Revisiting the phenomenology on the QCD color dipole picture

合集下载

探索新物质形态——夸克胶子等离子体

探索新物质形态——夸克胶子等离子体
Schroedinger equation
● regeneration rate is determined by the detailed balance 21
RHIC的实验结果验证了我们的理论预言
QM2011 France
RHIC
QM2011
LHC
LHC将测量我们预言的非零椭圆流 (ALICE很快将有结果)
最深层次的物质状态-夸克物质
庄鹏飞(zhuangpf@)
● 物质的第五态 ● QCD超导与超流 ● 相对论重离子碰撞
中国科学技术大学,2012,06,08
物质科学包含物质的结构和状态
最深层次的结构:夸克 2004 诺贝尔物理奖
David J. Gross H. David Politzer Frank Wilczek
标时是反对称的,吸引相互作用。在单胶
子交换的层次就使得两个夸克可以配对,
有Diquark凝聚,形成色超导 (高温超导) 。
由于色对称性自发破缺,胶子获得质量。
色电中性的无能隙色超导态
黄梅,何联毅,金猛,赵维勤,庄:2003-2012
稳定的超导态必须是(电,色)荷中性的:
Qie Nie 0,
最深层次的物质状态夸克物质最深层次的物质状态夸克物质庄鹏飞庄鹏飞zhuangpfmailtsinghuaeducnzhuangpfmailtsinghuaeducn物质的第五态物质的第五态qcdqcd超导与超流超导与超流相对论重离子碰撞相对论重离子碰撞中国科学技术大学中国科学技术大学2012060820120608物质科学包含物质的结构和状态物质科学包含物质的结构和状态最深层次的结构最深层次的结构
高密强耦合夸克物质理论:QCD有效模型
有限重子数密度时Lattice QCD有技术困难,尚无精确结果。

《粒子物理学教学讲义》6.4-节重夸克和重夸克偶素

《粒子物理学教学讲义》6.4-节重夸克和重夸克偶素
6
确定了J/Ψ粒子子的夸克组分——正反粲夸克对,我们就可以解
释它的窄宽度了:
质量最轻的含粲D介子子质量为1870MeV,两个D介子子的阈能
为3740MeV,所以J/Ψ不能衰变到D介子子末态,它的强衰变末
态只能是由u,d,s夸克组成的轻强子子。
J/Ψ的强子子衰变的费曼图可以画作,
u d
c
d
c
c
d
c
d
它和J/Ψ粒子子类似, 也只能通过把b 和 b 湮没掉的Zweig禁 戒过程做强衰变,衰变概率被大大大大地压低,表现出突出的“重 质量,窄宽度”性质. 同样ϒ (2S), ϒ(3S)也具有同样的性质。ϒ (4S)以及更高高质量的 态则可以衰变到两个B介子子。因而而具有很大大的宽度。
17
对前3个ϒ共振态, ϒ→ 2B 的衰变道没有打开,他们所有的强衰 变道都是OZI禁戒过程而受到压低, 衰变宽度很窄。 但对下面更高质量的ϒ高激发态, 均可以衰变到两个B介子,因 而具有很大的几十个MeV的宽度
16
ϒ粒子子所有的强衰变道都是OZI 禁戒过程而而受到压低,
分支支比比最大大的衰变道也是二二级电磁衰变的 e+e− 道,µ +µ − 道 和 τ +τ − 道.
含底夸克b的最轻的粒子子是 B+(bu) 和 B0 (bd) 粒子子,其质量为
m = (5279)MeV,因此ϒ粒子子不可能衰变为一一对正反B介子子。
14
如果粲夸克存在,那么可以将u,d,s的SU(3) 味道对称性扩 充到u,d,s,c的SU(4) 对称性,则应该存在含有若干(反)粲夸 克的重子子和介子子多重态,
1976年发现了含粲介子子态( D0 = cu , D+ = cd ), 1977年又又发现了含粲奇异介子子 Ds+ = cs ,

光子阻塞效应

光子阻塞效应

学号:201105774题目名称: 强耦合下的光子阻塞效应研究题目类型: 研究论文学生姓名: 董昌瑞院(系): 物理与光电工程学院专业班级: 物理11102班指导教师: 邹金花辅导教师: 邹金花时间: 2015年1月至2015年6月目录毕业论文任务书` (I)指导教师评审意见 (VIII)评阅教师评语 (IX)答辩记录及成绩评定 (X)中文摘要 (XI)外文摘要 (XII)1引言 (1)2 基础理论知识 (1)2.1 光力振子系统 (1)2.2二能级原子与光场相互作用的全量子理论 (2)2.3光场关联函数 (5)2.4 光子计数统计 (8)3 模型方程与结果分析 (10)3.1模型方程 (10)3.2 方程分析 (12)4总结与展望 (14)参考文献 (14)致谢 (16)毕业论文任务书`院(系)物理与光电工程学院专业物理班级物理11102 学生姓名董昌瑞指导教师/职称邹金花/副教授1.毕业论文(设计)题目:强耦合下的光子阻塞效应研究2.毕业论文(设计)起止时间: 2015 年1月1 日~2015 年 6月10 日3.毕业论文(设计)所需资料及原始数据(指导教师选定部分)[1] A Ridolfo, M Leib, S Savasta, M J Hartmann. Photon Blockade in the Ultrastrong CouplingRegime [J]. Phys. Rev. Lett., 2012, 109: 193602-1~193602-5[2] Jieqiao Liao, C K Law. Cooling of a mirror in cavity optomechanics with a chirped pulse [J]. Phys. Rev. A, 2011, 84: 053838-1~053838-6[3] P Komar, S D Bennett, K Stannigel, S J M Habraken, P Rabl, P Zoller, M D Lukin. Single-photon nonlinearities in two-mode optomechanics [J]. Phys. Rev. A, 2013, 87: 013839-1~013839-10[4] T Ramos, V Sudhir, K Stannigel, P Zoller, T Kippenbrg. Nonlinear quantum optomechanics viaindividual intrinsic two-level defects [J]. Phys. Rev. Lett., 2013, 110: 193602-1~193602-5 [5] G Anetsberger, O Arcizet, Q P Unterreithmeier, R Riviere, A Schliesser, E M Weig, J P Kotthaus,T Kippenberg. Near-field cavity optomechanics with nanomechanical oscillators [J]. Nat. Phys., 2009, 5: 909~914[6] S J M Habraken, W Lechner, P Zoller. Resonances in dissipative optomechanics withnanoparticles: Sorting, speed rectification, and transverse coolings [J]. Phys. Rev. A, 2013, 87: 053808-1~053808-8[7] K Qu, G S Agarwal. Fano resonances and their control in optomechanics [J]. Phys. Rev. A, 2013,87: 063813-1~063813-7[8] A Nunnenkamp, K Borkje, S M Girvin. Cooling in the single-photon strong-coupling regime ofcavity optomechanics [J]. Phys. Rev. A, 2012, 85: 051803-1~051803-4[9] Y C Liu, Y F Xiao, X S Luan, C W Wong. Dynamic Dissipative Cooling of a MechanicalResonator in Strong Coupling Optomechanics [J]. Phys. Rev. A, 2013, 110: 153606-1~153606-5[10] A Nunnekamp, K Borkie, S M Girvin. Single-photon optomechanics [J]. Phys. Rev. Lett., 2011,107: 063602-1~063602-5[11] J M Dobrindt, I Wilson-Rae, T J Kippenbeg. Parametric Normal-Mode Splitting in CavityOptomechanics [J]. Phys. Rev. Lett., 2008, 101: 263602-1~263602-4[12]樊菲菲. 光力振子与原子间量子纠缠和振子压缩的研究[D]. 华中师范大学,2014[13] 张文慧. 光机械腔系统的动力学行为[D]. 华中师范大学,2014[14]詹孝贵. 腔光机械系统中电磁诱导透明及其相关现象的理论研究[D]. 华中科技大学,20134.毕业论文(设计)应完成的主要内容在阅读大量文献的基础上,完成开题报告,并通过开题答辩。

