四年级奥数专题训练(4)
四年级奥数培优专题第四章 数与计算(二)

四年级奥数培优专题第四章数与计算(二)第一讲定义新运算【专题导引】我们学过常用的运算有加、减、乘、除等。
如6+2=8,6×2=12等。
都是2和6,为什么运算结果不同呢?主要是运算方式不同,实质上是对应法则不同。
由此可见,一种运算实际就是两个数与一个数的一种对应方法。
对应法则不同就是不同的运算。
当然,这个对应法则应该是对任意两个数。
通过这个法则都有一个惟一确定的数与它们对应。
这一周,我们将定义一些新的运算形式,它们与我们常用的加、减、乘、除运算是不相同的。
【典型例题】【例1】有a、b两个数,规定a◎b=a+(b-2)。
那么5◎2= ?【试一试】1、有a、b两个数,规定a※b=a+2-b。
那么2※3= ?2、有a、b两个数,规定a#b=a+2-b+9。
那么6#8= ?【例2】如果规定a◎b=a-b×2 ,那么a=8、b=3时,求8◎3= ?【试一试】1、如果规定a△b=a×3+b ,那么a=3、b=10时,求3△10= ?2、如果规定a△b=(a+b)÷4 ,那么a=1、b=7时,求1△7= ?【例3】设a、b都表示数,规定是a△b表示a的3倍减去b的2倍,a△b=a×3-b×2。
试计算:①5△6,②6△5。
【试一试】1、设a、b都表示数,规定a○b=6×a-2×b。
试计算3○4。
2、设a、b都表示数,规定a*b=3×a+2×b。
试计算①(5*6)*7,②5*(6*7)。
【例4】对于两个数a与b,规定a※b= a×b + a+b。
试计算6※2。
【试一试】1、对于两个数a与b,规定a※b=a×b-(a+b)。
试计算3※5。
2、对于两个数A与B,规定A※B=A×B÷2。
试计算6※4。
【例5】如果2△3=2+3+4,5△4=5+6+7+8,按此规律计算:3△5。
【试一试】1、如果5◎2=5×6,2◎3=2×3×4,按此规律计算:3◎4= ?2、如果2◎4=24÷(2+4),3◎6=36÷(3+6),按此规律计算:8◎4= ?【※例6】对于两个数a与b,规定a□b=a+(a+1)+(a +2)+……(a+b -1)。
四年级下册数学试题-奥数培优专题:04几何综合(4年级培优)学生版

数一数,下面图形中一共有几条线段?几个三角形?FEDCBA数一数,下面图形中一共有几个三角形?数一数,下面的图形中一共有几个长方形?数一数,下面图形中一共有多少个正方形?HGFE DCBA四块一样的长方形木板,拼成如图所示的正方形,已知图中大正方形面积是100平方厘米,小正方形面积是16平方厘米,求每块长方形木板的长和宽各是多少厘米?用6个边长都是2厘米的小正方形拼成一个长方形,有几种不同拼法:哪种拼法拼成的长方形周长长?这个长方形的周长是多少厘米?一个正方形的边长增加10厘米,面积就增加1300平方厘米,原来正方形的面积是多少平方厘米?一个长方形操场长50米,扩建后长增加18米,宽增加15米,扩建后操场面积增加1740平方米。
求操场原来的宽是多少米?如下图所示,有一个边长是1厘米的正方形和两个长都是2厘米、宽都是1厘米的长方形。
请你把它们分割成几块后,再拼成一个正方形。
将下面的图形剪三刀,把它拼成一个正方形。
沿着格子线,将下面的图形分割成形状相同、大小相等的四块,应该怎样分割?用三种不同的方法,沿格子线把下面的图形分割成形状相同、大小相等的四块(非长方形),该怎样分?从前有个国王,他有4个王子,最小的王子叫查理,从小就很聪明。
一天,国王把查理王子喊到皇宫让他解决一个问题。
“儿子啊,这块正方形的地呢,4处有金矿,中间是森林。
”国王指着下面这张图对查理王子说,“你能不能把它分成4块分别给你和你的哥哥们,我要求每块大小、形状都一样,都有金矿,而森林公用。
