2019-2020学年高中数学 第一章 导数及其应用 1.5 定积分的概念教案 新人教A版选修2-2.doc
人教版高中数学第一章导数及其应用1.5定积分的概念1.5.1曲边梯形的面积1.5.2汽车行驶的路程1.5.3定积分的概

1.5 定积分的概念1.5.1 曲边梯形的面积 1.5.2 汽车行驶的路程 1.5.3 定积分的概念学习目标:、1.了解定积分的概念(难点).2.理解定积分的几何意义.(重点、易错点).3.通过求曲边梯形面积的过程和解决有关汽车行驶路程问题的过程,了解“以直代曲”“以不变代变”的思想(难点).4.能用定积分的定义求简单的定积分(重点).[自 主 预 习·探 新 知]1.曲边梯形的面积和汽车行驶的路程 (1)曲边梯形的面积①曲线梯形:由直线x =a ,x =b (a ≠b ),y =0和曲线y =f (x )所围成的图形称为曲边梯形(如图151①所示).②求曲边梯形面积的方法把区间[a ,b ]分成许多小区间,进而把曲边梯形拆分为一些小曲边梯形,对每个小曲边梯形“以直代曲”,即用矩形的面积近似代替小曲边梯形的面积,得到每个小曲边梯形面积的近似值,对这些近似值求和,就得到曲边梯形面积的近似值(如图151②所示).图① 图②图151③求曲边梯形面积的步骤:分割,近似代替,求和,取极限. (2)求变速直线运动的(位移)路程如果物体做变速直线运动,速度函数v =v (t ),那么也可以采用分割,近似代替,求和,取极限的方法,求出它在a ≤t ≤b 内所作的位移s .2.定积分的概念如果函数f (x )在区间[a ,b ]上连续,用分点a =x 0<x 1<…<x i -1<x i <…<x n =b 将区间[a ,b ]等分成n 个小区间,在每个小区间[x i -1,x i ]上任取一点ξi (i =1,2,…,n )作和式∑n i =1f (ξi )Δx =∑n i =1 b -a nf (ξi ),当n →∞时,上述和式无限接近某个常数,这个常数叫做函数f (x )在区间[a ,b ]上的定积分,记作⎠⎛a b f (x )d x ,即⎠⎛a b f (x )d x =lim n→∞∑n i =1 b -anξ.其中a 与b 分别叫做积分下限与积分上限,区间[a ,b ]叫做积分区间,函数f (x )叫做被积函数,x 叫做积分变量,f (x )d x 叫做被积式.思考:⎠⎛a b f (x )d x 是一个常数还是一个变量?⎠⎛a b f (x )d x 与积分变量有关系吗?[提示]由定义可得定积分⎠⎛a b f (x )d x 是一个常数,它的值仅取决于被积函数与积分上、下限,而与积分变量没有关系,即⎠⎛a b f (x )d x =⎠⎛a b f (t )d t =⎠⎛ab f (u )d u .3.定积分的几何意义与性质 (1)定积分的几何意义由直线x =a ,x =b (a <b ),x 轴及一条曲线y =f (x )所围成的曲边梯形的面积设为S ,则有:① ② ③图152①在区间[a ,b ]上,若f (x )≥0,则S =⎠⎛a b f (x )d x ,如图152①所示,即⎠⎛a b f (x )d x=S .②在区间[a ,b ]上,若f (x )≤0,则S =-⎠⎛a b f (x )d x ,如图152②所示,即⎠⎛a b f (x )d x =-S .③若在区间[a ,c ]上,f (x )≥0,在区间[c ,b ]上,f (x )≤0,则S =⎠⎛a c f (x )d x -⎠⎛cbf (x )d x ,如图152③所示,即⎠⎛ab=SA -SB(S A ,S B 表示所在区域的面积).(2)定积分的性质①⎠⎛a b kf (x )d x =k ⎠⎛ab f (x )d x (k 为常数); ②⎠⎛a b [f 1(x )±f 2(x )]d x =⎠⎛a b f 1(x )d x ±⎠⎛ab f 2(x )d x ;③⎠⎛a b f (x )d x =⎠⎛a c f (x )d x +⎠⎛cb f (x )d x (其中a <c <b ). [基础自测]1.思考辨析(1)⎠⎛a b f (x )d x =⎠⎛ab f (t )d t .( ) (2)⎠⎛a b f (x )d x 的值一定是一个正数.( ) (3)⎠⎛012xd x <⎠⎛022xd x ( ) [答案] (1)√ (2)× (3)√2.在“近似代替”中,函数f (x )在区间[x i ,x i +1]上的近似值( ) A .只能是左端点的函数值f (x i ) B .只能是右端点的函数值f (x i +1)C .可以是该区间内任一点的函数值f (ξi )(ξi ∈[x i ,x i +1])D .以上答案均正确C [作近似计算时,Δx =x i +1-x i 很小,误差可忽略,所以f (x )可以是[x i ,x i +1]上任一值f (ξi ).]3.图153中阴影部分的面积用定积分表示为( )图153A.⎠⎛012xd x B.⎠⎛01(2x -1)d x C.⎠⎛01(2x +1)d x D.⎠⎛01(1-2x )d x B [根据定积分的几何意义,阴影部分的面积为⎠⎛012xd x -⎠⎛011d x =⎠⎛01(2x-1)d x .]4.已知⎠⎛01x 2d x =13,⎠⎛12x 2d x =73,⎠⎛021d x =2,则⎠⎛02(x 2+1)d x =________.【导学号:31062080】[解析] ∵⎠⎛01x 2d x =13,⎠⎛12x 2d x =73,⎠⎛021d x =2,∴⎠⎛02(x 2+1)d x =⎠⎛01x 2d x +⎠⎛12x 2d x +⎠⎛021d x=13+73+2 =83+2=143. [答案]143[合 作 探 究·攻 重 难]图154[解] (1)分割将曲边梯形分割成n 个小曲边梯形,用分点1n ,2n ,…,n -1n 把区间[0,1]等分成n 个小区间:⎣⎢⎡⎦⎥⎤0,1n ,⎣⎢⎡⎦⎥⎤1n ,2n ,…,⎣⎢⎡⎦⎥⎤i -1n ,i n ,…,⎣⎢⎡⎦⎥⎤n -1n ,n n ,简写作⎣⎢⎡⎦⎥⎤i -1n,i n (i =1,2,…,n ).每个小区间的长度为Δx =i n -i -1n =1n .过各分点作x 轴的垂线,把曲边梯形分成n个小曲边梯形,它们的面积分别记作:ΔS 1,ΔS 2,…,ΔS i ,…,ΔS n .(2)近似代替用小矩形面积近似代替小曲边梯形面积,在小区间⎣⎢⎡⎦⎥⎤i -1n ,i n 上任取一点ξi(i =1,2,…,n ),为了计算方便,取ξi 为小区间的左端点,用f (ξi )的相反数-f (ξi )=-⎝ ⎛⎭⎪⎫i -1n ⎝ ⎛⎭⎪⎫i -1n -1为其一边长,以小区间长度Δx =1n 为另一边长的小矩形对应的面积近似代替第i 个小曲边梯形面积,可以近似地表示为ΔS i ≈-f (ξi )Δx =-⎝ ⎛⎭⎪⎫i -1n ⎝ ⎛⎭⎪⎫i -1n -1·1n (i =1,2,…,n ).(3)求和因为每一个小矩形的面积都可以作为相应小曲边梯形面积的近似值,所以n 个小矩形面积的和就是曲边梯形面积S 的近似值,即S =∑i =1nΔS i ≈-∑i =1nf(ξi)Δx=∑i =1n⎣⎢⎡⎦⎥⎤-⎝ ⎛⎭⎪⎫i -1n ⎝ ⎛⎭⎪⎫i -1n -1·1n=-1n3[02+12+22+…+(n -1)2]+1n2[0+1+2+…+(n -1)]=-1n3·16n (n -1)(2n -1)+1n2·-2=--n2+16n2=-16⎝ ⎛⎭⎪⎫1n2-1. (4)取极限当分割无限变细,即Δx 趋向于0时,n 趋向于∞, 此时-16⎝ ⎛⎭⎪⎫1n2-1趋向于S .从而有 S =lim n→∞ ⎣⎢⎡⎦⎥⎤-16⎝ ⎛⎭⎪⎫1n2-1=16.所以由直线x =0,x =1,y =0和曲线y =x (x -1)围成的图形面积为16.[规律方法] 求曲边梯形的面积 (1)思想:以直代曲.(2)步骤:分割→近似代替→求和→取极限. (3)关键:近似代替.(4)结果:分割越细,面积越精确. (5)求和时可用到一些常见的求和公式,如1+2+3+…+n =+2,12+22+32+…+n 2=++6,13+23+33+…+n 3=⎣⎢⎡⎦⎥⎤+22. [跟踪训练]1.求由抛物线y =x 2与直线y =4所围成的曲边梯形的面积.【导学号:31062081】[解] ∵y =x 2为偶函数,图象关于y 轴对称,∴所求曲边梯形的面积应为抛物线y =x 2(x ≥0)与直线x =0,y =4所围图形面积S阴影的2倍,下面求S 阴影.由⎩⎪⎨⎪⎧y =,y =4,得交点为(2,4),如图所示,先求由直线x =0,x =2,y =0和曲线y =x 2围成的曲边梯形的面积.(1)分割将区间[0,2]n 等分, 则Δx =2n ,取ξi =-n.(2)近似代替求和S n =∑ni =1 ⎣⎢⎡⎦⎥⎤-n2·2n =8n3[12+22+32+…+(n -1)2] =83⎝ ⎛⎭⎪⎫1-1n ⎝ ⎛⎭⎪⎫1-12n .(3)取极限S =lim n→∞S n =lim n→∞ 83⎝⎛⎭⎪⎫1-1n ⎝⎛⎭⎪⎫1-12n=83.∴所求平面图形的面积为S 阴影=2×4-83=163.∴2S 阴影=323,即抛物线y =x 2与直线y =4所围成的图形面积为323.(单位:km/h),求它在1≤t ≤2这段时间行驶的路程是多少?[解] 将时间区间[1,2]等分成n 个小区间,则第i 个小区间为⎣⎢⎡⎦⎥⎤1+i -1n ,1+i n , 在第i 个时间段的路程近似为Δs i =v ⎝ ⎛⎭⎪⎫1+i n Δt =⎣⎢⎡⎦⎥⎤-⎝ ⎛⎭⎪⎫1+i n 2+2⎝ ⎛⎭⎪⎫1+i n ·1n,i =1,2,…,n .