PbI2

PbI2

Remnant PbI2, an unforeseen necessity in high-efficiency hybrid perovskite-based solar cells?a)Duyen H. Cao, Constantinos C. Stoumpos, Christos D. Malliakas, Michael J. Katz, Omar K. Farha, Joseph T. Hupp, and Mercouri G. KanatzidisCitation: APL Materials 2, 091101 (2014); doi: 10.1063/1.4895038View online: /10.1063/1.4895038View Table of Contents: /content/aip/journal/aplmater/2/9?ver=pdfcovPublished by the AIP PublishingArticles you may be interested inParameters influencing the deposition of methylammonium lead halide iodide in hole conductor free perovskite-based solar cellsAPL Mat. 2, 081502 (2014); 10.1063/1.4885548Air stability of TiO2/PbS colloidal nanoparticle solar cells and its impact on power efficiencyAppl. Phys. Lett. 99, 063512 (2011); 10.1063/1.3617469High efficiency mesoporous titanium oxide PbS quantum dot solar cells at low temperatureAppl. Phys. Lett. 97, 043106 (2010); 10.1063/1.3459146Near-IR activity of hybrid solar cells: Enhancement of efficiency by dissociating excitons generated in PbS nanoparticlesAppl. Phys. Lett. 96, 073505 (2010); 10.1063/1.3292183Effects of molecular interface modification in hybrid organic-inorganic photovoltaic cellsJ. Appl. Phys. 101, 114503 (2007); 10.1063/1.2737977APL MATERIALS2,091101(2014)Remnant PbI2,an unforeseen necessity in high-efficiency hybrid perovskite-based solar cells?aDuyen H.Cao,1Constantinos C.Stoumpos,1Christos D.Malliakas,1Michael J.Katz,1Omar K.Farha,1,2Joseph T.Hupp,1,band Mercouri G.Kanatzidis1,b1Department of Chemistry,and Argonne-Northwestern Solar Energy Research(ANSER)Center,Northwestern University,2145Sheridan Road,Evanston,Illinois60208,USA2Department of Chemistry,Faculty of Science,King Abdulaziz University,Jeddah,Saudi Arabia(Received2May2014;accepted26August2014;published online18September2014)Perovskite-containing solar cells were fabricated in a two-step procedure in whichPbI2is deposited via spin-coating and subsequently converted to the CH3NH3PbI3perovskite by dipping in a solution of CH3NH3I.By varying the dipping time from5s to2h,we observe that the device performance shows an unexpectedly remark-able trend.At dipping times below15min the current density and voltage of thedevice are enhanced from10.1mA/cm2and933mV(5s)to15.1mA/cm2and1036mV(15min).However,upon further conversion,the current density decreases to9.7mA/cm2and846mV after2h.Based on X-ray diffraction data,we determinedthat remnant PbI2is always present in these devices.Work function and dark currentmeasurements showed that the remnant PbI2has a beneficial effect and acts as ablocking layer between the TiO2semiconductor and the perovskite itself reducingthe probability of back electron transfer(charge recombination).Furthermore,wefind that increased dipping time leads to an increase in the size of perovskite crys-tals at the perovskite-hole-transporting material interface.Overall,approximately15min dipping time(∼2%unconverted PbI2)is necessary for achieving optimaldevice efficiency.©2014Author(s).All article content,except where otherwisenoted,is licensed under a Creative Commons Attribution3.0Unported License.[/10.1063/1.4895038]With the global growth in energy demand and with compelling climate-related environmental concerns,alternatives to the use of non-renewable and noxious fossil fuels are needed.1One such alternative energy resource,and arguably the only legitimate long-term solution,is solar energy. Photovoltaic devices which are capable of converting the photonflux to electricity are one such device.2Over the last2years,halide hybrid perovskite-based solar cells with high efficiency have engendered enormous interest in the photovoltaic community.3,4Among the perovskite choices, methylammonium lead iodide(MAPbI3)has become the archetypal light absorber.Recently,how-ever,Sn-based perovskites have been successfully implemented in functional solar cells.5,6MAPbI3 is an attractive light absorber due to its extraordinary absorption coefficient of1.5×104cm−1 at550nm;7it would take roughly1μm of material to absorb99%of theflux at550nm.Further-more,with a band gap of1.55eV(800nm),assuming an external quantum efficiency of90%,a maximum current density of ca.23mA/cm2is attainable with MAPbI3.Recent reports have commented on the variability in device performance as a function of perovskite layer fabrication.8In our laboratory,we too have observed that seemingly identicalfilmsa Invited for the Perovskite Solar Cells special topic.b Authors to whom correspondence should be addressed.Electronic addresses:j-hupp@ and m-kanatzidis@2,091101-12166-532X/2014/2(9)/091101/7©Author(s)2014FIG.1.X-ray diffraction patterns of CH3NH3PbI3films with increasing dipping time(%composition of PbI2was determined by Rietveld analysis(see Sec.S3of the supplementary material for the Rietveld analysis details).have markedly different device performance.For example,when ourfilms of PbI2are exposed to MAI for several seconds(ca.60s),then a light brown coloredfilm is obtained rather than the black color commonly observed for bulk MAPbI3(see Sec.S2of the supplementary material for the optical band gap of bulk MAPbI3).23This brown color suggests only partial conversion to MAPbI3and yields solar cells exhibiting a J sc of13.4mA/cm2and a V oc of960mV;these values are significantly below the21.3mA/cm2and1000mV obtained by others.4Under the hypothesis that fully converted films will achieve optimal light harvesting efficiency,we increased the conversion time from seconds to2h.Unexpectedly,the2-h dipping device did not show an improved photovoltaic response(J sc =9.7mA/cm2,V oc=846mV)even though conversion to MAPbI3appeared to be complete.With the only obvious difference between these two devices being the dipping time,we hypothesized that the degree of conversion of PbI2to the MAPbI3perovskite is an important parameter in obtaining optimal device performance.We thus set out to understand the correlation between the method of fabrication of the MAPbI3layer,the precise chemical compositions,and both the physical and photo-physical properties of thefilm.We report here that remnant PbI2is crucial in forming a barrier layer to electron interception/recombination leading to optimized J sc and V oc in these hybrid perovskite-based solar cells.We constructed perovskite-containing devices using a two-step deposition method according to a reported procedure with some modifications.4(see Sec.S1of the supplementary material for the experimental details).23MAPbI3-containing photo-anodes were made by varying the dipping time of the PbI2-coated photo-anode in MAI solution.In order to minimize the effects from unforeseen variables,care was taken to ensure that allfilms were prepared in an identical manner.The composi-tions offinal MAPbI3-containingfilms were monitored by X-ray diffraction(XRD).Independently of the dipping times,only theβ-phase of the MAPbI3is formed(Figure1).9However,in addition to theβ-phase,allfilms also showed the presence of unconverted PbI2(Figure1,marked with*) which can be most easily observed via the(001)and(003)reflections at2θ=12.56◦and38.54◦respectively.As the dipping time is increased,the intensities of PbI2reflections decrease with a concomitant increase in the MAPbI3intensities.In addition to the decrease in peak intensities of PbI2,the peak width increases as the dipping time increases indicating that the size of the PbI2 crystallites is decreasing,as expected,and the converse is observed for the MAPbI3reflections.This observation suggests that the conversion process begins from the surface of the PbI2crystallites and proceeds toward the center where the crystallite domain size of the MAPbI3phase increases and that of PbI2diminishes.Interestingly,the remnant PbI2phase can be seen in the data of other reports, but has not been identified as a primary source of variability in cell performance.8,10 Considering that the perovskite is the primary light absorber within the device,we wantedto further investigate how the optical absorption of thefilm changes with increasing dipping timeFIG.2.Absorption spectra of CH3NH3PbI3films as a function of unconverted PbI2phase fraction.FIG.3.(a)J-V curves and(b)EQE of CH3NH3PbI3-based devices as a function of unconverted PbI2phase fraction.