高中解析几何辅导练习:椭圆的的方程及其性质

合集下载

椭圆的标准方程及性质

椭圆的标准方程及性质

椭圆的标准方程及性质
椭圆是平面上一个动点到两个定点的距离之和等于常数的点的轨迹。

在直角坐
标系中,椭圆的标准方程为:
\[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\]
其中a和b分别为椭圆的长半轴和短半轴。

下面我们将详细介绍椭圆的标准方
程及其性质。

首先,我们来看椭圆的标准方程。

椭圆的标准方程是一个二次方程,其中x和
y的平方项系数分别为a的平方和b的平方。

通过这个方程,我们可以轻松地确定
椭圆的长短半轴,进而画出椭圆的图形。

其次,让我们来了解一下椭圆的性质。

椭圆有许多独特的性质,这些性质在数
学和实际应用中都有着重要的作用。

首先,椭圆上任意一点到两个焦点的距离之和等于常数,这个性质被称为椭圆的定义性质。

其次,椭圆的长半轴和短半轴的长度决定了椭圆的形状,长短半轴之比称为离心率,离心率越接近于零,椭圆形状越接近于圆。

另外,椭圆还有对称性,关于x轴、y轴和原点对称的性质。

除此之外,
椭圆还有着许多其他有趣的性质,如切线与法线的性质、椭圆的焦点和直径等。

总之,椭圆的标准方程及性质是数学中一个重要的概念,它不仅有着丰富的数
学内涵,而且在物理、工程等领域都有着广泛的应用。

通过学习椭圆的标准方程及性质,我们可以更好地理解椭圆的几何特征,为解决实际问题提供数学工具和思路。

希望本文对您有所帮助,谢谢阅读!。

椭圆的标准方程及性质

椭圆的标准方程及性质

椭圆的标准方程及性质椭圆作为二维空间中的图形,具有一些独特的性质和特点。

本文将介绍椭圆的标准方程以及其相应的性质。

一、椭圆的标准方程椭圆的标准方程可以通过平面几何的推导得出。

设椭圆的中心为点(h,k),椭圆的长轴为2a,短轴为2b,则可得出椭圆的标准方程:(x-h)^2/a^2 +(y-k)^2/b^2 = 1其中,h和k分别是椭圆的中心在x轴和y轴上的坐标,a和b分别是椭圆长轴和短轴的一半。

二、椭圆的性质1. 中心:椭圆的中心即标准方程中的点(h,k),表示椭圆在平面上的位置。

2. 焦点:椭圆上的每个点到两个焦点的距离之和等于定值2a,即椭圆的长轴长度。

焦点是椭圆的重要特点,用于定义椭圆的几何性质。

3. 长轴和短轴:标准方程中a和b分别表示椭圆的长轴和短轴的一半。

长轴是椭圆的最长直径,短轴是椭圆的最短直径。

4. 离心率:椭圆的离心率定义为焦距与长轴之比,通常用e表示。

离心率决定了椭圆的扁平程度,e<1时表示椭圆,e=0时表示圆。

5. 直径:椭圆上的两个端点同时到椭圆内一点的距离相等,则这两个端点和该内点连成的线段叫做该椭圆的直径。

6. 弦:椭圆上任意两点连线和椭圆的直径所围内部的线段叫做椭圆的弦。

7. 准线:椭圆上与两个焦点连线垂直的直线,与椭圆的侧弦相切。

8. 焦散性:入射到椭圆的平行光线在反射后会汇聚到另一个焦点上,这是椭圆焦散性的一个重要表现。

三、椭圆的应用椭圆作为一种常见的数学曲线,在现实生活中有广泛的应用。

以下是一些椭圆应用的例子:1. 天体运动:行星围绕太阳的轨迹、人造卫星轨道等可以近似看作椭圆。

2. 光学器件:抛物面镜、椭圆面镜等。

3. 固定时间下的最短路径问题。

4. 卫星通信:卫星的定位和通信领域中使用椭圆轨道。

4. 造船工业:船体的椭圆剖面设计,可以减少水的阻力。

5. 圆锥曲线中的一类,在几何光学中,椭球曲面可以聚焦光线。

总结:本文介绍了椭圆的标准方程及其性质。

椭圆作为一种重要的数学曲线,其在几何和物理学中有着广泛的应用。

椭圆的标准方程及其几何性质(供参考)

椭圆的标准方程及其几何性质(供参考)

椭圆的标准方程及其几何性质1. 椭圆定义:(1)第一定义:平面内与两个定点21F F 、的距离之和为常数|)|2(222F F a a >的动点P 的轨迹叫椭圆,其中两个定点21F F 、叫椭圆的焦点.当21212F F a PF PF >=+时, P 的轨迹为椭圆 ; ; 当21212F F a PF PF <=+时, P 的轨迹不存在;当21212F F a PF PF ==+时, P 的轨迹为 以21F F 、为端点的线段(2)椭圆的第二定义:平面内到定点F 与定直线l (定点F 不在定直线l 上)的距离之比是常数e (10<<e )的点的轨迹为椭圆(利用第二定义,可以实现椭圆上的动点到焦点的距离与到相应准线的距离相互转化). 2.椭圆的方程与几何性质:3.点),(00y x P 与椭圆)0(12222>>=+b a by a x 的位置关系: 当12222>+b y a x 时,点P 在椭圆外; 当12222>+b y a x 时,点P 在椭圆内; 当12222=+by a x 时,点P 在椭圆上;4.直线与椭圆的位置关系直线与椭圆相交0>∆⇔;直线与椭圆相切0=∆⇔;直线与椭圆相离0<∆⇔ 例题分析:题1写出适合下列条件的椭圆的标准方程: ⑴两个焦点坐标分别是(-4,0)、(4,0),椭圆上一点P 到两焦点的距离 之和等于10;⑵两个焦点坐标分别是(0,-2)和(0,2)且过(23-,25) (3)两个焦点坐标分别是(-3,0),(3,0),椭圆经过点(5,0).(4)两个焦点坐标分别是(0,5),(0,-5),椭圆上一点P 到两焦点的距离和为26. (5)焦点在y 轴上,与y 轴的一个交点为P (0,-10),P 到它较近的一个焦点的距离等于2.解:(1)因为椭圆的焦点在x 轴上,所以设它的标准方程为所以所求椭圆标准方程为925=+ ⑵ 因为椭圆的焦点在y 轴上,所以设它的标准方程为 由椭圆的定义知,22)225()23(2++-=a +22)225()23(-+-10=∴a 又2=c所以所求标准方程为61022=+x y 另法:∵ 42222-=-=a c a b∴可设所求方程142222=-+a x a y ,后将点(23-,25)的坐标代入可求出a ,从而求出椭圆方程(3)∵椭圆的焦点在x 轴上,所以设它的标准方程为:∵100)35(0)35(222=+-+++=a ,2c =6.∴3,5==c a∴163522222=-=-=c a b∴所求椭圆的方程为:1162522=+y x . (4)∵椭圆的焦点在y 轴上,所以设它的标准方程为)0(12222>>=+b a bx a y . ∴.144222=-=c a b∴所求椭圆方程为:114416922=+x y (5)∵椭圆的焦点在y 轴上,所以可设它的标准方程为: ∵P(0,-10)在椭圆上,∴a =10. 又∵P 到它较近的一焦点的距离等于2, ∴-c -(-10)=2,故c =8. ∴36222=-=c a b .∴所求椭圆的标准方程是136100=+. 题2。