所以s n =∑n i =1Δs i =∑n i =1 ⎣⎢⎡⎦⎥⎤-⎝ ⎛⎭⎪⎫1+i n 2+2⎝ ⎛⎭⎪⎫1+i n ·1n=-1n3[(n +1)2+(n +2)2+(n +3)2+…+(2n )2]+2n2[(n +1)+(n +2)+…+2n ]=-1n3⎣⎢⎡⎦⎥⎤++6-++6+2n2·+1+2=-13⎝ ⎛⎭⎪⎫2+1n ⎝ ⎛⎭⎪⎫4+1n +16⎝ ⎛⎭⎪⎫1+1n ⎝ ⎛⎭⎪⎫2+1n +3+1n,s =lim n→∞s n =lim n→∞⎣⎢⎡⎦⎥⎤-13⎝ ⎛⎭⎪⎫2+1n ⎝ ⎛⎭⎪⎫4+1n +16⎝ ⎛⎭⎪⎫1+1n ⎝ ⎛⎭⎪⎫2+1n +3+1n =23,所以这段时间行驶的路程为23 km.[规律方法]求变速直线运动路程的问题,方法和步骤类似于求曲边梯形的面积,用“以直代曲”“逼近”的思想求解.求解过程为:分割、近似代替、求和、取极限.应特别注意变速直线运动的时间区间.[跟踪训练]2.一物体自200 m 高空自由落下,求它在开始下落后的第3秒至第6秒之间的距离.(g =9.8 m/s 2)【导学号:31062082】[解] 自由落体的下落速度为v (t )=gt . 将[3,6]等分成n 个小区间,每个区间的长度为3n.在第i 个小区间⎣⎢⎡⎦⎥⎤3+-n,3+3i n (i =1,2,…,n )上,以左端点函数值作为该区间的速度.所以s n =∑n i =1v ⎣⎢⎡⎦⎥⎤3+-n3n=∑n i =1⎣⎢⎡⎦⎥⎤3g +3g n -·3n =⎩⎨⎧⎭⎬⎫3ng +3gn [1+2+…+-·3n =9g +9gn2·-2=9g +92g ·⎝⎛⎭⎪⎫1-1n .所以s =lim n→∞s n =lim n→∞ ⎣⎢⎡⎦⎥⎤9g +92g·⎝ ⎛⎭⎪⎫1-1n =9g +92g =272×9.8=132.3(m).故该物体在下落后第3 s 至第6 s 之间的距离是132.3 m.1.在定积分的几何意义中f (x )≥0,如果f (x )<0,⎠⎛ab f (x )d x 表示什么?提示:如果在区间[a ,b ]上,函数f (x )<0,那么曲边梯形位于x 轴的下方(如图所示),由于Δx i >0,f (ξi )<0,故f (ξi )·Δx i <0,从而定积分⎠⎛a b f (x )d x <0,这时它等于图中所示曲边梯形面积的相反数,即⎠⎛a b f (x )d x =-S 或S =-⎠⎛a b f (x )d x . 2.⎠⎛024-x2d x 的几何意义是什么? 提示:是由直线x =0,x =2,y =0和曲线y =4-x2所围成的曲边梯形面积,即以原点为圆心,2为半径的14圆的面积即⎠⎛024-x2d x =π.3.若f (x )为[-a ,a ]上的偶函数,则f (x )d x 与f (x )d x 存在什么关系?若f (x )为[-a ,a ]上的奇函数,则f (x )d x 等于多少?提示:若f (x )为偶函数,则f (x )d x =2f (x )d x ;若f (x )为奇函数,则f (x )d x=0.说明下列定积分所表示的意义,并根据其意义求出定积分的值. (1)⎠⎛012d x ;(2)⎠⎛12x d x ; (3)1-x2d x .[解] (1)⎠⎛012d x 表示的是图①中阴影部分所示的长方形的面积,由于这个长方形的面积为2,所以⎠⎛012d x =2.① ② ③(2)⎠⎛12x d x 表示的是图②中阴影部分所示的梯形的面积,由于这个梯形的面积为32,所以⎠⎛12x d x =32. (3)1-x2d x 表示的是图③中阴影部分所示的半径为1的半圆的面积,其值为π2,所以1-x2d x =π2.母题探究:1.(变条件)将例3(3)改为利用定积分的几何意义求⎠⎛011-x2d x .[解]⎠⎛011-x2d x 表示的是图④中阴影部分所示半径为1的圆的14的面积,其值为π4, ∴⎠⎛011-x2d x =π4.2.(变条件)将例3(3)改为利用定积分的几何意义求⎠⎛011--d x .[解] ⎠⎛011--d x 表示的是图⑤中阴影部分所示半径为1的14圆的面积,其值为π4,∴⎠⎛011--d x =π4.3.(变条件)将例3(3)改为利用定积分的几何意义求 (x +1-x2)d x .[解] 由定积分的性质得,(x +1-x2)d x = x d x +1-x2d x .∵y =x 是奇函数,∴x d x =0.由例3(3)知1-x2d x =π2.∴(x +1-x2)d x =π2.[当 堂 达 标·固 双 基]1.把区间[1,3]n 等分,所得n 个小区间中每个小区间的长度为( ) A.1n B.2n C.3nD.12nB [区间长度为2,n 等分后每个小区间的长度都是2n ,故选B.]2.定积分⎠⎛ab f (x )d x 的大小( )A .与f (x )和积分区间[a ,b ]有关,与ξi 的取法无关B .与f (x )有关,与区间[a ,b ]以及ξi 的取法无关C .与f (x )以及ξi 的取法有关,与区间[a ,b ]无关D .与f (x )、积分区间[a ,b ]和ξi 的取法都有关A [由定积分的定义可知A 正确.]3.由y =sin x ,x =0,x =π2,y =0所围成图形的面积写成定积分的形式是________. 【导学号:31062083】[解析] ∵0<x <π2, ∴sin x >0.∴y =sin x ,x =0,x =π2,y =0所围成图形的面积写成定积分的形式为sin x d x .[答案] sin x d x4.已知某物体运动的速度为v =t ,t ∈[0,10],若把区间10等分,取每个小区间右端点处的函数值为近似小矩形的高,则物体运动的路程近似值为__________.[解析] ∵把区间[0,10]10等分后,每个小区间右端点处的函数值为n (n =1,2,…,10),每个小区间的长度为1.∴物体运动的路程近似值s =1×(1+2+…+10)=55.[答案] 555.计算: (2-5sin x )d x . 【导学号:31062084】[解] 由定积分的几何意义得,2d x =⎝ ⎛⎭⎪⎫3π2-π2×2=2π. 由定积分的几何意义得,sin x d x =0. 所以 (2-5sin x )d x=2d x-5sin x d x=2π.。
高中数学第1章导数及其应用153定积分的概念课件新人教A版选修20

B.lni→m∞∑ i=n1f(ξi)·b-n a
n
C.lni→m∞∑ i=1f(ξi)ξi
n
D.lni→m∞∑ i=1f(ξi)(ξi-ξi-1)
解析:由定积分的概念可知答案为 B.
答案:B
题型二 定积分几何意义的应用
利用定积分的几何意义求下列各式的值.
(1)
1
x3dx;
-1
(2)
2
4-x2dx;
-2
(3) 2(1+x)dx. 1
【思路探索】 利用定积分的几何意义求解.
【解】 (1)∵y=x3 在[-1,1]上为奇函数,图象关于坐标原
点对称,由在 x 轴上方和下方面积相等的两部分组成,即1 x3dx -1
=0.
(2)∵y= 4-x2表示的曲线是圆心在原点,半径为 2 的半圆,
由定积分的几何意义知2
是极限的一种记号.
(1)当函数 f(x)≥0 时,定积分bf(x)dx 在几何上表示由直线 x a
=a,x=b(a<b),y=0 及曲线 y=f(x)所围成的曲边梯形的面积. (2)当函数 f(x)≤0 时,曲边梯形位于 x 轴的下方,此时bf(x)dx
a
等于曲边梯形面积 S 的相反数,即bf(x)dx=-S. a
a
a
a
b[f(x)-g(x)]dx=bf(x)dx-bg(x)dx=1,
a
a
a
两式相加,得bf(x)dx=2, a
两式相减,得bg(x)dx=1. a
(2)b[3-2f(x)]dx=b3dx-2bf(x)dx
a
a
a
=3(b-a)-2×1=3b-3a-2.
[名 师 点 拨]
定积分的性质为我们求定积分提供了方便,可以把复杂的被
高中数学第一章导数及其应用1.5定积分的概念1.5.1曲边梯形的面积1.5.2汽车行驶的路程

内容(nèiróng)总结
第一章 §1.5 定积分的概念(gàiniàn)。第一章 §1.5 定积分的概念(gàiniàn)。思考2 如图所示的图形与我们熟悉的“直 边图形”有什么区别。一些小曲边梯形.对每个小曲边梯形“以直代曲”,即。(5)求和时可用一些常见的求和公式,如。将区间
No [0,1]等分为n个小区间:。解 将区间[1,2]等分成n个小区间,。本例中求小曲边梯形面积时若用另一端点值作为高,试求出行驶
于是(yúshì)所求平面图形的面积近似等于
1101+2356+4295+6245+2851=110×22555=1.02.
12/9/2021
12345
第三十五页,共三十七页。
解析 答案
求曲边梯形面积和汽车行驶的路程的步骤 (1)分割:n等分区间[a,b];
(2)近似(jìn sì)代替:取点ξi∈[xi-1,xi];
131+2/9/220231 +33+…+n3=nn2+12.
第十五页,共三十七页。
跟踪训练1 求由直线x=0,x=1,y=0和曲线y=x2所围成的图形(túxíng)的面积.
12/9/2021
第十六页,共三十七页。
解答
类型二 求变速运动(biànsùyùndòng)的路程
例2 当汽车以速度v做匀速直线运动(yùndòng)时,经过时间t所行驶的路程s=vt.如果汽 车做变速直线运动,在时刻t的速度为v(t)=t2+2(单位:km/h),那么它在1≤t≤2(单 位:h)这段时间行驶的路程是多少?