(Figure2).11,12The pure PbI2film shows a band gap of2.40eV,consistent with the yellow color of PbI2.As the PbI2film is gradually converted to the perovskite,the band gap is progressively shifted toward1.60eV.The deviation of MAPbI3’s band gap(1.60eV)from that of the bulk MAPbI3 material(1.55eV)could be explained by quantum confinement effects related with the sizes of TiO2and MAPbI3crystallites and their interfacial interaction.13,14Interestingly,we also noticed the presence of a second absorption in the light absorber layer,in which the gap gradually red shifts from1.90eV to1.50eV as the PbI2concentration is decreased from9.5%to0.3%(Figure2—blue arrow).Having established the chemical compositions and optical properties of the light absorberfilms, we proceeded to examine the photo-physical responses of the corresponding functional devices in order to determine how the remnant PbI2affects device performance.The pure PbI2based device remarkably achieved a0.4%efficiency with a J sc of2.1mA/cm2and a V oc of564mV (Figure3(a)).Upon progressive conversion of the PbI2layer to MAPbI3,we observe two different regions(Figure4,Table I).In thefirst region,the expected behavior is observed;as more PbI2is converted to MAPbI3,the trend is toward higher photovoltaic efficiency,due both to J sc and V oc, until1.7%PbI2is reached.The increase in J sc is attributable,at least in part,to increasing absorption of light by the perovskite.We speculate that progressive elimination of PbI2,present as a layer between TiO2and the perovskite,also leads to higher net yields for electron injection into TiO2and therefore,higher J values.For a sufficiently thick PbI2spacer layer,electron injection would occur instepwise fashion,i.e.,perovskite→PbI2→TiO2.Finally,the photovoltage increase is attributable toFIG.4.Summary of J-V data vs.PbI2concentration of CH3NH3PbI3-based devices(Region1:0to15min dipping time, Region2:15min to2h dipping time).TABLE I.Photovoltaic performance of CH3NH3PbI3-based devices as a function of unconverted PbI2fraction.Dipping time PbI2concentration a J sc(mA/cm2)V oc(V)Fill factor(%)Efficiency(%) 0s100% 2.10.564320.45s9.5%10.10.93352 4.960s7.2%13.40.96052 6.72min 5.3%14.00.964557.45min 3.7%14.70.995578.315min 1.7%15.1 1.036629.730min0.8%13.60.968648.51h0.4%12.40.938657.62h0.3%9.70.84668 5.5a Determined from the Rietveld analysis of X-ray diffraction data.the positive shift in TiO2’s quasi-Fermi level as the population of photo-injected electrons is higher with increased concentration of MAPbI3.The second region yields a notably different trend;surprisingly,below a concentration of2% PbI2,J sc,V oc,and ultimatelyηdecrease.Considering that the light-harvesting efficiency would increase when the remaining2%PbI2is converted to MAPbI3(albeit to only a small degree),then the remnant PbI2must have some other role.We posit that remnant PbI2serves to inhibit detrimental electron-transfer processes(Figure5).Two such processes are back electron transfer from TiO2to holes in the valence band of the perovskite(charge-recombination)or to the holes in the HOMO of the HTM(charge-interception).This retardation of electron interception/recombination observation is reminiscent of the behavior of atomic layer deposited Al2O3/ZrO2layers that have been employed in dye-sensitized solar cells.15–18It is conceivable that the conversion of PbI2to MAPbI3occurs from the solution interface toward the TiO2/PbI2interface and thus would leave sandwiched between TiO2and MAPbI3a blocking layer of PbI2that inhibits charge-interception/recombination.For this hypothesis to be correct,it is crucial that the conduction-band-edge energy(E cb)of the PbI2be higher than the E cb of the TiO2.19–21 The work function of PbI2was measured by ultraviolet photoelectron spectroscopy(UPS)and was observed to be at6.35eV vs.vacuum level,which is0.9eV lower than the valence-band-edge energy(E vb)of MAPbI3(see Sec.S7of the supplementary material23for the work function of PbI2);the E cb(4.05eV)was calculated by subtracting the work function from the band gap(2.30eV).solar cell.FIG.6.Dark current of CH3NH3PbI3-based devices as a function of unconverted PbI2phase fraction.The E cb of PbI2is0.26eV higher than the E cb of TiO2and thus PbI2satisfies the conditions of a charge-recombination/interception barrier layer.In order to probe the hypothesis that PbI2acts as a charge-interception barrier,dark current measurements,in which electronsflow from TiO2to the HOMO of the HTM,were made.Consistent with our hypothesis,Figure6illustrates that the onset of the dark current occurs at lower potentials as the PbI2concentration decreases.In the absence of other effects,the increasing dark current with increasing fraction of perovskite(and decreasing fraction of PbI2)should result in progressively lower open-circuit photovoltages.Instead,the photocurrent density and the open-circuit photovoltage bothincrease,at least until to PbI2fraction reaches1.7%.As discussed above,thinning of a PbI2-basedFIG.7.Cross-sectional SEM images of CH3NH3PbI3film with different dipping time.sandwich layer should lead to higher net injection yields,but excessive thinning would diminish the effectiveness of PbI2as a barrier layer for back electron transfer reactions.Given the surprising role of remnant PbI2in these devices,we further probed the two-step conversion process by using scanning-electron microscopy(SEM)(Figure7).Two domains of lead-containing materials(PbI2and MAPbI3)are present.Thefirst domain is sited within the mesoporous TiO2network(area1)while the second grows on top of the network(area2).Area2initially contains 200nm crystals.As the dipping time is increased,the crystals show marked changes in size and morphology.The formation of bigger perovskite crystals is likely the result of the thermodynamically driven Ostwald ripening process,i.e.,smaller perovskite crystals dissolves and re-deposits onto larger perovskite crystals.22The rate of charge-interception,as measured via dark current,is proportional to the contact area between the perovskite and the HTM.Thus,the eventual formation of large, high-aspect-ratio crystals,as shown in Figure7,may well lead to increases in contact area and thereby contributes to the dark-current in Figure6.Regardless,we found that the formation of large perovskite crystals greatly decreased our success rate in constructing high-functioning,non-shorting solar cells.In summary,residual PbI2appears to play an important role in boosting overall efficiencies for CH3NH3PbI3-containing photovoltaics.PbI2’s role appears to be that of a TiO2-supported blocking layer,thereby slowing rates of electron(TiO2)/hole(perovskite)recombination,as well as decreasing rates of electron interception by the hole-transporting material.Optimal performance for energy conversion is observed when ca.98%of the initially present PbI2has been converted to the perovskite. Conversion to this extent requires about15min.Pushing beyond98%(and beyond15min of reaction time)diminishes cell performance and diminishes the success rate in constructing non-shorting cells.The latter problem is evidently a consequence of conversion of small and more-or-less uniformly packed perovskite crystallites to larger,poorly packed crystallites of varying shape and size.Finally,the essential,but previously unrecognized,role played by remnant PbI2 provides an additional explanation for why cells prepared dissolving and then depositing pre-formed CH3NH3PbI3generally under-perform those prepared via the intermediacy of PbI2.We thank Prof.Tobin Marks for use of the solar simulator and EQE measurement system. Electron microscopy was done at the Electron Probe Instrumentation Center(EPIC)at Northwestern University.Ultraviolet Photoemission Spectroscopy was done at the Keck Interdisciplinary SurfaceScience facility(Keck-II)at Northwestern University.This research was supported as part of theANSER Center,an Energy Frontier Research Center funded by the U.S Department of Energy, Office of Science,Office of Basic Energy Sciences,under Award No.DE-SC0001059.1R.Monastersky,Nature(London)497(7447),13(2013).2H.J.Snaith,J.Phys.Chem.Lett.4(21),3623(2013).3M.M.Lee,J.Teuscher,T.Miyasaka,T.N.Murakami,and H.J.Snaith,Science338(6107),643(2012).4J.Burschka,N.Pellet,S.J.Moon,R.Humphry-Baker,P.Gao,M.K.Nazeeruddin,and M.Gratzel,Nature(London) 499(7458),316(2013).5F.Hao,C.C.Stoumpos,D.H.Cao,R.P.H.Chang,and M.G.Kanatzidis,Nat.Photonics8(6),489(2014);F.Hao,C.C. Stoumpos,R.P.H.Chang,and M.G.Kanatzidis,J.Am.Chem.Soc.136,8094–8099(2014).6N.K.Noel,S.D.Stranks,A.Abate,C.Wehrenfennig,S.Guarnera,A.Haghighirad,A.Sadhanala,G.E.Eperon,M.B. Johnston,A.M.Petrozza,L.M.Herz,and H.J.Snaith,Energy Environ.Sci.7,3061(2014).7H.S.Kim,C.R.Lee,J.H.Im,K.B.Lee,T.Moehl,A.Marchioro,S.J.Moon,R.Humphry-Baker,J.H.Yum,J.E.Moser, M.Gratzel,and N.G.Park,Sci.Rep.2,591(2012).8D.Y.Liu and T.L.Kelly,Nat.Photonics8(2),133(2014).9C.C.Stoumpos,C.D.Malliakas,and M.G.Kanatzidis,Inorg.Chem.52(15),9019(2013).10J.H.Noh,S.H.Im,J.H.Heo,T.N.Mandal,and S.I.Seok,Nano Lett.13(4),1764(2013).11Diffuse reflectance measurements of MAPbI3films were converted to absorption spectra using the Kubelka-Munk equation,α/S=(1-R)2/2R,where R is the percentage of reflected light,andαand S are the absorption and scattering coefficients, respectively.The band gap values are the energy value at the intersection point of the absorption spectrum’s tangent line and the energy axis.12L.F.Gate,Appl.Opt.13(2),236(1974).13O.V oskoboynikov,C.P.Lee,and I.Tretyak,Phys.Rev.B63(16),165306(2001).14X.X.Xue,W.Ji,Z.Mao,H.J.Mao,Y.Wang,X.Wang,W.D.Ruan,B.Zhao,and J.R.Lombardi,J.Phys.Chem.C 116(15),8792(2012).15E.Palomares,J.N.Clifford,S.A.Haque,T.Lutz,and J.R.Durrant,J.Am.Chem.Soc.125(2),475(2003).16C.Prasittichai,J.R.Avila,O.K.Farha,and J.T.Hupp,J.Am.Chem.Soc.135(44),16328(2013).17A.K.Chandiran,M.K.Nazeeruddin,and M.Gratzel,Adv.Funct.Mater.24(11),1615(2014).18M.J.Katz,M.J.D.Vermeer,O.K.Farha,M.J.Pellin,and J.T.Hupp,Langmuir29(2),806(2013).19M.J.DeVries,M.J.Pellin,and J.T.Hupp,Langmuir26(11),9082(2010).20C.Prasittichai and J.T.Hupp,J.Phys.Chem.Lett.1(10),1611(2010).21F.Fabregat-Santiago,J.Garcia-Canadas,E.Palomares,J.N.Clifford,S.A.Haque,J.R.Durrant,G.Garcia-Belmonte, and J.Bisquert,J.Appl.Phys.96(11),6903(2004).22Alan D.McNaught and Andrew Wilkinson,IUPAC Compendium of Chemical Terminology(Blackwell Scientific Publica-tions,Oxford,1997).23See supplementary material at /10.1063/1.4895038for experimental details,absorption spectrum of bulk CH3NH3PbI3,fraction,size,absorption spectrum,work function of unconverted PbI2,and average photovoltaic perfor-mance.。

