同轴连接器HFSS模拟
HFSS软件使用基础介绍

几何变换【Edit】【Arrange】/【Duplicate】
平移Move: 沿指定矢量线移动至新位置; 旋转Rotate: 沿指定坐标轴转动; 镜像移动Mirror: 移动物体至指定平面的镜像 位置; 沿线复制Along line: 沿指定矢量线复制模型; 绕轴复制Along Axis: 沿指定坐标轴复制模型; 镜像复制: 沿指定镜面复制模型;
将该圆形面上指定为集总端口平面
根据实际场分布绘制集总端口终端线: 由同轴线内 芯外表面指向屏蔽、扫频分析、网格剖分 (1)频率和收敛标准设置: 【HFSS】【Analysis
Setup】 【Add Solution Setup】
输入频率: 13.56MHz
自适应网格剖分过程中, 每次网格细化的迭代过程 叫做一个Pass, HFSS会基于当前网格计算出的S参 数(或能量E、频率F), 和上一次计算结果比较, 如 果求出的误差ΔS小于设置的收敛标准, 表示解已经 收敛, 自适应网格剖分计算完成。波端口激励和集 总端口激励问题使用ΔS作为收敛误差的判断标准。
Driven Modal模式驱动求解类型: 计算无源、高频结 构的S参数时可选此项,如微带、波导、传输线结 构;
Driven Terminal终端驱动求解类型: 计算多导体传 输线端口的S参数,由终端电压和电流描述S矩阵;
Eigemode本征模求解类型: 主要用于谐振问题的设 计,计算谐振结构的频率和场分布、谐振腔体的无
1.HFSS简介 2.HFSS使用 3.举例说明 4.参考文件
HFSS(High Frequency Simulator Structure)是美国 Ansoft公司开发的全波三维电磁仿真软件, 采用有限元算 法。
Windows图形用户界面, 简洁直观; 自动化的设计流程, 易学易用; 稳定成熟的自适应网格剖分技术, 结果准确;
基于HFSS的L型泄漏同轴电缆仿真研究

泄漏同轴电缆的电气性能参数主要有使用频带、耦合 损耗及传输损耗。当前对泄漏同轴电缆的理论研究大多针 对前两者。 1.1 使用频带
具有周期性槽孔结构的泄漏同轴电缆外表面会产生无 穷多的空间谐波。这其中的大多数空间谐波只能以表面波
26
理论研究 电工技术
表1槽孔参数犮犱对耦合损耗的影响tab1theeffectofslotparameter犮犱oncouplingloss槽孔参数mm05001000150020002500300095耦合损耗db8046813182928449860588409743表2槽孔参数犮犮对耦合损耗的影响tab2theeffectofslotparameter犮犮oncouplingloss槽孔参数mm800100012001400160095耦合损耗db82598195815880467958表3槽孔参数犮犺对耦合损耗的影响tab3theeffectofslotparameter犮犺oncouplingloss槽孔参数mm40080012001400160095耦合损耗db98468916834880467843由表13可知增加槽孔参数犮犱即改变标准的l型槽孔时耦合损耗会增加
的形式存在,只有在谐波阶数 犿≤-1时才可能产生辐射 波。此时的频率范围为:
-犮 + 槡εr
·犿 狆
<犳 <
犮 ·犿 槡εr -1 狆
(1)
式中,犮为真空中的光速;εr为绝缘介质等效介电常数;狆
为槽孔的周期长度。
如果不采取任何措施,在频率 [ 犮 ·1, 犮 · 1+槡εr 狆 槡εr -1
1]内将只存在一次谐波的辐射;如果超过此范围,就将 狆 存在高次谐波辐射,进而使得场值发生较大波动。为了拓 展辐射的带宽,必须抑制-1次空间谐波辐射带宽内的高 次谐波,抑制的阶数越多,则频带将会越宽。
01.HFSS基础培训教程(中文版)

HFSS 10.0中文基础培训教程(一)快速范例-T 型同轴HFSS -高频结构仿真器全波3D 场求解任意体积内的场求解启动HFSS点击Start > Programs > Ansoft > HFSS 10 > HFSS 10 或者双击桌面 HFSS10.0 图标添加一个设计(design )当你第一次启动HFSS 时,一个含新的设计(design )的项目(project )将自动添加到项目树(project Tree )中,如下图所示:Toolbar: 插入一个 HFSS Design在已存在的项目(project )中添加新的设计(design ),选择菜单(menu )中的 Project > Insert HFSS Design手动添加一个含新设计的新项目,选择菜单中的 File > New.Ansoft 桌面Ansoft 桌面-Project Manager (项目管理器) 每个项目多个设计每个视窗多个项目 完整的优化设置 菜单栏项目管理器信息管理器 状态栏坐标输入区属性窗口进程窗口3D 模型窗口工具栏Ansoft 桌面– 3D Modeler(3D模型)项目管理窗口项目自动设计:参数优化灵敏度统计设计设计设置设计结果3D模型窗口模型画图区域3D模型设计树画图域的右键菜单选项棱边顶点CS坐标系坐标原点面平面设置求解器类型选择 Menu 菜单HFSS > Solution Type 求解类型窗口1. 选择 Driven Modal2. 点击 OK 按钮HFSS -求解器类型Driven Modal (驱动模式):计算基于S 参数的模型。
根据波导模式的入射和反射能量计算S 矩阵通用S 参数Driven Terminal (终端驱动):计算基于多导体传输线端口的终端S 参数。
根据终端电压和电流计算S 矩阵 Eigenmode (本征模):计算结构的本征模,谐振。
hfss仿真实验报告

hfss仿真实验报告HFSS仿真实验报告引言:HFSS(High Frequency Structure Simulator)是一款电磁仿真软件,广泛应用于高频电磁场分析和设计。
本篇报告将介绍一次使用HFSS进行的仿真实验,并对实验结果进行分析和讨论。
实验目的:本次实验的目的是通过HFSS仿真软件,对一个电磁场问题进行模拟和分析,以验证其在理论上的正确性。
通过仿真实验,可以更好地理解电磁场的行为规律,并为实际应用提供参考依据。
实验步骤:1. 建立模型:根据实验需求,首先在HFSS中建立相应的电磁场模型。
模型的建立需要考虑几何形状、材料特性等因素,以确保仿真结果的准确性。
2. 设置边界条件:在模型建立完成后,需要设置边界条件,即模型与外界的交互方式。
边界条件的设置对于仿真结果的准确性至关重要,需要根据实际情况进行选择和调整。
3. 定义材料特性:根据实际材料的电磁特性,对模型中的材料进行定义和设置。
材料的特性包括介电常数、磁导率等参数,对于仿真结果的准确性起到重要作用。
4. 设定激励源:在模型中添加激励源,即对电磁场进行激励的源头。
激励源的设置需要考虑频率、功率等参数,以确保仿真结果与实际情况相符。
5. 运行仿真:完成上述设置后,即可运行仿真。
HFSS将根据模型和设置的参数,计算并输出电磁场的分布情况。
实验结果与分析:通过HFSS仿真软件进行实验后,我们得到了电磁场的分布情况。
根据仿真结果,我们可以对电磁场的特性进行分析和讨论。
首先,我们可以观察到电磁场的强度分布情况。
根据模型的不同特点,电磁场的强度在不同区域呈现出不同的分布规律。
通过分析电磁场的分布情况,可以更好地理解电磁场的行为规律,并为实际应用提供指导。
其次,我们可以通过仿真结果来评估不同材料对电磁场的影响。
在模型中,我们可以设置不同材料的特性参数,通过仿真实验来观察不同材料对电磁场的吸收、反射等影响。
这对于材料的选择和设计具有重要的参考价值。
基于HFSS仿真的一种新型大功率同轴信道合成器

由仿真结果可知,S12插损为6 dB,接近一分四功分器的理论值。S11反射损耗在100 MHz带宽内都低于-21 dB以下。端口之间的隔离度S23总体保持在25 dB以上,与指标要求相吻合。
在最近几年出现了大量的微波电路仿真软件,其中,高频结构仿真器HFSS(High Frequency Structure Simulator)是一种电磁场三维仿真软件。而且由Ansoft HFSS和Ansoft Designer构成的Ansoft高频解决方案,是以物理原型为基础的高频设计解决方案,提供了从系统到电路直至部件级的快速而精确的设计手段,几乎覆盖了高频设计的所有环节。因此,本文使用HFSS对功分器进行建模仿真也是合理的[10]。
图9是利用依爱37629矢量网络分析仪对试制样品的各功能指标实施测试的结果。
试制件的实测值为:端口回波损耗均小于-20 dB以下,插损值维持在6 dB以内,中心频率363.25 MHz处小于-21 dB,端口处的实际隔离度均达到25 dB以上。将信道合成器输入200 W连续波功率,30 min后测试,其各项技术指标与常温下的测试结果一致。
基于HFSS仿真的一种新型大功率同轴信道合成器
摘 要: 论述了一种新的以Wilkinson功分器为原理,采用同轴空气线结构形式,并在相邻端口间采用接地电阻实现隔离的大功率、高隔离度的同轴型宽带信道合成器的设计。通过改进结构形式和输入端口间的阻抗匹配性,使得该信道合成器连续波功率可达到200 W,频带在310 MHz~410 MHz。实验过程是先应用HFSS进行三维电磁场模拟仿真,然后对实物进行测试。实验结果表明,模拟仿真结果与实物测试结果相吻合,满足设计指标要求。