高中数学椭圆的性质及相关题目解析

高中数学椭圆的性质及相关题目解析

高中数学椭圆的性质及相关题目解析椭圆是高中数学中一个重要的几何图形,它有着独特的性质和应用。

本文将从椭圆的定义、性质以及相关题目解析等方面进行阐述,帮助高中学生更好地理解和应用椭圆。

一、椭圆的定义与性质椭圆是平面上到两个定点F1和F2的距离之和等于常数2a的点P的轨迹。

其中,F1和F2称为椭圆的焦点,线段F1F2的长度为2c,a和c之间的关系为a > c。

椭圆的长轴是通过焦点的直线段,长度为2a;短轴是与长轴垂直的直线段,长度为2b,且满足a > b > c。

椭圆的离心率e定义为e = c / a,离心率决定了椭圆的形状。

当e < 1时,椭圆是一个封闭曲线;当e = 1时,椭圆变成一个抛物线;当e > 1时,椭圆变成一个双曲线。

椭圆的焦点和准线的性质也是我们需要了解的。

焦点到椭圆上任意一点的距离之和等于椭圆的长轴长度,即PF1 + PF2 = 2a;准线是与长轴平行且过焦点的直线,焦点到准线的距离等于椭圆的离心率乘以焦点到椭圆上任意一点的距离,即PD =e * PF。

二、椭圆的相关题目解析1. 题目:已知椭圆的长轴长为10,短轴长为8,求椭圆的离心率。

解析:根据椭圆的定义,我们知道a = 5,b = 4。

将a和c的值代入离心率公式e = c / a,可得e = 4 / 5。

2. 题目:已知椭圆的焦点坐标分别为F1(-3, 0)和F2(3, 0),且焦点到准线的距离为2,求椭圆的方程。

解析:根据椭圆的性质,焦点到准线的距离等于椭圆的离心率乘以焦点到椭圆上任意一点的距离,即2 = e * a。

由于焦点到准线的距离为2,而椭圆的长轴长度为2a,所以a = 1。

再根据焦点的坐标,可得椭圆的中心为O(0, 0)。

因此,椭圆的方程为x^2 + y^2 / 1^2 = 1,即x^2 + y^2 = 1。

3. 题目:已知椭圆的焦点坐标分别为F1(-2, 0)和F2(2, 0),准线方程为x = 3,求椭圆的方程。

2021届新高考数学艺考生百日冲刺专题30椭圆的方程及几何性质 (解析版)

2021届新高考数学艺考生百日冲刺专题30椭圆的方程及几何性质 (解析版)