多量子势垒双阻挡层结构对AIGaN基深紫外激光二极管的性能优化

多量子势垒双阻挡层结构对AIGaN基深紫外激光二极管的性能优化

7.%D17双阻挡层采用结构6时的输出功率随 电流增加更快F结构6的5_P有所增加 这可能归
和 改用五周期的 :C1
0'*F"B EH*F*$ ) $ MG U
因于多量子势垒:C1的引入增加了电子势垒高度
.-:..;?#-
Copyright©博看网 . All Rights Reserved.
[0)E4RMN?YPRM%[0)E;H&%[85<PI?iIM% [0)E2HMN%i.0)YPI%15.,QM?,IR%15.;Q?:QHI
! )H_I&MH'6RM_R>`&>5M_R>MH_I&MH',&IM_/RaRH>TP &`8'RT_>&MIT4H_R>IH'aHMS <]a_RGa% <TP&&'&`5M`&>GH_I&M 8MNIMRR>IMN% YPRMNcP&Q .MIbR>aI_]% YPRMNcP&Q +A***@% 6PIMH"
带图来看 结构C 6的空穴有效势垒高度分别 分布和辐射复合率的变化F从图A 中可以看出
为 和 显著高于结构 A@+F$ GR% A*@F" GR%
0
结构C 6较结构0电子图AH 与空穴图A
因此结构C 6可有效阻碍空穴泄露 如图+^ ^浓度显著增加 可归因于空穴阻挡层的加入
层导带中电子有效势垒高度分别为X@$F" GR%
和 通过数据对比可知 X*+F@ GR% X"BF" GR%

量子色动力学QCD微扰和非微扰方面简介

量子色动力学QCD微扰和非微扰方面简介

《量子色动力学(QCD)——微扰和非微扰方面》简介
郑世安(南开大学物理科学学院教授)
一、出版情况
《(量子色动力学》(Quantum Chromodynamics—Perturbative and Nonperturbative Aspects)于2010年由剑桥粒子物理、核物理和宇宙学专著(Cambridge monographs on Particle,Nuclear physics and Cosmology)出版。

作者为B.L.Ioffe,V.S.Fadin and L.N.Lipatov。

南开大学外国教材中心馆藏版本为2010年版本,本书为第一版共有585页。

二、内容简介
本书针对理论物理研究生和相关研究人员,汇集了近二三十年来从QCD第一原理出发得出的最新成果。

含盖了各种微扰和非微扰方法:如手征有效理论,反常问题,真空穿透,微扰级数发散等;并详尽地剖析了QCD求和规则,得到大量强子性质(介子,重子质量,磁矩,形状因子,强子中夸克分布等)及夸克胶子凝聚估值;详细表述了强子结构函数的演化及其极化现象;采用理论表述和实验观察相对比的方法讨论了QCD喷注问题;特别是专门系统地论述了在小x区部份子Regge化的BFKL方法,它成功地预言了g-p截面随能量快速增长的行为,从而引起諸多关注。

