筛选出与之有关的部分题目,对其方案设计类型进行归类探究,以供参考.二、例题分析(一)、利用方程(组)进行方案设计例1“利海”通讯器材商场,计划用60000元从厂家购进若干部新型手机,以满足市场需求,已知该厂家生产三种不同型号的手机,出厂价分别为:甲种型号手机每部1800元,乙种型号手机每部600元,丙种型号手机每部1200元.(1)若商场同时购进其中两种不同型号的手机共40部,并将60000元恰好用完,请你帮助商场计算一下如何购买.(2)若商场同时购进三种不同型号的手机共40部,并将60000元恰好用完,并且要求乙种型号手机的购买数量不少于6部且不多于8部,请你求出商场每种型号手机的购买数量.解:(1)设甲种型号手机要购买x部,乙种型号手机购买y部,丙种型号手机购买z部,根据题意,得:①x+y=401800 x+600y=60000,解得x=30y=10②x+z=401800 x+1200z=60000,解得x=20z=20③y+z=40600 y+1200z=60000,解得y=-20 z=60(不合题意舍去)答:有两种购买方案:甲种手机购买30部,乙种手机购买10部;甲种手机购买20部,乙种手机购买20部.(2)根据题意,得:x+y+z=401800 x+600y+1200 z=60000 6≤y≤8解得x=26 y=6 z=8或x=27 y=7 z=6或x=28 y=8 z=4答:若甲种型号手机购买26部手机,则乙种型号手机购买6部,丙种型号手机购买8部;若甲方型号手机购买27部,则乙种型号手机购买7部,丙种型号手机购买6部;若甲方型号手机购买28部,则乙种型号手机购买8部,丙种型号手机购买4部.例2某校组织360名师生去参观三峡工程建设,如果租用甲种客车若干辆,则刚好坐满;若租用乙种客车可少租1辆,且余40个空座位。
新课标九年级数学中考复习强效提升分数精华版九年级数学系统复习

九年级数学系统复习 (一) 知识梳理 强化记忆1、下列各式一定是二次根式的是( )2、当x=________3、若()2240a c -+-=,则=+-c b a . 4、计算=-2)3(___________。
5 )A .3-B .3或3-C .9D .36、下列二次根式中,是最简二次根式的是( )A .2.0B .22b a -C .x1 D .a 47、下列二次根式中与2是同类二次根式的是( ).A .12B .1C .32D .18 8、在实数范围内分解因式 =-94x . 9、下列方程中是一元二次方程的是( ). A.xy +2=1 B. 09212=-+xx C. x 2=0 D.02=++c bx ax 10、一元二次方程02=-x x 的二次项系数为 ,一次项系数为 ,常数项为 ; 11、一元二次方程22(32)(1)0x x x --++=化为一般形式为( )A :2550x x -+= B :2550x x +-= C :2550x x ++= D :250x += 12、方程x x x =-)1(的根是( )A.2=xB. 2-=xC. 0,221=-=x xD. 0,221==x x 13、配方:x 2 —3x+ __ = (x —__ )2; 4x 2—12x+15 = 4( )2+6一元二次方程x 2-x+2=0的根的情况是( ).A .有两个相等的实数根B .有两个不相等的实数根C .无实数根D .只有一个实数根 14、下列图形中,不是旋转图形的是 ( )15、如图,等腰△ABC绕点A旋转到△ACD的位置。
已知∠ABC=80°,则在这个图中,点B的对应点是,BC= ,∠ACD= ,旋转中心是,旋转角是。
16、下列各图中,不是中心对称图形的是()17、点(2,-3)关于原点对称的点的坐标是______.18、下列说法正确的是()A 长度相等的两条弧是等弧B 优弧一定大于劣弧C 不同的圆中不可能有相等的弦D 直径是弦且同一个圆中最长的弦19、如图,⊙O的半径为5cm,圆心到弦AB的距离为3cm,则弦AB的长为________cm20、下列判断中正确的是()(A)平分弦的直线垂直于弦(B)平分弦的直线也必平分弦所对的两条弧(C)弦的垂直平分线必平分弦所对的两条弧(D)平分一条弧的直线必平分这条弧所对的弦21、如图1,⊙O的直径CD垂直于弦EF,垂足为G,若∠EOD=40°,则∠DCF等于()A.80°B. 50°C. 40°D. 20°22、如图,AB是⊙O的直径,则∠ACB = .23、如图1,四边形ABCD内接于⊙O,若它的一个外角∠DCE=70°,则∠A= .∠A+∠BCD= .24、已知圆的半径为cm5.6,圆心到直线l的距离为cm5.4,那么这条直线和这个圆.25、已知⊙O1与⊙O2的半径分别为3cm和7cm,两圆的圆心距O1O2 =10cm,则两圆的位置关系是()A.外切B.内切C.相交D.相离26、下列直线中一定是圆的切线的是()A.与圆有公共点的直线; B.到圆心的距离等于半径的直线;C.垂直于圆的半径的直线; D.过圆的直径端点的直线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新课标九年级数学复习强效提升分数精华版
一元二次方程的应用
增长率问题:(中考黄冈市)市政府为了解决市民看病难的问题,决定下调药品的价格.•某种药品经过连续两次降价后,由每盒200元下调至128元,求这种药品平均每次降价的百分率是多少?
