一次函数中考题

合集下载

中考17题 一次函数应用(含答案)

中考17题 一次函数应用(含答案)

一次函数应用——行程问题【例题】(重庆19年中考A 卷) 某公司快递员甲匀速骑车前往某小区送物件,出发几分钟后,快递员乙发现甲的手机落在公司,无法联系,于是乙匀速骑车去追赶甲.乙刚出发2分钟时,甲也发现自己手机落在公司,立刻按原路原速骑车回公司,2分钟后甲遇到乙,乙把手机给甲后立即原路原速返回公司,甲继续原路原速赶往某小区送物件,甲乙两人相距的路程y (米)与甲出发的时间x (分钟)之间的关系如图所示(乙给甲手机的时间忽略不计).则乙回到公司时,甲距公司的路程是 ▲ 千米.【答案】6米 由图知甲的速度为4000÷(12-2-2)=500米/分.乙的速度为4000÷(2+2)=1000米/分. 则乙回到公司时,用了4分钟,而此时甲前行了500×4=2000米【变式】(重庆19年中考B 卷) 一天,小明从家出发匀速步行去学校上学.几分钟后,在家休假的爸爸发现小明忘带数学书,于是爸爸立即匀速跑步去追小明,爸爸追上小明后以原速原路跑回家.小明拿到书后以原速度的45快步赶往学校,并在从家出发后23分钟到校(小明被爸爸追上时交流时间忽略不计).两人之间相距的路程y(米)与小明从家出发到学校的步行时间x (分钟)之间的函数关系如图所示,则小明家到学校的路程为 ▲ 米.【答案】2080 提示:设小明原速度为x米/分钟,则拿到书后的速度为1.25x米/分钟,家校距离为11x+(23-11)×1.25x=26x.设爸爸行进速度为y米/分钟,由题意及图形得:11x=(16-11)y且(16-11)(1.25x+y)=1380.解得:x=80,y=176.【例题1】甲、乙两车分别从A,B两地同时相向匀速行驶,当乙车到达A地后,继续保持原速向远离B 的方向行驶,而甲车到达B地后立即掉头,并保持原速与乙车同向行驶,经过15小时后两车同时到达距A 地300千米的C地(中途休息时间忽略不计).设两车行驶的时间为x(小时),两车之间的距离为y(千米),y与x之间的函数关系如图所示,则当甲车到达B地时,乙车距A地▲千米.【答案】100 【解析】由图象可得:当x=0时,y=300,∴AB=300千米。