由于这一行为突破了么正性对总截面的Froissart限制的要求,可能另含深义。

1。

量子色动力学Lattice规范关键行为

量子色动力学Lattice规范关键行为

量子色动力学Lattice规范关键行为量子色动力学(Quantum Chromodynamics,简称QCD)是理论物理学中研究夸克和胶子相互作用的理论。

在粒子物理学中,QCD是标准模型的一部分,描述了强相互作用的性质。

Lattice规范关键行为是研究QCD的重要方法之一。

Lattice规范理论是一种基于网格离散化的正则量子场论方法,用于描述和计算QCD的非扰动性质。

它通过将时空坐标在网格上离散化,将连续的场表示为定义在格点上的场,从而使得数值计算成为可能。

Lattice规范关键行为的研究主要涉及两个方面:强子物理和相变特性。

在强子物理方面,Lattice规范计算可以提供夸克物质性质的定量预测,例如夸克质量、强子谱和强子间相互作用。

这对于理解强相互作用的本质以及描述强相互作用中的新物理现象至关重要。

在相变特性方面,Lattice规范计算可以模拟和研究QCD的相变行为。

QCD相变包括研究强子物质与胶子物质相互转变的特性,以及高温下的顺磁相到拘束相的转变。

这些相变与宇宙早期演化以及中子星等复杂物理系统相关联,深入研究这些相变可以帮助我们更好地理解宇宙的结构和演化。

Lattice规范关键行为的方法主要包括Monte Carlo模拟和精确Renormalization Group(RGI)方法。

Monte Carlo模拟是一种统计方法,通过在Lattice规范场上进行数值采样,以获得各种物理量的平均值和涨落。

而RGI方法是通过将规范耦合参数引入场量纲以及改变耦合强度来研究QCD的关联行为。

量子色动力学Lattice规范关键行为研究的进展,对于粒子物理学和宇宙学的发展具有重要意义。

通过Lattice规范计算,我们可以获得与实验结果相符的理论预测或者对实验现象提供可靠的解释。

此外,对于未来实验设计和数据解释,Lattice规范关键行为也提供了重要的理论指导。

总结起来,量子色动力学Lattice规范关键行为的研究对于了解强相互作用的性质、揭示夸克物质和胶子物质相互转变的特性以及探索宇宙早期演化等方面具有重要意义。

超大尺寸KDPDKDP晶体研究进展

超大尺寸KDPDKDP晶体研究进展

第50卷第4期2021年4月人㊀工㊀晶㊀体㊀学㊀报JOURNAL OF SYNTHETIC CRYSTALS Vol.50㊀No.4April,2021超大尺寸KDP /DKDP 晶体研究进展张力元,王圣来,刘㊀慧,徐龙云,李祥琳,孙㊀洵,王㊀波(山东大学,晶体材料研究所,晶体材料国家重点实验室,济南㊀250100)摘要:KDP /DKDP 晶体具有生长方法简单㊁成本较低㊁光学性能良好等优点,而可生长出的超大尺寸KDP /DKDP 晶体是目前唯一可用于高功率激光工程的单晶材料㊂但是在晶体的生长过程中存在很多影响因素,同时对晶体进行后处理也会影响晶体的性能,这都直接关系到超大尺寸KDP /DKDP 晶体的实际应用㊂鉴于此,本文综述了近些年超大尺寸KDP /DKDP 晶体的重要研究进展,特别是针对传统生长和快速生长中存在的问题和相应的解决对策以及晶体性能相关的研究,并重点对晶体的透过率㊁氘化率㊁激光诱导损伤等进行了分析和讨论㊂关键词:超大尺寸;KDP /DKDP;生长;缺陷;性能中图分类号:O781㊀㊀文献标志码:A ㊀㊀文章编号:1000-985X (2021)04-0724-08Research Progress of Oversized KDP /DKDP CrystalsZHANG Liyuan ,WANG Shenglai ,LIU Hui ,XU Longyun ,LI Xianglin ,SUN Xun ,WANG Bo (State Key Laboratory of Crystal Materials,Institute of Crystal Materials,Shandong University,Jinan 250100,China)Abstract :KDP /DKDP crystal has the advantages of simple growth method,low cost and good optical properties,while the oversized KDP /DKDP crystal is the only single crystal material that can be used in high power laser engineering.However,there are many factors in the process of crystal growth,and the post-treatment of crystal will also affect the performance of crystal,which is directly related to the practical application of oversized KDP /DKDP crystal.Accordingly,this paper reviews the important research progress of oversized KDP /DKDP crystals in recent years,especially for the traditional growth and rapid growth problems and the corresponding countermeasures as well as the properties-related of research,and the transmittance,deteration level and laser-induced damage of oversized KDP /DKDP crystals are analyzed and discussed with key point.Key words :oversized;KDP /DKDP;growth;defect;property㊀㊀收稿日期:2021-03-19㊀㊀作者简介:张力元(1991 ),男,山东省人,博士研究生㊂E-mail:zhangly1991@ ㊀㊀通信作者:王圣来,博士,教授㊂E-mail:slwang67@0㊀引㊀㊀言磷酸二氢钾(KH 2PO 4,即KDP)晶体及其同位素(K(D x H 1-x )2PO 4,即DKDP)晶体以其生长方法简单㊁光学性能优良等优点得到广泛的应用,具有悠久研究历史[1]㊂尤其是20世纪60年代初,激光技术的出现促进了KDP /DKDP 晶体更大的应用和发展[2]㊂从近红外到紫外区间,KDP 类晶体都有很高的透过率,并可对1064nm 激光实现二倍频和三倍频甚至是四倍频[3]㊂目前为止,KDP /DKDP 晶体在兼具良好的非线性光学参数优点外,以其明显的尺寸优势成为唯一可用于惯性约束核聚变(ICF)工程中的单晶材料[4-6]㊂美国的国家点火装置(NIF)中大约需要600片截面达40cm ˑ40cm 以上的KDP /DKDP 晶片来应用于普克尔斯盒和激光倍频装置中[7]㊂在2012年,NIF 证实可输出1.8MJ 紫外光,而我国的神光-Ⅲ主机装置在2015年基本完成建设并可提供180kJ 的紫外光输出[8-9]㊂随着我国ICF 工程的持续推进,试验中对非线性光学晶体的质量和尺寸要求进一步严苛㊂为了提高超大尺寸KDP /DKDP 晶体的生长稳定性和晶体质量,研究人员致力于生长温度区间的控制㊁过饱和度的设计和生长溶液酸碱度的调控等[10-12]㊂但是,在晶体生长溶液中难免会存在少量的杂质,而有些杂质会干扰晶体生长的稳定[13]㊂有些杂质会被吸附到晶体的生长面中,进而影响晶体的光学质量[14]㊂㊀第4期张力元等:超大尺寸KDP/DKDP晶体研究进展725㊀同时,ICF工程对KDP类晶体性能的要求主要体现在两个方面:倍频效率和抗激光损伤能力[15]㊂因此,相关研究人员也一直致力于过滤以及晶体后处理等研究来进一步提高晶体质量[16]㊂例如,采用热退火或者激光亚阈值退火的手段来提高晶体的光学质量[17]㊂基于应用背景,本文系统综述了超大尺寸KDP/DKDP晶体生长及性能的重要研究进展,介绍了过滤㊁退火等方法对提升晶体质量的作用㊂1㊀超大尺寸KDP/DKDP晶体的生长KDP类晶体是人工合成的最早晶体之一㊂超大尺寸KDP/DKDP晶体的生长方法有多种,如传统降温法[18]㊁恒温循环流动法[19]㊁ 点籽晶 快速生长法等[20]㊂以传统降温法生长时,晶体生长速度仅为0.5~ 1mm/d[21]㊂为了改善这种窘境,相关研究人员发明了 点籽晶 快速生长法㊂其晶体生长速度有了大幅度提高,最快可达约50mm/d[22]㊂然而,如果过饱和度控制不当,快速生长法容易出现雪崩的问题[23]㊂1.1㊀传统生长在传统降温法生长大尺寸KDP/DKDP的过程中,温差对晶体开裂有至关重要的影响,而温度的变化会引起晶体应力分布的变化[24]㊂在传统降温法晶体降温生长的一段时间后,多晶帽区与单晶透明区的晶格失配会导致晶体产生内应力,进而导致晶体开裂㊂实验观察发现晶体的尺寸越大,这类开裂的风险越高,实际大尺寸开裂现象如图1所示[25]㊂图1㊀传统降温法生长的大尺寸KDP晶体开裂照片[25]Fig.1㊀Photograph of cracks in a large-scale KDP crystal grown by the conventional cooling method[25]基于实际开裂现象,从力学角度来分析晶体的开裂机制可对超大尺寸晶体的生长提供理论指导㊂张强勇等[26]通过试验准确地获得了KDP晶体的基本物理力学参数,确定KDP晶体材料为典型的弹脆性材料,表现出抗压不抗拉特性㊂孙云等[27-28]报道显示晶体中存在的杂质离子,如SO2-4㊁Na+等离子,会导致晶体内热膨胀系数的差异㊂大尺寸晶体内热膨胀系数的不均匀会产生内应力,可能引起晶体出现开裂现象[29]㊂近年来,Huang等[30-31]实验研究了KDP晶体的弯曲强度和断裂韧性等力学特性,采用实验与有限元计算模拟相结合的手段研究了不同尺寸籽晶进入生长溶液过程中出现开裂的现象,如图2所示㊂模拟研究发现籽晶在出现开裂现象前,其所能承受的温差会随自身尺寸的增大而减小,籽晶呈现出耐升温但不耐降温的现象㊂结果说明尺寸效应对晶体的内应力影响显著,这与实际观察到的大尺寸晶体生长开裂现象吻合,这也为超大尺寸晶体在实际出槽过程中防止出现开裂提供理论参考㊂1.2㊀快速生长无论是传统降温法还是恒温循环流动法,大尺寸的籽晶都会形成大尺寸的恢复区,进而导致位错等缺陷源的产生[32-33]㊂为了提高晶体的生长速度和减少晶体因恢复区带来的缺陷,研究人员在20世纪80年代左右开始重点研究快速生长技术㊂近年来,国内外相关研究人员致力于利用 点籽晶 快速生长技术提高KDP/DKDP晶体的生长速度,制备出超大尺寸的晶体[34-35]㊂例如,Zhuang等[36]利用快速生长技术,生长出重达300kg的KDP单晶,尺寸达到57cmˑ52cmˑ52cm㊂近些年,山东大学采用 点籽晶 快速生长法,在含有连续过滤系统的生长装置中获得了口径达60cm的KDP单晶,采用z向籽晶成功生长出尺寸达15cm级且氘含量超过98%的DKDP晶体[37-38]㊂虽然利用 点籽晶 技术能够快速生长出超大尺寸晶体,但是生长得到的晶体同时存在锥柱交界区的现726㊀综合评述人工晶体学报㊀㊀㊀㊀㊀㊀第50卷象㊂有研究发现经快速生长的KDP晶体锥柱交界区的抗激光损伤性能较差[39],快速生长法得到的KDP晶体的锥柱交界区的非线性吸收远大于锥区㊁柱区[40],这些研究结果意味着快速生长法得到的KDP晶体由于锥柱交界区的存在使得晶体光学均匀性变差㊂为了解决快速生长法晶体产生锥柱交界区的问题,Chen 等[41]首次采用柱状籽晶成功利用快速生长法生长出不含锥区的方形DKDP晶体,晶体支架和实际生长的晶体如图3所示㊂图2㊀四种尺寸降温籽晶放入45ħ溶液中开裂时刻的温度和应力分布,其中A㊁C点分别为最大㊁次大主应力位置, AB㊁CD为裂纹起始路径,S1㊁S3样品旁的插图展示了较大应力所在外表面应力方向(S1为36mmˑ36mmˑ5mm, S2为36mmˑ36mmˑ15mm,S3为36mmˑ36mmˑ30mm,S4为50mmˑ50mmˑ30mm)[30] Fig.2㊀Temperature andσ1distribution in cooled samples at the time of cracking with a solution of45ħ,where pointsA and C are the locations of the maximumσ1and secondaryσ1,AB and CD are the crack initiation paths,and theillustrations in the S1and S3sample diagrams show theσ1direction of one outer surface(S1is36mmˑ36mmˑ5mm, S2is36mmˑ36mmˑ15mm,S3is36mmˑ36mmˑ30mm,S4is50mmˑ50mmˑ30mm)[30]图3㊀(a)籽晶架示意图和(b)快速生长的长方体DKDP晶体[41]Fig.3㊀(a)Schematic diagram of the crystal holder and(b)rapidly grown cuboid DKDP