”查理小王子很快就想出了办法,你可以么?请将分割方法直接画在下图上。
(四年级小机灵杯训练题)森林金矿金矿金矿金矿风的等级风的等级是1940年由美国的气象机构制定的。
美国气象机构建立了一套分级法。
把风力分为17级,现在大多数国家采用的都是这种分级法。
0级,烟囱的烟笔直升上天;1级,烟囱的烟稍微飘动;2级,风标会转动,风拂面,树叶有声音;3级,热气球上升,树叶摇动;4级,落叶飞舞;5级,小树摇动,水面有波纹;6级,海上有浪;7级,大树摇动;8级,小树枝被吹折;9级,烟囱被吹倒;10级,树被连根拔起;11级,灾情惨重;12~17级,十分少见,将是一场灾难。
四年级下册数学试题-奥数培优专题:04几何综合(4年级培优)教师版

数一数,下面图形中一共有几条线段?几个三角形?(奥林匹克训练指导P109)FEDCBA知识点:图形计数解析:数线段时应把它分成三类:第一类是基本线段有4条的线段(如BC),这样的线段共有3条;第二类是基本线段有3条的线段(如AB),这样的线段共有4条;第三类是基本线段是2条的线段,这样的线段有1条,即AC。
数的时候,应先分类数,然后再相加,就求得图中线段的总条数。
数三角形时应把它分成两类:第一类是三角形ADE、三角形AFC和三角形ABC,这三个三角形中,底边DE、FC和BC的基本线段都是4条;第二类是三角形FBC。
数的时候,应先分类数,然后再相加,就求得图形中三角形的总个数。
步骤:(1)(1+2+3+4)×3=30(条)(1+2+3)×4=24(条)1+2=3(条)这样,线段总条数是:30+24+3=57(条)(2)三角形ADE、三角形AFC和三角形ABC中三角形的个数:(1+2+3+4)×3=30(个)这样,三角形的总个数是:30+4=34(个)难度系数:B数一数,下面图形中一共有几个三角形?(奥林匹克训练指导)知识点:图形计数解析:图中三角形都是正三角形,大三角形的每条边有6条基本线段,数三角形时应把它分成六类,即以一条基本线段为边长的三角形,以两条基本线段为边长的三角形,……以六条基本线段为边长的三角形。
每一类又可分为底边在下和底边在上的两种。
数的时候,应先按顺序分类数,然后再一起相加,就求得了图形中三角形的个数。
步骤:(1)以一条基本线段为边长的三角形。
底边在下:1+2+3+4+5+6=21(个)底边在上:1+2+3+4+5=15(个)(2)以两条基本线段为边长的三角形。
底边在下:1+2+3+4+5=15(个)底边在上:1+2+3=6(个)(3)以三条基本线段为边长的三角形。
底边在下:1+2+3+4=10(个)底边在上:1个(4)以四条基本线段为边长的三角形。
四年级下期奥数练习题(巧算周期二进制幻方数阵图平均数角度计数行船小数解应用题特殊思路)

练习题(1)巧算姓名_______ 1、(1)450÷25 (2)525÷25 (3)3500÷125(4)10000÷625 (5)49500÷900 (6)9000÷2252、(1)125×15×8×4 (2)25×24 (3)125×16(4)75×16 (5)125×25×32 (6)25×5×64×1253、(1)125×64+125×36 (2)64×45+64×71-64×16 (3)21×73+26×21+214、(1)(720+96)÷24 (2)(4500-90)÷45(3)6342÷21 (4)8811÷89(5)73÷36+105÷36+146÷36 (6)(10000-1000-100-10)÷105、(1)238×36÷119×5 (2)138×27÷69×50(3)624×48÷312÷8 (4)406×312÷104÷2036、(1)612×366÷183 (2)1000÷(125÷4)(3)(13×8×5×6)÷(4×5×6)(4)241×345÷678÷345×(678÷241)7、(1)23×27 (2)46×44(3)55×55 (4)91×998、(1)53×11 (2)39×11(3)65×11 (4)98×119、(1)353×11 (2)654×11 (3)896×11练习题(2)巧算姓名_______ 1、加减法巧算练习42+71+24+29+58 43+(38+45)+(55+62+57)698+784+158 3993+2996+7994+1354356+1287-356 526-73-27-264253-(253-158) 1457-(185+457)389-497+234 698-154+269+787699999+69999+6999+699+69+6200-(15-16)-(14-15)-(13-14)-(12-13)2-3+4-5+6-7+…-99+1002、乘除法巧算180×25 1375÷25 (1040-324-528)÷41125÷125 4505÷17÷5 384×12÷82352÷(7×8) 1200×(4÷12) 1250÷(10÷8)2250÷75÷3 636×35÷7 (126×56)÷(7×18)99×45 280×36+360×72 1999+999×999 287÷13-101÷13-82÷13 999×778+333×66694×95-91×98 993×994-992×995练习(3)二进制姓名_____________ 二进制就是只用0和1两个数字,在计数与计算时必须“满二进一”。
四年级下册数学试题-奥数专题讲练:第四讲 流水行船问题 竞赛篇(解析版)全国通用

第四讲流水行船问题编写说明此讲为学生第一次系统接触“流水行船”问题,所以我们更加关注学生对基本问题的解答思路及能力!本讲为新知识的学习,所以就不再进行“你还记得吗?”的复习环节!这样一来例题设置稍稍减小,希望能帮助教师缓解一些压力!基本的流水行船问题在行程问题的基础上,这一讲我们将研究流水行船的问题.船在江河里航行时,除了本身的前进速度外,还受到流水的推送或顶逆,在这种情况下计算船只的航行速度、时间和所行的路程,叫做流水行船问题.另外一种与流水行船问题相类似的问题是“在风中跑步或行车”的问题,其实处理方法是和流水行船完全一致的.行船问题是一类特殊的行程问题,它的特殊之处就是多了一个水流速度,船速:在静水中行船,单位时间内所走的路程叫船速;逆水速度:逆水上行的速度叫逆水速度;顺水速度:顺水下行的速度叫顺水速度;水速:船在水中不借助其他外力只借助水流力量单位时间所漂流的路程叫水流速度(以下简称水速),顺水速度=船速+水速;逆水速度=船速-水速 .顺水行程=顺水速度×顺水时间逆水行程=逆水速度×逆水时间船速=(顺水速度+逆水速度)÷2;水速=(顺水速度-逆水速度)÷2 .(可理解为和差问题)【例1】甲河是乙河的支流,甲河水速为每小时3千米,乙河水速为每小时2千米.一艘船沿甲河顺水航行7小时,行了133千米到达乙河,在乙河中还要逆水航行84千米,问:这艘船还要航行几小时?分析:船在甲河中的顺水速度为:133÷7=19(千米/小时),船速=19-3=16(千米/小时).船在乙河中的逆水速度=船速一水速=16-2=14(千米/小时),逆水时间=逆水行程÷逆水速度=84÷14=6(小时).注意此题中水速发生了变化.【前铺】轮船在静水中的速度是每小时21千米,轮船自甲港逆水航行8小时到达相距144千米的乙港,再从乙港返回甲港需要多少小时?分析:要求轮船从乙港返回甲港所需的时间,即轮船顺水航行144千米所需时间,就要求出顺水航行的速度。