中考数学《一次函数》专题练习含答案解析

中考数学《一次函数》专题练习含答案解析

一次函数一、选择题1.在一次800米的长跑比赛中,甲、乙两人所跑的路程s(米)与各自所用时间t(秒)之间的函数图象分别为线段OA和折线OBCD,则下列说法正确的是()A.甲的速度随时间的增加而增大B.乙的平均速度比甲的平均速度大C.在起跑后第180秒时,两人相遇D.在起跑后第50秒时,乙在甲的前面2.在20km越野赛中,甲乙两选手的行程y(单位:km)随时间x(单位:h)变化的图象如图所示,根据图中提供的信息,有下列说法:①两人相遇前,甲的速度小于乙的速度;②出发后1小时,两人行程均为10km;③出发后1.5小时,甲的行程比乙多3km;④甲比乙先到达终点.其中正确的有()A.1个 B.2个 C.3个 D.4个3.今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间.设他从山脚出发后所用时间为t(分钟),所走的路程为s(米),s与t之间的函数关系如图所示.下列说法错误的是()A.小明中途休息用了20分钟B.小明休息前爬山的平均速度为每分钟70米C.小明在上述过程中所走的路程为6600米D.小明休息前爬山的平均速度大于休息后爬山的平均速度4.如图是本地区一种产品30天的销售图象,图①是产品日销售量y(单位:件)与时间t(单位;天)的函数关系,图②是一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系,已知日销售利润=日销售量×一件产品的销售利润,下列结论错误的是()A.第24天的销售量为200件B.第10天销售一件产品的利润是15元C.第12天与第30天这两天的日销售利润相等D.第30天的日销售利润是750元二、填空题5.一食堂需要购买盒子存放食物,盒子有A,B两种型号,单个盒子的容量和价格如表.现有15升食物需要存放且要求每个盒子要装满,由于A型号盒子正做促销活动:购买三个及三个以上可一次性返还现金4元,则一次性购买盒子所需要最少费用为元.型号A B单个盒子容量(升)23单价(元)566.如图1,在某个盛水容器内,有一个小水杯,小水杯内有部分水,现在匀速持续地向小水杯内注水,注满小水杯后,继续注水,小水杯内水的高度y(cm)和注水时间x(s)之间的关系满足如图2中的图象,则至少需要s能把小水杯注满.7.如图所示,购买一种苹果,所付款金额y(元)与购买量x(千克)之间的函数图象由线段OA和射线AB组成,则一次购买3千克这种苹果比分三次每次购买1千克这种苹果可节省元.三、解答题8.“六一”期间,小张购进100只两种型号的文具进行销售,其进价和售价之间的关系如下表:型号进价(元/只)售价(元/只)A型1012B型1523(1)小张如何进货,使进货款恰好为1300元?(2)要使销售文具所获利润最大,且所获利润不超过进货价格的40%,请你帮小张设计一个进货方案,并求出其所获利润的最大值.9.已知某市的光明中学、市图书馆和光明电影院在同一直线上,它们之间的距离如图所示.小张星期天上午带了75元现金先从光明中学乘出租车去了市图书馆,付费9元;中午再从市图书馆乘出租车去了光明电影院,付费12.6元.若该市出租车的收费标准是:不超过3公里计费为m元,3公里后按n元/公里计费.(1)求m,n的值,并直接写出车费y(元)与路程x(公里)(x>3)之间的函数关系式;(2)如果小张这天外出的消费还包括:中午吃饭花费15元,在光明电影院看电影花费25元.问小张剩下的现金够不够乘出租车从光明电影院返回光明中学?为什么?10.某物流公司承接A、B两种货物运输业务,已知5月份A货物运费单价为50元/吨,B货物运费单价为30元/吨,共收取运费9500元;6月份由于油价上涨,运费单价上涨为:A货物70元/吨,B货物40元/吨;该物流公司6月承接的A种货物和B种数量与5月份相同,6月份共收取运费13000元.(1)该物流公司月运输两种货物各多少吨?(2)该物流公司预计7月份运输这两种货物330吨,且A货物的数量不大于B货物的2倍,在运费单价与6月份相同的情况下,该物流公司7月份最多将收到多少运输费?11.联通公司手机话费收费有A套餐(月租费15元,通话费每分钟0.1元)和B套餐(月租费0元,通话费每分钟0.15元)两种.设A套餐每月话费为y1(元),B套餐每月话费为y2(元),月通话时间为x分钟.(1)分别表示出y1与x,y2与x的函数关系式.(2)月通话时间为多长时,A、B两种套餐收费一样?(3)什么情况下A套餐更省钱?12.某工厂现有甲种原料360千克,乙种原料290千克,计划用这两种原料全部生产A、B两种产品共50件,生产A、B两种产品与所需原料情况如下表所示:甲种原料(千克)乙种原料(千克)原料型号A产品(每件)93B产品(每件)410(1)该工厂生产A、B两种产品有哪几种方案?(2)若生成一件A产品可获利80元,生产一件B产品可获利120元,怎样安排生产可获得最大利润?一次函数参考答案与试题解析一、选择题1.在一次800米的长跑比赛中,甲、乙两人所跑的路程s(米)与各自所用时间t(秒)之间的函数图象分别为线段OA和折线OBCD,则下列说法正确的是()A.甲的速度随时间的增加而增大B.乙的平均速度比甲的平均速度大C.在起跑后第180秒时,两人相遇D.在起跑后第50秒时,乙在甲的前面【考点】一次函数的应用.【分析】A、由于线段OA表示甲所跑的路程S(米)与所用时间t(秒)之间的函数图象,由此可以确定甲的速度是没有变化的;B、甲比乙先到,由此可以确定甲的平均速度比乙的平均速度快;C、根据图象可以知道起跑后180秒时,两人的路程确定是否相遇;D、根据图象知道起跑后50秒时OB在OA的上面,由此可以确定乙是否在甲的前面.【解答】解:A、∵线段OA表示甲所跑的路程S(米)与所用时间t(秒)之间的函数图象,∴甲的速度是没有变化的,故选项错误;B、∵甲比乙先到,∴乙的平均速度比甲的平均速度慢,故选项错误;C、∵起跑后180秒时,两人的路程不相等,∴他们没有相遇,故选项错误;D、∵起跑后50秒时OB在OA的上面,∴乙是在甲的前面,故选项正确.故选D.【点评】本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.2.在20km越野赛中,甲乙两选手的行程y(单位:km)随时间x(单位:h)变化的图象如图所示,根据图中提供的信息,有下列说法:①两人相遇前,甲的速度小于乙的速度;②出发后1小时,两人行程均为10km;③出发后1.5小时,甲的行程比乙多3km;④甲比乙先到达终点.其中正确的有()A.1个 B.2个 C.3个 D.4个【考点】一次函数的应用.【分析】根据题目所给的图示可得,两人在1小时时相遇,行程均为10km,出发0.5小时之内,甲的速度大于乙的速度,0.5至1小时之间,乙的速度大于甲的速度,出发1.5小时之后,乙的路程为15千米,甲的路程为12千米,再利用函数图象横坐标,得出甲先到达终点.【解答】解:在两人出发后0.5小时之前,甲的速度小于乙的速度,0.5小时到1小时之间,甲的速度大于乙的速度,故①错误;由图可得,两人在1小时时相遇,行程均为10km,故②正确;甲的图象的解析式为y=10x,乙AB段图象的解析式为y=4x+6,因此出发1.5小时后,甲的路程为15千米,乙的路程为12千米,甲的行程比乙多3千米,故③正确;甲到达终点所用的时间较少,因此甲比乙先到达终点,故④正确.故选C.【点评】本题考查了一次函数的应用,行程问题的数量关系速度=路程后÷时间的运用,解答时理解函数的图象的含义是关键.3.今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间.设他从山脚出发后所用时间为t(分钟),所走的路程为s(米),s与t之间的函数关系如图所示.下列说法错误的是()A.小明中途休息用了20分钟B.小明休息前爬山的平均速度为每分钟70米C.小明在上述过程中所走的路程为6600米D.小明休息前爬山的平均速度大于休息后爬山的平均速度【考点】一次函数的应用.【分析】根据函数图象可知,小明40分钟爬山2800米,40~60分钟休息,60~100分钟爬山(3800﹣2800)米,爬山的总路程为3800米,根据路程、速度、时间的关系进行解答即可.【解答】解:A、根据图象可知,在40~60分钟,路程没有发生变化,所以小明中途休息的时间为:60﹣40=20分钟,故正确;B、根据图象可知,当t=40时,s=2800,所以小明休息前爬山的平均速度为:2800÷40=70(米/分钟),故B正确;C、根据图象可知,小明在上述过程中所走的路程为3800米,故错误;D、小明休息后的爬山的平均速度为:(3800﹣2800)÷(100﹣60)=25(米/分),小明休息前爬山的平均速度为:2800÷40=70(米/分钟),70>25,所以小明休息前爬山的平均速度大于休息后爬山的平均速度,故正确;故选:C.【点评】本题考查了函数图象,解决本题的关键是读懂函数图象,获取信息,进行解决问题.4.如图是本地区一种产品30天的销售图象,图①是产品日销售量y(单位:件)与时间t(单位;天)的函数关系,图②是一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系,已知日销售利润=日销售量×一件产品的销售利润,下列结论错误的是()A.第24天的销售量为200件B.第10天销售一件产品的利润是15元C.第12天与第30天这两天的日销售利润相等D.第30天的日销售利润是750元【考点】一次函数的应用.【专题】压轴题.【分析】根据函数图象分别求出设当0≤t≤20,一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系为z=﹣x+25,当0≤t≤24时,设产品日销售量y(单位:件)与时间t(单位;天)的函数关系为y=,根据日销售利润=日销售量×一件产品的销售利润,即可进行判断.【解答】解:A、根据图①可得第24天的销售量为200件,故正确;B、设当0≤t≤20,一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系为z=kx+b,把(0,25),(20,5)代入得:,解得:,∴z=﹣x+25,当x=10时,y=﹣10+25=15,故正确;C、当0≤t≤24时,设产品日销售量y(单位:件)与时间t(单位;天)的函数关系为y=k1t+b1,把(0,100),(24,200)代入得:,解得:,∴y=,当t=12时,y=150,z=﹣12+25=13,∴第12天的日销售利润为;150×13=1950(元),第30天的日销售利润为;150×5=750(元),750≠1950,故C错误;D、第30天的日销售利润为;150×5=750(元),故正确.