crystal[41]由于籽晶架上下挡板的存在使得晶体只能在柱面扩展,此种设计成功避免了KDP/DKDP晶体快速生长过程中的锥柱交界区问题㊂因为这种长方体DKDP晶体具有规则的形状,因此在生长过程中计算晶体的质量和精确控制溶液的过饱和度是很容易的㊂晶体(200)面单晶X射线衍射峰半高宽为0.010ʎ,表明生长的㊀第4期张力元等:超大尺寸KDP/DKDP晶体研究进展727㊀晶体结晶质量也较高㊂采用此新颖的晶体生长方法进行超大尺寸晶体的生长,为制备ICF器件提供了便利㊂2㊀KDP/DKDP晶体的性能研究无论何种方法生长得到的大尺寸KDP/DKDP晶体,它们的质量关乎高功率激光工程的应用可靠性㊂基于应用背景,本节就KDP/DKDP晶体的透过率㊁氘化率㊁激光损伤等性能展开叙述㊂2.1㊀透过光谱研究发现晶体中长入一些异质离子等杂质会对透过率光谱产生明显的影响,图4表示出了四种典型的掺杂剂对KDP晶体透过率的影响㊂可以看出,高价态的Sn4+会在紫外区产生吸收[42],而晶体中存在的Fe3+也会在紫外区产生明显的吸收现象[43]㊂掺杂金属阳离子的KDP类晶体在紫外区透过率下降,这种现象主要归因于高价态的金属阳离子对紫外光的本征吸收㊂由于CrO2-4与PO3-4构型相似,可以进入KDP晶体,导致晶体的透过率降低,尤其是在280nm和370nm产生强吸收[44]㊂当KDP生长溶液中加入CDTA后,生长出的晶体的透过率明显提高,尤其是在紫外区㊂这是由于CDTA与生长溶液中的杂质阳离子存在络合作用,进而生长溶液中的杂质阳离子进入到晶体的量变少,表现为CDTA的加入提高了KDP晶体在紫外区的透过率[45]㊂这些研究说明生长溶液中存在的一些杂质阳离子会显著降低晶体的透过率,而在晶体生长溶液中添加少量的金属离子络合剂,如CDTA,反而会提高晶体的透过率㊂图4㊀掺杂KDP晶体的透过率光谱[42-45]Fig.4㊀Transmittance spectra of doped KDP crystal[42-45]D c(%)=2.64ˑ[ν1(KDP)-ν1(DKDP)](1)另外,DKDP晶体的氘化程度不同也会使晶体在红外光谱中相应的O-H键振动峰和PO4基团的振动峰发生位移,如图5(b)所示,同样也可用相关公式计算晶体中氘含量㊂当晶体的生长溶液的氘化率低于92%时,拉曼光谱和红外光谱都可以用来测定DKDP晶体的氘化率㊂然而,当晶体的生长溶液的氘化率高于92%时,相对于拉曼光谱测试,红外光谱测得晶体的氘化率结果更精确㊂728㊀综合评述人工晶体学报㊀㊀㊀㊀㊀㊀第50卷2.2㊀DKDP晶体的氘含量拉曼光谱是根据PO4振动峰的变化,方便地测定DKDP晶体氘化程度的常用表征手段[46]㊂氘化程度与PO4振动峰Raman位移之间定量关系的准确性是确定晶体氘化程度的关键(见图5(a))㊂如式(1)所示,其中ν1(KDP)和ν1(DKDP)分别代表PO4振动峰在拉曼光谱中对应的波数,可计算出晶体中的实际氘含量D c㊂图5㊀DKDP晶体的拉曼光谱(a)和红外光谱(b)[46]Fig.5㊀Raman spectra(a)and IR spectra(b)of DKDP crystals[46]2.3㊀激光损伤影响KDP/DKDP晶体激光损伤的因素有很多,如杂质离子[47-49]等㊂针对晶体的激光损伤现象,研究人员也通过各种方法来提高KDP/DKDP晶体的抗激光损伤性能,如采用过滤溶液[50]㊁热退火[51-52]等㊂当生长溶液中掺入KDP原料中常见的Fe3+㊁Cr3+或Al3+等杂质阳离子时,生长得到的晶体中就会含有痕量的阳离子杂质,这些杂质阳离子也会成为降低晶体激光损伤阈值的因素㊂Runkel等[49]通过研究这些杂质阳离子对KDP晶体激光损伤的影响发现,虽然Fe3+㊁Cr3+或Al3+等杂质阳离子掺杂浓度较低,但是晶体样品的抗激光损伤性能都不满足NIF工程的应用要求,说明杂质阳离子对晶体抗激光损伤性能的影响甚大㊂在晶体的生长过程中,采用连续过滤的方法可有效提高晶体的抗激光损伤性能㊂例如,Wang等[50]设计了溶液分别在未过滤㊁经100nm孔径滤膜过滤㊁经100nm滤膜过滤然后再经30nm滤膜双重过滤的条件下生长KDP晶体的对比实验,结果如图6(a)所示㊂这项对比实验有力地说明持续过滤对提高KDP/DKDP晶体的抗激光损伤性能的正面作用㊂另外,对生长得到的晶体进行后处理也是提高晶体损伤性能的有效途径之一㊂例如,Cai等[51]将DKDP晶体分别在不同的温度下保温96h,对比了不同温度热处理后的晶体抗激光损伤性能,结果如图6(b)所示㊂相对于未经热退火的晶体,随着热处理温度的升高晶体的抗激光损伤性能得到改善㊂相关研究发现KDP晶体内部可检测到的微缺陷浓度经热退火后降低,表明532nm波长下KDP 晶体的激光损伤与晶体中微缺陷浓度有关[53]㊂图6㊀KDP晶体的损伤曲线[50-51]Fig.6㊀Damage curves of KDP crystals[50-51]㊀第4期张力元等:超大尺寸KDP/DKDP晶体研究进展729㊀3㊀结语与展望本文简要综述了大尺寸KDP/DKDP晶体的生长方法和相关性能的研究现状㊂晶体的开裂现象相关实验和理论研究有利于防止实际大尺寸晶体的开裂,新发展的柱状籽晶生长法可有效避免锥柱交界的问题产生㊂在晶体生长溶液中添加少量的金属离子络合剂会提高晶体的光学质量,对生长溶液进行连续过滤以及对晶体进行热处理等操作也会改善晶体的光学和抗激光损伤性能㊂综上所述,高纯度的晶体生长原料是基础,合适的生长条件和有效避免杂质等影响是关键,生长得到的晶体进行后处理是妙招㊂统筹好以上各个步骤的协作,可以使大尺寸KDP/DKDP晶体更加符合高功率激光工程的应用要求㊂参考文献[1]㊀王圣来,丁建旭.KDP晶体的研究进展[J].人工晶体学报,2012,41(S1):179-183+188.WANG S L,DING J X.Research progress of KDP crystal[J].Journal of Synthetic Crystals,2012,41(S1):179-183+188(in Chinese).[2]㊀GIORDMAINE J A.Mixing of light beams in crystals[J].Physical Review Letters,1962,8(1):19.[3]㊀魏晓峰,张小民,隋㊀展,等.大口径KDP晶体高效率倍频的实验研究[J].中国激光,1990,17(12):737-740.WEI X F,ZHANG X M,SUI Z,et al.Experimental research on efficient frequency doubling using a large aperture KDP crystal[J].Chinese Journal of Lasers,1990,17(12):737-740(in Chinese).[4]㊀苏根博,曾金波,贺友平,等.大截面KDP晶体在激光核聚变研究中的应用[J].硅酸盐学报,1997,25(6):717-719.SU G B,ZENG J B,HE Y P,et al.Application of large section kdp crystals in the study of laser fusion[J].Journal of the Chinese Ceramic Society,1997,25(6):717-719(in Chinese).[5]㊀邵建达,戴亚平,许㊀乔.惯性约束聚变激光驱动装置用光学元器件的研究进展[J].光学精密工程,2016,24(12):2889-2895.SHAO J D,DAI Y P,XU Q.Progress on optical components for ICF laser facility[J].Optics and Precision Engineering,2016,24(12):2889-2895(in Chinese).[6]㊀王㊀静,张小民,李富全,等.大口径KDP晶体紫外光横向受激拉曼散射风险判据研究[J].中国激光,2011,38(5):0502011.WANG J,ZHANG X M,LI F Q,et al.Risk evaluation of transverse stimulated Raman scattering in large-aperture,high fluence KDP crystal [J].Chinese Journal of Lasers,2011,38(5):0502011(in Chinese).[7]㊀HAWLEY-FEDDER R A,ROBEY H F,BIESIADA T A,et al.Rapid growth of very large KDP and KD∗P crystals in support of the NationalIgnition Facility[C]//Inorganic Optical Materials II.San Diego,CA.SPIE,2000:152-161.[8]㊀MOSES E I,LINDL J D,SPAETH M L,et al.Overview:development of the national ignition facility and the transition to a user facility for theignition campaign and high energy density scientific research[J].Fusion Science and Technology,2016,69(1):1-24.[9]㊀郑万国,魏晓峰,朱启华,等.神光-Ⅲ主机装置研制进展[J].光电产品与资讯,2015,6(12):27-30.ZHENG W G,WEI X F,ZHU Q H,et al.Development of shenguang-iii host equipment[J].Photoelectric Products and Information,2015,6,(12):27-30(in Chinese).[10]㊀LI W D,YU G W,WANG S L,et al.Influence of temperature on the growth and surface morphology of Fe3+poisoned KDP crystals[J].RSCAdvances,2017,7(28):17531-17538.[11]㊀LI W D,LI Y,WANG S L,et al.The relationship between the laser damaged threshold and step velocity in different supersaturation regions[J].RSC Advances,2018,8(64):36453-36458.[12]㊀朱胜军,王圣来,丁建旭,等.过饱和度对KDP晶体生长与光学性能的影响研究[J].人工晶体学报,2013,42(10):1973-1977.ZHU S J,WANG S L,DING J X,et al.Effect of supersaturation on growth and optical properties of KDP crystal[J].Journal of Synthetic Crystals,2013,42(10):1973-1977(in Chinese).[13]㊀朱胜军,王圣来,刘光霞,等.KDP晶体快速生长溶液的稳定性研究[J].人工晶体学报,2013,42(3):388-391.ZHU S J,WANG S L,LIU G X,et al.Study on the solution stability of KDP crystal at fast crystal growth rate[J].Journal of Synthetic Crystals, 2013,42(3):388-391(in Chinese).[14]㊀卢永强,王圣来,许心光,等.Al3+掺杂对KDP晶体生长习性的影响[J].硅酸盐通报,2009,28(4):631-635.LU Y Q,WANG S L,XU X G,et al.Effects of Al3+ion on the growth habit of KDP crystals[J].Bulletin of the Chinese Ceramic Society, 2009,28(4):631-635(in Chinese).[15]㊀王㊀波,梁晓亮,许心光,等. 点籽晶 法快速生长中等口径KDP单晶及其性能表征[J].人工晶体学报,2009,38(5):1051-1054.WANG B,LIANG X L,XU X G,et al.Rapid growth and properties characterization of middle scale KDP single crystal[J].Journal of Synthetic Crystals,2009,38(5):1051-1054(in Chinese).[16]㊀ZAITSEVA N,CARMAN L,SMOLSKY I,et al.The effect of impurities and supersaturation on the rapid growth of KDP crystals[J].Journal ofCrystal Growth,1999,204(4):512-524.730㊀综合评述人工晶体学报㊀㊀㊀㊀㊀㊀第50卷[17]㊀王圣来,李丽霞,胡小波,等.热退火对KDP晶体微结构的影响[J].功能材料,2003,34(3):331-333.WANG S L,LI L X,HU X B,et al.The effect of thermal conditioning on microstructure of KDP crystals[J].Journal of Functional Materials, 2003,34(3):331-333(in Chinese).[18]㊀LIU W J,WANG S L,GU Q T,et al.Growth,structural and optical properties of12%-deuterated KDP crystals[J].Crystal Research andTechnology,2013,48(5):314-320.[19]㊀鲁智宽,高樟寿,李义平,等.溶液循环流动法生长大尺寸KDP晶体[J].人工晶体学报,1996,25(1):19-22.LU Z K,GAO Z S,LI Y P,et al.Growth of large KDP crystals by solution circulating method[J].Journal of Synthetic Crystals,1996,25(1): 19-22(in Chinese).