1 / 14专题30 椭圆的方程及几何性质一、椭圆的标准方程和几何性质-a ≤x ≤a -b ≤y ≤b-b ≤x ≤b -a ≤y ≤a焦半径公式:称P 到焦点的距离为椭圆的焦半径① 设椭圆上一点()00,P x y ,则1020,PF a ex PF a ex =+=-(可记为“左加右减”) ② 焦半径的最值:由焦半径公式可得:焦半径的最大值为a c +,最小值为a c - 焦点三角形面积:122tan2PF F S b θ=(其中12PF F θ=∠)2 / 14题型一、椭圆离心率的值例1、【2018年高考全国Ⅱ理数】已知1F ,2F 是椭圆22221(0)x y C a b a b+=>>:的左、右焦点,A 是C 的左顶点,点P 在过A的直线上,12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为A .23B .12C .13D .14【答案】D【解析】因为12PF F △为等腰三角形,12120F F P ∠=︒,所以212||2||PF F F c ==,由AP2tan PAF ∠=,所以2sin PAF ∠=,2cos PAF ∠=, 由正弦定理得2222sin sin PF PAF AF APF ∠=∠,所以2225sin()3c a c PAF ==+-∠, 所以4a c =,14e =,故选D .3 / 14变式1、(2016年江苏卷)如图,在平面直角坐标系xOy 中,F 是椭圆x 2a 2+y 2b 2=1(a>b>0)的右焦点,直线y =b2与椭圆交于B ,C 两点,且∠BFC =90°,则该椭圆的离心率是________.【答案】:.63【解析】:由题意得y =b 2与椭圆x 2a 2+y 2b 2=1的交点的坐标分别为⎝⎛⎭⎫±32a ,b2,因为F (c,0),且∠BFC =90°,所以FB →·FC →=0,即⎝⎛⎭⎫c -32a ⎝⎛⎭⎫c +32a +b 24=0,即3c 2=2a 2,所以e =63.变式2、(2017苏北四市一模) 如图,在平面直角坐标系xOy 中,已知A ,B 1,B 2分别为椭圆C :x 2a 2+y 2b2=1(a >b >0)的右、下、上顶点,F 是椭圆C 的右焦点.若B 2F ⊥AB 1,则椭圆C 的离心率是________.【答案】:.5-12【解析】:因为F (c,0),B 2(0,b ),B 1(0,-b ),A (a,0),所以B 2F →=(c ,-b ),B 1A →=(a ,b ).因为FB 2⊥AB 1,所以ac -b 2=0,即c 2+ac -a 2=0,故e 2+e -1=0,解得e =-1+52(负值舍去).题型二、椭圆离心率的范围例2、【江苏省南通市2019-2020学年高三上学期期初】已知1F ,2F 分别为椭圆E :()222210x y a b a b +=>>的左,右焦点,点A ,B 分别是椭圆E 的右顶点和上顶点,若直线4 / 14AB 上存在点P ,使得12PF PF ⊥,则椭圆C 的离心率e 的取值范围是______.【答案】 【解析】12PF PF ⊥,即P 在以12F F 为直径的圆上,即222x y c +=.直线AB :1x ya b+=,即0bx ay ab +-=,圆心到直线的距离d c =≤,即422430a a c c -+≤,即4231001e e e -+≤<<,,所以解得1e >≥故答案为:1,1)2. 变式1、(2020届浙江省高中发展共同体高三上期末)已知椭圆()222210x y a b a b+=>>的内接ABC ∆的顶点B 为短轴的一个端点,右焦点F ,线段AB 中点为K ,且2CF FK =,则椭圆离心率的取值范围是___________.【答案】⎛ ⎝⎭【解析】由题意可设()0,B b ,(),0F c ,线段AB 中点为K ,且2CF FK =, 可得F 为ABC ∆的重心,设()11,A x y ,()22,C x y , 由重心坐标公式可得,1203x x c ++=,120y y b ++=,即有AC 的中点(),M x y ,可得12322x x c x +==,1222y y by +==-,5 / 14由题意可得点M 在椭圆内,可得2291144c a +<,由c e a =,可得213e <,即有03e <<.故答案为:⎛ ⎝⎭. 变式2、(2020届浙江省“山水联盟”高三下学期开学)设椭圆M 的标准方程为22221(0)x y a b a b +=>>,若斜率为1的直线与椭圆M相切同时亦与222:()C x y b b +-=(b 为椭圆的短半轴)相切,记椭圆的离心率为e ,则2e =__________.【答案】32- 【解析】设切线方程为y x m =+,代入椭圆方程可得:()2222222220ba x a mx a m ab +++-=.因为相切2220,m a b ∆=∴=+,由直线y x m =+与圆C 相切,,(1b m b =∴=+,或(1b -(舍去).则有2222(1b a b +=+,因为222b a c =-,所以可得22231)2,)2a c e -==∴.故答案为:32-. 题型三、椭圆的方程6 / 14例3、【2019年高考全国Ⅰ卷理数】已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为A .2212x y +=B .22132x y += C .22143x y +=D .22154x y += 【答案】B【解析】法一:如图,由已知可设2F B n =,则212,3AF n BF AB n ===, 由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在1AF B △中,由余弦定理推论得22214991cos 2233n n n F AB n n +-∠==⋅⋅.在12AF F △中,由余弦定理得2214422243n n n n +-⋅⋅⋅=,解得n =.22224,312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B .