故选:C【点评】本题考查了一次函数的应用,解决本题的关键是利用待定系数法求函数解析式.二、填空题5.一食堂需要购买盒子存放食物,盒子有A,B两种型号,单个盒子的容量和价格如表.现有15升食物需要存放且要求每个盒子要装满,由于A型号盒子正做促销活动:购买三个及三个以上可一次性返还现金4元,则一次性购买盒子所需要最少费用为29元.型号A B单个盒子容量(升)23单价(元)56【考点】一次函数的应用.【分析】设购买A种型号盒子x个,购买盒子所需要费用为y元,则购买B种盒子的个数为个,分两种情况讨论:①当0≤x<3时;②当3≤x时,利用一次函数的性质即可解答.【解答】解:设购买A种型号盒子x个,购买盒子所需要费用为y元,则购买B种盒子的个数为个,①当0≤x<3时,y=5x+=x+30,∵k=1>0,∴y随x的增大而增大,∴当x=0时,y有最小值,最小值为30元;②当3≤x时,y=5x+﹣4=26+x,∵k=1>0,∴y随x的增大而增大,∴当x=3时,y有最小值,最小值为29元;综合①②可得,购买盒子所需要最少费用为29元.故答案为:29.【点评】本题考查了一次函数的应用,解决本题的关键是根据题意列出函数解析式,利用一次函数的性质解决最小值的问题,注意分类讨论思想的应用.6.如图1,在某个盛水容器内,有一个小水杯,小水杯内有部分水,现在匀速持续地向小水杯内注水,注满小水杯后,继续注水,小水杯内水的高度y(cm)和注水时间x(s)之间的关系满足如图2中的图象,则至少需要5s能把小水杯注满.【考点】一次函数的应用.【分析】一次函数的首先设解析式为:y=kx+b,然后利用待定系数法即可求得其解析式,再由y=11,即可求得答案.【解答】解:设一次函数的首先设解析式为:y=kx+b,将(0,1),(2,5)代入得:,解得:,∴解析式为:y=2x+1,当y=11时,2x+1=11,解得:x=5,∴至少需要5s能把小水杯注满.故答案为:5.【点评】此题考查了一次函数的实际应用问题.注意求得一次函数的解析式是关键.7.如图所示,购买一种苹果,所付款金额y(元)与购买量x(千克)之间的函数图象由线段OA和射线AB组成,则一次购买3千克这种苹果比分三次每次购买1千克这种苹果可节省2元.【考点】一次函数的应用.【分析】根据函数图象,分别求出线段OA和射线AB的函数解析式,即可解答.【解答】解:由线段OA的图象可知,当0<x<2时,y=10x,1千克苹果的价钱为:y=10,设射线AB的解析式为y=kx+b(x≥2),把(2,20),(4,36)代入得:,解得:,∴y=8x+4,当x=3时,y=8×3+4=28.当购买3千克这种苹果分三次分别购买1千克时,所花钱为:10×3=30(元),30﹣28=2(元).则一次购买3千克这种苹果比分三次每次购买1千克这种苹果可节省2元.【点评】本题考查了一次函数的应用,解决本题的关键是分别求出线段OA和射线AB 的函数解析式.三、解答题8.“六一”期间,小张购进100只两种型号的文具进行销售,其进价和售价之间的关系如下表:型号进价(元/只)售价(元/只)A型1012B型1523(1)小张如何进货,使进货款恰好为1300元?(2)要使销售文具所获利润最大,且所获利润不超过进货价格的40%,请你帮小张设计一个进货方案,并求出其所获利润的最大值.【考点】一次函数的应用;一元一次方程的应用;一元一次不等式的应用.【分析】(1)设A文具为x只,则B文具为(100﹣x)只,根据题意列出方程解答即可;(2)设A文具为x只,则B文具为(100﹣x)只,根据题意列出函数解答即可.【解答】解:(1)设A文具为x只,则B文具为(100﹣x)只,可得:10x+15(100﹣x)=1300,解得:x=40.答:A文具为40只,则B文具为100﹣40=60只;(2)设A文具为x只,则B文具为(100﹣x)只,可得(12﹣10)x+(23﹣15)(100﹣x)≤40%[10x+15(100﹣x)],解得:x≥50,设利润为y,则可得:y=(12﹣10)x+(23﹣15)(100﹣x)=2x+800﹣8x=﹣6x+800,因为是减函数,所以当x=50时,利润最大,即最大利润=﹣50×6+800=500元.【点评】此题考查一次函数的应用,关键是根据题意列出方程和不等式,根据函数是减函数进行解答.9.已知某市的光明中学、市图书馆和光明电影院在同一直线上,它们之间的距离如图所示.小张星期天上午带了75元现金先从光明中学乘出租车去了市图书馆,付费9元;中午再从市图书馆乘出租车去了光明电影院,付费12.6元.若该市出租车的收费标准是:不超过3公里计费为m元,3公里后按n元/公里计费.(1)求m,n的值,并直接写出车费y(元)与路程x(公里)(x>3)之间的函数关系式;(2)如果小张这天外出的消费还包括:中午吃饭花费15元,在光明电影院看电影花费25元.问小张剩下的现金够不够乘出租车从光明电影院返回光明中学?为什么?【考点】一次函数的应用.【分析】(1)根据题意,不超过3公里计费为m元,由图示可知光明中学和市图书馆相距2公里,可由此得出m,由出租车的收费标准是:不超过3公里计费为m元,3公里后按n元/公里计费.当x>3时,由收费与路程之间的关系就可以求出结论;(2)分别计算小张所剩钱数和返程所需钱数,即可得出结论.【解答】解:(1)∵由图示可知光明中学和市图书馆相距2公里,付费9元,∴m=9,∵从市图书馆乘出租车去光明电影院,路程5公里,付费12.6元,∴(5﹣3)n+9=12.6,解得:n=1.8.∴车费y(元)与路程x(公里)(x>3)之间的函数关系式为:y=1.8(x﹣3)+9=1.8x+3.6(x>3).(2)小张剩下坐车的钱数为:75﹣15﹣25﹣9﹣12.6=13.4(元),乘出租车从光明电影院返回光明中学的费用:1.8×7+3.6=16.2(元)∵13.4<16.2,故小张剩下的现金不够乘出租车从光明电影院返回光明中学.【点评】本题考查了分段函数,一次函数的解析式,由一次函数的解析式求自变量和函数值,解答时求出函数的解析式是关键10.某物流公司承接A、B两种货物运输业务,已知5月份A货物运费单价为50元/吨,B货物运费单价为30元/吨,共收取运费9500元;6月份由于油价上涨,运费单价上涨为:A货物70元/吨,B货物40元/吨;该物流公司6月承接的A种货物和B种数量与5月份相同,6月份共收取运费13000元.(1)该物流公司月运输两种货物各多少吨?(2)该物流公司预计7月份运输这两种货物330吨,且A货物的数量不大于B货物的2倍,在运费单价与6月份相同的情况下,该物流公司7月份最多将收到多少运输费?【考点】二元一次方程组的应用;一元一次不等式的应用.【分析】(1)设A种货物运输了x吨,设B种货物运输了y吨,根据题意可得到一个关于x的不等式组,解方程组求解即可;(2)运费可以表示为x的函数,根据函数的性质,即可求解.【解答】解:(1)设A种货物运输了x吨,设B种货物运输了y吨,依题意得:,解之得:.答:物流公司月运输A种货物100吨,B种货物150吨.(2)设A种货物为a吨,则B种货物为(330﹣a)吨,依题意得:a≤(330﹣a)×2,解得:a≤220,设获得的利润为W元,则W=70a+40(330﹣a)=30a+13200,根据一次函数的性质,可知W随着a的增大而增大当W取最大值时a=220,即W=19800元.所以该物流公司7月份最多将收到19800元运输费.【点评】本题考查二元一次方程组的应用和一元一次不等式组以及一次函数性质的应用,将现实生活中的事件与数学思想联系起来,读懂题意列出方程组和不等式即可求解.11.联通公司手机话费收费有A套餐(月租费15元,通话费每分钟0.1元)和B套餐(月租费0元,通话费每分钟0.15元)两种.设A套餐每月话费为y1(元),B套餐每月话费为y2(元),月通话时间为x分钟.(1)分别表示出y1与x,y2与x的函数关系式.(2)月通话时间为多长时,A、B两种套餐收费一样?(3)什么情况下A套餐更省钱?【考点】一次函数的应用.【分析】(1)根据A套餐的收费为月租加上话费,B套餐的收费为话费列式即可;(2)根据两种收费相同列出方程,求解即可;(3)根据(2)的计算结果,小于收费相同时的时间选择B套餐,大于收费相同的时间选择A套餐解答.【解答】解:(1)A套餐的收费方式:y1=0.1x+15;B套餐的收费方式:y2=0.15x;(2)由0.1x+15=0.15x,得到x=300,答:当月通话时间是300分钟时,A、B两种套餐收费一样;(3)由0.1x+15<0.15x,得到x>300,当月通话时间多于300分钟时,A套餐更省钱.【点评】本题考查了一次函数的应用,是典型的电话收费问题,求出两种收费相同的时间是确定选择不同的缴费方式的关键.12.某工厂现有甲种原料360千克,乙种原料290千克,计划用这两种原料全部生产A、B两种产品共50件,生产A、B两种产品与所需原料情况如下表所示:原料甲种原料(千克)乙种原料(千克)型号A产品(每件)93B产品(每件)410(1)该工厂生产A、B两种产品有哪几种方案?(2)若生成一件A产品可获利80元,生产一件B产品可获利120元,怎样安排生产可获得最大利润?【考点】一次函数的应用;一元一次不等式组的应用.【分析】(1)设工厂可安排生产x件A产品,则生产(50﹣x)件B产品,根据不能多于原料的做为不等量关系可列不等式组求解;(2)可以分别求出三种方案比较即可.【解答】解:(1)设工厂可安排生产x件A产品,则生产(50﹣x)件B产品由题意得:,解得:30≤x≤32的整数.∴有三种生产方案:①A30件,B20件;②A31件,B19件;③A32件,B18件;(2)方法一:方案(一)A,30件,B,20件时,20×120+30×80=4800(元).方案(二)A,31件,B,19件时,19×120+31×80=4760(元).方案(三)A,32件,B,18件时,18×120+32×80=4720(元).故方案(一)A,30件,B,20件利润最大.【点评】本题考查理解题意的能力,关键是根据有甲种原料360千克,乙种原料290千克,做为限制列出不等式组求解,然后判断B生产的越多,A少的时候获得利润最大,从而求得解.。