[20]㊀ZAITSEVA N P,RASHKOVICH L N,BOGATYREVA S V.Stability of KH2PO4and K(H,D)2PO4solutions at fast crystal growth rates[J].Journal of Crystal Growth,1995,148(3):276-282.[21]㊀SASAKI T,YOKOTANI A.Growth of large KDP crystals for laser fusion experiments[J].Journal of Crystal Growth,1990,99(1/2/3/4):820-826.[22]㊀NAKATSUKA M,FUJIOKA K,KANABE T,et al.Rapid growth over50mm/day of water-soluble KDP crystal[J].Journal of Crystal Growth,1997,171(3/4):531-537.[23]㊀王圣来,付有君,孙㊀洵,等.KDP晶体过饱和度实时控制生长[J].人工晶体学报,2000,29(S1):103.WANG S L,FU Y J,SUN X,et al.Real-time control of supersaturation in growth of KDP crystal from aqueous solution[J].Journal of Synthetic Crystals,2000,29(S1):103(in Chinese).[24]㊀黄萍萍,王端良,李伟东,等.温度不均匀引起KDP晶体开裂的实验与模拟[J].硅酸盐学报,2018,46(7):929-937.HUANG P P,WANG D L,LI W D,et al.Crack of KDP crystals caused by temperature-nonuniformity[J].Journal of the Chinese Ceramic Society,2018,46(7):929-937(in Chinese).[25]㊀黄萍萍.KDP晶体开裂的实验与模拟研究[D].济南:山东大学,2019:61-74.HUANG P P.Experimental and simulation study of KDP crystal cracking[D].Jinan:Shandong University,2019:61-74(in Chinese). [26]㊀张强勇,刘德军,王圣来,等.KDP晶体力学参数测试与分析[J].人工晶体学报,2009,38(6):1313-1319.ZHANG Q Y,LIU D J,WANG S L,et al.Mechanical parameters test and analysis for KDP crystal[J].Journal of Synthetic Crystals,2009,38(6):1313-1319(in Chinese).[27]㊀孙㊀云,王圣来,顾庆天,等.硫酸盐掺杂导致KDP晶体开裂的研究[J].功能材料,2012,43(2):217-221.SUN Y,WANG S L,GU Q T,et al.Research on the crack induced by sulphate doping on KDP crystal[J].Journal of Functional Materials, 2012,43(2):217-221(in Chinese).[28]㊀孙㊀云,王圣来,姜㊀通,等.Na+对KDP晶体热膨胀及硬度的影响[J].功能材料,2013,44(12):1768-1771.SUN Y,WANG S L,JIANG T,et al.Effect of Na ions on the thermal expansion coefficient and hardness of KDP crystals[J].Journal of Functional Materials,2013,44(12):1768-1771(in Chinese).[29]㊀刘㊀琳,王圣来,刘光霞,等.大尺寸KDP/DKDP晶体热膨胀系数研究[J].人工晶体学报,2015,44(6):1443-1447+1453.LIU L,WANG S L,LIU G X,et al.Research on thermal expansion coefficient of large-aperture KDP/DKDP crystals[J].Journal of Synthetic Crystals,2015,44(6):1443-1447+1453(in Chinese).[30]㊀HUANG P P,WANG S L,WANG D L,et al.Study on the cracking of a KDP seed crystal caused by temperature nonuniformity[J].CrystEngComm,2018,20(23):3171-3178.[31]㊀HUANG P P,DING J X,WANG D L,et al.A study on fracture toughness of potassium dihydrogen phosphate single crystals[J].CrystEngComm,2019,21(8):1329-1334.[32]㊀YU B,XU L Y,WANG S L,et al.Study on Burgers vector of dislocations in KDP(010)faces and screw dislocation growth mechanism of(101)faces[J].RSC Advances,2021,11(14):7897-7902.[33]㊀DE YOREO J J,LAND T A,RASHKOVICH L N,et al.The effect of dislocation cores on growth hillock vicinality and normal growth rates ofKDP{101}surfaces[J].Journal of Crystal Growth,1997,182(3/4):442-460.[34]㊀WANG S L,GAO Z S,FU Y J,et al.Study on rapid growth of highly-deuterated DKDP crystals[J].Crystal Research and Technology,2003,38(11):941-945.[35]㊀ZAITSEVA N,CARMAN L.Rapid growth of KDP-type crystals[J].Progress in Crystal Growth and Characterization of Materials,2001,43(1):1-118.[36]㊀ZHUANG X X,YE L W,ZHENG G Z,et al.The rapid growth of large-scale KDP single crystal in brief procedure[J].Journal of CrystalGrowth,2011,318(1):700-702.[37]㊀刘发付.KDP/DKDP晶体生长及其残余应力研究[D].济南:山东大学,2017:1-23.LIU F F.Study on the growth and residual stress of KDP/DKDP crystal[D].Jinan:Shandong University,2017:1-23(in Chinese). [38]㊀ZHANG L S,YU G W,ZHOU H L,et al.Study on rapid growth of98%deuterated potassium dihydrogen phosphate(DKDP)crystals[J].Journal of Crystal Growth,2014,401:190-194.㊀第4期张力元等:超大尺寸KDP/DKDP晶体研究进展731㊀[39]㊀CHEN D Y,WANG B,WANG H,et al.Investigation of the pyramid-prism boundary of a rapidly grown KDP crystal[J].CrystEngComm,2019,21(9):1482-1487.[40]㊀XU L Y,LU C W,WANG S L,et al.A study on nonlinear absorption uniformity in a KDP crystal at532nm[J].CrystEngComm,2020,22(32):5338-5344.[41]㊀CHEN D Y,WANG B,WANG H,et al.Rapid growth of a cuboid DKDP(KD x H2-x PO4)crystal[J].Crystal Growth&Design,2019,19(5):2746-2750.[42]㊀WANG B,FANG C S,WANG S L,et al.The effects of Sn4+ion on the growth habit and optical properties of KDP crystal[J].Journal ofCrystal Growth,2006,297(2):352-355.[43]㊀WANG D L,LI T B,WANG S L,et al.Effect of Fe3+on third-order optical nonlinearity of KDP single crystals[J].CrystEngComm,2016,18(48):9292-9298.[44]㊀DING J X,WANG S L,XU X G,et al.Incorporation of Cr-containing anionic species into potassium dihydrogen phosphate crystal[J].Journalof Crystal Growth,2011,334(1):153-158.[45]㊀ZHU S J,WANG S L,DING J X,et al.Improvement of growth rate and optical performances of rapidly grown KDP crystal by adding cyclohexanediamine tetraacetic acid in growth solution[J].Journal of Crystal Growth,2014,388:98-102.[46]㊀LIU F F,XU M X,LIU B A,et al.Determination of deuteration level of K(H1–x D x)2PO4crystal[J].Optical Materials Express,2016,6(7):2221.[47]㊀GAO H,SUN X,XU X G,et al.Effect of Ba in KDP crystal on the wavelength dependence of laser-induceddamage[J].Chinese Optics Letters,2011,9(9):091402.[48]㊀朱胜军,王圣来,丁建旭,等.六偏磷酸盐对KDP晶体快速生长及光学性能的影响研究[J].功能材料,2014,45(1):1067-1071.ZHU S J,WANG S L,DING J X,et al.Effects of hexametaphosphate on rapid growth and optical properties of KDP crystals[J].Journal of Functional Materials,2014,45(1):1067-1071(in Chinese).[49]㊀RUNKEL M J,YAN M,DEYOREO J J,et al.Effect of impurities and stress on the damage distributions of rapidly grown KDP crystals[C]//Laser-Induced Damage in Optical Materials:1997.Boulder,CO.SPIE,1998:211-222.[50]㊀WANG Y L,ZHAO Y,XIE X Y,et ser damage dependence on the size and concentration of precursor defects in KDP crystals:viewthrough differently sized filter pores[J].Optics Letters,2016,41(7):1534-1537.[51]㊀CAI D T,PAN X B,XU X G,et al.Effect of annealing on nonlinear optical properties of70%deuterated DKDP crystal at355nm[J].CrystEngComm,2018,20(45):7357-7363..[52]㊀CHEN D Y,WANG B,WANG H,et al.Effect of thermal annealing on a cuboid DKDP crystal[J].Journal of Alloys and Compounds,2020,817:152812.[53]㊀ZHANG L Y,WANG S L,YANG H W,et al.Study on optical performance and532nm laser damage of rapidly grown KDP crystals[J].OpticalMaterials,2021,114:110995.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