答案(dá
3.一物体沿直线运动,其速度v(t)=t,这个(zhè ge)物体在t=0到t=1这段时间内所 走的路程为
1 A.3
√B.12
C.1
全国通用版版高中数学第一章导数及其应用1.5定积分的概念1.5.1曲边梯形的面积1.5.2汽车行驶的路程学案新人

1.5.1 曲边梯形的面积 1.5.2 汽车行驶的路程学习目标 1.了解“以直代曲”、“以不变代变”的思想方法.2.会求曲边梯形的面积和汽车行驶的路程.知识点一曲边梯形的面积思考1 如何计算下列两图形的面积?答案①直接利用梯形面积公式求解.②转化为三角形和梯形求解.思考2 如图所示的图形与我们熟悉的“直边图形”有什么区别?答案已知图形是由直线x=1,y=0和曲线y=x2所围成的,可称为曲边梯形,曲边梯形的一条边为曲线段,而“直边图形”的所有边都是直线段.梳理曲边梯形的概念及面积求法(1)曲边梯形:由直线x=a,x=b(a≠b),y=0和曲线y=f(x)所围成的图形称为曲边梯形(如图①所示).(2)求曲边梯形面积的方法把区间[a,b]分成许多小区间,进而把曲边梯形拆分为一些小曲边梯形.对每个小曲边梯形“以直代曲”,即用矩形的面积近似代替小曲边梯形的面积,得到每个小曲边梯形面积的近似值,对这些近似值求和,就得到曲边梯形面积的近似值(如图②所示).(3)求曲边梯形面积的步骤:①分割;②近似代替;③求和;④取极限.知识点二 求变速直线运动的(位移)路程一般地,如果物体做变速直线运动,速度函数为v =v (t ),那么也可以采用分割、近似代替、求和、取极限的方法,求出它在a ≤t ≤b 内所作的位移s .1.求汽车行驶的路程时,分割的区间表示汽车行驶的路程.( × ) 2.当n 很大时,函数f (x )=x 2在区间⎣⎢⎡⎦⎥⎤i -1n ,i n 上的值,只能用⎝ ⎛⎭⎪⎫i n 2近似代替.( × )3.利用求和符号计算∑i =14i (i +1)=40.( √ )类型一 求曲边梯形的面积例1 求由直线x =0,x =2,y =0与曲线y =x 2+1所围成的曲边梯形的面积.⎣⎢⎡⎦⎥⎤参考公式12+22+…+n 2=16n (n +1)(2n +1)考点 求曲边梯形的面积问题 题点 求曲线梯形的面积问题 解 令f (x )=x 2+1. (1)分割将区间[0,2]n 等分,分点依次为x 0=0,x 1=2n ,x 2=4n,…,x n -1=2(n -1)n,x n =2.第i 个区间为⎣⎢⎡⎦⎥⎤2i -2n ,2i n (i =1,2,…,n ),每个区间长度为Δx =2i n -2i -2n =2n .(2)近似代替、求和取ξi =2in(i =1,2,…,n ),S n =∑i =1nf ⎝ ⎛⎭⎪⎫2i n ·Δx =∑i =1n⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫2i n 2+1·2n =8n 3∑i =1ni 2+2=8n3(12+22+…+n 2)+2=8n 3·n (n +1)(2n +1)6+2 =43⎝ ⎛⎭⎪⎫2+3n +1n 2+2.(3)取极限S =lim n →∞S n =lim n →∞ ⎣⎢⎡⎦⎥⎤43⎝ ⎛⎭⎪⎫2+3n +1n 2+2=143,即所求曲边梯形的面积为143.反思与感悟 求曲边梯形的面积 (1)思想:以直代曲.(2)步骤:分割→近似代替→求和→取极限. (3)关键:近似代替.(4)结果:分割越细,面积越精确. (5)求和时可用一些常见的求和公式,如 1+2+3+…+n =n (n +1)2,12+22+32+…+n 2=n (n +1)(2n +1)6,13+23+33+…+n 3=⎣⎢⎡⎦⎥⎤n (n +1)22.跟踪训练1 求由直线x =0,x =1,y =0和曲线y =x 2所围成的图形的面积. 考点 求曲边梯形的面积问题 题点 求曲边梯形的面积问题 解 (1)分割将区间[0,1]等分为n 个小区间:⎣⎢⎡⎦⎥⎤0,1n ,⎣⎢⎡⎦⎥⎤1n ,2n ,⎣⎢⎡⎦⎥⎤2n ,3n ,…,⎣⎢⎡⎦⎥⎤i -1n ,i n ,…,⎣⎢⎡⎦⎥⎤n -1n ,1,其中i =1,2,…,n ,每个小区间的长度为 Δx =i n -i -1n =1n.过各分点作x 轴的垂线,把曲边梯形分成n 个小曲边梯形,它们的面积分别记作ΔS 1,ΔS 2,…,ΔS n . (2)近似代替 在区间⎣⎢⎡⎦⎥⎤i -1n ,i n (i =1,2,…,n )上,以i -1n 处的函数值⎝ ⎛⎭⎪⎫i -1n 2为高,小区间的长度Δx =1n 为底边的小矩形的面积作为第i 个小曲边梯形的面积,即ΔS i ≈⎝⎛⎭⎪⎫i -1n 2·1n.(3)求和∑i =1nΔS i ≈∑i =1n⎝⎛⎭⎪⎫i -1n 2·1n =0·1n +⎝ ⎛⎭⎪⎫1n 2·1n +⎝ ⎛⎭⎪⎫2n 2·1n +…+⎝ ⎛⎭⎪⎫n -1n 2·1n =1n 3[12+22+…+(n -1)2]=13-12n +16n 2. (4)取极限曲边梯形的面积S =lim n →∞ ⎝ ⎛⎭⎪⎫13-12n +16n 2=13.类型二 求变速运动的路程例2 当汽车以速度v 做匀速直线运动时,经过时间t 所行驶的路程s =vt .如果汽车做变速直线运动,在时刻t 的速度为v (t )=t 2+2(单位:km/h),那么它在1≤t ≤2(单位:h)这段时间行驶的路程是多少? 考点 变速运动的路程问题 题点 变速运动的路程问题解 将区间[1,2]等分成n 个小区间, 第i 个小区间为⎣⎢⎡⎦⎥⎤1+i -1n ,1+in . 所以Δs i =v ⎝⎛⎭⎪⎫1+i -1n ·1n. s n =∑ni =1v ⎝ ⎛⎭⎪⎫1+i -1n 1n =1n ∑n i =1 ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1+i -1n 2+2 =1n ∑ni =1 ⎣⎢⎡⎦⎥⎤(i -1)2n 2+2(i -1)n +3 =1n ⎩⎨⎧ 3n +1n2[02+12+22+…+(n -1)2]+⎭⎬⎫1n[0+2+4+6+…+2(n -1)]=3+(n -1)(2n -1)6n 2+n -1n. s =lim n →∞ s n =lim n →∞ ⎣⎢⎡⎦⎥⎤3+(n -1)(2n -1)6n 2+n -1n =133. 所以这段时间行驶的路程为133km. 引申探究本例中求小曲边梯形面积时若用另一端点值作为高,试求出行驶路程,比较两次求出的结果是否一样?解 将区间[1,2]等分成n 个小区间,第i 个小区间为⎣⎢⎡⎦⎥⎤1+i -1n ,1+in . 所以Δs i =v ⎝⎛⎭⎪⎫1+i n ·1n.s n =∑ni =1v ⎝ ⎛⎭⎪⎫1+i n 1n=3+1n 3[12+22+…+(n -1)2+n 2]+1n2[2+4+6+…+2(n -1)+2n ]=3+(n +1)(2n +1)6n 2+n +1n. s =lim n →∞ s n =lim n →∞⎣⎢⎡⎦⎥⎤3+(n +1)(2n +1)6n 2+(n +1)n =133. 所以这段时间行驶的路程为133km. 所以分别用小区间的两个端点求出的行驶路程是相同的.反思与感悟 求变速直线运动路程的问题,方法和步骤类似于求曲边梯形的面积,用“以直代曲”“逼近”的思想求解.求解过程为:分割、近似代替、求和、取极限.应特别注意变速直线运动的时间区间.跟踪训练2 一辆汽车在直线形公路上做变速行驶,汽车在时刻t 的速度为v (t )=-t 2+5(单位:km/h),试计算这辆汽车在0≤t ≤2(单位:h)这段时间内行驶的路程s (单位:km). 考点 变速运动的路程问题 题点 变速运动的路程问题解 (1)分割:在区间[0,2]上等间隔插入n -1个点,将区间分成n 个小区间,记第i 个小区间为⎣⎢⎡⎦⎥⎤2(i -1)n ,2i n (i =1,2,…,n ),Δt =2n .则汽车在时间段⎣⎢⎡⎦⎥⎤0,2n ,⎣⎢⎡⎦⎥⎤2n ,4n ,⎣⎢⎡⎦⎥⎤2(n -1)n ,2n n 上行驶的路程分别记为:Δs 1,Δs 2,…,Δs i ,…,Δs n ,有s n =∑i =1nΔs i .(2)近似代替:取ξi =2in(i =1,2,…,n ),Δs i ≈v ⎝ ⎛⎭⎪⎫2i n ·Δt =⎣⎢⎡⎦⎥⎤-⎝ ⎛⎭⎪⎫2i n2+5·2n=-4i 2n 2·2n+10n(i =1,2,…,n ).(3)求和:s n =∑i =1nΔs i =∑i =1n⎝⎛⎭⎪⎫-4i 2n 2·2n +10n=-8·13⎝ ⎛⎭⎪⎫1+1n ⎝ ⎛⎭⎪⎫1+12n +10.(4)取极限:s =lim n →∞s n =lim n →∞ ⎣⎢⎡⎦⎥⎤-8·13⎝ ⎛⎭⎪⎫1+1n ⎝ ⎛⎭⎪⎫1+12n +10=223.1.把区间[1,3] n 等分,所得n 个小区间的长度均为( ) A.1n B.2n C.3n D.12n 考点 求曲边梯形的面积问题 题点 求曲边梯形的面积问题 答案 B解析 区间[1,3]的长度为2,故n 等分后,每个小区间的长度均为2n.2.在“近似代替”中,函数f (x )在区间[x i ,x i +1]上的近似值等于( ) A .只能是左端点的函数值f (x i ) B .只能是右端点的函数值f (x i +1)C .可以是该区间内任一点的函数值f (ξi )(ξi ∈[x i ,x i +1])D .以上答案均正确考点 求曲边梯形的面积问题 题点 求曲边梯形的面积问题 答案 C3.一物体沿直线运动,其速度v (t )=t ,这个物体在t =0到t =1这段时间内所走的路程为( )A.13B.12 C .1 D.32 考点 变速运动的路程问题 题点 变速运动的路程问题 答案 B4.∑i =1ni n=________.考点 求曲边梯形的面积问题 题点 求和符号的表示答案n +12解析∑i =1ni n =1n (1+2+…+n )=1n ·n (n +1)2=n +12. 5.求由曲线y =12x 2与直线x =1,x =2,y =0所围成的平面图形面积时,把区间5等分,则面积的近似值(取每个小区间的左端点)是________. 