2024年中考数学总复习:一次函数(附答案解析)

2024年中考数学总复习:一次函数(附答案解析)
①每分钟进水5L;
②每分钟出水3.75L;
③容器中水为25L的时间是8min或 min;
④第2或 min时容器内的水恰为10升;
错误的有( )
A.0个B.1个C.2个D.3个
25.甲、乙两人同时从家里出发,沿同一条笔直的公路向公园进行跑步训练,乙的家比甲的家离公园近100米,5分钟后甲追上乙.此时乙将速度提高到原来的速度的2倍,又经过15分钟后,乙先到达公园并立即返回,但因体力不支,乙返回时的速度又降低到原来的速度,甲跑到公园后也立即掉头回家,整个过程中,甲的速度始终保持不变,甲、乙两人相距的路程y(米)与甲出发的时间x(分钟)之间的部分函数关系如图所示,则当乙回到家时,甲离自己的家还有( )
A.30元B.20元C.15元D.10元
19.把y=2x+1的图象沿y轴向下平移5个单位后所得图象的关系式是( )
A.y=2x+5B.y=2x+6C.y=2x﹣4D.y=2x+4
20.正比例函数y=kx(k≠0)的函数值y随x的增大而增大,则一次函数y=﹣x﹣k的图象是( )
A. B.
C. D.
21.已知函数y=kx+b的图象如图所示,则函数y=﹣bx+k的图象大致是( )
A.±2B.﹣2C.2D.3
6.已知一次函数y=kx﹣2,若y随x的增大而减小,则它的图象经过( )
A.第一、二、三象限B.第一、二、四象限
C.第二、三、四象限D.第一、三、四象限
7.A,B两地相距30km,甲乙两人沿同一条路线从A地到B地.如图,反映的是两人行进路程y(km)与行进时间t(h)之间的关系,①甲始终是匀速行进,乙的行进不是匀速的;②乙用了4.5个小时到达目的地;③乙比甲迟出发0.5小时;④甲在出发5小时后被乙追上,以上说法正确的个数有( )

中考数学复习《一次函数》专项练习题-附带有答案

中考数学复习《一次函数》专项练习题-附带有答案

中考数学复习《一次函数》专项练习题-附带有答案一、单选题1.在函数y=√9−3x中,自变量x的取值范围是()A.x≤3B.x<3C.x≥3D.x>32.已知一次函数y=kx−3(k≠0),若y随x的增大而减小,则它的图象经过()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限3.实数k、b满足kb﹥0,不等式kx<b的解集是x>bk那么函数y=kx+b的图象可能是()A.B.C.D.4.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x≥ax+4的解集为()A.x≥32B.x≤3 C.x≤32D.x≥35.如图,在平面直角坐标系中,直线y=- 32x+3与矩形OABC的边AB、BC分别交于点E、F,若点B的坐标为(m,2),则m的值可能为()A.12B.32C.52D.726.如图,等边△ABC 的顶点A 在y 轴上,顶点B 、C 在x 轴上,直线y =−√3x +√3经过点A 、C ,则等边△ABC 的面积是( )A .4B .2√3C .√5D .√37. 如图,在平面直角坐标系中,一次函数y =kx +b 的图象经过正方形OABC 的顶点A 和C ,已知点A 的坐标为(1,−2),则k 的值为( )A .1B .2C .3D .48.市自来水公司为鼓励居民节约用水,采取月用水量分段收费办法,某户居民应交水费y(元)与用水量x(吨)的函数关系如图,若该用户本月用水21吨,则应交水费( )A .52.5元B .48方C .45元D .42元二、填空题9.函数y= 32 x+m 与y=﹣ 12 x+n 均经过点A (﹣2,0),且与y 轴交于B 、C ,则S △ABC = . 10.已知一次函数y =kx +b (k ≠0)经过(2,-1),(-3,4)两点,则其图象不经过第 象限. 11.现有一小树苗高100cm ,以后平均每年长高50cm .x 年后树苗的总高度y (cm )与年份x (年)的关系式是 .12.如图,函数y =2x +b 与函数y =kx −1的图象交于点P ,关于x 的不等式kx −1<2x +b 的解集是 .13.甲、乙两车从A城出发匀速行驶至B城,在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与行驶时间x(小时)之间的函数关系如图所示,已知甲对应的函数关系式为y=60x,根据图象提供的信息可知从乙出发后追上甲车需要小时.三、解答题14.已知实数a满足a+b﹣4<0,b=√(−3)2,当2≤x≤4时,一次函数y=ax+1(a≠0)的最大值与最小值之差是6,求a的值.15.已知两直线l1,l2的位置关系如图所示,请求出以点A的坐标为解的二元一次方程组.16.某商店以40元/千克的单价新进一批茶叶,经调查发现,在一段时间内,销售量y(千克)与销售单价x(元/千克)之间的函数关系如图所示。