法二:由已知可设2F B n =,则212,3AF n BF AB n ===,7 / 14由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在12AF F △和12BF F △中,由余弦定理得2221222144222cos 4422cos 9n n AF F n n n BF F n⎧+-⋅⋅⋅∠=⎨+-⋅⋅⋅∠=⎩, 又2121,AF F BF F ∠∠互补,2121cos cos 0AF F BF F ∴∠+∠=,两式消去2121cos cos AF F BF F ∠∠,,得223611n n +=,解得2n =.22224312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B .变式1、【2020届江苏省南通市高三下学期3月开学考试】若椭圆22221x y a b+=的焦点在x 轴上,过点(1,12)作圆22+=1x y 的切线,切点分别为A,B ,直线AB 恰好经过椭圆的右焦点和上顶点,则椭圆方程是【答案】22154x y +=【解析】∵点(1,12)在圆外,过点(1,12)与圆相切的一条直线为x =1,且直线AB 恰好经过椭圆的右焦点和上顶点,∴椭圆的右焦点为(1,0),即c =1,设点P(1,12),连接OP ,则OP ⊥AB ,∵k OP =12,∴k AB =-2.又直线AB 过点(1,0),∴直线AB 的方程为2x +y -2=0,∵点(0,b)在直线AB 上,∴b =2,又c =1,∴a 2=5,故椭圆方程是25x +24y =1.变式2、(泰州期末)如图,在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,P 为椭圆上一点(在x 轴上方),连结PF 1并延长交椭圆于另一点Q ,若点P 的坐标为 (1,32),且△PQF 2的周长为8,则椭圆C 的方程为 .8 / 14【答案】x 24+y 23=1【解析】 因为△PQF 2的周长为4a ,所以,a =2,把P 的坐标为 (1,32)代入椭圆C ,得219144b +=,所以,23b =,椭圆C 的方程为x 24+y 23=1.变式3、在平面直角坐标系中,椭圆22221(0)x y a b a b +=>>椭圆的左、右焦点分别为,.已知和3(,)2e 都在椭圆上,其中e 为椭圆的离心率,则椭圆E 的方程为 .【答案】.【解析】 由题设知,,由点在椭圆上,得222211e a b+=,21b =,所以,.由点3(,)2e 在椭圆上,得22223()21e ab +=, 42440a a -+=,22a =.题型四、椭圆中点的求解例4、(2019泰州期末)如图,在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a>b>0)的左顶点为A ,点B 是椭圆C 上异于左、右顶点的任一点,P 是AB 的中点,过点B 且与AB 垂直的直线与直线OP 交于点Q.已知椭圆C 的离心率为12,点A 到右准线的距离为6.xoy 1(0)F c -,2(0)F c ,(1)e ,2212x y +=222==c a b c e a +,(1)e ,22=1c a -xOyPF 1F 2Q9 / 14(1) 求椭圆C 的标准方程;(2) 设点Q 的横坐标为x 0,求x 0的取值范围.【解析】 (1) 由题意得c a =12,a 2c +a =6,解得a =2,c =1,所以b =a 2-c 2=3,所以椭圆C 的标准方程为x 24+y 23=1.(4分)(2) 解法1设B(m ,n),则m 24+n 23=1.因为A(-2,0),AB ⊥BQ ,所以直线BQ 的方程为y =-m +2n(x -m)+n ,因为P 是AB 的中点,所以P(m -22,n 2),所以直线OP 的方程为y =nm -2x ,联立直线BQ ,OP 的方程得-m +2n (x -m)+n =nm -2x ,(8分)解得x 0=(m -2)(m 2+2m +n 2)m 2-4+n 2,由m 24+n 23=1得n 2=-34(m 2-4),代入上式化简得x 0=m +6,(14分) 因为-2<m<2,所以4<x 0<8.(16分)解法2 设直线AB 的方程为y =k(x +2),k ≠0.将y =k(x +2)代入椭圆方程x 24+y 23=1得(4k 2+3)x 2+16k 2x +16k 2-12=0,解得x B =-8k 2+64k 2+3,所以y B =k ⎝ ⎛⎭⎪⎫-8k 2+64k 2+3+2=12k 4k 2+3, 则直线BQ 的方程为y -12k 4k 2+3=-1k (x --8k 2+64k 2+3),10 / 14因为P 是AB 的中点,则x P =x A +x B 2=-2+-8k 2+64k 2+32=-8k 24k 2+3,y P =12y B =6k4k 2+3,所以直线OP 的斜率为6k4k 2+3-8k 24k 2+3=-34k ,则直线OP 的方程为y =-34k x ,(8分)联立直OP ,BQ 的方程得x 0=16k 2+244k 2+3=4+124k 2+3,(14分)因为4k 2+3>3,所以0<124k 2+3<4,4<4+124k 2+3<8,即4<x 0<8.(16分)解后反思 直线和椭圆相交求范围(最值)问题,第(2)问解法1设出关键点B 的坐标(m ,n),建立关于点中参数m ,n 的目标函数,进一步转化为函数法或不等式法来解决;解法2通常设出直线的方程,并与椭圆方程联立,进而转化关于x 或y 的一元二次方程,通过根与系数关系,运用设而不求的思想,得到点的坐标,建立关于线中参数m 的目标函数,进一步转化为函数法或不等式法来解决. 这两种解法都较常见. 解法1参量多一点,但运用得当,也很方便,这里解法1在建立目标函数后就显得很简单,解法2参量少目标集中. 