考点 求曲边梯形的面积问题 题点 求曲边梯形的面积问题 答案 1.02解析 将区间5等分所得的小区间为⎣⎢⎡⎦⎥⎤1,65,⎣⎢⎡⎦⎥⎤65,75,⎣⎢⎡⎦⎥⎤75,85,⎣⎢⎡⎦⎥⎤85,95,⎣⎢⎡⎦⎥⎤95,2, 于是所求平面图形的面积近似等于110⎝ ⎛⎭⎪⎫1+3625+4925+6425+8125=110×25525=1.02.求曲边梯形面积和汽车行驶的路程的步骤 (1)分割:n 等分区间[a ,b ]; (2)近似代替:取点ξi ∈[x i -1,x i ];(3)求和:∑i =1nf (ξi )·b -an; (4)取极限:s =lim n →∞∑i =1nf (ξi )·b -an. “近似代替”也可以用较大的矩形来代替曲边梯形,为了计算方便,可以取区间上的一些特殊点,如区间的端点(或中点).一、选择题1.和式∑i =15(x i +1)可表示为( )A .(x 1+1)+(x 5+1)B .x 1+x 2+x 3+x 4+x 5+1C .x 1+x 2+x 3+x 4+x 5+5D .(x 1+1)(x 2+1)…(x 5+1) 考点 求曲边梯形的面积问题 题点 求和符号的表示 答案 C解析∑i =15(x i +1)=(x 1+1)+(x 2+1)+(x 3+1)+(x 4+1)+(x 5+1)=x 1+x 2+x 3+x 4+x 5+5.2.在求由x =a ,x =b (a <b ),y =f (x ) (f (x )≥0)及y =0围成的曲边梯形的面积S 时,在区间[a ,b ]上等间隔地插入(n -1)个分点,分别过这些分点作x 轴的垂线,把曲边梯形分成n 个小曲边梯形,下列说法中正确的个数是( ) ①n 个小曲边梯形的面积和等于S ; ②n 个小曲边梯形的面积和小于S ; ③n 个小曲边梯形的面积和大于S ;④n 个小曲边梯形的面积和与S 之间的大小关系无法确定. A .1 B .2 C .3D .4考点 求曲边梯形的面积问题 题点 求曲边梯形的面积问题 答案 A解析 n 个小曲边梯形是所给曲边梯形等距离分割得到的,因此其面积和为S . ∴①正确,②③④错误.3.在求由直线x =0,x =2,y =0与曲线y =x 2所围成的曲边三角形的面积时,把区间[0,2]等分成n 个小区间,则第i 个小区间是( ) A.⎣⎢⎡⎦⎥⎤i -1n ,i nB.⎣⎢⎡⎦⎥⎤i n ,i +1n C.⎣⎢⎡⎦⎥⎤2(i -1)n ,2i n D.⎣⎢⎡⎦⎥⎤2i n,2(i +1)n考点 求曲边梯形的面积问题 题点 求曲边梯形的面积问题 答案 C解析 将区间[0,2]等分为n 个小区间后,每个小区间的长度为2n,第i 个小区间为⎣⎢⎡⎦⎥⎤2(i -1)n ,2i n .4.在求由曲线y =1x与直线x =1,x =3,y =0所围成图形的面积时,若将区间n 等分,并用每个区间的右端点的函数值近似代替每个小曲边梯形的高,则第i 个小曲边梯形的面积ΔS i 约等于( ) A.2n +2i B.2n +2i -2C.2n (n +2i )D.1n +2i考点 求曲边梯形的面积问题 题点 求曲边梯形的面积问题 答案 A解析 每个小区间的长度为2n,第i 个小曲边梯形的高为11+2i n, ∴第i 个小曲边梯形的面积为2n ×11+2i n=2n +2i .5.在等分区间的情况下f (x )=11+x 2(x ∈[0,2])及x 轴所围成的曲边梯形面积和式的极限形式正确的是( )A.lim n →∞ ∑ni =1 ⎣⎢⎢⎡⎦⎥⎥⎤11+⎝ ⎛⎭⎪⎫i n 2·2n B.lim n →∞ ∑n i =1 ⎣⎢⎢⎡⎦⎥⎥⎤11+⎝ ⎛⎭⎪⎫2i n 2·2n C.lim n →∞ ∑ni =1⎝ ⎛⎭⎪⎫11+i 2·1nD.lim n →∞ ∑ni =1 ⎣⎢⎢⎡⎦⎥⎥⎤11+⎝ ⎛⎭⎪⎫i n 2·n 考点 求曲边梯形的面积问题 题点 求曲边梯形的面积问题 答案 B解析 ∵Δx =2-0n =2n,∴和式为∑ni =1⎣⎢⎢⎡⎦⎥⎥⎤11+⎝ ⎛⎭⎪⎫2i n 2·2n .故选B.6.对于由直线x =1,y =0和曲线y =x 3所围成的曲边三角形,把区间3等分,则曲边三角形面积的近似值(取每个区间的左端点)是( ) A.130 B.125 C.127D.19考点 求曲边梯形的面积问题 题点 求曲边梯形的面积问题 答案 D解析 将区间[0,1]三等分为⎣⎢⎡⎦⎥⎤0,13,⎣⎢⎡⎦⎥⎤13,23,⎣⎢⎡⎦⎥⎤23,1,各小矩形的面积和为S =03×13+⎝ ⎛⎭⎪⎫133×13+⎝ ⎛⎭⎪⎫233×13=19. 7.设函数f (x )在区间[a ,b ]上连续,用分点a =x 0<x 1<…<x i -1<x i <…<x n =b ,把区间[a ,b ]等分成n 个小区间,在每个小区间[x i -1,x i ]上任取一点ξi (i =1,2,…,n ),作和式S n =∑i =1nf(ξi )Δx (其中Δx 为小区间的长度),那么S n 的大小( ) A .与f (x )和区间[a ,b ]有关,与分点的个数n 和ξi 的取法无关 B .与f (x )和区间[a ,b ]的分点的个数n 有关,与ξi 的取法无关 C .与f (x )和区间[a ,b ]的分点的个数n ,ξi 的取法都有关 D .与f (x )和区间[a ,b ]的ξi 的取法有关,与分点的个数n 无关 考点 求曲边梯形的面积问题 题点 求曲边梯形的面积问题 答案 C解析 用分点a =x 0<x 1<…<x i -1<x i <…<x n =b 把区间[a ,b ]等分成n 个小区间,在每个小区间[x i -1,x i ]上任取一点ξi (i =1,2,…,n ),作和式S n =∑i =1nf (ξi )·Δx .若对和式求极限,则可以得到函数y =f (x )的图象与直线x =a ,x =b ,y =0围成的区域的面积,在求极限之前,和式的大小与函数式、分点的个数和变量的取法都有关.8.lim n →∞∑ni =1⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫15i n ·⎝ ⎛⎭⎪⎫5n 的含义可以是( )A .求由直线x =1,x =5,y =0,y =3x 围成的图形的面积B .求由直线x =0,x =1,y =0,y =15x 围成的图形的面积C .求由直线x =0,x =5,y =0,y =3x 围成的图形的面积D .求由直线x =0,x =5,y =0及曲线y =5x围成的图形的面积 考点 求曲边梯形的面积问题题点 求曲边梯形的面积问题答案 C解析 将区间[0,5]n 等分,则每一区间的长度为5n ,各区间右端点对应函数值为y =15i n, 因此∑i =1n⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫15i n ·⎝ ⎛⎭⎪⎫5n 可以表示由直线x =0,x =5,y =0和y =3x 围成的图形的面积的近似值.9.若直线y =2x +1与直线x =0,x =m ,y =0围成图形的面积为6,则正数m 等于( )A .1B .3C .2D .4 考点 求曲边梯形的面积问题题点 由曲边梯形的面积求参数答案 C解析 将区间[0,m ]n 等分,每个区间长为m n ,区间左端点函数值y =2·mi n +1=2mi +n n, 作和S n =∑i =1n ⎝⎛⎭⎪⎫2mi +n n ·m n=m +m n ·2m n(1+2+3+…+n ) =m +2m 2n 2·n (n +1)2 =m +m 2(n +1)n, ∵S =lim n →∞ ⎣⎢⎡⎦⎥⎤m +m 2(n +1)n =6, ∴m =2.故选C.二、填空题10.在区间[0,8]上插入9个等分点后,则所分的小区间长度为________,第5个小区间是________.考点 求曲边梯形的面积问题题点 求曲边梯形的面积问题答案 45 ⎣⎢⎡⎦⎥⎤165,4 解析 在区间[0,8]上插入9个等分点后,把区间[0,8]10等分,每个小区间的长度为810=45,第5个小区间为⎣⎢⎡⎦⎥⎤165,4. 11.已知某物体运动的速度v =t ,t ∈[0,10],若把区间10等分,取每个小区间右端点处的函数值为近似小矩形的高,则物体运动的路程近似值为________.考点 变速运动的路程问题题点 变速运动的路程问题答案 55解析 ∵把区间[0,10]10等分后,每个小区间右端点处的函数值为n (n =1,2,…,10),每个小区间的长度为1.∴物体运动的路程近似值s =1×(1+2+…+10)=55.12.当n 很大时,下列可以代替函数f (x )=x 2在区间⎣⎢⎡⎦⎥⎤i -1n ,i n 上的值有________个. ①f ⎝ ⎛⎭⎪⎫1n ;②f ⎝ ⎛⎭⎪⎫i n ;③f ⎝ ⎛⎭⎪⎫i -1n ;④f ⎝ ⎛⎭⎪⎫i n -12n . 考点 求曲边梯形的面积问题题点 求曲边梯形的面积问题答案 3解析 因为当n 很大时,区间⎣⎢⎡⎦⎥⎤i -1n ,i n 上的任意的取值都可以代替,又因为1n ∉⎣⎢⎡⎦⎥⎤i -1n ,i n ,i -1n ∈⎣⎢⎡⎦⎥⎤i -1n,i n ,i n ∈⎣⎢⎡⎦⎥⎤i -1n ,i n ,i n -12n ∈⎣⎢⎡⎦⎥⎤i -1n ,i n ,故能代替的有②③④. 三、解答题13.求由直线x =0,x =1,y =0和曲线y =x 2+2x 围成的图形的面积.考点 求曲边梯形的面积问题题点 求曲边梯形的面积问题解 将区间[0,1]n 等分,每个区间长度为1n ,区间右端点函数值y =⎝ ⎛⎭⎪⎫i n 2+2·i n =i 2n 2+2i n. 作和S n =∑i =1n ⎝ ⎛⎭⎪⎫i 2n 2+2i n 1n =∑i =1n ⎝ ⎛⎭⎪⎫i 2n 3+2i n 2 =1n 3∑i =1n i 2+2n 2∑i =1n i =1n 3·16n (n +1)(2n +1)+2n 2·n (n +1)2=(n +1)(2n +1)6n 2+n +1n =8n 2+9n +16n 2,∴所求面积S =lim n →∞ 8n 2+9n +16n 2 =lim n →∞ ⎝ ⎛⎭⎪⎫43+32n +16n 2=43. 