商品定价:某商场将进货价为30元的台灯以40元售出,平均每月能售出600个.调查表明:这种台灯的售价每上涨1元,其销售量就将减少10个.为了实现平均每月10000•元的销售利润,这种台灯的售价应定为多少?这时应进台灯多少个?
面积问题:一块长和宽分别为40厘米和250厘米的长
方形铁皮,要在它的四角截去四个相等的小正方形,
折成一个无盖的长方体纸盒,使它的底面积为450平
方厘米.那么纸盒的高是多少?
行程问题:甲、乙二人分别从相距20千米的A、B两地以相同的速度同时相向而行,相遇后,二人继续前进,乙的速度不变,甲每小时比原来多走1千米,结果甲到达B地后乙还需30分钟才能到达A地,求乙每小时走多少千米.
动态几何:1、已知:如图3-9-3所示,在△ABC中,
︒
=
AB
B.点P从点A开始沿AB
=
∠BC
90=
cm
,
7
cm,
5
边向点B以1cm/s的速度移动,点Q从点B开始沿BC边
向点C以2cm/s的速度移动.(1)如果Q
A,
P,分别从B
同时出发,那么几秒后,△PBQ的面积等于4cm2?(2)
如果Q
A,同时出发,那么几秒后,PQ的长
P,分别从B
度等于5cm?(3)在(1)中,△PQB的面积能否等于
7cm2?说明理由.
综合:(中考重庆市)机械加工需要用油进行润滑以减少摩擦,某企业加工一台大型机械设备润滑用油量为90千克,用油的重复利用率为60%,按此计算,加工一台大型机械设备的实际耗油量为36千克.为了建设节约型社会,减少油耗,该企业的甲、•乙两个车间都组织了人员为减少实际耗油量进行攻关.(1)甲车间通过技术革新后,加工一台大型机械设备润滑油用油量下降到70千克,用油的重复利用率仍然为60%.问甲车间技术革新后,加工一台大型机械设备的实际耗油量是多少千克?
(2)乙车间通过技术革新后,不仅降低了润滑用油量,•同时也提高了用油的重复利用率,并且发现在技术革新的基础上,润滑用油量每减少1千克,用油量的重复利用率将增加1.6%.这样乙车间加工一台大型机械设备的实际耗油量下降到12千克.问乙车间技术革新后,加工一台大型机械设备润滑用油量是多少千克?用油的重复利用率是多少?
分式方程的应用
1.张老师和李老师同时从学校出发,步行15千米去县城购买书籍,张老师比李老师每小时多走1千米,结果比李老师早到半小时,两位老师每小时各走多少千米?设李老师每小时走x 千米,依题,得到的方程是( )
1515115151..12
121515115151..1212A B x x x x C D x x x x -=-=++-=-=--
2 (中考长春市)某服装厂装备加工300套演出服,在加工60套后,采用了新技术,使每天的工作效率是原来的2倍,结果共用9天完成任务,•求该厂原来每天加工多少套演出服.