一次函数中考试题集锦

一次函数中考试题集锦

一次函数中考试题集锦(共9页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--一次函数习题1、(2003·哈尔滨)如图表示一艘轮船和一艘快艇沿相同路线从甲港出发到乙港行驶过程中路程随时间变化的图象( 分别是正比例函数图象和一次函数图象).根据图象解答下列问题:(1)请分别求出表示轮船和快艇行驶过程的函数解析式(不要求写出自变量的取值范围;(2)轮船和快艇在途中(不包括起点和终点)行驶的速度分别是多少?(3)问快艇出发多长时间赶上轮船2、如图,甲l 、乙l 分别是甲、乙两弹簧的长y (cm )与所挂物体质量x (kg )之间的函数关系的图像.设甲弹簧每挂1kg 物体伸长的长度为甲k cm ,乙弹簧每挂1kg 物体伸长的长度为乙k cm ,则甲k 与乙k 的大小关系( ).A .甲k >乙k B.甲k =乙k C.甲k <乙k D.不能确定3、弹簧的长度与所挂物体的质量的关系为一次函数,如图所示,由图可知不挂物体时弹簧 的长度为( ).4、长途汽车客运公司规定旅客可随身携带一定重量的行李,如果超过规定,则需要购买行李票,行李费用y (元)是行李重量x (千克)的一次函数,其图像如图所示,则y 与x 之间的函数关系式是 ,自变量x 的取值范围是 . 5、(05广东佛山)如快艇轮船(h)(km)2040608010012014016087654321o52012.520O· 甲l 乙l O8121(cm)(km)oy 6106080(千克)元图,表示甲骑电动自行车和乙驾驶汽车均行驶90km 的过程中,行使的路程y 与经过的时间x 之间的函数关系.请根据图象填空:____________出发的早,早了___________小时,____________先到达,先到_________小时,电动自行车的速度为_________km / h ,汽车的速度为_________km / h .6、(2005年资阳市)甲骑自行车、乙骑摩托车沿相同路线由A 地到B 地,行驶过程中路程与时间的函数关系的图象如图7. 根据图象解决下列问题: (1) 谁先出发?先出发多少时间谁先到达终点先到多少时间? (2) 分别求出甲、乙两人的行驶速度;(3) 在什么时间段内,两人均行驶在途中(不包括起点和终点)在这一时间段内,请你根据下列情形,分别列出关于行驶时间x 的方程或不等式(不化简,也不求解):① 甲在乙的前面;② 甲与乙相遇;③ 甲在乙后面.7、某县在实施“村村通”工程中,决定在A 、B 两村之间修筑一条公路,甲、乙两个工程队分别从A 、B 两村同时相向开始修筑.施工期间,乙队因另有任务提前离开,余下的任务由甲队单独完成,直到道路修通.下图是甲、乙两个工程队所修道路的长度y (米)与修筑时间x (天)之间的函数图象,请根据图象所提供的信息,求该公路的总长度.8、甲、乙两工程队分别同时开挖两段河渠,所挖河渠的长度y(cm)与挖掘时间x(h)之间的关系如图所示,请根据图象所提供的信息解答下列问题:⑴乙队开挖30m 时用了 h 。

30中考专题复习-一次函数的应用

30中考专题复习-一次函数的应用

一次函数的应用一、选择题1.(2011黑龙江省哈尔滨市,10,3分)一辆汽车的油箱中现有汽油60升,如果不再加油,那么油箱中的油量y(单位:升)随行驶里程x(单位:千米)的增加而减少,若这辆汽车平均耗油量为0.2升/千米,则y与x之间的函数关系用图像表示大致是()A.B.C.D.【答案】D2. (2011天津,9,3分)一家电信公司给顾客提供两种上网收费方式:方式A以每分0.1元得价格按上网所用的时间计费;方式B除收月基本费20元外,再以每分0.05元得价格按上网所用时间计费.若上网所用时间为x分,计费为y元,如图,是在同一坐标系中,分别描述两种计费方式的函数图象,有下列结论:①图象甲描述的是方式A;②图象乙描述的是方式B;③当上网所用时间是500分时,选择方式B省钱.其中,正确结论的个数是()A.3B.2C.1D.0答案:A3. (2011广西南宁,9,3分)如图3,在圆锥形的稻草堆顶点P处有一只猫,看到底面圆周上的点A处有一只老鼠,猫沿着母线PA下去抓老鼠,猫到达点A时,老鼠已沿着底面圆周逃跑猫在后面沿着相同的路线追,在圆周的点B处抓到了老鼠后沿母线BP回到顶点P处.在这个过程中假设猫的速度是匀速的,猫出发后与点P的距离为s,所用时间为t,则s与t之间的函数图象是:(A) (B) (C) (D)【答案】A4. (2011内蒙古赤峰,7,3分)早晨,小张去公园晨练,下图是他离家的距离y(千米)与时间t(分钟)的函数图象,根据图象信息,下列说法正确的是 ( )x(分钟)A .小张去时所用的时间多于回家所用的时间B .小张在公园锻炼了20分钟C .小张去时的速度大于回家的速度D .小张去时走上坡路,回家时走下坡路 【答案】C5. (2011云南玉溪,7,3分)如图(1),在R t △ABC 中,∠ACB =90°,D 为斜边AB 的中点,动点P 从B 点出发,沿B →C →A 运动,设S △DPB =x ,点P 运动的路程为x,若x 与x 之间的函数图像如图(2)所示,则△ABC 的面积为( )A . 4B . 6C . 12D . 14 【答案】B.6. (2011湖北潜江天门仙桃江汉油田,8,3分)小英早上从家里骑车上学,途中想到社会实践调查资料忘带了,立刻原路返回,返家途中遇到给她送资料的妈妈,接过资料后,小英加速向学校赶去.能反映她离家距离s 与骑车时间t 的函数关系图象大致是( )【答案】D7. (2011黑龙江省哈尔滨市,10,3分)一辆汽车的油箱中现有汽油60升,如果不再加油,那么油箱中的油量y (单位:升)随行驶里程x (单位:千米)的增加而减少,若这辆汽车平均耗油量为0.2升/千米,则y 与x 之间的函数关系用图像表示大致是( )A.B.C.D.【答案】D8. (2011•泸,5,2分)小明的父亲饭后出去散步,从家中出发走20分钟到一个离家900米的报亭看报10分钟后,用15分钟返回家,下列图中表示小明的父亲离家的距离y(米)与离家的时间x(分)之间的函数关系的是()A、B、C、D、【答案】D.9. (2011山东淄博,9,3分)下列各个选项中的网格都是边长为1的小正方形,利用函数的图象解方程-x=x,其中正确的是()2515+【答案】A10.(2011广西百色,6,3分)两条直线11y k x b =+和22y k x b =+相交于点A(-2,3),侧方程组⎩⎨⎧+=+=2211b x k y b x k y 的解是A ⎩⎨⎧==32y xB ⎩⎨⎧=-=32y xC ⎩⎨⎧-==23y xD ⎩⎨⎧==23y x【答案】:B11. (2011贵州六盘水,7,3分)如图2,火车匀速通过隧道(隧道长等于火车长)时,火车进入隧道的时间x 与火车在隧道内的长度y 之间的关系用图像描述大致是( )图2A .B .C .D . 【答案】B12. (2011贵州黔南,10,4分)王芳同学为参加学校组织的科技知识竞赛,她周末到新华书店购买资料,如图,是王芳离家的距离与时间的图像,若黑点表示王芳家的位置,则王芳走的路线可能是( )【答案】B 二、解答题1. (2011湖北十堰,18,7分)今年我省部分地区遭遇严重干旱,为鼓励市民节约用水,我市自来水公司按分段收费标准收费,右图反映的是每月收水费y(元)与用水量x(吨)之间的函数关系。