四、探究与拓展14.设函数f (x )的图象与直线x =a ,x =b 及x 轴所围成图形的面积称为函数f (x )在[a ,b ]上的面积.已知函数y =sin nx 在⎣⎢⎡⎦⎥⎤0,πn (n ∈N *)上的面积为2n ,则y =sin 3x 在⎣⎢⎡⎦⎥⎤0,2π3上的面积为________.考点 求曲边梯形的面积问题题点 求曲边梯形的面积问题答案 43解析 由于y =sin nx 在⎣⎢⎡⎦⎥⎤0,πn (n ∈N *)上的面积为2n, 则y =sin 3x 在⎣⎢⎡⎦⎥⎤0,π3上的面积为23. 而y =sin 3x 的周期为2π3, 所以y =sin 3x 在⎣⎢⎡⎦⎥⎤0,2π3上的面积为23×2=43. 15.有一辆汽车在笔直的公路上变速行驶,在时刻t 的速度为v (t )=3t 2+2(单位:km/h),那么该汽车在0≤t ≤2(单位:h)这段时间内行驶的路程s (单位:km)是多少?考点 变速运动的路程问题题点 变速运动的路程问题解 (1)分割在时间区间[0,2]上等间隔地插入n -1个分点,将它分成n 个小区间,记第i 个小区间为⎣⎢⎡⎦⎥⎤2(i -1)n ,2i n (i =1,2,…,n ),其长度为Δt =2i n -2(i -1)n =2n .每个时间段上行驶的路程记为Δs i (i =1,2,…,n ),则显然有s =∑i =1nΔs i .(2)近似代替取ξi =2i n(i =1,2,…,n ),用小矩形的面积Δs ′i 近似地代替Δs i ,于是 Δs i ≈Δs ′i =v ⎝ ⎛⎭⎪⎫2i n ·Δt =⎣⎢⎡⎦⎥⎤3⎝ ⎛⎭⎪⎫2i n 2+2·2n=24i 2n 3+4n (i =1,2,…,n ).(3)求和s n =∑i =1n Δs ′i =∑i =1n ⎝ ⎛⎭⎪⎫24i 2n 3+4n =24n 3(12+22+…+n 2)+4=24n 3·n (n +1)(2n +1)6+4=8⎝ ⎛⎭⎪⎫1+1n ⎝ ⎛⎭⎪⎫1+12n +4.(4)取极限s =lim n →∞ s n =lim n →∞ ⎣⎢⎡⎦⎥⎤8⎝ ⎛⎭⎪⎫1+1n ⎝ ⎛⎭⎪⎫1+12n +4=8+4=12. 所以这段时间内行驶的路程为12 km.。
2019-2020年高中数学第一章导数及其应用1.5定积分的概念教案新人教A版选修

2019-2020年高中数学第一章导数及其应用1.5定积分的概念教案新人教A 版选修教学目标:1、通过求曲边梯形的面积和变速直线运动的路程,了解定积分的背景;2、借助于几何直观定积分的基本思想,了解定积分的概念,能用定积分法求简单的定积分.3、理解掌握定积分的几何意义;教学重点:定积分的概念、定积分法求简单的定积分、定积分的几何意义. 教学难点:定积分的概念、定积分的几何意义. 教学过程: 一.创设情景 复习:1.2.对这四个步骤再以分析、理解、归纳,找出共同点. 二.新课讲授1.定积分的概念 一般地,设函数在区间上连续,用分点0121i i n a x x x x x x b -=<<<<<<<=将区间等分成个小区间,每个小区间长度为(),在每个小区间上取一点,作和式:11()()n nn i i i i b aS f x f nξξ==-=∆=∑∑如果无限接近于(亦即)时,上述和式无限趋近于常数,那么称该常数为函数在区间上的定积分。
记为: 其中成为被积函数,叫做积分变量,为积分区间,积分上限,积分下限。
说明:(1)定积分是一个常数,即无限趋近的常数(时)称为,而不是.(2)用定义求定积分的一般方法是:①分割:等分区间;②近似代替:取点;③求和:;④取极限:()1()lim nbi an i b af x dx f nξ→∞=-=∑⎰(3)曲边图形面积:;变速运动路程;变力做功2.定积分的几何意义说明:一般情况下,定积分的几何意义是介于轴、函数的图形以及直线之间各部分面积的代数和,在轴上方的面积取正号,在轴下方的面积去负号.(可以先不给学生讲).分析:一般的,设被积函数,若在上可取负值。
考察和式()()()12()i n f x x f x x f x x f x x ∆+∆++∆++∆不妨设1(),(),,()0i i n f x f x f x +<于是和式即为()()()121(){[()][]}i i n f x x f x x f x x f x x f x x -∆+∆++∆--∆++-∆阴影的面积—阴影的面积(即轴上方面积减轴下方的面积) 2.定积分的性质根据定积分的定义,不难得出定积分的如下性质: 性质1性质2 (其中k 是不为0的常数) (定积分的线性性质) 性质31212[()()]()()bb baaaf x f x dx f x dx f x dx ±=±⎰⎰⎰ (定积分的线性性质)性质4()()()()b c baacf x dx f x dx f x dxa cb =+<<⎰⎰⎰其中 (定积分对积分区间的可加性)说明:①推广:1212[()()()]()()()bbbbm m aaa af x f x f x dx f x dx f x dx f x ±±±=±±±⎰⎰⎰⎰②推广:121()()()()kbc c baac c f x dx f x dx f x dx f x dx =+++⎰⎰⎰⎰③性质解释:三.典例分析 例1.计算定积分分析:所求定积分即为如图阴影部分面积,面积为。
高中数学 第一章 导数及其应用 1.5 定积分的概念 1.5.1 曲边梯形的面积 1.5.2 汽车行

1.5.1~1.5.2 曲边梯形的面积汽车行驶的路程问题1:曲边梯形与“直边图形”的主要区别是什么?提示:前者有一边是曲线段,而“直边图形”的所有边都是直线段.问题2:能否用求直边图形面积的方法求曲边梯形的面积?提示:不能.问题3:当曲边梯形的高很小时,是否可用“直边图形”的面积近似代替曲边梯形的面积?提示:可以.1.连续函数如果函数y=f(x)在某个区间I上的图象是一条连续不断的曲线,那么就把它称为区间I上的连续函数.2.曲边梯形的面积(1)曲边梯形:由直线x=a,x=b(a≠b),y=0和曲线y=f(x)所围成的图形称为曲边梯形(如图甲).(2)求曲边梯形面积的方法与步骤:①分割:把区间分成许多小区间,进而把曲边梯形拆分为一些小曲边梯形(如图乙);②近似代替:对每个小曲边梯形“以直代曲”,即用矩形的面积近似代替小曲边梯形的面积,得到每个小曲边梯形面积的近似值;③求和:把以近似代替得到的每个小曲边梯形面积的近似值求和;④取极限:当小曲边梯形的个数趋向无穷时,各小曲边梯形的面积之和趋向一个定值,即为曲边梯形的面积.“以直代曲”的思想曲边梯形的边中有曲线,不方便直接求出其面积,把曲边梯形分割成一系列的小曲边梯形,再用小矩形近似代替之,“以直代曲”求和,无限“细分”去“逼近”面积的精确值,这种极限的思想是学习定积分的一种很重要的思想.问题:利用“以直代曲”的思想可以求物体做变速直线运动的路程吗? 提示:可以.求变速直线运动的路程如果物体做变速直线运动,速度函数为v =v (t ),那么它在时间t 所在的区间内的路程(或位移)也可以运用①分割;②近似代替;③求和;④取极限的方法求得.变速直线运动的路程与曲边梯形的面积间的关系与求曲边梯形面积类似,我们采取“以不变代变”的方法,把求变速直线运动的路程问题化归为求匀速直线运动的路程问题.求由直线⎝ ⎛⎭⎪⎫提示:13+23+…+n 3=⎣⎢⎡⎦⎥⎤12n n +2(1)分割如右图所示,用分点n +1n ,n +2n ,…,n +n -n,把区间等分成n 个小区间⎣⎢⎡⎦⎥⎤1,n +1n ,⎣⎢⎡⎦⎥⎤n +1n ,n +2n ,…,n +i -1n ,n +in,…, ⎣⎢⎡⎦⎥⎤n +n -n ,2,每个小区间的长度为Δx =n +i n -n +i -1n =1n(i =1,2,3,…,n ).过各分点作x 轴的垂线,把曲边梯形ABCD 分割成n 个小曲边梯形,它们的面积分别记作ΔS 1,ΔS 2,…,ΔS n .(2)近似代替各小区间的左端点为ξi ,取以点ξi 的纵坐标ξ3i 为一边,以小区间长Δx =1n为其邻边的小矩形面积,近似代替小曲边梯形面积.第i 个小曲边梯形面积,可以近似地表示为ΔS i ≈ξ3i ·Δx =⎝⎛⎭⎪⎫n +i -1n 3·1n(i =1,2,3,…,n ).(3)求和因为每一个小矩形的面积都可以作为相应的小曲边梯形面积的近似值,所以n 个小矩形面积的和就是曲边梯形ABCD 面积S 的近似值,即S =∑i =1nΔS i ≈∑i =1n⎝⎛⎭⎪⎫n +i -1n 3 ·1n .(4)取极限当分点数目越多,即Δx 越小时,和式的值就越接近曲边梯形ABCD 的面积S .因此n →∞,即Δx →0时,和式的极限就是所求的曲边梯形ABCD 的面积.因为∑i =1n⎝⎛⎭⎪⎫n +i -1n 3·1n=1n 4∑i =1n(n +i -1)3=1n 4∑i =1n[(n -1)3+3(n -1)2i +3(n -1)i 2+i 3] =1n4,所以S =li m n →∞∑i =1n⎝⎛⎭⎪⎫n +i -1n 3·1n=1+32+1+14=154.求曲边梯形的面积应关注两点(1)根据步骤“分割、近似代替、求和、取极限”求曲边梯形的面积S ,实质是用n 个小矩形面积的和S n 来逼近,S n 的极限即为所求曲边梯形的面积S .求小矩形面积时,一般选取函数在相应小区间的左端点值.(2)分割实现了把求不规则的图形的面积化归为计算矩形面积,但这是近似值,为逼近精确值,分割得越细,近似程度就会越好,无限细分就无限逼近精确值.求由直线x =1,x =2,y =0与曲线y =2x 2所围成的曲边梯形的面积. 解:(1)分割在区间上等间隔地插入n -1个分点,把区间等分成n 个小区间⎣⎢⎡⎦⎥⎤n +i -1n ,n +i n (i =1,2,…,n ),每个小区间的长度为Δx =1n,每个小区间内曲边梯形的面积记为ΔS i (i =1,2,…,n ),显然S =∑i =1nΔS i .