四年级下册数学试题-奥数专题训练:第4讲 和差问题(解析版)全国通用

第四讲和差问题【推荐题目】ps:这一讲中的题目都是比较经典的题目,A 卷可以先跳过去不做,如果 B 卷做的不是很好,再回来巩固 A 卷。
【B 卷的第 12 题】张强用 270 元买了一件外衣、一顶帽子和一双鞋,外衣比鞋贵 140 元,买外衣和鞋比买帽子多花了 210 元,问张强买外衣。
帽子和鞋分别花了多少钱?【解析】:外衣+鞋+帽子=270 元——和外衣+鞋-帽子=210 元——差帽子=(270-210)÷2=30 元外衣+鞋=270-30=240 元又外衣-鞋=140 元鞋=(240-140)÷2=50 元【点评】:这道题目丌是难题,属于和差问题中的一种捆绑思想,我们把两个戒者更多的东西捆绑成一个整体做和差,比如在这道题目中就是把外衣和鞋捆绑成一个整体来做。
戒者这道题用等量代换的思想直接解。
外衣+鞋+帽子=270 元外衣+鞋-帽子=210 元外衣-鞋=140 元接下来就是方程思想。
【C 卷的第 10 题】甲箱里叧有五元的纸币,乙箱里叧有两元的纸币,甲箱里的钱比乙箱里的钱多 13 元,乙箱里的纸币比甲箱里的纸币多 19 张,共有()张纸币。
【解析】:(19×2+13)÷(5-2)=17(张)——5 元17+19=36(张)——2 元共有纸币 17+36=53(张)【点评】:有的小朋友木有看明白这个式子的意思,那问一句,这道题目是什么类型呢,像丌像鸡兔同笼呢?有一种奇怪的兔子 5 条腿,普通的鸡 2 条腿,兔子比鸡多了 13 条腿,但是鸡比兔子多 19 叧,鸡兔共几叧?怎么样,这样是丌是看起来就顺眼了许多。
那接下来我们就来解一道头差脚差的鸡兔同笼,先砍掉鸡 19 叧,则鸡将少了 38 条腿,所以此时兔子比鸡多了 38+13=51 条腿。
而这时候鸡的数量和兔子的数量是一样多,之所腿上会有差,是因为每叧兔子比鸡多 3 条腿,因此兔子有51÷3=17 叧,鸡有17+19=36 叧。
小学四年级奥数题集及解析(四)

小学四年级奥数题集及解析(四)【篇一】小学四年级奥数经典题型(四位数问题):如果一个四位数与一个三位数的和是1999,并且四位数和三位数是由7个不同的数字组成的,那么这样的四位数最多能有多少个?四位数答案:四位数的千位数字是1,百位数字(设为a)可在0、2、3、4、5、6、7中选择,这时三位数的百位数字是9-a;四位数字的十位数字设为b,可在剩下的6个数字中选择,三位数的十位数字是9-b.四位数的个位数字c可以在剩下的4个数字中选择,三位数的个位数字是9-c.因此,所说的四位数有7×6×4=168个。
一台晚会上有6个演唱节目和4个舞蹈节目。
问:(1)如果4个舞蹈节目要排在一起,有多少种不同的排列顺序?(2)如果要求每两个舞蹈节目之间至少安排一个演唱节目,一共有多少种不同的安排顺序?舞蹈节目答案:4个舞蹈节目排在一起,现将4个舞蹈节目排序,有种方法,再将这4个舞蹈节目*在一起,视为1个节目,加上6个演唱节目那么就变成7个节目混排,有种方法,所以共有种排列顺序。
AB间距问题:甲、乙两车分别同时从A、B两地相对开出,第一次在离A地95千米处相遇。
相遇后继续前进到达目的地后又立刻返回,第二次在离B地25千米处相遇。
求A、B两地间的距离?AB间距答案:第一次相遇意味着两车行了一个A、B两地间距离,第二次相遇意味着两车共行了三个A、B两地间的距离。
当甲、乙两车共行了一个A、B两地间的距离时,甲车行了95千米,当它们共行三个A、B两地间的距离时,甲车就行了3个95千米,即95×3=285(千米),而这285千米比一个A、B两地间的距离多25千米,可得:95×3?25=285?25=260(千米)。
【篇二】李明买回4个篮球5个排球一共用185元,一个篮球比一个排球贵8元,篮球的单价是________元。