HFSS及其应用解析

HFSS能够快速精确地计算天线的各种性能,包括二维、三维远场和 近场辐射方向图、天线的方向性、增益、轴比、半功率波瓣宽度、 内部电场分布、天线阻抗、电压驻波比、S参数等。
三、HFSS的应用
高速数字信号完整性分析
HFSS能够自动和精确地提取高速互联结构和版图寄生效应,结合 Ansoft Designer或其它电路仿真分析工具去仿真瞬态现象。
三、HFSS的应用
目标特性研究和雷达散射截面(RCS)仿真
HFSS中定义了平面波入射激励,结合辐射边界条件或PML边界条 件,可以准确地分析复杂目标的RCS。
三、HFSS的应用
比吸收率(SAR)计算
比吸收率是单位质量的人体组织所吸收的电磁辐射能量,它的 大小表明了电磁辐射对人体健康的影响程度。
二、HFSS原理
有限元方法 (Finite Element Method , FEM)
自适应网格剖分技术
三、HFSS的应用
射频和微波无源器件设计
HFSS能够快速精确地计算各种射频/微波无源器件的电磁特性,得到S参 数、传播常数、电磁特性,优化器件的性能指标,并进行容差分析。
三、HFSS的应用
HFSS可以准确地计算出指定位置的局部SAR和平均SAR。
三、HFSS的应用
光电器件仿真设计
半导体热器件:热敏电阻
HFSS的应用频率(30MHz~300GHz)达到光波波段,能够精确仿 真光电器件的特性。
四、HFSS设计流程
新建工程
设置求解类型
创建设计模型
分配材料属性 分配边界条件 分配端口激励
三、HFSS的应用
电磁干扰和电磁兼容(EMI/EMC)分析
HFSS强大的场后处理功能可以把整个空间的场分布以色标图的方式直 观地显示出来,进一步通过场计算器(Field Calculator)可以给出电场/磁 场强度的最强点,并能输出详细的场强值和坐标值。
hfss transient案例

HFSS(High Frequency Structure Simulator)是由美国ANSYS公司开发的一款专业电磁仿真软件,主要用于微波、天线、射频和光学领域的电磁场分析和模拟。
在HFSS中,transient模拟是指在时域中进行的电磁场仿真,可以分析系统在不同时间点上的响应和变化情况。
本文将通过几个实际案例,介绍HFSS transient模拟的应用及其特点。
一、HFSS transient模拟的应用HFSS transient模拟广泛应用于微波、天线、射频等领域的电磁场分析,在工程实践中具有重要的意义。
其主要应用包括但不限于以下几个方面:1. 时域响应分析:HFSS transient模拟能够准确地描述电磁场在时域内的响应,包括电磁波的传播、反射、折射等过程,可以对系统在不同时间点上的行为进行全面、详细的分析。
2. 脉冲信号传输特性分析:在雷达、通信系统等应用中,脉冲信号的传输特性对系统性能有重要影响,HFSS transient模拟可以帮助工程师准确地分析脉冲信号在传输过程中的行为,为系统设计提供重要参考。
3. 对时变电磁场的分析:在电磁兼容性(EMC)和电磁干扰(EMI)等方面的应用中,HFSS transient模拟能够对时变电磁场进行精确的仿真和分析,帮助工程师找出系统中的潜在问题并进行有效的干预和优化。
二、HFSS transient模拟的特点HFSS transient模拟具有以下几个显著特点,使其在工程实践中得到广泛应用并取得良好效果:1. 高精度:HFSS transient模拟采用了先进的数值算法和仿真技术,能够在时域内精确地描述电磁场的行为,提供准确的仿真结果。
2. 多种边界条件支持:HFSS transient模拟支持多种边界条件的设定,包括吸收边界、周期性边界、开路边界等,在不同场景下能够灵活应对,确保仿真的准确性和全面性。
3. 自动优化功能:HFSS transient模拟提供了自动优化功能,能够根据用户设定的目标自动搜索最优解,并对结构参数进行优化,提高工程师的仿真效率和设计水平。
hfss中文教程 320-347 同轴连接器

RF同轴连接器中文教程RF rf---射频(Radio Frequency)第二节 同轴连接器这个例子教你如何在HFSS设计环境下创建、仿真、分析一个同轴连接器。
第226 页一.Ansoft HFSS 设计环境以下属性将应用到这一无源器件模型的创建中1.三维立体模型基本元件:柱体(Cylinders),折线(Polylines),圆(Circles)布尔(Boolean)操作:合并(Unite),删除(Subtract),扫频(Sweep)2.边界/激励端口:波端口(Wave Ports)和终端积分线(Terminal Lines)3.分析扫描: 快速频域扫描(Fast Frequency)4.结果笛卡尔直角坐标系绘图(Cartesian Plotting)5.场分布图三维场图绘制(3D field Plots),场分布动画(Animation),剪切平面(Cut-Planes)第227 页二.开始一)启动Ansoft HFSS1.点击微软的开始按钮,选择程序,然后选择Ansoft,HFSS10程序组,点击HFSS10,进入Ansoft HFSS。
二)设置工具选项注意:为了按照本例中概述的步骤,应核实以下工具选项已设置:1.选择菜单中的工具(Tools)>选项(Options)>HFSS选项(HFSS Options)2.HFSS选项窗口:1)点击常规(General)标签a.建立新边界时,使用数据登记项的向导(Use Wizards for data entry when creating new boundaries):勾上。
b.用几何形状复制边界(Duplicate boundaries with geometry):勾上2)点击OK按钮。
3.选择菜单中的工具(Tools)>选项(Options)>3D模型选项(3D Modeler Options)4.3D模型选项(3D Modeler Options)窗口:1)点击操作(Operation)标签自动覆盖闭合的多段线(Automatically cover closed polylines):勾上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Example –Coaxial Connector 6.2-1The Coaxial ConnectorThis example is intended to show you how to create, simulate, and analyze a coaxial connector, using the Ansoft HFSS Design Environment .Example –Coaxial Connector6.2-2Ansoft HFSS Design EnvironmentThe following features of the Ansoft HFSS Design Environment are used to create this passive device model3D Solid ModelingPrimitives: Cylinders, Polylines, CirclesCylinders, Polylines, Circles Boolean Operations: Unite, Subtract, and Sweep Unite, Subtract, and SweepBoundaries/ExcitationsPorts:Wave Ports and Terminal Lines Analysis Sweep: Fast Frequency: Fast Frequency ResultsCartesian plottingField Overlays:3D Field Plots, Animations, Cut 3D Field Plots, Animations, Cut--PlanesExample –Coaxial Connector6.2-3Getting StartedLaunching Ansoft HFSS1.To access Ansoft HFSS, click the Microsoft Start Start button, select Programs ProgramsPrograms, and select the Ansoft, HFSS 10Ansoft, HFSS 10program group. Click HFSS 10HFSS 10HFSS 10.Setting Tool OptionsTo set the tool options:Note:Note: In order to follow the steps outlined in this example, verify that the following tool options are set :1.Select the menu item Tools > Options > HFSS Options2.HFSS Options Window:1.Click