中考专题复习:一次函数

中考专题复习:一次函数

中考专题复习:一次函数一.选择题(共10小题)1.若函数y=kx+b的图象经过第二、三、四象限,则函数y=bx+k的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限2.如果一次函数y=kx+b的图象平行于直线y=﹣2x﹣4,并且与y=x+1在y轴上有相同的交点,那么这个一次函数的关系式为()A.y=﹣2x+1B.y=﹣2x﹣1C.D.3.在平面直角坐标系中,O为原点,直线y=kx+b交x轴于A(﹣2,0),交y轴于B,且三角形AOB的面积为8,则k=()A.1B.2C.﹣2或4D.﹣4或44.如图,一次函数y=k1x+b1的图象l1与一次函数y=k2x+b2的图象l2相交于点P,则不等式组的解集为()A.x>﹣2B.﹣2<x<1.5C.x>﹣1D.x>25.如图,已知A点坐标为(5,0),直线y=x+b(b>0)与y轴交于点B,连接AB,∠α=75°,则b的值为()A.3B.C.4D.6.如图,已知Rt△ABC,∠A=90°,P,Q分别为AC,BC上的点,且PQ∥AB,记AP =x,PQ=y,且y=2﹣x,则BC的长为()A.2B.4C.D.7.如图,在平面直角坐标系中有两点A(1,4),B(2,2),点M是y轴上一点,使MA+MB 最小,则点M的坐标为()A.(0,)B.(0,)C.(0,)D.(0,)8.如图,直线y=﹣x+5交坐标轴于点A、B,与坐标原点构成的△AOB向x轴正方向平移4个单位长度得△A′O′B′,边O′B′与直线AB交于点E,则图中阴影部分面积为()A.B.15C.10D.149.如图,在平面直角坐标系中,直线y=kx+1分别交x轴、y轴于点A、B,过点B作BC ⊥AB交x轴于点C,过点C作CD⊥BC交y轴于点D,过点D作DE⊥CD交轴于点xE,过点E作EF⊥DE交y轴于点F.已知点A恰好是线段EC的中点,那么线段EF的长是()A.B.C.D.410.如图,在x轴上有五个点,它们的横坐标依次为1,2,3,4,5.分别过这些点作x轴的垂线与三条直线y=ax,y=(a+1)x,y=(a+2)x相交,其中a>0.则图中阴影部分的面积是()A.12.5B.25C.12.5a D.25a二.填空题(共6小题)11.张大妈购进一批柚子,在集贸市场零售,已知销售额y(元)与卖出的柚子质量x(kg)之间的关系如下表:质量/kg123…销售额/元 1.8+0.3 3.6+0.3 5.4+0.3…根据表中数据可知,销售额y(元)与柚子质量x(kg)之间的关系式为.12.如图,在平面直角坐标系xOy中,正方形OABC的边长为1.写出一个函数y=kx﹣2k (k≠0),使它的图象与正方形OABC有公共点,这个函数的表达式可以为.13.如图,在平面直角坐标系中,直线y=﹣x+4与x轴、y轴分别交于点A、B,直线CD与y轴交于点C(0,﹣8),与直线AB交于点D,若△AOB∽△CDB,则点D的坐标为.14.如图,在直角坐标系中有一个缺失了右上格的九宫格,每个小正方形的边长为1,点A 的坐标为(2,3).要过点A画一条直线AB,将此封闭图形分割成面积相等的两部分,则直线AB解析式是.15.如图,直线MN的解析式为y=﹣+5交x轴于点N,交y轴于点M,正方形的顶点A1,A2,A3,A4,…从左至右依次在x轴的正半轴上,顶点B1,B2,B3,B4,…在直线MN上,顶点C1,C2,C3,C4,…依次在y轴A1B1、A2B2、A3B3…上,则点B2022的纵坐标为.16.我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.如图,点A、B、C、D分别是“蛋圆”与坐标轴的交点,点D的坐标为(0,﹣3)AB为半圆直径,半圆圆心M(1,0),半径为2,则“蛋圆”的抛物线部分的解析式为.经过点C的“蛋圆”的切线的解析式为.三.解答题(共5小题)17.如图,直线y=﹣x+8与x轴、y轴分别相交于点A、B,设M是OB上一点,若将△ABM沿AM折叠,使点B恰好落在x轴上的点B′处.求:(1)点B′的坐标;(2)直线AM所对应的函数关系式.18.某个周末,智小慧从家出发去大雁塔参观,同时妈妈参观结束从大雁塔回家,智小慧刚到大雁塔就发现要下雨,于是立即按原路返回,追上妈妈后,两人一同回家(智小慧和妈妈始终在同一条笔直的公路上行走)如图是两人离家的距离y(米)与智小慧出发的时间x(分)之间的图象,请根据图象信息回答下列问题:(1)智小慧的家与大雁塔的距离为米;妈妈从大雁塔回家在遇到智小慧之前的速度为米/分;(2)求智小慧与妈妈何时相距600米.19.某合作社2019年春季种植了“丰香”草莓和“红颜”草莓共8亩,请你根据表格提供的信息,解答下列问题:“丰香”“红颜”种植品种亩产(价格)年亩产(单位:千克)10001200采摘价格(单位:元/千克)4030(1)若2019年该合作社种植的草莓,全部被采摘的总收入为300000元,那么,“丰香”和“红颜”两种草莓各种植了多少亩?(2)设合作社每年草莓全部被采摘的收入为y元,种植“红颜”草莓m亩,求y关于m 的函数关系式,并写出m的取值范围;(3)在(2)的条件下,若要求种植“红颜”草莓的亩数不少于种植“丰香”草莓亩数的,那么种植“红颜”草莓多少亩时,可使得该合作社这一年的草莓全部被采摘的总收入最多?并求出最多收入.20.已知直线y=x+4与x轴、y轴相交于A、B两点.(1)求A、B两点的坐标;(2)将直线AB进行平移,平移后的函数解析式为y=kx+b,并与x轴、y轴相交于C、D两点,当S△OCD=24时,求直线CD的解析式;(3)在x轴上有一点P,使得△ABP是等腰三角形.请你直接写出所有满足条件的点P的坐标.21.如图①,在平面直角坐标系中,直线l1:y=x﹣1与x轴交于点A,与y轴交于点B,直线l2:y=x+2与x轴交于点C,与y轴交于点D,l1与l2交于点E.点F是点A右侧x 轴上一动点,过点F作FN∥y轴,交l1于点M,交l2于点N,设点F的横坐标为a.(1)求点E的坐标;(2)当=时,求a的值;(3)如图②,点P在线段MN上,点Q在线段AF上,NP=FQ,点G在线段CN上,连接PQ、PG,且∠NGP=∠FPQ.①直接写出点G的坐标(用含a的代数式表示);②若点E关于x轴的对称点为点K,连接KQ、GM,当KQ∥GM,且=时,直接写出点M的坐标.。

初中数学中考专项练习《一次函数》100道计算题包含与解析(中考冲刺)

初中数学中考专项练习《一次函数》100道计算题包含与解析(中考冲刺)