答案与解析:25元。
解析:(185-4×8)÷(5+4)+8=25(元)。
小学四年级奥数专项练习 04 应用题(一)

专题4 应用题(一)【理论基础】解答应用题时,必须认真审题,理解题意,深入细致地分析题目中数量间的关系,通过对条件进行比较、转化、重新组合等多种手段,找到解题的突破口,从而使问题得以顺利解决。
【经典题型1】某玩具厂把630件玩具分别装在5个塑料箱和6个纸箱里,1个塑料箱与3个纸箱装的玩具同样多。
每个塑料箱和纸箱各装多少件玩具?分析:如果玩具全部装在塑料箱或全部装在纸箱里,那么可以求出一个纸箱或一个塑料箱装多少件。
因为3个纸箱与一个塑料箱装的同样多,所以6个纸箱与2个塑料箱装的同样多。
这样,5个塑料箱装的玩具件数和7个塑料箱装的就同样多。
由此,可求出一个塑料箱装多少件。
练习一:(1)百货商店运来300双球鞋分别装在2个木箱和6个纸箱里。
如果两个纸箱同一个木箱装的球鞋同样多,每个木箱和每个纸箱各装多少双球鞋?(2)新华小学买了两张桌子和5把椅子,共付款195元。
已知每张桌子的价钱是每把椅子的4倍,每张桌子多少元?(3)王叔叔买了3千克荔枝和4千克桂圆,共付款156元。
已知5千克荔枝的价钱等于2千克桂圆的价钱。
每千克荔枝和每千克桂圆各多少元?一桶油,连桶重180千克,用去一半油后,连桶还有100千克。
问:油和桶各重多少千克?分析:原来油和桶共重180千克,用去一半油后,连桶还有100千克,说明用去的一半油的重是180-100=80(千克),一桶油的重量就是80×2=160(千克),油桶的重量就是180-160=20(千克)。
练习二(1)一筐梨,连筐重38千克,吃去一半后,连筐还有20千克。
问:梨和筐各重多少千克?(2)一筐苹果,连筐共重35千克,先拿一半送给幼儿园小朋友,再拿剩下的一半送给一年级小朋友,余下的苹果连筐重11千克。
这筐苹果重多少千克?(3)一只油桶里有一些油,如果把油加到原来的2倍,油桶连油重38千克;如果把油加到原来的4倍,这里油和桶共重46千克。
原来油桶里有油多少千克?有5盒茶叶,如果从每盒中取出200克,那么5盒剩下的茶叶正好和原来4盒茶叶的重量相等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、填空题
1.a、b、c、d、e五位学生参加百米赛跑,甲、乙、丙、丁、戊五位学生对竞赛名次进行预测,预测情况如下
甲:b第三,c第五;
乙:e第四,d第五;
丙:a第一,e第四;
丁:c第一,b第二;
戊:a第三,d第四。
结果表明,每个名次都有人猜中,a第____,b第____,c第____,d第____,e第____.
2.三位老师对四个同学的竞赛结果预测如下
赵老师说:小周第一,小吴第三;
钱老师说:小郑第一,小王第四;
孙老师说:小王第二,小周第三。
结果四个同学都进入了前四名,而三位老师的预测各对了一半,小周_____,小郑_____,小王______,小吴______.
3.某校举办数学竞赛,a,b,c,d,e五位同学取得决赛权,另外六位数学爱好者对他们的决赛成绩进行预测
甲:b第一,d第四;
乙:b第二,d第四;
丙:e第一,a第四;
丁:c第二,e第五;
戊:d第二,b第三;
已:c第三,a第五。
决赛结果,他们六人都只猜对了一半。
a______,b_____,c______,d______,e______.
4.甲、乙、丙三位老师对参加数学竞赛的四位学生a、b、c、d的名次进行预测
甲:a第1,c第2;
乙:a第2,c第3;
丙:d第1,b第2.
结果公布后,每位老师各猜中一人,
a______,b_____,c______,d______.