the General General tabUse Wizards for data entry when creating new boundaries: :CheckedDuplicate boundaries with geometry: : Checked2.Click the OK OK button3.Select the menu item Tools > Options > 3D Modeler Options Tools > Options > 3D Modeler Options.4.3D Modeler Options Window:1.Click the Operation Operation tabAutomatically cover closed polylines: :Checked 2.Click the Drawing Drawing tabEdit property of new primitives: : Checked3.Click the OK OK buttonExample –Coaxial Connector6.2-4 Opening a New ProjectTo open a new project:1.In an Ansoft HFSS window, click the On the Standard toolbar, or selectthe menu item File > New.2.From the Project menu, select Insert HFSS Design.Set Solution TypeTo set the solution type:1.Select the menu item HFSS > Solution Type2.Solution Type Window:1.Choose Driven TerminalDriven Terminal2.Click the OKOK buttonExample –Coaxial Connector6.2-5Creating the 3D ModelSet Model UnitsTo set the units:1.Select the menu item 3D Modeler > Units2.Set Model Units:1.Select Units: cm cm2.Click the OK OK buttonSet Default MaterialTo set the default material:ing the 3D Modeler Materials toolbar, choose Select Select2.Select Definition Window:1.Type pec pec in the Search by Name Search by Name field2.Click the OK OK buttonExample –Coaxial Connector6.2-6Create the Conductor 1To create the conductor1.Select the menu item Draw > Cylindering the coordinate entry fields, enter the cylinder positionX: 0.00.00.0, Y: 0.00.00.0, Z: 0.00.00.0, Press the Enter Enter key ing the coordinate entry fields, enter the radius:dX: 0.1520.1520.152, dY: 0.00.00.0, dZ: 0.00.00.0, Press the Enter Enter key 4.Using the coordinate entry fields, enter the height:dX: 0.00.00.0, dY: 0.00.00.0, dZ: 1.4481.4481.448, Press the Enter Enter key To set the name:1.Select the Attribute Attribute tab from the Properties Properties window.2.For the Value Value of Name Name type: Conductor1Conductor13.Click the OK OK buttonTo fit the view:1.Select the menu item View > Fit All > Active View . Or press the CTRL+D CTRL+D keyCreate Offset Coordinate SystemTo create an offset Coordinate System:1.Select the menu item 3D Modeler > Coordinate System > Create > Relative CS > Offseting the coordinate entry fields, enter the originX: 0.00.00.0, Y: 0.00.00.0, Z: 1.448, 1.448,1.448, Press the Enter Enter key Create a SectionTo section the conductor1.Select the menu item Edit > Select All Visible . . Or press the CTRL+A CTRL+A key.2.Select the menu item 3D Modeler > Surface > Section3.Section WindowSection Plane:XYClick the OK OKOK buttonExample –Coaxial Connector6.2-7Rename the SectionTo set the name:1.Select the menu item HFSS > List2.From the Model Model tab, select the object named Section1Section13.Click the Properties PropertiesProperties button 1.For the Value Value of Name Name type: Bend Bend 2.Click the OK OK button 4.Click the DoneDone buttonSet Grid PlaneTo set the grid plane:1.Select the menu item 3D Modeler > Grid Plane > YZ Create Conductor BendTo create the bend:1.Select the menu item Draw > Arc > Center Point ing the coordinate entry fields, enter the vertex point:X: 0.00.00.0, Y: 0.40.40.4, Z: 0.00.00.0, Press the Enter Enter key ing the coordinate entry fields, enter the radial point:X: 0.00.00.0, Y: 0.00.00.0, Z: 0.00.00.0, Press the EnterEnter key ing the coordinate entry fields, enter the sweep arc length:X: 0.00.00.0, Y: 0.40.40.4, Z: 0.40.40.4,Press the Enter Enter key ing the mouse, right-click and select DoneDone 6.Click the OK OK button when the Properties dialog appears Sweep Bend:1.Select the menu item Edit > Select > By Name2.Select Object Dialog,1.Select the objects named: Bend, Polyline1Bend, Polyline12.Click the OK OKOK button 3.Select the menu item Draw > Sweep > Along Path 4.Sweep along path WindowAngle of twist:0Draft Angle: 00Draft Type: Round RoundClick the OK OKOK buttonExample –Coaxial Connector6.2-8Set Grid PlaneTo set the grid plane:1.Select the menu item 3D Modeler > Grid