变式1、(2019苏州期末)如图,在平面直角坐标系xOy 中,已知焦点在x 轴上,离心率为12的椭圆E 的左顶点为A ,点A 到右准线的距离为6. (1) 求椭圆E 的标准方程;(2) 过点A 且斜率为32的直线与椭圆E 交于点B ,过点B 与右焦点F 的直线交椭圆E 于M 点,求M 点的坐标.【解析】:(1)设椭圆方程为x 2a 2+y 2b 2=1(a>b>0),半焦距为c ,因为椭圆的离心率为12,所以c a =12,即a =2c ,11 / 14又因为A 到右准线的距离为6,所以a +a 2c =3a =6,(2分)解得a =2,c =1,(4分) 所以b 2=a 2-c 2=3,所以椭圆E 的标准方程为x 24+y 23=1.(6分)(2) 直线AB 的方程为y =32(x +2),由⎩⎨⎧y =32(x +2),x 24+y23=1,得x 2+3x +2=0,解得x =-2或x =-1. 则B 点的坐标为⎝⎛⎭⎫-1,32.(9分) 由题意,右焦点F(1,0),所以直线BF 方程为y =-34(x -1),(11分)由⎩⎨⎧y =32(x +2),x 24+y 23=1,得7x2-6x -13=0,解得x =-1或x =137,(13分) 所以,点M 坐标为⎝⎛⎭⎫137,-914.(14分)1、【2019年高考北京卷理数】已知椭圆2222 1x y a b+=(a >b >0)的离心率为12,则A .a 2=2b 2B .3a 2=4b 2C .a =2bD .3a =4b12 / 14【答案】B【解析】椭圆的离心率2221,2c e c a b a ===-,化简得2234a b =, 故选B.2、【2019年高考全国Ⅰ卷理数】设12F F ,为椭圆C :22+13620x y =的两个焦点,M 为C 上一点且在第一象限.若12MF F △为等腰三角形,则M 的坐标为___________.【答案】(【解析】由已知可得2222236,20,16,4a b c a b c ==∴=-=∴=,11228MF F F c ∴===,∴24MF =.设点M 的坐标为()()0000,0,0x y x y >>,则121200142MF F S F F y y =⋅⋅=△,又12014,42MF F S y =⨯=∴=△,解得0y =,22013620x ∴+=,解得03x =(03x =-舍去), M的坐标为(.3、【2018年高考浙江卷】已知点P (0,1),椭圆24x +y 2=m (m >1)上两点A ,B 满足AP =2PB ,则当m =___________时,点B 横坐标的绝对值最大. 【答案】5【解析】设11(,)A x y ,22(,)B x y ,由2AP PB =得122x x -=,1212(1)y y -=-,13 / 14所以1223y y -=-,因为A ,B 在椭圆上,所以22114x y m +=,22224x y m +=,所以22224(23)4x y m +-=,所以224x +22324()m y -=,与22224x y m +=对应相减得234m y +=,2221(109)44x m m =--+≤, 当且仅当5m =时取最大值.4、【2020届江苏省南通市高三下学期3月开学考试】若椭圆22221x y a b+=的焦点在x 轴上,过点(1,12)作圆22+=1x y 的切线,切点分别为A,B ,直线AB 恰好经过椭圆的右焦点和上顶点,则椭圆方程是【答案】22154x y +=【解析】∵点(1,12)在圆外,过点(1,12)与圆相切的一条直线为x =1,且直线AB 恰好经过椭圆的右焦点和上顶点,∴椭圆的右焦点为(1,0),即c =1,设点P(1,12),连接OP ,则OP ⊥AB ,∵k OP =12,∴k AB =-2.又直线AB 过点(1,0),∴直线AB 的方程为2x +y -2=0,∵点(0,b)在直线AB 上,∴b =2,又c =1,∴a 2=5,故椭圆方程是25x +24y =1.5、(2017·全国卷)已知椭圆C :22221x y a b+=(a >b >0)的左,右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则椭圆C 的离心率为 .【答案】3614 / 14【解析】 以线段12A A 为直径的圆是222x y a +=,直线20bx ay ab -+=与圆相切,所以圆心到直线的距离d a ==,223a b =,即()22222323a a c a c =-⇒=,即2223c a = ,所以,椭圆C的离心率c e a == 6、 设1F ,2F 是椭圆E :()222210x y a b a b +=>>的左,右焦点,P 为直线l :53a x =上一点,△21F PF 是底角为30︒的等腰三角形,则椭圆E 的离心率为 .【答案】56【解析】 设直线l 与x 轴交于点A ,由题意得,∠PF 2F 1=120°,∠PF 2A =60°,AF 2=53ac -, 所以,PF 2=2AF 2=103a -2c= F 1F 2=2c ,56c e a ==,所以,椭圆E 的离心率为56. 7、(2017无锡期末) 设点P 是有公共焦点F 1,F 2的椭圆C 1与双曲线C 2的一个交点,且PF 1⊥PF 2,椭圆C 1的离心率为e 1,双曲线C 2的离心率为e 2,若e 2=3e 1,则e 1=________. 【答案】53【解析】不妨设F 1,F 2分别是左、右焦点,椭圆的长半轴为a 1,双曲线的实半轴为a 2,P为椭圆与双曲线在第一象限内的交点,则根据椭圆和双曲线的定义可得⎩⎪⎨⎪⎧PF 1+PF 2=2a 1,PF 1-PF 2=2a 2,解得⎩⎪⎨⎪⎧PF 1=a 1+a 2,PF 2=a 1-a 2.因为PF 1⊥PF 2,所以PF 21+PF 22=F 1F 22,即(a 1+a 2)2+(a 1-a 2)2=(2c )2,化简得a 21+a 22=2c 2,所以⎝⎛⎭⎫a 1c 2+⎝⎛⎭⎫a 2c 2=2,即1e 21+1e 22=2,又因为e 2=3e 1,所以e 21=59,故e 1=53.。