5.甲、乙、丙、丁四人在谈论他们及他们的朋友a君的居住地
甲说:我与乙都住在北京,丙住在天津。
乙说:我与丁都住在上海,丙住在天津。
丙说:我与甲都不住在北京,a住在南京。
丁说:甲和乙都住在北京,我住在广州。
他们每人只说对了两个人的住地,a君住在______城市。
6.五年级1、2、3、4四个班举行接力赛,甲、乙、丙三个同学猜测四个班比赛的前三名,名次
甲说:1班第三,3班第一
乙说:3班第二,2班第三
丙说:4班第二,1班第一
比赛结果,三人都只猜对一半,1班_____,2班______,3班______,4班_____.
7.赵、钱、孙、李、王参加学校象棋比赛,都进入了前五名,发奖前,老师让他们猜一猜各人名次
赵说:钱第三,孙第五
钱说:王第四,李第五
孙说:赵第一,王第四
李说:孙第一,钱第二
王说:赵第三,李第四
老师说:每个名次都有人猜对,第四名是______.
8.田径场上a、b、c、d、e、f六人参加百米决赛。
对于谁是冠军,看台上甲、乙、丙、丁四人有以下猜测
甲说:冠军不是a就是b;
乙说:冠军不是c;
丙说:d、e、f都不可能是冠军;
丁说:冠军是d、e、f中的一人。
比赛结果是,这四人中只有一人猜测是正确的,冠军是______.
9.甲、乙、丙、丁四位同学的运动衫上印有不同的号码
赵说:甲是2号,乙是3号。
钱说:丙是4号,乙是2号。
孙说:丁是2号,丙是3号。
李说:丁是4号,甲是1号。
又知道赵、钱、孙、李每人都只说对了一半,那么丙的号码是_______.
10.今天上午有语文、数学、美术、音乐、体育、自然中的三门课,a、b、c、d、e五人争论是哪三门
a说:肯定没有音乐课;
b说:有语文课和体育课;
c说:音乐课和数学课只有一门;
d说:没有自然课和美术课;
e说:c、d中有一人说错了。
实际上只有一人说错了。
今天上午上的是______,______,______课,_____说错了。
二、解答题
11.车间将来一名新工程师,a、b、c、d、e五位青工分别听到这位工程师的情况是
a:北京来的王工程师,男,毕业于交通大学;
b:北京来的丁工程师,女,毕业于清华大学;
c:杭州来的马工程师,男,毕业于浙江大学;
d:北京来的李工程师,女,毕业于清华大学;
e:上海来的王工程师,男,毕业于浙江大学。
工程师来到之后,五名青工才发现每人听到的四种情况中只有一种是正确的,当然这位工程师是唯一确定的,请你说出他的真实情况。
_____________________________________
12.甲乙丙三人判断同一组的7个是非题,按规定,如果认为对就画一个○;如果认为错就画一个╳。
回答结果发现,这三个人都判断对了5道题,判断错了2道题,甲乙丙三人答题情况如下表所示。
这7个是非题的正确答案各怎样?
13.5个学生a、b、c、d、e参加一场比赛,某人预测比赛结果的名次顺序是:abcde,结果没有猜中任何一个名次,也没有猜中任何一对名次相邻的学生(即两个名次紧挨着的学生)的名次顺序;另一个人预测比赛结果的名次顺序是:daecb,结果猜中了两个名次,同时还猜中两对名次相邻的名次顺序,问这次比赛实际结果如何?
_____________________________________
14.红、黄、蓝、白、紫五种颜色的珠子各一粒,都用纸包好摆在桌上。
a、b、c、d、e 五人猜纸包中珠子的颜色,每人只能猜两包。
a:第2包是紫的,第3包是黄的;
b:第2包是蓝的,第4包是红的;
c:第1包是红的,第5包是白的;
d:第3包是蓝的,第4包是白的;
e:第2包是黄的,第5包是紫的。
猜完后拆开纸包一看,每人都猜对了一种,且每包只有一人猜对。
判断他们各猜对了哪一种颜色的珠子。
_____________________________________。