初中数学中考专项练习《一次函数》100道计算题包含与解析(中考冲刺)(时间:60分钟满分:100分)班级:_________ 姓名:_________ 分数:_________一、计算题(共100题)1、如图所示的折线ABC•表示从甲地向乙地打长途电话所需的电话费y(元)与通话时间t(分钟)之间的函数关系的图象.(1)写出y与t•之间的函数关系式.(2)通话2分钟应付通话费多少元?(3)通话7分钟呢?2、如图所示的折线ABC•表示从甲地向乙地打长途电话所需的电话费y(元)与通话时间t(分钟)之间的函数关系的图象.(1)写出y与t•之间的函数关系式.(2)通话2分钟应付通话费多少元?(3)通话7分钟呢?3、如图,直线l是一次函数y=kx+b的图象,求l与两坐标轴所围成的三角形的面积.4、如图所示的折线ABC•表示从甲地向乙地打长途电话所需的电话费y(元)与通话时间t(分钟)之间的函数关系的图象.(1)写出y与t•之间的函数关系式.(2)通话2分钟应付通话费多少元?(3)通话7分钟呢?5、已知,与成正比例,与成正比例,且时,;时,,求y与x的解析式.6、一个正比例函数的图象经过点A(﹣2,3),B(a,﹣3),求a的值.7、设一次函数y=kx+b(k≠0)的图象经过A(1,3),B(0,-2)两点,试求k,b的值.8、如图,直线l是一次函数y=kx+b的图象,求l与两坐标轴所围成的三角形的面积.9、在中,当时,,当时,,求和的值.10、一个正比例函数的图象经过点A(﹣2,3),B(a,﹣3),求a的值.11、一次函数y =kx+b()的图象经过点,,求一次函数的表达式.12、在中,当时,,当时,,求和的值.13、已知,当时,;当时,. 求出k,b 的值;14、一次函数y =kx+b()的图象经过点,,求一次函数的表达式.15、已知y是x的一次函数,当x=3时,y=1;当x=﹣2时,y=﹣4,求这个一次函数的解析式.16、已知,与成正比例,与成正比例,且时,;时,,求y与x的解析式.17、如图,直线l是一次函数y=kx+b的图象,求l与两坐标轴所围成的三角形的面积.18、如图,直线l是一次函数y=kx+b的图象,求l与两坐标轴所围成的三角形的面积.19、已知y是x的一次函数,当x=3时,y=1;当x=﹣2时,y=﹣4,求这个一次函数的解析式.20、已知函数y=(2m+1)x+m-3(1)若函数图象经过原点,求m的值;(2)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围;(3)若这个函数是一次函数,且图象不经过第四象限, 求的取值范围.21、函数y=(k﹣1)x2|k|﹣3是正比例函数,且y随x增大而减小,求(k+3)2018的值.22、设一次函数y=kx+b(k≠0)的图象经过A(1,3),B(0,-2)两点,试求k,b的值.23、已知y=(k-3)x+k2-9是关于x的正比例函数,求当x=-4时,y的值.24、如图所示的折线ABC•表示从甲地向乙地打长途电话所需的电话费y(元)与通话时间t(分钟)之间的函数关系的图象.(1)写出y与t•之间的函数关系式.(2)通话2分钟应付通话费多少元?(3)通话7分钟呢?25、已知,与成正比例,与成正比例,且时,;时,,求y与x的解析式.26、在y=kx+b中,当x=1时y=4,当x=2时y=10.求k,b的值.27、已知函数y=(2m+1)x+m-3(1)若函数图象经过原点,求m的值;(2)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围;(3)若这个函数是一次函数,且图象不经过第四象限, 求的取值范围.28、如图所示的折线ABC•表示从甲地向乙地打长途电话所需的电话费y(元)与通话时间t(分钟)之间的函数关系的图象.(1)写出y与t•之间的函数关系式.(2)通话2分钟应付通话费多少元?(3)通话7分钟呢?29、已知,与成正比例,与成正比例,且时,;时,,求y与x的解析式.30、在y=kx+b中,当x=1时y=4,当x=2时y=10.求k,b的值.31、已知,与成正比例,与成正比例,且时,;时,,求y与x的解析式.32、在平面直角坐标系中,直线y=kx+3经过(2,7),求不等式kx﹣6≤0的解集.33、函数y=(k﹣1)x2|k|﹣3是正比例函数,且y随x增大而减小,求(k+3)2018的值.34、在中,当时,,当时,,求和的值.35、已知函数y=(2m+1)x+m-3(1)若函数图象经过原点,求m的值;(2)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围;(3)若这个函数是一次函数,且图象不经过第四象限, 求的取值范围.36、已知,当时,;当时,. 求出k,b 的值;37、一个正比例函数的图象经过点A(﹣2,3),B(a,﹣3),求a的值.38、函数y=(k﹣1)x2|k|﹣3是正比例函数,且y随x增大而减小,求(k+3)2018的值.39、在中,当时,,当时,,求和的值.40、已知y是x的一次函数,当x=3时,y=1;当x=﹣2时,y=﹣4,求这个一次函数的解析式.41、在平面直角坐标系中,直线y=kx+3经过(2,7),求不等式kx﹣6≤0的解集.42、设一次函数y=kx+b(k≠0)的图象经过A(1,3),B(0,-2)两点,试求k,b的值.43、如图,直线AB交x轴于点B,交y轴于点A(0,4),直线DM⊥x轴正半轴于点M,交线段AB于点C,DM=6,连接DA,∠DAC=90°,AD:AB=1:2.(1)求点D的坐标;(2)求经过O、D、B三点的抛物线的函数关系式.44、函数y=(k﹣1)x2|k|﹣3是正比例函数,且y随x增大而减小,求(k+3)2018的值.45、已知函数y=(2m+1)x+m-3(1)若函数图象经过原点,求m的值;(2)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围;(3)若这个函数是一次函数,且图象不经过第四象限, 求的取值范围.46、一个正比例函数的图象经过点A(﹣2,3),B(a,﹣3),求a的值.47、在平面直角坐标系中,直线y=kx+3经过(2,7),求不等式kx﹣6≤0的解集.48、函数y=(k﹣1)x2|k|﹣3是正比例函数,且y随x增大而减小,求(k+3)2018的值.49、已知y是x的一次函数,当x=3时,y=1;当x=﹣2时,y=﹣4,求这个一次函数的解析式.50、如图所示的折线ABC•表示从甲地向乙地打长途电话所需的电话费y(元)与通话时间t(分钟)之间的函数关系的图象.(1)写出y与t•之间的函数关系式.(2)通话2分钟应付通话费多少元?(3)通话7分钟呢?51、已知函数y=(2m+1)x+m-3(1)若函数图象经过原点,求m的值;(2)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围;(3)若这个函数是一次函数,且图象不经过第四象限, 求的取值范围.52、已知函数y=(2m+1)x+m-3(1)若函数图象经过原点,求m的值;(2)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围;(3)若这个函数是一次函数,且图象不经过第四象限, 求的取值范围.53、在直角坐标系中,用线段顺次连结点(-2,0),(0,3),(3,3),(0,4),(-2,0)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题。

( )1. (2012陕西)在同一平面直角坐标系中,若一次函数533-=+-=x y x y 与图象交于点M ,则点M 的坐标

A .(-1,4)
B .(-1,2)
C .(2,-1)
D .(2,1)
( )2. (2012山东枣庄)将直线2y x =向右平移1个单位后所得图象对应的函数解析式为
A .21y x =-
B .22y x =-
C .21y x =+
D .22y x =+
( )3. ( 2012辽宁沈阳)一次函数y=-x+2的图象经过
A.一、二、三象限
B.一、二、四象限
C.一、三、四象限
D.二、三、四象限 ( )4 .(2012河南)如图函数2y x =和4y ax =+的图象相交于A(m,3),则不等式24x ax <+的解集为
A .32
x < B .3x < C .32
x >
D .3x >
( )5. (2012广东湛江)已知长方形的面积为20cm 2
,设该长方形一边长为ycm ,另一边的长为xcm ,则y 与x 之间的
函数图象大致是
A .
B .
C .
D .
( )4、(2012浙江温州)一次函数24y x =-+的图象与y 轴的交点坐标是
A. (0,4)
B.(4,0)
C.(2,0)
D.(0,2)
( )5.(2012辽宁阜新)如图,一次函数y=kx+b 的图象与y 轴交于点(0,1),则关于x 的不等式kx+b >1的解集