Plane > XZ Create Offset Coordinate SystemTo create an offset Coordinate System:1.Select the menu item 3D Modeler > Coordinate System > Create > Relative CS > Offseting the coordinate entry fields, enter the originX: 0.00.00.0, Y: 0.40.40.4, Z: 0.4,0.4, 0.4, Press the EnterEnter key Create the Conductor 2To create the conductor1.Select the menu item Draw > Cylinder ing the coordinate entry fields, enter the cylinder positionX: 0.00.00.0, Y: 0.00.00.0, Z: 0.00.00.0,Press the EnterEnter key ing the coordinate entry fields, enter the radius:dX: 0.1520.1520.152, dY: 0.00.00.0, dZ: 0.00.00.0,Press the Enter Enter key ing the coordinate entry fields, enter the height:dX: 0.00.00.0, dY: 0.4360.4360.436, dZ: 0.00.00.0,Press the EnterEnter key To set the name:1.Select the Attribute Attribute tab from the Properties Properties window.2.For the Value Value of Name Name type: Conductor2Conductor23.Click the OK OK buttonTo fit the view:1.Select the menu item View > Fit All > Active View. Create Offset Coordinate SystemTo create an offset Coordinate System:1.Select the menu item 3D Modeler > Coordinate System > Create > Relative CS > Offseting the coordinate entry fields, enter the originX: 0.00.00.0, Y: 0.4360.4360.436, Z: 0.00.00.0, Press the Enter Enter keyExample –Coaxial Connector6.2-9 Create the Conductor 3To create the conductor1.Select the menu item Draw > Cylindering the coordinate entry fields, enter the cylinder positionX: 0.00.00.0, Y: 0.00.00.0, Z: 0.00.00.0,Press the EnterEnter keying the coordinate entry fields, enter the radius:dX: 0.2250.2250.225, dY: 0.00.00.0, dZ: 0.00.00.0, Press the EnterEnter keying the coordinate entry fields, enter the height:dX: 0.00.00.0, dY: 1.31.31.3, dZ: 0.00.00.0, Press the EnterEnter keyTo set the name:1.Select the AttributeAttribute tab from the PropertiesProperties window.2.For the ValueValue of NameName type: Conductor3Conductor33.Click the OKOK buttonTo fit the view:1.Select the menu item View > Fit All > Active View.Group the ConductorsTo group the conductors:1.Select the menu item Edit > Select All Visible. . Or press the CTRL+ACTRL+A key.2.Select the menu item, 3D Modeler > Boolean > UniteTo fit the view:1.Select the menu item View > Fit All > Active View.Set Default MaterialTo set the default material:ing the 3D Modeler Materials toolbar, choose vacuumvacuumExample –Coaxial Connector6.2-10Create the Female EndTo create the female end:1.Select the menu item Draw > Cylinder ing the coordinate entry fields, enter the cylinder positionX: 0.00.00.0, Y: 0.00.00.0, Z: 0.00.00.0, Press the EnterEnter key ing the coordinate entry fields, enter the radius:dX: 0.5110.5110.511, dY: 0.00.00.0, dZ: 0.00.00.0, Press the Enter Enter key ing the coordinate entry fields, enter the height:dX: 0.00.00.0, dY: 1.31.31.3, dZ: 0.00.00.0, Press the Enter Enter key To set the name:1.Select the Attribute Attribute tab from the Properties Properties window.2.For the Value Value of Name Name type: Female Female3.Click the OK OK buttonTo fit the view:1.Select the menu itemView > Fit All > Active View . Create the Female BendTo create the bend:1.Select the menu itemDraw > Cylinder ing the coordinate entry fields, enter the cylinder positionX: 0.0, Y: 0.0, Z: 0.0,X: 0.0, Y: 0.0, Z: 0.0, Press the Enter key ing the coordinate entry fields, enter the radius:dX dX: 0.351, : 0.351, : 0.351, dY dY dY: 0.0, : 0.0, : 0.0, dZ dZ dZ: 0.0, : 0.0,: 0.0, Press the Enter key ing the coordinate entry fields, enter the height:dX dX: 0.0, : 0.0, : 0.0, dY dY dY: : : --1.236, 1.236, dZdZ dZ: 0.0, : 0.0,: 0.0, Press the Enter key To set the name:1.Select the Attribute Attribute tab from the Properties Properties window.2.For the Value Value of Name Name type: FemaleBendFemaleBend 3.Click the OK OK buttonTo fit the view:1.Select the menu item View > Fit All > Active View .Example –Coaxial Connector6.2-11Set Working Coordinate SystemTo set the working coordinate system:1.Select the menu