(2)近似代替 记f (x )=2x 2,取ξi =n +i -1n (i =1,2,…,n ),于是ΔS i ≈ΔS i ′=f ⎝ ⎛⎭⎪⎫n +i -1n ·Δx=2⎝⎛⎭⎪⎫n +i -1n 2·1n(i =1,2,…,n ).(3)求和S n =∑i =1nΔS i ′=∑i =1n2⎝⎛⎭⎪⎫n +i -1n 2·1n=2n 1+⎝ ⎛⎭⎪⎫1+1n 2+⎝ ⎛⎭⎪⎫1+2n 2+…+1+n -1n2=2nn +2n +1n 2=2n ⎣⎢⎡⎦⎥⎤n +2n·n n -2+1n2·n -nn -6=2+2⎝ ⎛⎭⎪⎫1-1n +13⎝ ⎛⎭⎪⎫1-1n ⎝ ⎛⎭⎪⎫2-1n . 从而得到S 的近似值S ≈S n . (4)取极限S =li m n →∞ S n =li m n →∞ 2+2⎝ ⎛⎭⎪⎫1-1n +131-1n ·⎝ ⎛⎭⎪⎫2-1n =143.3t 2+2(单位:km/h),那么该汽车在0≤t ≤2(单位:h)这段时间内行驶的路程s (单位:km)是多少?(1)分割在时间区间上等间隔地插入n -1个分点,将它等分成n 个小区间.记第i 个小区间为⎣⎢⎡⎦⎥⎤i -n,2i n (i =1,2,…,n ),其长度为Δt =2i n-i -n=2n.每个时间段上行驶的路程记为Δs i (i =1,2,…,n ),则显然有s =∑i =1nΔs i .(2)近似代替取ξi =2i n(i =1,2,…,n ).于是Δs i ≈Δs i ′=v ⎝ ⎛⎭⎪⎫2i n ·Δt =⎣⎢⎡⎦⎥⎤3⎝ ⎛⎭⎪⎫2i n 2+2·2n=24i 2n3+4n(i =1,2,…,n ). (3)求和s n =∑i =1nΔs i ′=∑i =1n⎝⎛⎭⎪⎫24i 2n 3+4n =24n 3(12+22+…+n 2)+4=24n3·nn +n +6+4=8⎝ ⎛⎭⎪⎫1+1n 1+12n+4.从而得到s 的近似值s n =8⎝ ⎛⎭⎪⎫1+1n 1+12n +4.(4)取极限s =li m n →∞ s n =li m n →∞ ⎣⎢⎡⎦⎥⎤8⎝ ⎛⎭⎪⎫1+1n ⎝ ⎛⎭⎪⎫1+12n +4=8+4=12,所以这段时间内行驶的路程为12 km.变速运动的路程的求法求变速直线运动路程的问题,方法和步骤类似于求曲边梯形的面积,用“以直代曲”“逼近”的思想求解.求解过程为分割、近似代替、求和、取极限.应特别注意变速直线运动的时间区间.已知自由落体的运动速度v =gt ,求在时间区间内物体下落的距离. 解:(1)分割将时间区间分成n 等份. 把时间分成n 个小区间⎣⎢⎡⎦⎥⎤i -1n t ,it n (i =1,2,…,n ),每个小区间所表示的时间段Δt=it n -i -1n t =tn,在各小区间物体下落的距离记作Δs i (i =1,2,…,n ).(2)近似代替在每个小区间上以匀速运动的路程近似代替变速运动的路程. 在⎣⎢⎡⎦⎥⎤i -1n t ,it n 上任取一时刻ξi (i =1,2,…,n ),可取ξi 使v (ξi)=g ·i -n t近似代替第i 个小区间上的速度,因此在每个小区间上自由落体Δt =t n内所经过的距离可近似表示为Δs i =g ·i -1n t ·tn(i =1,2,…,n ). (3)求和s n =∑i =1n Δs i =∑i =1ng ·i -1n t ·tn=gt 2n2 =12gt 2⎝ ⎛⎭⎪⎫1-1n . (4)取极限s =lim n →∞ 12gt 2⎝ ⎛⎭⎪⎫1-1n =12gt 2.4.搞错区间端点致误求由抛物线y =2x 2与直线x =0,x =t (t >0),y =0所围成的曲边梯形的面积时,将区间等分成n 个小区间,则第i -1个区间为( )A.⎣⎢⎡⎦⎥⎤i -1n ,i nB.⎣⎢⎡⎦⎥⎤i n ,i +1n C.⎣⎢⎡⎦⎥⎤t i -n ,tin D.⎣⎢⎡⎦⎥⎤t i -n ,t i -n每个小区间长度为tn,故第i -1个区间的左端点为0+(i -2)×t n =t i -n,右端点为t i -n+t n =t i -n.D1.解决本题易错误地认为区间左端为t i -n,从而误选C.2.在将区间等分成n 个小区间时,其第1个小区间的左端点为0,第2个小区间的左端点为1n ,…,依次类推,第i 个小区间的左端点为i -1n.在求直线x =0,x =2,y =0与曲线y =x 2所围成的曲边三角形的面积时,把区间等分成n 个小区间,则第i 个小区间是( )A.⎣⎢⎡⎦⎥⎤i -1n ,i nB.⎣⎢⎡⎦⎥⎤i n ,i +1n C.⎣⎢⎡⎦⎥⎤i -n,2i nD.⎣⎢⎡⎦⎥⎤2i n,i +n解析:选C 将区间等分为n 个小区间后,每个小区间的长度为2n,第i 个小区间为⎣⎢⎡⎦⎥⎤i -n,2i n.1.在“近似代替”中,函数f (x )在区间上的近似值( ) A .只能是左端点的函数值f (x i ) B .只能是右端点的函数值f (x i +1)C .可以是该区间内任一点的函数值f (ξi )(ξi ∈)D .以上答案均正确解析:选C 作近似计算时,Δx =x i +1-x i 很小,误差可忽略,所以f (x )可以是上任一值f (ξi ).2.已知汽车在时间内以速度v =v (t )做直线运动,则下列说法不正确的是( ) A .当v =a (常数)时,汽车做匀速直线运动,这时路程s =vt 1B .当v =at +b (a ,b 为常数)时,汽车做匀速直线运动,这时路程s =bt 1+12at 21C .当v =at +b (a ≠0,a ,b 为常数)时,汽车做匀变速直线运动,这时路程s =bt 1+12at 21D .当v =at 2+bt +c (a ≠0,a ,b ,c 为常数)时,汽车做变速直线运动,这时路程s =li m n →∞s n =li m n →∞∑i =1n v (ξi )Δt解析:选B 对于v =at +b ,当a =0时为匀速直线运动,当a ≠0时为匀变速直线运动,其中a >0时为匀加速直线运动,a <0时为匀减速直线运动.对于v =at 2+bt +c (a ≠0)及v =v (t )是t 的三次、四次函数时,汽车做的都是变速(即变加速或变减速)直线运动,故B 是错误的.3.在计算由曲线y =-x 2以及直线x =-1,x =1,y =0所围成的图形面积时,若将区间 n 等分,则每个小区间的长度为________.解析:每个小区间长度为1--n=2n.答案:2n4.求由抛物线f (x )=x 2,直线x =1以及x 轴所围成的平面图形的面积时,若将区间等分成5个区间,如右图所示,以小区间中点的纵坐标为高,所有小矩形的面积之和为________.解析:由题意得S =(0.12+0.32+0.52+0.72+0.92)×0.2=0.33.答案:0.335.利用分割、近似代替、求和、取极限的办法求函数y =1+x ,x =1,x =2的图象与x 轴围成梯形的面积,并用梯形的面积公式加以验证.解:f (x )=1+x 在区间上连续,将区间分成n 等份,则每个区间的长度为Δx i =1n,在=⎣⎢⎡⎦⎥⎤1+i -1n ,1+i n 上取ξi =x i -1=1+i -1n(i =1,2,3,…,n ),于是f (ξi )=f (x i -1)=1+1+i -1n =2+i -1n, 从而S n =∑i =1nf (ξi )Δx i =∑i =1n⎝ ⎛⎭⎪⎫2+i -1n ·1n =∑i =1n⎝ ⎛⎭⎪⎫2n +i -1n 2=2n ·n +1n 2=2+1n2·n n -2=2+n -2n =52-12n.则S =li m n →∞S n=li m n →∞ ⎝ ⎛⎭⎪⎫52-12n =52.如下进行验证:如右图所示,由梯形的面积公式得S =12×(2+3)×1=52.一、选择题1.下列函数在其定义域上不是连续函数的是( ) A .y =x 2B .y =|x |C .y =xD .y =1x解析:选D 由于函数y =1x的定义域为(-∞,0)∪(0,+∞),故其图象不是连续不断的曲线.2.在求由x =a ,x =b (a <b ),y =f (x )(f (x )≥0)及y =0围成的曲边梯形的面积S 时,在区间上等间隔地插入n -1个分点,分别过这些分点作x 轴的垂线,把曲边梯形分成n 个小曲边梯形,下列说法中正确的是( )A .n 个小曲边梯形的面积和等于SB .n 个小曲边梯形的面积和小于SC .n 个小曲边梯形的面积和大于SD .n 个小曲边梯形的面积和与S 之间的大小关系无法确定解析:选A n 个小曲边梯形是所给曲边梯形等距离分割得到的,因此其面积和为S .3.和式∑i =15(y i +1)可表示为( )A .(y 1+1)+(y 5+1)B .y 1+y 2+y 3+y 4+y 5+1C .y 1+y 2+y 3+y 4+y 5+5D .(y 1+1)(y 2+1)…(y 5+1)解析:选C ∑i =15(y i +1)=(y 1+1)+(y 2+1)+(y 3+1)+(y 4+1)+(y 5+1)=y 1+y 2+y 3+y 4+y 5+5.4.对于由直线x =1,y =0和曲线y =x 3所围成的曲边三角形,把区间3等分,则曲边三角形面积的近似值(取每个区间的左端点)是( )A.19B.125C.127 D.130解析:选A 将区间三等分为⎣⎢⎡⎦⎥⎤0,13,⎣⎢⎡⎦⎥⎤13,23,⎣⎢⎡⎦⎥⎤23,1,各小矩形的面积和为s 1=03·13+⎝ ⎛⎭⎪⎫133·13+⎝ ⎛⎭⎪⎫233·13=19. 5.若做变速直线运动的物体v (t )=t 2在0≤t ≤a 内经过的路程为9,则a 的值为( ) A .1 B .2 C .3 D .4解析:选C 将区间 n 等分,记第i 个区间为⎣⎢⎡⎦⎥⎤a i -n ,ain (i =1,2,…,n ),此区间长为a n ,用小矩形面积⎝ ⎛⎭⎪⎫ai n 2·a n 近似代替相应的小曲边梯形的面积,则S n =∑i =1n⎝⎛⎭⎪⎫ai n 2·an =a 3n 3·(12+22+…+n 2)=a 33·⎝ ⎛⎭⎪⎫1+1n ⎝ ⎛⎭⎪⎫1+12n ,依题意得lim n →∞ a 33⎝ ⎛⎭⎪⎫1+1n ⎝ ⎛⎭⎪⎫1+12n =9,∴a 33=9,解得a =3.