A .x >0
B .x <0
C .x >1
D .x <1
( )6.(2012娄底)对于一次函数y=﹣2x+4,下列结论错误的是 A . 函数值随自变量的增大而减小
B .
函数的图象不经过第三象限
C . 函数的图象向下平移4个单位长度得y=﹣2x 的图象
D .
函数的图象与x 轴的交点坐标是(0,4)
( )7.(2012•乐山)若实数a 、b 、c 满足a+b+c=0,且a <b <c ,则函数y=ax+c 的图象可能是
A .
B .
C .
D .
( )8.(2012四川南充)下列函数中,是正比例函数的是( )
A .8y x =-
B .8
y x
-=
C .256y x =+
D .0.51y x =--
( )9. (2012台湾)小明原有300元,图(二)记录了他今天所有支出,其中饼干支出的金
额被涂黑。

若每包饼干的售价为13元,则小明可能剩下多少元? (A) 4 (B) 14 (C) 24 (D) 34
( )10. (2012福建泉州)若4-=kx y 的函数值y 随着x 的增大而增大,则k 的值可能是下列的( ).
A .4- B.2
1-
C.0
D.3
二、填空题。

11.(2012湖南衡阳)如图,一次函数y kx b =+的图象与正比例函数2y x =的图象平行且经过点A (1,-2),则kb = .
12. (2012湖南长沙)如果一次函数y=mx+3的图象经过第一、二、四象限,则m 的取值范围是 13. (2012江西)已知一次函数b kx y +=(b ≠0)经过(2,-1),(-3,4)两点,则它的图象不经过第 象限. 14.(2012•恩施州)如图,直线y=kx+b 经过A (3,1)和B (6,0)两点,则不等式组
0<kx+b <x 的解集为 .
15.(2012黑龙江哈尔滨)李大爷要围成一个矩形菜园,菜园的一边利用足够 长的墙,用篱笆围成的另外三边总长应恰好为24米.要围成的菜园是如图所示 的矩形ABCD .设BC 边的长为x 米,AB 边的长为y 米,则y 与x 之间的函数关系 式是 .
16.(2012•贵阳)在正比例函数y=﹣3mx 中,函数y 的值随x 值的增大而增大,则P (m ,5)在第 象限. 17.(2012广西北海)如图,点A 的坐标为(-1,0),点B 在直线
y

2x -4上运动,当线
段AB 最短时,点
B 的坐标是___________。

18.(2012广西桂林)如图,函数y =ax -1的图象过点(1,2),则不等式ax -1>2的解集是 .
三、解答题。

19. (2012陕西)科学研究发现,空气含氧量y (克/立方米)与海拔高度x (米)之间近似地满足一次函数关系.经测量,在海拔高度为0米的地方,空气含氧量约为299克/立方米;在海拔高度为2000米的地方,空气含氧量约为235克/立方米.
(1)求出y 与x 的函数表达式;
(2)已知某山的海拔高度为1200米,请你求出该山山顶处的空气含氧量约为多少?
20.(2012黑龙江鸡西)黄岩岛是我国南沙群岛的一个小岛,渔产丰富.一天某渔船离开港口前往该海域捕鱼.捕捞一段时间后,发现一外国舰艇进入我国水域向黄岩岛驶来,渔船向渔政部门报告,并立即返航.渔政船接到报告后,立即从该港口出发赶往黄岩岛.下图是渔政船及渔船与港口的距离s 和渔船离开港口的时间t 之间的函数图象.(假设渔船与渔政船沿同一航线航行)
(1)直接写出渔船离港口的距离s 和它离开港口的
时间t 的函数关系式.
(2)求渔船和渔政船相遇时,两船与黄岩岛的距离. (3)在渔政船驶往黄岩岛的过程中,求渔船从港口
出发经过多长时间与渔政船相距30海里?
21.(2012辽宁本溪)某商店购进甲、乙两种型号的滑板车,共花费13000元,所购进甲型车的数量不少于乙型车数量的二倍,但不超过乙型车数量的三倍。

现已知甲型车每辆进价200元,乙型车每辆进价400元,设商店购进乙型车x 辆。

(1)商店有哪几种购车方案?
(2)若商店将购进的甲、乙两种型号的滑板车全部售出,并且销售甲型车每辆获得利润70元,销售乙型车每辆获得利润50元,写出此商店销售这两种滑板车所获得的总利润y (元)与购进乙型车的辆数x (辆)之间的函数关系式?并求出商店购进乙型车多少辆时所获得的利润最大?
t(海里)
22.(2012湖北十堰)某工厂计划生产A、B两种产品共50件,需购买甲、乙两种材料.生产一件A产品需甲种材料30千克、乙种材料10千克;生产一件B产品需甲、乙两种材料各20千克.经测算,购买甲、乙两种材料各1千克共需资金40元,购买甲种材料2千克和乙种材料3千克共需资金105元.
(1)甲、乙两种材料每千克分别是多少元?
(2)现工厂用于购买甲、乙两种材料的资金不超过38000元,且生产B产品不少于28件,问符合条件的生产方案有哪几种?
(3)在(2)的条件下,若生产一件A产品需加工费200元,生产一件B产品需加工费300元,应选择哪种生产方案,使生产这50件产品的成本最低?(成本=材料费+加工费)
23. (2012•连云港)我市某医药公司要把药品运往外地,现有两种运输方式可供选择,
方式一:使用快递公司的邮车运输,装卸收费400元,另外每公里再加收4元;
方式二:使用铁路运输公司的火车运输,装卸收费820元,另外每公里再加收2元,
(1)请分别写出邮车、火车运输的总费用y1(元)、y2(元)与运输路程x(公里)之间的函数关系式;
(2)你认为选用哪种运输方式较好,为什么?
24.(2012上海)某工厂生产一种产品,当生产数量至少为10吨,但不超过50吨时,每吨的成本y(万元/吨)与生产数量x(吨)的函数关系式如图所示.
(1)求y关于x的函数解析式,并写出它的定义域;
(2)当生产这种产品的总成本为280万元时,求该产品的生产数量.
(注:总成本=每吨的成本×生产数量)
25.(2011江苏省无锡市)对于平面直角坐标系中的任意两点111222P (,)P (,)x y x y 、,我们把1212-+-y x x y 叫做12P P 、两点间的直角距离,记作12(,)d P P .
(1)已知O 为坐标原点,动点(,)P x y 满足(O )d P ,=1,请写出x y 与之间满足的关系式,并在所给的直角坐标系中画出所有符合条件的点P 所组成的图形;
(2)设000P (,)x y 是一定点,Q(,)x y 是直线=+y ax b 上的动点,我们把0(P Q )d ,的最小值叫做0P 到直线=+y ax b 的直角距离,试求点M (2,1)到直线=+2y x 的直角距离。

22.(2012湖北黄石)某楼盘一楼是车库(暂不销售),二楼至二十三楼均为商品房(对外销售).商品房售价方案如下:
第八层售价为3000元/米2,从第八层起每上升一层,每平方米的售价增加40元;反之,楼层每下降一层,每平方
米的售价减少20元.已知商品房每套面积均为120平方米.开发商为购买者制定了两种购房方案: 方案一:购买者先交纳首付金额(商品房总价的30%),再办理分期付款(即贷款).
方案二:购买者若一次付清所有房款,则享受8%的优惠,并免收五年物业管理费(已知每月物业管理费为a 元)
(1)请写出每平方米售价y (元/米2
)与楼层x (2≤x ≤23,x 是正整数)之间的函数解析式;
(2)小张已筹到120000元,若用方案一购房,他可以购买哪些楼层的商品房呢?
(3)有人建议老王使用方案二购买第十六层,但他认为此方案还不如不免收物业管理费而直接享受9%的优惠划
算.你认为老王的说法一定正确吗?请用具体的数据阐明你的看法。

相关文档
最新文档