arXiv:hep-ph/0412056v1 3 Dec 2004RevisitingthephenomenologyontheQCDcolordipolepictureA.I.LengyelaandM.V.T.MachadobaInstituteofElectronPhysics,NationalAcademyofSciencesofUkraine,

Universitetska21,UA-88016Uzhgorod,Ukraine

bHighEnergyPhysicsPhenomenologyGroup,GFPAEIF-UFRGS,

CaixaPostal15051,CEP91501-970,PortoAlegre,RS,Brazil

UsingtheQCDdipolepictureofthehardBFKLPomeron,weperforma3parameterfitanalysisoftherecentinclusivestructurefunctionexperimentalmesurementsatsmall-xandintermediateQ2.Asabyproduct,thelongitudinalstructurefunctionandthegluondistributionarepredictedwithoutfurtheradjustments.Thedatadescriptionisquitereasonable,beingtimelyafurtherstudyusingresummedNLOBFKLkernelsalongthelinesofrecenttheoreticaldevelopments.

1.IntroductionDeepinelasticelectron-protonscattering(DIS)experimentsatHERAhaveprovidedmea-surementsoftheinclusivestructurefunctionF2(x,Q2)inverysmallvaluesoftheBjorkenvari-ablex>∼10−5.Intheseprocessestheprotontar-getisanalyzedbyahardprobewithvirtualityQ2=−q2,wherex∼Q2/2p.qandp,qarethefour-momentaoftheincomingprotonandthevir-tualphotonprobe.Inthisdomain,thegluonistheleadingpartondrivingthesmall-xbehaviorofthedeepinelasticobservables.Asoundapproachencodingallorderαsln(1/x)resummationistheQCDdipolepic-ture[1].Itwasproventhatsuchapproachrepro-ducestheBFKLevolution[2].Themainprocessistheonium-oniumscattering,thatisthereac-tionbetweentwoheavyquark-antiquarkstates(onia).Thisprocessisbasicallyperturbativeduetotheoniumradiusbeingthenaturalhardscaleatwhichthestrongcouplingiscomputed.InthelargeNclimit,theheavypairandthesoftgluonsarerepresentedasacollectionofcolordipoles.Thecrosssectioniswrittenasaconvolutionbe-tweenthenumberofthedipolesineachoniumstateandthebasiccrosssectionfordipole-dipolescatteringduetotwo-gluonexchange.TheQCDdipolemodelcanbeappliedtoDISprocess,as-sumingthatthevirtualphotonathighQ2canbedescribedbyanonium.Furthermore,theprotonisdescribedbyacollectionofoniawithanaverageoniumradiustobedeterminedfromphenomenology.Thismodelhasproducedasuc-cessfuldescriptionoftheoldstructurefunctiondata[3].Theseachievementsareourmainmoti-vationinrevisitingtheQCDcolordipolepictureandinapplyingitfordescriptionofthecurrentlymoreaccurateF2(x,Q2)experimentalresults.Theapproachalsoallowsasystematicframe-workfortestingtheresummednext-to-leadingorderBFKLevolutionkernels,producingpredic-tionsfortheprotonstructurefunction.AmethodfordoingthishasbeenproposedinRef.[4],wheretheresummationschemescantestedthroughtheMellintransformedj-momentsofF2.Moreover,ithasbeenshownthatageometricscalingforthephoton-protoncrosssectionandthesymme-trybetweenlowandhighQ2regionsareasso-ciatedtothesymmetryofthetwo-gluondipole-dipolecrosssection[5].Furthermore,withintheapproach,asimpleanalyticexpressionforthedipole-protonscatteringamplitudehasbeencom-putedtakingthescatteringamplitudeasaso-lutionoftheBFKLequationinthevicinityofthesaturationlinefordipolesizesr(inthepho-tonwavefuntion)obeyingr<∼1/Qsat[6],whereQ2s(x)∝eλlog(1/x)isthesaturationscale.Fi-

12nally,theapproachhasrecentlybeenusedtode-scribehardprocessesinitiatedbyvirtual-gluonprobes[7].Inthiscontributionwesummarizeourfitanal-ysisusingtheQCDdipolephenomenologyap-pliedtoDISprocess[8].Inwhatfollows,themainexpressionsarepresentedandthefittingresultsareshownanddiscussedinconclusion.

2.TheQCDdipolepictureappliedtoDISThestartingpointintheQCDcolordipolepic-tureistheonium-oniumscattering.Anoniumisaheavyquark-antiquarkstate,turningoutthescatteringprocessperturbativeoncetheoniumradiusprovidesthehardscaleenteringintothestrongcouplingαs.Asenergyincreases(small-x),theseoriginaloniacanradiatesoftgluonsduetoQCDevolution.InthelargeNclimit,theheavypairandthesoftgluonsarerepresentedasacollectionofcolordipoles.Thecrosssectionisthenwrittenasaconvolutionbetweenthenumberofthedipolesineachoniumstateandthebasiccrosssectionfordipole-dipolescatteringduetotwo-gluonexchange.Thelatterquantityisthe-oreticallyunderstoodandperturbativelycalcula-ble.Thephysicalprocessmoresuitableforusingtheapproachisγ∗(Q1)γ∗(Q2)scattering,wherethehardscaleisprovidedbythevirtualitiesofthevirtualphotons,Q1,2.Thatis,thevirtualphotonathighQ2isassumedtobedescribedbyanoniumwithradiusr∼1/Q.Ontheotherhand,intheDISprocessonehasatwo-scaleproblemwherethehardscaleisgivenbythephotonvirtualityandthesoftoneisas-sociatedtotheprotontypicalsize.Hence,theprotonisapproximatelydescribedbyacollectionofoniawithanunknownaverageoniumradius.Then,theDIScrosssectioniswrittenasaconvo-lutionoftheprobabilityoffindinganoniumintheprotonandthephoton-oniumcrosssection.Re-lyingonrenormalizationgroupproperties,asuit-ableansatzfortheformerquantitywasproposed[3].Itdependsontheaveragenumberofprimarydipolesintheprotonneffandontheiraveragetransversediameterr0≡2/Q0.Undertheseas-sumptionsandtheconvolutionintegralapprox-imatedbyasteepest-descentmethod(usingtheTable1ParametersforH1andZEUSdatasets[9,10].PARAMETERH1dataset0.09770.5711.241.0896󰀂x0Q0×󰀁2ln2Qx]−1.TheconditionstoobtainEq.(1)fromthesaddle-pointmethodconstrainitsregionofapplicability.Namely,therelationκ(x)ln(Q/Q0)≪1shouldbeobeyed.ThisisrealizedfortheregionofmoderateQ/Q0whencomparedtotherangeonx0/x.3.ResultsandConclusionsLetspresentthefittingprocedureusingtherecentHERAexperimentaldataonthepro-tonstructurefunction[9,10]andtakingEq.(1),whereF2=FT+FL.WedefinedtheoverallnormalizationforF2,Np=(HT+HL)¯αsπ3e2fneff/96.Forthefitprocedurewehaveconsideredonlythesmallx≤10−2data,coveringtherangeofvirtualities1.5≤Q2≤150GeV2.Wehavealsofixedx0=1,sinceitsvalueisrea-sonablystablefordifferentdatasets.Therefore,weareleftwithareducednumberofparameters(Np,αIP,Q0).TheresultingparametersforH1andZEUSexperimentaldatasetsarepresentedinTable1.ThequalityoffitisquitegoodforbothH1andZEUSdatasets.Wehaveperformedalsoanextrapolationofthefitusinginallrangeonx

相关文档
最新文档