二、填空题6.已知某物体运动的速度为v =t ,t ∈,若把区间10等分,取每个小区间右端点处的函数值为近似小矩形的高,则物体运动的路程近似值为________.解析:∵把区间10等分后,每个小区间右端点处的函数值为n (n =1,2,…,10),每个小区间的长度为1,∴物体运动的路程近似值s =1×(1+2+…+10)=55. 答案:557.物体运动的速度和时间的函数关系式为v (t )=2t (t 的单位:h ;v 的单位:km/h),近似计算在区间内物体运动的路程时,把区间6等分,则过剩近似值(每个ξi 均取值为小区间的右端点)为________km.解析:以小区间右端点时的速度作为小区间的平均速度,可得过剩近似值为s =(2×3+2×4+2×5+2×6+2×7+2×8)×1=66 (km).答案:668.直线x =0,x =2,y =0与曲线y =x 2+1围成的曲边梯形,将区间5等分,按照区间左端点和右端点估计梯形面积分别为________、________.解析:将区间5等分为⎣⎢⎡⎦⎥⎤0,25,⎣⎢⎡⎦⎥⎤25,45,⎣⎢⎡⎦⎥⎤45,65,⎣⎢⎡⎦⎥⎤65,85,⎣⎢⎡⎦⎥⎤85,2,以小区间左端点对应的函数值为高,得S 1=1+⎝ ⎛⎭⎪⎫252+1+⎝ ⎛⎭⎪⎫452+1+⎝ ⎛⎭⎪⎫652+1+⎝ ⎛⎭⎪⎫852+1×25=3.92,同理S 2=⎝ ⎛⎭⎪⎫252+1+⎝ ⎛⎭⎪⎫452+1+⎝ ⎛⎭⎪⎫652+1+⎝ ⎛⎭⎪⎫852+1+22+1×25=5.52.答案:3.92 5.52 三、解答题9.汽车行驶的速度为v =t 2,求汽车在0≤t ≤1这段时间内行驶的路程s . 解:(1)分割将区间等分为n 个小区间⎣⎢⎡⎦⎥⎤0,1n ,⎣⎢⎡⎦⎥⎤1n ,2n ,…,⎣⎢⎡⎦⎥⎤i -1n ,i n ,…,⎣⎢⎡⎦⎥⎤n -1n ,1,每个小区间的长度为Δt =i n -i -1n =1n . (2)近似代替在区间⎣⎢⎡⎦⎥⎤i -1n ,i n (i =1,2,…,n )上,汽车近似地看作以时刻i -1n 处的速度v ⎝ ⎛⎭⎪⎫i -1n =⎝ ⎛⎭⎪⎫i -1n 2做匀速行驶,则在此区间上汽车行驶的路程为⎝ ⎛⎭⎪⎫i -1n 2·1n . (3)求和在所有小区间上,汽车行驶的路程和为sn =02×1n +⎝ ⎛⎭⎪⎫1n 2×1n +⎝ ⎛⎭⎪⎫2n 2×1n +…+⎝ ⎛⎭⎪⎫n -1n 2×1n =1n 3=1n 3×n -n n -6=13⎝⎛⎭⎪⎫1-1n ⎝ ⎛⎭⎪⎫1-12n . (4)取极限汽车行驶的路程 s =li m n →∞s n =li m n →∞13⎝ ⎛⎭⎪⎫1-1n ⎝ ⎛⎭⎪⎫1-12n =13.10.求由直线x =0,x =1,y =0和曲线y =x (x -1)围成的图形的面积.解:(1)分割将曲边梯形分割成n 个小曲边梯形,在区间上等间隔地插入n -1个点,将区间等分成n 个小区间:⎣⎢⎡⎦⎥⎤0,1n ,⎣⎢⎡⎦⎥⎤1n ,2n ,…,⎣⎢⎡⎦⎥⎤n -1n ,1, 记第i 个区间为⎣⎢⎡⎦⎥⎤i -1n ,i n (i =1,2,…,n ),其长度为 Δx =i n -i -n =1n. 把每个小曲边梯形的面积记为ΔS 1,ΔS 2,…,ΔS n .(2)近似代替把每个小曲边梯形近似地看作矩形,可得第i 个小曲边梯形的面积的近似值 ΔS i ≈⎪⎪⎪⎪⎪⎪f ⎝⎛⎭⎪⎫i -1n ·Δx =⎪⎪⎪⎪⎪⎪⎣⎢⎡⎦⎥⎤i -n ·⎝ ⎛⎭⎪⎫i -1n -1·1n=i -1n 2·⎝ ⎛⎭⎪⎫1-i -1n (i =1,2,…,n ).(3)求和求出这n 个小矩形的面积的和S n =∑i =1n⎪⎪⎪⎪⎪⎪f ⎝ ⎛⎭⎪⎫i -1n ·Δx=∑i =1ni -1n 2·⎝ ⎛⎭⎪⎫1-i -1n=16·⎝ ⎛⎭⎪⎫1-1n 2,从而得到所求图形面积的近似值S ≈16⎝ ⎛⎭⎪⎫1-1n 2.(4)取极限S =lim n →∞ 16·⎝ ⎛⎭⎪⎫1-1n 2=16.所以由直线x =0,x =1,y =0和曲线y =x (x -1)围成的图形的面积为16.。
高中数学第一章导数及其应用1.5定积分的概念1.5.3定积分的概念讲义新人教A版选修22

高中数学第一章导数及其应用1.5定积分的概念1.5.3定积分的概念讲义新人教A 版选修221.定积分的概念一般地,设函数f (x )在区间[a ,b ]上□01连续,用分点a =x 0<x 1<x 2<…<x i -1<x i <…<x n =b 将区间[a ,b ]等分成n 个小区间,在每个小区间[x i -1,x i ]上任取一点ξi (i =1,2,…,n ),作和式□02∑ni =1f (ξi )Δx =∑ni =1b -a nf (ξi ). 当n →∞时,上述和式无限接近某个常数,那么这个常数叫做函数f (x )在区间[a ,b ]上的定积分,记作:□03⎠⎛ab fx d x ,即⎠⎛ab f (x )d x =□04lim n →∞∑ni =1 b -a n f (ξi ).2.定积分的相关名称3.定积分的几何意义(1)前提条件:函数f (x )在区间[a ,b]上连续,f (x )≥0.(2)定积分⎠⎛ab f (x )d x 的几何意义:由y =0,曲线f (x )以及直线x =a ,x =b 围成的曲边梯形的□12面积. 4.定积分的基本性质(1)⎠⎛a b kf (x )d x =□13k ⎠⎛ab f (x )d x (k 为常数). (2)⎠⎛a b [f (x )±g(x )]d x =□14⎠⎛a b f (x )d x ±⎠⎛ab g(x )d x . (3)⎠⎛ab f (x )d x =□15⎠⎛ac f (x )d x +⎠⎛cb f (x )d x (其中a <c<b).用定积分求曲边图形面积时,不判断曲边图形位于x 轴上方、还是下方,直接求解而出现错误.避免出错的措施为:(1)当对应的曲边图形位于x 轴上方时(图①),定积分的值取正值,且等于曲边图形的面积;(2)当对应的曲边图形位于x 轴下方时(图②),定积分的值取负值,且等于曲边图形面积的相反数;(3)当位于x 轴上方的曲边图形面积等于位于x 轴下方的曲边图形面积时,定积分的值为0(图③),且等于位于x 轴上方的曲边图形面积减去位于x 轴下方的曲边图形面积.1.判一判(正确的打“√”,错误的打“×”) (1)⎠⎛a b f (x )d x =⎠⎛ab f (t)d t .( )(2)⎠⎛a b f (x )d x 的值一定是一个正数.( ) (3)⎠⎛ab (x 2+2x )d x =⎠⎛a b x 2d x +⎠⎛ab 2xd x .( )答案 (1)√ (2)× (3)√探究1 利用定义计算定积分例1 利用定积分的定义,计算⎠⎛12(3x +2)d x 的值.[解] 令f (x )=3x +2. (1)分割在区间[1,2]上等间隔地插入n -1个分点,把区间[1,2]等分成n 个小区间⎣⎢⎡⎦⎥⎤n +i -1n ,n +i n (i =1,2,…,n ),每个小区间的长度为Δx =n +i n -n +i -1n =1n . (2)近似代替、求和 取ξi =n +i -1n (i =1,2,…,n ), 则S n =∑ni =1f (n +i -1n)·Δx =∑ni =1⎣⎢⎡⎦⎥⎤3n +i -1n +2·1n=∑i =1n⎣⎢⎡⎦⎥⎤3i -1n 2+5n =3n2[0+1+2+…+(n -1)]+5=32×n 2-n n 2+5=132-32n . (3)取极限⎠⎛12(3x +2)d x =lim n→∞S n =lim n→∞ ⎝ ⎛⎭⎪⎫132-32n =132. 拓展提升利用定义求定积分的关键仍然是“分割、近似代替、求和、取极限”这一过程.其中: (1)在近似代替时,可以选取每个小区间的左端点、右端点、区间中点、区间端点的几何平均数等相应的函数值来代替该区间的函数值;(2)将“近似代替、求和”作为一个步骤来处理,其条理性更强.【跟踪训练1】 求由直线x =0,x =1,y =0与曲线f (x )=x 2+2x +1围成曲边梯形的面积.解 将区间[0,1]等分成n 个小区间,则第i 个小区间为⎣⎢⎡⎦⎥⎤i -1n ,i n ,等i 个小区间的面积为ΔS i =f ⎝ ⎛⎭⎪⎫i n ·1n =⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫i n 2+2⎝ ⎛⎭⎪⎫i n +1·1n,S n =∑ni =1⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫i n 2+2⎝ ⎛⎭⎪⎫i n +1·1n=1n 3(12+22+32+…+n 2)+2n2(1+2+3+…+n )+1=1n3·n n +12n +16+2n2·n n +12+1=⎝ ⎛⎭⎪⎫1+1n ⎝ ⎛⎭⎪⎫2+1n 6+1n+2,S =lim n→∞S n =lim n→∞ ⎣⎢⎢⎡⎦⎥⎥⎤⎝ ⎛⎭⎪⎫1+1n ⎝ ⎛⎭⎪⎫2+1n 6+1n +2=73, 所以所求的曲边梯形的面积为73.拓展提升b f(x)d x的值的关键是确定由曲线y=f(x),直线x=a,利用定积分所表示的几何意义求⎠⎛a直线x=b及x轴所围成的平面图形的形状.常见形状是三角形、直角梯形、矩形、圆等可求面积的平面图形.解 (1)如图1,阴影部分面积为2+5×12=72,从而 ⎠⎛01(3x +2)d x =72.图1 图2探究3 利用定积分的性质求定积分例3 已知⎠⎛01x 3d x =14,⎠⎛12x 3d x =154,⎠⎛12x 2d x =73,⎠⎛24x 2d x =563,求:(1)⎠⎛02(3x 3)d x ;(2)⎠⎛14(6x 2)d x ; (3)⎠⎛12(3x 2-2x 3)d x .[解] (1)⎠⎛02(3x 3)d x =3⎠⎛02x 3d x=3⎝⎛⎭⎫⎠⎛01x 3d x +⎠⎛12x 3d x =3×⎝ ⎛⎭⎪⎫14+154=12.