2020年高考数学(理)之解析几何高频考点04 椭圆及其性质附解析

2020年高考数学(理)之解析几何高频考点04 椭圆及其性质附解析

解析几何04 椭圆及其性质一、具体目标:掌握椭圆的定义、标准方程和椭圆的简单几何性质,了解椭圆的参数方程.能处理与椭圆有关的问题.二、知识概述:1. 椭圆方程的第一定义:一个动点到两个定点的距离为一个常数(大于两定点之间的距离)则动点的轨迹就是椭圆.几何表示:()121222PF PF a a F F +=>.当()121222PF PF a a F F +=<无轨迹;当()121222=PF PF a a F F +=,以12,F F 为端点的线段.⑴①椭圆的标准方程:中心在原点,焦点在x 轴上:()222210x y a b a b +=>>.中心在原点,焦点在轴上:()222210y x a b a b+=>>.②一般方程:()2210,0Ax By A B +=>>.③椭圆的标准参数方程:的参数方程为(一象限应是属于02πθ<<).⑵①顶点:或.②轴:对称轴:x 轴,轴;长轴长,短轴长. ③焦点:或.④焦距:.⑤准线:或.⑥离心率:()01c e e a=<<.⑦焦点半径:i. 设为椭圆()222210x y a b a b+=>>上的一点,为左、右焦点,则 y 12222=+b y a x ⎩⎨⎧==θθsin cos b y a x θ),0)(0,(b a ±±)0,)(,0(b a ±±y a 2b 2)0,)(0,(c c -),0)(,0(c c -2221,2b a c c F F -==c a x 2±=c a y 2±=),(00y x P 21,F F 【考点讲解】⇒-=+=0201,ex a PF ex a PF由椭圆方程的第二定义可以推出.ii.设为椭圆()222210x y a b b a+=>>上的一点,为上、下焦点,则 由椭圆方程的第二定义可以推出.由椭圆第二定义可知:()210000a PF e x a ex x c ⎛⎫=+=+< ⎪⎝⎭()220000a PF e x ex a x c ⎛⎫=-=-> ⎪⎝⎭归结起来为“左加右减”.注意:椭圆参数方程的推导:得方程的轨迹为椭圆. ⑧通径:垂直于x 轴且过焦点的弦叫做通经.坐标:和⑶共离心率的椭圆系的方程:椭圆()222210x y a b a b+=>>的离心率是,方程是大于0的参数,0a b >>的离心率也是 我们称此方程为共离心率的椭圆系方程. ⑸若P 是椭圆:上的点.为焦点,若,则的面积为(用余弦定理与可得). 若是双曲线,则面积为.(6)椭圆的标准方程和几何性质-a ≤x ≤a -b ≤x ≤b 对称轴:坐标轴 对称中心:原点 A (-a,0),A (a,0) A (0,-a ),A (0,a ) ),(00y x P 21,F F →)sin ,cos (θθb a N ),(2222a b c a b d -=),(2ab c )(22b a c a c e -==tt b y a x (2222=+ace =12222=+b y a x 21,F F θ=∠21PF F 21F PF ∆2tan2θb a PF PF 221=+2cot 2θ⋅b ⇒-=+=0201,ey a PF ey a PF1.【2019年高考全国Ⅰ卷】已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为( )A .2212x y += B .22132x y += C .22143x y += D .22154x y += 【解析】本题考查椭圆标准方程及其简单性质.法一:如图,由已知可设2F B n =,则212,3AF n BF AB n ===, 由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在1AF B △中,由余弦定理推论得22214991cos 2233n n n F AB n n +-∠==⋅⋅.在12AF F △中,由余弦定理得2214422243n n nn +-⋅⋅⋅=,解得2n =. 22224312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B .法二:由已知可设2F B n =,则212,3AF n BF AB n ===, 由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在12AF F △和12BF F △中,由余弦定理得2221222144222cos 4422cos 9n n AF F n n n BF F n ⎧+-⋅⋅⋅∠=⎨+-⋅⋅⋅∠=⎩, 又2121,AF F BF F ∠∠互补,2121cos cos 0AF F BF F ∴∠+∠=,两式消去2121cos cos AF F BF F ∠∠,,得【真题分析】223611n n +=,解得2n =.22224312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B .【答案】B2.【2019年高考全国Ⅱ卷理数】若抛物线y 2=2px (p >0)的焦点是椭圆2231x y pp+=的一个焦点,则p =( )A .2B .3C .4D .8【解析】本题主要考查抛物线与椭圆的几何性质.因为抛物线22(0)y px p =>的焦点(,0)2p是椭圆2231x y pp +=的一个焦点,所以23()2pp p -=,解得8p =,故选D . 【答案】D3.【2019年高考北京卷理数】已知椭圆2222 1x y a b+=(a >b >0)的离心率为12,则( )A .a 2=2b 2B .3a 2=4b 2C .a =2bD .3a =4b【解析】本题考查椭圆的标准方程与几何性质.椭圆的离心率2221,2c e c a b a ===-,化简得2234a b =,故选B. 【答案】B4.【2018年高考全国Ⅰ卷文数】已知椭圆C :22214x y a +=的一个焦点为(20),,则C 的离心率为( )A .13 B .12 C .2 D .3【解析】本题主要考查椭圆的方程及离心率.由题可得2c =,因为24b =,所以2228a b c =+=,即a =所以椭圆C 的离心率2e ==,故选C . 【答案】C5.【2018年高考全国Ⅰ卷文数】已知1F ,2F 是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PF F∠=︒,则C的离心率为()A.312-B.23-C.312-D.31-【解析】本题主要考查椭圆的定义和简单的几何性质.在12F PF△中,122190,60F PF PF F∠=∠=︒o,设2PF m=,则12122,c F F m PF===,又由椭圆定义可知1221)a PF PF m=+=,则212c cea a====,故选D.【答案】D6.【2018年高考全国Ⅱ理数】已知1F,2F是椭圆22221(0)x yC a ba b+=>>:的左、右焦点,A是C的左顶点,点P在过A且斜率为3的直线上,12PF F△为等腰三角形,12120F F P∠=︒,则C的离心率为()A.23B.12C.13D.14【解析】因为12PF F△为等腰三角形,12120F F P∠=︒,所以212||2||PF F F c==,由AP的斜率为6可得2tan6PAF∠=,所以2sin PAF∠=,2cos PAF∠=,由正弦定理得2222sinsinPF PAFAF APF∠=∠,所以2225sin()3ca c PAF==+-∠,所以4a c=,14e=,故选D.【答案】D7.【2017年高考全国Ⅰ卷文数】设A,B是椭圆C:2213x ym+=长轴的两个端点,若C上存在点M满足∠AMB=120°,则m的取值范围是()A.(0,1][9,)+∞U B.[9,)+∞U C.(0,1][4,)+∞U D.[4,)+∞U【解析】本题考查的是以椭圆知识为背景的求参数范围的问题.解答问题时要利用条件确定ba,的关系,要借助题设条件ο120=∠AMB 转化为360tan =≥οba,简化求解过程. 