3.(中考怀化市)•怀化市某乡积极响应党中央提出的“建设社会主义新农村”的号召,在本乡建起了农民文化活动室,现要将其装修.若甲、•乙两个装修公司合做需8天完成,需工钱8000元;若甲公司单独做6天后,剩下的由乙公司来做,还需12天完成,共需工钱7500元.若只选一个公司单独完成.从节约开始角度考虑,该乡是选甲公司还是选乙公司?请你说明理由.
一元一次不等式(组)的应用
1、 (中考广东省)将一箱苹果分给若干个小朋友,若每位小朋友分5个苹果,则还剩12个苹果;若每位小朋友分8个苹果,则有一个小朋友分不到8个苹
果.求这一箱苹果的个数与小朋友的人数.
2.(中考沪州市)九级(3)班学生到学校阅览室上课外阅读课,•班长问老师要分成几个小组,老师风趣地说:假如我把43本书分给各小组,若每组8本,还有剩余;若每组分9本,却不够,你知道该分几个组吗?(请你帮助班长分组,•注意写出解题过程,不能仅有分组的结果哟!)
3.(中考重庆市)由于电力紧张,某地决定对工厂实行错峰用电.规定:在每天的7:00到24:00为用电高峰期,电价为a元/kW·h;每天0:00到7:00为用电平稳期,电价为b元/kW·h;下表为某厂4月和5月两个月的用电量和电费的情况统计表:
月
份
用电量(万kW·h)电费(万元)
4 12 6.4
5 1
6 8.8
(1)若4月份在平稳期的用电量占当月用电量的1
3,5月份在平稳期的用
电量占当月用电量的1
4,求a,b的值.
(2)若6月份该厂预计用电20万kW·h,为将电费探究在10万元至10.6万元之间(不含10万元和10.6万元),那么6•月份在平稳期的用电量占当月用电量的比例应控制在什么范围?
不等式(组)与方程(组)的应用
1、华溪学校科技夏令营的学生在3名老师的带领下,准备赴北京大学参观,体验大学生活.现有两个旅行社前来承包,报价均为每人2000元,他们都表示优惠;希望社表示带队老师免费,学生按8折收费;青春社表示师生一律按7折收费.经核算,参加两家旅行社费用正好相等.
(1)该校参加科技夏令营的学生共有多少人?
(2)如果又增加了部分学生,学校应选择哪家旅行社?
2.(中考内江市)某学校要印刷一批完全材料,甲印务公司提出制版费900元,•另外每份材料收印刷费0.5元;乙印务公司提出不收制版费,每份材料收印刷费0.8元.
(1)分别写出两家印务公司的收费y(元)与印刷材料的份数x(份)•之间的函数关系式.
(2)若学校预计要印刷5000份以内的宣传材料,请问学校应选择哪一家印务公司更合算?
3.某商场购进甲、乙两种服装后,都加价40%标价出售.•“春节”期间商场搞优惠促销,决定将甲、乙两种服装分别按标价的八折和九折出售.某顾客购买甲、乙两种服装共付款182元,两种服装标价之和为210元,问这两种服装的进价和标价各是多少元?
4.(中考扬州市)“中国荷藕之乡”扬州市宝应县有着丰富的荷藕资源.•某荷藕加工企业已收购荷藕60吨,根据市场信息,如果对荷藕进行粗加工,•每天可加工8吨,每吨可获利1000元;如果进行精加工,每天可加工0.5吨,每吨可获利5000元.•由于受设备条件的限制,两种加工方式不能同时进行.(1)设精加工的吨数为x•吨,•则粗加工的吨数为______•吨,•加工这批荷藕需要____天,可获利______元(用含x的代数式表示)
(2)为了保鲜需要,该企业必须在一个月(30天)内将这批荷藕全部加工完毕,•精加工的吨数x在什么范围内时,该企业加工这批荷藕的获利不低于80000元?
5.(中考贵州省)为迎接“中考.中国贵州黄果树瀑布节”,•园林部门决定利用现有的3600盆甲种花卉和2900盆乙种花奔搭配A、B两种园艺造型共50个,•摆放在迎宾大道两侧,搭配每个造型所需要花奔情况如下表所示:
造
型
甲乙
A 90
盆
30盆
B 40
盆100盆
(1)符合题意的搭配方案有哪几种?
(2)若搭配一个A种造型的成本为1000元,搭配一个B种造型的成本为1200元,•试说明选用(1)中哪种方案成本最低?。