item 3D Modeler > Coordinate System > Set Working CS2.Select Coordinate System Window,1.From the list, select the CS: GlobalGlobal 2.Click the Select SelectbuttonSet Grid PlaneTo set the grid plane:1.Select the menu item 3D Modeler > Grid Plane > XYCreate the Male EndTo create the male end:1.Select the menu itemDraw > Cylindering the coordinate entry fields, enter the cylinder positionX: 0.0, Y: 0.0, Z: 0.0,X: 0.0, Y: 0.0, Z: 0.0, Press the Enter key ing the coordinate entry fields, enter the radius:dX dX: 0.351, : 0.351, : 0.351, dY dY dY: 0.0, : 0.0, : 0.0, dZ dZ dZ: 0.0, : 0.0,: 0.0, Press the Enter key ing the coordinate entry fields, enter the height:dX dX: 0.0, : 0.0, : 0.0, dY dY dY: 0.0, : 0.0, : 0.0, dZdZ dZ: 2.348, : 2.348,: 2.348, Press the Enter key To set the name:1.Select the Attribute Attribute tab from the Properties Properties window.2.For the Value Value of Name Name type: Male Male3.Click the OK OK buttonTo fit the view:1.Select the menu item View > Fit All > Active View .Example –Coaxial Connector6.2-12Group the Vacuum ObjectsTo unite the objects Female, To unite the objects Female, FemaleBend FemaleBend and Male:1.Select the menu item Edit > Select > By Name2.Select Object Dialog,1.Select the objects named: Female, Female, Female, FemaleBend FemaleBend FemaleBend, Male , Male2.Click the OK OKOK button 3.Select the menu item, 3D Modeler > Boolean > UniteTo fit the view:1.Select the menu item View > Fit All > Active View .Add New MaterialTo add a new material:ing the 3D Modeler Materials toolbar, choose Select Select2.From the Select Definition window, click the Add Material Add Material button3.View/Edit Material Window:1.For the Material Name Material Name type: My_Ring My_Ring2.For the Value Value of Relative Permittivity Relative Permittivity type: 333.Click the OK OK button4.Click the OK OK buttonExample –Coaxial Connector6.2-13Create the RingTo create the ring:1.Select the menu itemDraw > Cylindering the coordinate entry fields, enter the cylinder positionX: 0.00.00.0, Y: 0.00.00.0, Z: 0.7360.7360.736, Press the Enter Enter key ing the coordinate entry fields, enter the radius:dX: 0.5110.5110.511, dY: 0.00.00.0, dZ: 0.00.00.0, Press the Enter Enter key ing the coordinate entry fields, enter the height:dX: 0.00.00.0, dY: 0.00.00.0, dZ: 0.2360.2360.236, Press the Enter Enter key To set the name:1.Select the Attribute Attribute tab from the Properties Properties window.2.For the Value Value of Name Name type: RingRing 3.Click the OK OK buttonTo fit the view:1.Select the menu itemView > Fit All > Active View .Complete the RingTo select the objects Ring and Male:1.Select the menu item Edit > Select > By Name2.Select Object Dialog,1.Select the objects named: Ring, Female Ring, Female2.Click the OK OKOK button To complete the ring:1.Select the menu item 3D Modeler > Boolean > Subtract2.Subtract WindowBlank Parts: Ring RingTool Parts: FemaleFemale Clone tool objects before subtract: CheckedClick the OK OK buttonExample –Coaxial Connector6.2-14Add New MaterialTo add a new material:ing the 3D Modeler Materials toolbar, choose Select Select2.From the Select Definition window, click the Add Material Add Material button3.View/Edit Material Window:1.For the Material Name Material Name type: My_Teflon My_Teflon2.For the Value Value of Relative Permittivity Relative Permittivity type: 2.12.13.Click the OK OKbutton 4.Click the OK OKbuttonCreate the Male TeflonTo create the To create the teflon teflon teflon::1.Select the menu item Draw > Cylindering the coordinate entry fields, enter the cylinder positionX: 0.00.00.0, Y: 0.00.00.0, Z: 0.460.460.46, Press the Enter Enter key ing the coordinate entry fields, enter the radius:dX: 0.5110.5110.511, dY: 0.00.00.0, dZ: 0.00.00.0, Press the Enter Enter key ing the coordinate entry fields, enter the height:dX: 0.00.00.0, dY: 0.00.00.0, dZ: 0.7880.7880.788, Press the Enter Enter key To set the name:1.Select the Attribute Attribute