(2)⎠⎛14(6x 2)d x =6⎠⎛14x 2d x =6⎝⎛⎭⎫⎠⎛12x 2d x +⎠⎛24x 2d x =6×⎝ ⎛⎭⎪⎫73+563=126. (3)⎠⎛12(3x 2-2x 3)d x =⎠⎛12(3x 2)d x -⎠⎛12(2x 3)d x=3⎠⎛12x 2d x -2⎠⎛12x 3d x =3×73-2×154=7-152=-12.拓展提升【跟踪训练3】 已知f (x )=⎩⎪⎨⎪⎧x ,x ∈[0,2,4-x ,x ∈[2,3,52-x 2,x ∈[3,5],求f (x )在区间[0,5]上的定积分.1.求阴影部分面积可分两类:(1)规则图形:按照面积的相关公式直接计算;(2)不规则图形:转化为规则图形或曲边梯形,再求面积的和或差,曲边梯形面积利用定积分来计算;改变积分变量,使问题简化.2.可以利用“分割、近似代替、求和、取极限”求定积分;对于一些特殊函数,也可以利用几何意义求定积分.3.定积分的几何性质可以帮助简化定积分运算.1.若函数f(x)在区间[a,b]上的图象在x轴上方,且图象从左至右上升,则求由曲线y =f(x),直线x=a,x=b(a≠b)及x轴围成的平面图形的面积S时,将区间[a,b]n等分,用每个小区间的左端点的函数值计算出面积为S1,用每个小区间的右端点的函数值计算出面积为S2,则有( )A.S1<S<S2B.S1≤S<S2C.S1≤S2≤S D.S1≤S≤S2答案 A解析 由题意知,在区间⎣⎢⎡⎦⎥⎤i-1n ,i n 上,f ⎝ ⎛⎭⎪⎫i -1n <f ⎝ ⎛⎭⎪⎫i n,所以S 1=∑i =1nf ⎝ ⎛⎭⎪⎫i -1n ·1n <∑i =1nf ⎝ ⎛⎭⎪⎫i n ·1n =S 2,则S 1<S <S 2.答案 D3.⎠⎛06(2x -4)d x =________.答案 12解析 如图A(0,-4),B(6,8),M(2,0),S △AOM =12×2×4=4,S △MBC =12×4×8=16,所以⎠⎛06(2x -4)d x =16-4=12.4.曲线y =1x与直线y =x ,x =2所围成的图形面积用定积分可表示为 ________.答案 ⎠⎛12⎝ ⎛⎭⎪⎫x -1x d x解析 如图所示,阴影部分的面积可表示为⎠⎛12x d x -⎠⎛121xd x =⎠⎛12⎝ ⎛⎭⎪⎫x -1x d x . 5.根据定积分的几何意义求定积分⎠⎛13(x -2)d x ,⎠⎛13|x -2|d x .解 根据定积分的几何意义,所求定积分表示直线x =3,x =1,y =0分别与函数y =x -2,y =|x -2|的图象所围成的图形的面积,即如图的阴影部分的面积.∴⎠⎛13(x -2)d x =-12×1×1+12×1×1=0. ⎠⎛13|x -2|d x =12×1×1+12×1×1=1.。
高中数学第一章导数及其应用1-5定积分的概念1-5-1_1-5-2汽车行驶的路程优化练习新人教A版选修2_2

高中数学第一章导数及其应用1-5定积分的概念1-5-1_1-5-2汽车行驶的路程优化练习新人教A版选修2_2[课时作业][A组基础巩固]1.把区间[1,3]n等分,所得n个小区间的长度均为( )B.2A.nD.1C.2n解析:把区间[1,3]n等分,所得n个小区间的长度均为=.答案:B 2.在求由x=a,x=b(a<b),y=f(x)(f(x)≥0)及y=0围成的曲边梯形的面积S时,在区间[a,b]上等间隔地插入n-1个分点,分别过这些分点作x轴的垂线,把曲边梯形分成n个小曲边梯形,下列说法中正确的个数是( )①n个小曲边梯形的面积和等于S;②n个小曲边梯形的面积和小于S;③n个小曲边梯形的面积和大于S;④n个小曲边梯形的面积和与S之间的大小关系无法确定B.2个A.1个D.4个C.3个解析:n个小曲边梯形是所给曲边梯形等距离分割得到的,因此其面积和为S.∴①正确,②③④错误,故应选A.答案:A3.把区间[a,b](a<b)n等分之后,第i个小区间是( )A.[,]B.[(b-a),(b-a)]C.[a+,a+]D.[a+(b-a),a+(b-a)]解析:区间[a,b](a<b)的长度为(b-a),n等分之后,每个小区间长度均为,第i个小区间是[a+·(b-a),a+(b-a)](i=1,2,…,n).答案:D 4.对于由直线x=1,y=0和曲线y=x3所围成的曲边梯形,把区间3等分,则曲边梯形面积的近似值(取每个区间的左端点)是( )A.B.125D.1C.30解析:将区间[0,1]三等分为[0,],[,],[,1],各小矩形的面积和为S1=03·+()3·+()3·==.答案:A 5.在等分区间的情况下,f(x)=(x∈[0,2])及x轴所围成的曲边梯形面积的和式的极限形式正确的是( )B.[·]A.[·]D.[·n]C. (·)解析:将区间n等分后,每个小区间的长度为Δx=,第i个小区间为[,](i=1,2,…,n),则由求曲边梯形的面积的步骤可得,所求曲边梯形面积的和式的极限形式应为[·].答案:B。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020学年高中数学 第一章 导数及其应用 1.5 定积分的概念教案 新人教
A 版选修2-2
教学目标:
1、通过求曲边梯形的面积和变速直线运动的路程,了解定积分的背景;
2、借助于几何直观定积分的基本思想,了解定积分的概念,能用定积分法求简单的定积分.
3、理解掌握定积分的几何意义;
教学重点:定积分的概念、定积分法求简单的定积分、定积分的几何意义. 教学难点:定积分的概念、定积分的几何意义. 教学过程: 一.创设情景 复习:
1.
2.对这四个步骤再以分析、理解、归纳,找出共同点. 二.新课讲授
1.定积分的概念 一般地,设函数()f x 在区间[,]a b 上连续,用分点
0121i i n a x x x x x x b -=<<<<<<<=
将区间[,]a b 等分成n 个小区间,每个小区间长度为x ∆(b a
x n
-∆=
),在每个小区间[]1,i i x x -上取一点()1,2,,i i n ξ=,作和式:1
1
()()n
n
n i i i i b a
S f x f n ξξ==-=∆=∑∑
如果x ∆无限接近于0(亦即n →+∞)时,上述和式n S 无限趋近于常数S ,那么称该常数S 为函数()f x 在区间[,]a b 上的定积分。
记为:()b
a
S f x dx =
⎰
其中()f x 成为被积函数,x 叫做积分变量,[,]a b 为积分区间,b 积分上限,a 积分下限。
说明:(1)定积分()b
a
f x dx ⎰
是一个常数,即n S 无限趋近的常数S (n →+∞时)称为()b
a
f x dx ⎰,而不
是n S .
(2)用定义求定积分的一般方法是:①分割:n 等分区间[],a b ;②近似代替:取点[]1,i i i x x ξ-∈;
③求和:1()n
i i b a f n ξ=-∑;④取极限:()1
()lim n b i a n i b a
f x dx f n ξ→∞=-=∑⎰ (3)曲边图形面积:()b
a
S f x dx =
⎰;变速运动路程2
1
()t t S v t dt =⎰
;
变力做功 ()b
a
W F r dr =
⎰
2.定积分的几何意义 说明:一般情况下,定积分
()b
a
f x dx ⎰
的几何意义是介于x 轴、函数()f x 的图形以及直线,x a x b ==之间
各部分面积的代数和,在x 轴上方的面积取正号,在x 轴下方的面积去负号.(可以先不给学生讲).
分析:一般的,设被积函数()y f x =,若()y f x =在[,]a b 上可取负值。
考察和式()()()12()i n f x x f x x f x x f x x ∆+∆++∆+
+∆
不妨设1(),(),
,()0i i n f x f x f x +<
于是和式即为()()()121(){[()][]}i i n f x x f x x f x x f x x f x x -∆+∆+
+∆--∆+
+-∆
()b
a
f x dx ∴=⎰阴影A 的面积—阴影B 的面积(即x 轴上方面积减x 轴下方的面积)
2.定积分的性质
根据定积分的定义,不难得出定积分的如下性质: 性质1 a b dx b
a
-=⎰1
性质2 ⎰⎰
=b
a
b
a dx x f k dx x kf )()( (其中k 是不为0的常数) (定积分的线性性质)
性质3
1
2
12[()()]()()b
b
b
a a
a
f x f x dx f x dx f x dx ±=±⎰⎰
⎰ (定积分的线性性质)
性质4
()()()()b
c b
a
a
c
f x dx f x dx f x dx
a c
b =+<<⎰⎰⎰其中 (定积分对积分区间的可加性)
说明:①推广:
1212[()()()]()()()b
b
b
b
m m a
a
a a
f x f x f x dx f x dx f x dx f x ±±
±=±±
±⎰
⎰⎰⎰
②推广:
12
1
()()()()k
b
c c b
a
a
c c f x dx f x dx f x dx f x dx =++
+⎰
⎰⎰⎰
③性质解释:
三.典例分析 例1.计算定积分
2
1
(1)x dx +
⎰
分析:所求定积分即为如图阴影部分面积,面积为52。
即:
2
1
5(1)2
x dx +=
⎰
思考:若改为计算定积分
2
2
(1)x dx -+⎰
呢?
改变了积分上、下限,被积函数在[2,2]-上出现了负值如何解决呢?(后面解决的问题) 四.课堂练习 计算下列定积分 1.5
0(24)x dx -⎰
5
(24)945x dx -=-=⎰
2.
1
1
x dx -⎰ 11111111122
x dx -=⨯⨯+⨯⨯=⎰ 五.回顾总结
1.定积分的概念、定积分法求简单的定积分、定积分的几何意义. 六.布置作业
AMNB AMPC CPNB
S S S =+曲边梯形曲边梯形曲边梯形。