当03m <<时,焦点在x 轴上,要使C 上存在点M 满足120AMB ∠=o ,则tan 60a b ≥=o≥,得01m <≤;当3m >时,焦点在y 轴上,要使C 上存在点M 满足120AMB ∠=o ,则tan 60ab≥=o≥,得9m ≥,故m 的取值范围为(0,1][9,)+∞U ,故选A . 【答案】A8.【2019年高考浙江卷】已知椭圆22195x y +=的左焦点为F ,点P 在椭圆上且在x 轴的上方,若线段PF 的中点在以原点O 为圆心,OF 为半径的圆上,则直线PF 的斜率是___________.【解析】本题主要考查椭圆的标准方程、椭圆的几何性质、圆的方程与性质的应用.方法1:如图,设F 1为椭圆右焦点.由题意可知||=|2OF OM |=c =,由中位线定理可得12||4PF OM ==,设(,)P x y ,可得22(2)16x y -+=,与方程22195x y +=联立,可解得321,22x x =-=(舍),又点P 在椭圆上且在x 轴的上方,求得32P ⎛- ⎝⎭,所以212PF k ==方法2:(焦半径公式应用)由题意可知|2OF |=|OM |=c =, 由中位线定理可得12||4PF OM ==,即342p p a ex x -=⇒=-,从而可求得3,22P ⎛- ⎝⎭,所以212PFk ==9.【2019年高考全国Ⅲ卷】设12F F ,为椭圆C :22+13620x y =的两个焦点,M 为C 上一点且在第一象限.若12MF F △为等腰三角形,则M 的坐标为___________.【解析】本题考查椭圆标准方程及其简单性质,解答本题时,根据椭圆的定义分别求出12MF MF 、,设出M 的坐标,结合三角形面积可求出M 的坐标.由已知可得2222236,20,16,4a b c a b c ==∴=-=∴=,11228MF F F c ∴===,∴24MF =.设点M 的坐标为()()0000,0,0x y x y >>,则121200142MF F S F F y y =⋅⋅=△,又1201442MF F S y =⨯=∴=△0y,22013620x ∴+=,解得03x =(03x =-舍去),M \的坐标为(.【答案】(10.【2019年高考全国Ⅱ卷文数】已知12,F F 是椭圆2222:1(0)x y C a b a b+=>>的两个焦点,P 为C 上一点,O 为坐标原点.(1)若2POF △为等边三角形,求C 的离心率;(2)如果存在点P ,使得12PF PF ⊥,且12F PF △的面积等于16,求b 的值和a 的取值范围. 【解析】本题主要考查利用椭圆的性质来求椭圆的离心率,以及椭圆中存在定点满足题中条件的问题, (1)连结1PF ,由2POF △为等边三角形可知在12F PF △中,1290F PF ∠=︒,2PF c =,1PF =,于是1221)a PF PF c =+=,故C的离心率是1ce a==. (2)由题意可知,满足条件的点(,)P x y 存在.当且仅当1||2162y c ⋅=,1y y x c x c ⋅=-+-,22221x y a b+=,即||16c y =,① 222x y c +=,② 22221x y a b+=,③由②③及222a b c =+得422b y c =,又由①知22216y c=,故4b =.由②③得()22222a x c b c=-,所以22c b ≥,从而2222232,a b c b =+≥=故a ≥当4b =,a ≥存在满足条件的点P .所以4b =,a的取值范围为)+∞. 【答案】(11;(2)4b =,a的取值范围为)+∞.11.【2019年高考天津卷文数】设椭圆22221(0)x y a b a b+=>>的左焦点为F ,左顶点为A ,上顶点为B .|2||OA OB =(O 为原点).(1)求椭圆的离心率; (2)设经过点F 且斜率为34的直线l 与椭圆在x 轴上方的交点为P ,圆C 同时与x 轴和直线l 相切,圆心C 在直线x =4上,且OC AP ∥,求椭圆的方程.【解析】本小题主要考查椭圆的标准方程和几何性质、直线方程、圆等基础知识.(1)设椭圆的半焦距为c ,2b =,又由222a b c =+,消去b得222a c ⎫=+⎪⎪⎝⎭,解得12c a =.所以,椭圆的离心率为12. (2)由(1)知,2,a c b ==,故椭圆方程为2222143x y c c +=.由题意,(, 0)F c -,则直线l 的方程为3()4y x c =+,点P 的坐标满足22221,433(),4x y c cy x c ⎧+=⎪⎪⎨⎪=+⎪⎩消去y 并化简,得到2276130x cx c +-=,解得1213,7c x c x ==-.代入到l 的方程,解得1239,214y c y c ==-. 因为点P 在x 轴上方,所以3,2P c c ⎛⎫⎪⎝⎭.由圆心C 在直线4x =上,可设(4, )C t . 因为OC AP ∥,且由(1)知( 2 , 0)A c -,故3242ct c c=+,解得2t =.因为圆C 与x 轴相切,所以圆的半径长为2,又由圆C 与l2=,可得=2c .所以,椭圆的方程为2211612x y +=.【答案】(1)12;(2)2211612x y +=.12.【2019年高考天津卷理数】设椭圆22221(0)x y a b a b+=>>的左焦点为F ,上顶点为B .已知椭圆的短轴长为4(1)求椭圆的方程;(2)设点P 在椭圆上,且异于椭圆的上、下顶点,点M 为直线PB 与x 轴的交点,点N 在y 轴的负半轴上.若||||ON OF =(O 为原点),且OP MN ⊥,求直线PB 的斜率. 【解析】主要考查椭圆的标准方程和几何性质、直线方程等基础知识. (1)设椭圆的半焦距为c,依题意,24,5c b a ==,又222a b c =+,可得a =2,b =1c =. 所以,椭圆的方程为22154x y +=.(2)由题意,设()()()0,,0P P p M P x y x M x ≠,.设直线PB 的斜率为()0k k ≠,又()0,2B ,则直线PB 的方程为2y kx =+,与椭圆方程联立222,1,54y kx x y =+⎧⎪⎨+=⎪⎩整理得()2245200k x kx ++=,可得22045P k x k =-+,代入2y kx =+得2281045P k y k -=+,进而直线OP 的斜率24510P py k x k -=-. 在2y kx =+中,令0y =,得2M x k=-. 由题意得()0,1N -,所以直线MN 的斜率为2k-.由OP MN ⊥,得2451102k k k -⎛⎫⋅-=- ⎪-⎝⎭,化简得2245k =,从而5k =±.所以,直线PB的斜率为5或5-. 【答案】(1)22154x y +=;(2)230或230-. 13.【2019年高考全国Ⅱ卷理数】已知点A (−2,0),B (2,0),动点M (x ,y )满足直线AM 与BM 的斜率之积为−12.记M 的轨迹为曲线C .(1)求C 的方程,并说明C 是什么曲线;(2)过坐标原点的直线交C 于P ,Q 两点,点P 在第一象限,PE ⊥x 轴,垂足为E ,连结QE 并延长交C 于点G .(i )证明:PQG △是直角三角形; (ii )求PQG △面积的最大值.【解析】本题考查了求椭圆的标准方程,以及利用直线与椭圆的位置关系,判断三角形形状以及三角形面积最大值问题.(1)由题设得1222y y x x ⋅=-+-,化简得221(||2)42x y x +=≠,所以C 为中心在坐标原点,焦点在x 轴上的椭圆,不含左右顶点.(2)(i )设直线PQ 的斜率为k ,则其方程为(0)y kx k =>.由22142y kxx y =⎧⎪⎨+=⎪⎩得x =. 记u =,则(,),(,),(,0)P u uk Q u uk E u --.于是直线QG 的斜率为2k ,方程为()2ky x u =-. 由22(),2142k y x u x y ⎧=-⎪⎪⎨⎪+=⎪⎩得22222(2)280k x uk x k u +-+-=.① 设(,)G G G x y ,则u -和G x 是方程①的解,故22(32)2G u k x k +=+,由此得322G uky k =+.从而直线PG 的斜率为322212(32)2uk uk k u k ku k-+=-+-+.所以PQ PG ⊥,即PQG △是直角三角形.