tab from the Properties Properties window.2.For the Value Value of Name Name type: MaleTeflonMaleTeflon 3.Click the OK OK buttonTo fit the view:1.Select the menu item View > Fit All > Active View.Example –Coaxial Connector6.2-15Create Wave Port Excitation 1Note:Note: To simplify the instructions, a 2D object will be created to represent the port. This is not a requirement for defining ports. Graphical face selection can be used as an alternative.To create a circle that represents the port:1.Select the menu itemDraw > Circleing the coordinate entry fields, enter the center positionX: 0.00.00.0, Y: 0.00.00.0, Z: 0.00.00.0, Press the EnterEnter key ing the coordinate entry fields, enter the radius of the circle:dX: 0.3510.3510.351, dY: 0.00.00.0, dZ: 0.00.00.0, Press the Enter Enter key To set the name:1.Select the Attribute Attribute tab from the Properties Properties window.2.For the Value Value of Name Name type: p1p13.Click the OK OK buttonTo select the object p1:1.Select the menu item Edit > Select > By Name2.Select Object Dialog,1.Select the objects named: p1p12.Click the OK OKOK button NoteNote: You can also select the object from the Model TreeExample –Coaxial Connector6.2-16Create Wave Port Excitation 1 (Continued)To assign wave port excitation1.Select the menu item HFSS > Excitations > Assign > Wave Port2.Wave Port : General: p1p1p1, 2.Click the Next Next button3.Wave Port : Terminals1.Number of Terminals: 11,2.For T1T1T1, click the Undefined Undefinedcolumn and select New Line New Line ing the coordinate entry fields, enter the vector positionX: 0.3510.3510.351, Y: 0.00.00.0, Z: 0.00.00.0, Press the EnterEnter key ing the coordinate entry fields, enter the vertexdX: --0.1990.199, dY: 0.00.00.0, dZ: 0.00.00.0, Press the Enter Enter key 5.Click the Next Next button4.Wave Port : Differential Pairs1.Click the Next Next button5.Wave Port : Post Processing1.Full Port Impedance: 50506.Click the Finish FinishbuttonSet Working Coordinate SystemTo set the working coordinate system:1.Select the menu item 3D Modeler > Coordinate System > Set Working CS2.Select Coordinate System Window,1.From the list, select the CS: RelativeCS3RelativeCS32.Click the Select SelectbuttonSet Grid PlaneTo set the grid plane:1.Select the menu item 3D Modeler > Grid Plane > XZExample –Coaxial Connector6.2-17Create Wave Port Excitation 2Note:Note: To simplify the instructions, a 2D object will be created to represent the port. This is not a requirement for defining ports. Graphical face selection can be used as an alternative.To create a circle that represents the port:1.Select the menu item Draw > Circleing the coordinate entry fields, enter the center positionX: 0.00.00.0, Y: 1.31.31.3, Z: 0.00.00.0, Press the Enter Enter key ing the coordinate entry fields, enter the radius of the circle:dX: 0.5110.5110.511, dY: 0.00.00.0, dZ: 0.00.00.0, Press the Enter Enter key To set the name:1.Select the Attribute Attribute tab from the Properties Properties window.2.For the Value Value of Name Name type: p2p23.Click the OK OK buttonTo select the object p2:1.Select Object Dialog,1.Select the objects named: p2p22.Click the OK OKOK buttonExample –Coaxial Connector6.2-18Create Wave Port Excitation 2 (Continued)To assign wave port excitation1.Select the menu item HFSS > Excitations > Assign > Wave Port2.Wave Port : General: p2p2p2, 2.Click the Next Next button3.Wave Port : Terminals1.Number of Terminals: 11,2.For T1T1T1, click the Undefined Undefinedcolumn and select New Line New Line ing the coordinate entry fields, enter the vector positionX: 0.5110.5110.511, Y: 1.31.31.3, Z: 0.00.00.0, Press the EnterEnter key ing the coordinate entry fields, enter the vertexdX: --0.2860.286, dY: 0.00.00.0, dZ: 0.00.00.0, Press the Enter Enter key 5.Click the Next Next button4.Wave Port : Differential Pairs1.Click the Next Next button5.Wave Port : Post Processing1.Full Port Impedance : 50502.Click the Finish Finish buttonExample –Coaxial Connector6.2-19Create the Female TeflonTo create the Teflon:1.Select the menu item Draw > Cylinder2.Using the coordinate entry fields, enter the cylinder position X: 0.0, Y: 0.0, Z: 0.0,X: 0.0, Y: 0.0, Z: 0.0, Press the Enter key ing the coordinate entry fields, enter the radius:dX dX: 0.511, : 0.511, : 0.511, dY dY dY: 0.0, : 0.0, : 0.0, dZ dZ dZ: 0.0, : 0.0,: 0.0, Press the Enter key ing the coordinate entry fields, enter the height:dX dX: 0.0, : 0.0, : 0.0, dY dY dY: : : --0.236, 0.236, dZdZ dZ: 0.0, : 0.0,: 0.0, Press the Enter key To set the name:1.Select the Attribute Attribute tab from the Properties Properties window.2.For the Value Value of Name Name type: FemaleTeflonFemaleTeflon 3.Click the OK OK buttonTo fit the view:1.Select the menu item View > Fit All > Active View.Complete the Vacuum ObjectTo select the objects Female, To select the objects Female, MaleTeflon MaleTeflon MaleTeflon, , , FemaleTeflon FemaleTeflon1.Select the menu item Edit > Select > By Name2.Select Object Dialog,1.Select the objects named: Female, Female, Female, MaleTeflon MaleTeflon MaleTeflon, , , FemaleTeflon FemaleTeflon2.Click the OK OKOK button To complete the To complete the vacumm vacumm objects:1.Select the menu item 3D Modeler > Boolean > Subtract 2.Subtract WindowBlank Parts: Female FemaleTool Parts: MaleTeflon MaleTeflon MaleTeflon,, , FemaleTeflon FemaleTeflonClone tool objects before subtract: CheckedClick the OK OK buttonExample –Coaxial Connector6.2-20Complete the ModelTo complete the model:1.Select the menu item Edit > Select > By Name2.Select Object Dialog,1.Select the objects named: Conductor1, Female, Conductor1, Female, Conductor1, Female, MaleTeflon MaleTeflon MaleTeflon, , FemaleTeflon2.Click the OK OKOK button 3.Select the menu item 3D Modeler > Boolean > Subtract 4.Subtract WindowBlank Parts: Female, Female, Female, FemaleTeflon FemaleTeflon FemaleTeflon, , , MaleTeflon MaleTeflonTool Parts: Conductor1Conductor1Clone tool objects before subtract: CheckedClick the OK OK buttonBoundary DisplayTo verify the boundary setup:1.Select the menu item HFSS > Boundary Display (Solver View)2.From the Solver View of Boundaries, toggle the Visibility check box for the boundaries you wish to display.Note:The background (Perfect Conductor) is displayed as the outer outer boundary.Note:The Perfect Conductors are displayed as the smetal smetal boundary.Note:Select the menu item, View > Visibility to hide all of the geometry objects. This makes it easier to see the boundary 3.Click the Close Close button when you are finishedExample –Coaxial Connector6.2-21Analysis SetupCreating an Analysis SetupTo create an analysis setup:1.Select the menu item HFSS > Analysis Setup > Add Solution Setup2.Solution Setup Window:1.Click the General General tab::Solution Frequency: 8.1GHz : 8.1GHzMaximum Number of Passes: 1010Maximum Delta S: 0.020.022.Click the OK OK button3.Click the Options Options tab::Minimum Converged Passes: 224.Click the OKOK buttonAdding a Frequency SweepTo add a frequency sweep:1.Select the menu item HFSS > Analysis Setup > Add Sweep1.Select Solution Setup: Setup1 Setup12.Click the OK OK button2.Edit Sweep Window:1.Sweep Type: Fast : Fast2.Frequency Setup Type: Linear Count : Linear CountStart:0.1GHzStop: 8.1GHz : 8.1GHzCount: 801: 801Save Fields: Checked3.Click the OK OK buttonExample –Coaxial Connector6.2-22Save ProjectTo save the project:1.In an Ansoft HFSS window, select the menu item File > Save As .2.From the Save As Save AsSave As window, type the Filename: hfss_coax hfss_coax 3.Click the Save Save buttonAnalyzeModel ValidationTo validate the model:1.Select the menu item HFSS > Validation Check2.Click the Close CloseClose button Note:To view any errors or warning messages, use the MessageManager.AnalyzeTo start the solution process:1.Select the menu item HFSS > AnalyzeExample –Coaxial Connector6.2-23Solution DataTo view the Solution Data:1.Select the menu item HFSS > Results > Solution DataTo view the Profile:1.Click the Profile Profile Tab.To view the Convergence:1.Click the Convergence Convergence TabNote: Note: The default view is for convergence is Table TableTable. Select the Plot Plot radio button to view a graphical representations ofthe convergence data.To view the Matrix Data:1.Click the Matrix Data Matrix Data TabNote:Note: To view a real-time update of the Matrix Data, set the Simulation to Setup1, Last AdaptiveSetup1, Last Adaptive 2.Click the Close Close buttonExample –Coaxial Connector6.2-24Create ReportsCreate Terminal S Create Terminal S--Parameter Plot vs. Adaptive PassNote:Note: If this report is created prior to or during the solution process, a real-time update of the results are displayedTo create a report:1.Select the menu item HFSS > Results > Create Report2.Create Report Window::1.Report Type: Terminal S Parameters Terminal S Parameters2.Display Type: Rectangular Rectangular3.Click the OK OKOK button 3.Traces Window::1.Solution: Setup1: Adaptive1Setup1: Adaptive12.Click the X XX tab e Primary Sweep: : Unchecked2.Category: Variables Variables3.Quantity: Pass : Pass3.Click the Y Y tab1.Category: Terminal S Parameter Terminal S Parameter2.Quantity: St(p1,p1), St(p1,p2), St(p1,p1), St(p1,p2),3.Function: dB dB4.Click the Add Trace Add Trace button4.Click the Done Done buttonExample –Coaxial Connector6.2-25Create Terminal S Create Terminal S--Parameter Plot Parameter Plot --MagnitudeTo create a report:1.Select the menu item HFSS > Results > Create Report2.Create Report Window::1.Report Type: Terminal S Parameters Terminal S Parameters2.Display Type: Rectangular Rectangular3.Click the OK OKOK button 3.Traces Window::1.Solution: Setup1: Sweep1Setup1: Sweep12.Domain: Sweep Sweep3.Click the Y Y tab1.Category:Terminal S Parameter2.Quantity: St(p1,p1), St(p1,p2), St(p1,p1), St(p1,p2),3.Function: dB dB4.Click the Add Trace Add Tracebutton 4.Click the Done Done buttonExample –Coaxial Connector6.2-26Create Terminal S Create Terminal S--Parameter Plot Parameter Plot --PhaseTo create a report:1.Select the menu item HFSS > Results > Create Report2.Create Report Window::1.Report Type: Terminal S Parameters Terminal S Parameters2.Display Type: Rectangular Rectangular3.Click the OK OKOK button 3.Traces Window::1.Solution: Setup1: Sweep1Setup1: Sweep12.Domain: Sweep Sweep3.Click the Y Y tab1.Category:Terminal S Parameter2.Quantity: St(p1,p1), St(p1,p2), St(p1,p1), St(p1,p2),3.Function: ang_deg ang_deg4.Click the Add Trace Add Trace button4.Click the Done Done buttonExample –Coaxial Connector6.2-27 Field OverlaysCreate Field OverlayTo create a field plot:1.Select the Global YZ Planeing the Model Tree, expand PlanesPlanes2.Select Global:YZGlobal:YZ2.Select the menu item HFSS > Fields >HFSS > Fields > FieldsFields> E >> E > Mag_EMag_E3.Create Field Plot Window1.Solution: Setup1 :Setup1 :Setup1 : LastAdaptiveLastAdaptive2.Quantity: Mag_EMag_E3.In Volume: AllAll4.Click the DoneDone buttonTo modify a Magnitude field plot:1.Select the menu item HFSS > Fields > Modify Plot Attributes2.Select Plot Folder Window:1.Select: E FieldE Field2.Click the OKOK button3.E-Field Window:1.Click the ScaleScaleScale tab1.Select Use LimitsUse Limits2.Min:1.03.Max:1000.04.Scale: LogLog2.Click the CloseClose buttonExample –Coaxial Connector6.2-28Edit SourcesTo Modify a Terminal excitation:1.Select the menu item HFSS > Fields > Edit Sources 2.Select p2:T1p2:T1from the Edit Sources windowCheck the Terminated Terminated box3.Click the OK OK buttonTo Select the Electric Field plot:1.Expand the Project tree2.Expand the Field Overlays Field Overlays3.Click on the E Field E Field or Mag_E1Mag_E1to display the field plotField AnimationsTo Animate a Magnitude field plot:1.Select the menu item View > Animate 2.In the Swept Variable Swept Variable tab, accept defaults settings:1.Swept variable: Phase Phase2.Start: 0deg 0deg3.Stop: 180deg 180deg4.Steps: 993.Click the Close Close button。