(ii )由(i )得2||21PQ u k =+,221||uk k PG +=,所以△PQG 的面积222218()18(1)||12(12)(2)12()k k k k S PQ PG k k k k++===++++‖. 设t =k +1k,则由k >0得t ≥2,当且仅当k =1时取等号. 因为2812t S t =+在[2,+∞)单调递减,所以当t =2,即k =1时,S 取得最大值,最大值为169.因此,△PQG 面积的最大值为169.1.【2017年高考浙江卷】椭圆22194x y +=的离心率是( )A B C .23 D .59【解析】椭圆22194x y +=的离心率e ==,故选B . 【答案】B2.【2017年高考全国Ⅲ】已知椭圆C :22220)1(x y a ba b +=>>的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为( )A B C D .13【解析】以线段12A A 为直径的圆的圆心为坐标原点(0,0),半径为r a =,圆的方程为222x y a +=,【模拟考场】直线20bx ay ab -+=与圆相切,所以圆心到直线的距离等于半径,即d a ==,整理可得223a b =,即2223()a a c =-即2223a c =,从而22223c e a ==,则椭圆的离心率c e a ===,故选A . 【答案】A3.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点为F 1、F 2,离心率为33,过F 2的直线l 交C 于A 、B 两点,若△AF 1B 的周长为43,则C 的方程为( )A.x 23+y 22=1B.x 23+y 2=1C.x 212+y 28=1D.x 212+y 24=1 【解析】 根据条件可知c a =33,且4a =43,∴a =3,c =1,b =2,椭圆的方程为x 23+y 22=1.【答案】 A4.【2018年高考浙江卷】已知点P (0,1),椭圆24x +y 2=m (m >1)上两点A ,B 满足AP u u u u r =2PB u u u u r ,则当m =___________时,点B 横坐标的绝对值最大.【解析】设11(,)A x y ,22(,)B x y ,由2AP PB =u u u r u u u r得122x x -=,1212(1)y y -=-,所以1223y y -=-,因为A ,B 在椭圆上,所以22114x y m +=,22224x y m +=,所以22224(23)4x y m +-=, 所以224x +22324()m y -=,与22224x y m +=对应相减得234m y +=,2221(109)44x m m =--+≤, 当且仅当5m =时取最大值. 【答案】55.【2018年高考北京卷理数】已知椭圆2222:1(0)x y M a b a b +=>>,双曲线2222:1x y N m n-=.若双曲线N的两条渐近线与椭圆M 的四个交点及椭圆M 的两个焦点恰为一个正六边形的顶点,则椭圆M 的离心率为________________;双曲线N 的离心率为________________.【解析】由正六边形性质得椭圆上一点到两焦点距离之和为c +,再根据椭圆定义得2c a +=,所以椭圆M的离心率为1c a ==.双曲线N 的渐近线方程为n y x m =±,由题意得双曲线N 的一条渐近线的倾斜角为π3,所以222πtan 33n m ==,所以222222234m n m m e m m ++===,所以2e =.1 26.【2016北京理】已知椭圆C :22221+=x y a b(0a b >>)的离心率为2,(,0)A a ,(0,)B b ,(0,0)O ,△OAB 的面积为1.(I )求椭圆C 的方程;(II )设P 是椭圆C 上一点,直线P A 与y 轴交于点M ,直线PB 与x 轴交于点N . 求证:BM AN ⋅为定值.【分析】(I)根据离心率为2,即2=c a ,△OAB 的面积为1,即121=ab ,椭圆中222c b a +=列方程组进行求解;(II )根据已知条件分别求出BM AN ,的值,求其乘积为定值.【解析】(I )由题意得⎪⎪⎪⎩⎪⎪⎪⎨⎧+===,,121,23222c b a ab a c 解得1,2==b a .所以椭圆C 的方程为1422=+y x . (II )由(I )知,)1,0(),0,2(B A ,设),(00y x P ,则442020=+y x .当00≠x 时,直线PA 的方程为)2(200--=x x y y . 令0=x ,得2200--=x y y M ,从而221100-+=-=x y y BM M . 直线PB 的方程为110+-=x x y y . 令0=y ,得100--=y x x N ,从而12200-+=-=y x x AN N .所以221120000-+⋅-+=⋅x y y x BM AN 228844224844400000000000000002020+--+--=+--+--++=y x y x y x y x y x y x y x y x y x 4=.当00=x 时,10-=y ,,2,2==AN BM 所以4=⋅BM AN . 综上,BM AN ⋅为定值.7.已知点M 是圆心为E的圆(2216x y ++=上的动点,点)F,线段MF 的垂直平分线交EM于点P .(1)求动点P 的轨迹C 的方程;(2)矩形ABCD 的边所在直线与曲线C 均相切,设矩形ABCD 的面积为S ,求S 的取值范围.【分析】1)利用定义法求椭圆的轨迹方程;(2)设AB 的方程为1y k x m =+, CD 的方程为1y k x m =-,直线AB 与CD 间的距离为1d =,直线BC 与AD 间的距离为2d =,S =S 的范围.【解析】(1)依题PM PF =,所以4PE PF PE PM ME +=+== (为定值),EF =>所以点P 的轨迹是以,E F为焦点的椭圆,其中24,2a c ==所以P 点轨迹C 的方程是2214x y += (2)①当矩形的边与坐标轴垂直或平行时,易得8S =;②当矩形的边均不与坐标轴垂直或平行时,其四边所在直线的斜率存在且不为0,设AB 的方程为1y k x m =+, BC 的方程为2y k x n =+,则CD 的方程为1y k x m =-, AD 的方程为2y k x n =-,其中121k k ⋅=-,直线AB 与CD 间的距离为1d ==,同理直线BC 与AD 间的距离为2d ==()12*S d d =⋅=L2222211111{ 21044x y k x k mx m y k x m+=⎛⎫⇒+++-= ⎪⎝⎭=+,因为直线AB 与椭圆相切,所以221410k m ∆=+-=,所以2141m k =+,同理2241n k =+,所以 S ===44==212112k k +≥ (当且仅当11k =±时,不等式取等号),所以4S <≤810S <≤, 由①②可知, 810S ≤≤.【答案】(1) 2214x y +=;(2) 810S ≤≤.。

椭圆标准方程及几何性质

椭圆标准方程及几何性质

椭圆的离心率
离心率是描述椭圆扁平程度的量,用 $e$表示。
VS
离心率定义为$e = frac{c}{a}$,其中 $c$是焦距,$a$是长轴半径。
03
椭圆的参数方程
参数方程的定义
参数方程
通过引入参数,将椭圆上的点与一组有序数对(参数)关联起来,表示椭圆上 的点的一种方法。
参数方程的一般形式
x=a*cos⁡(t)x = a cos(t)x=a∗cos(t) 和 y=b*sin⁡(t)y = b sin(t)y=b∗sin(t),其中 (a,b) 是椭圆的长短轴长度,t是参数。
通过极坐标方程,可以方便地解决与椭圆相关的几何问题,例如求 交点、判断点是否在椭圆上等。
05
椭圆的焦点三角形
焦点三角形的性质
焦点三角形是等腰三角形
01
由于椭圆上任意一点到两焦点的距离之和为常数,因此焦点三
角形是等腰三角形。
顶角为直角
02
由于椭圆上任意一点到两焦点的距离之差与到另一焦点的距离
之比为常数,因此顶角为直角。
当长短轴长度一定时,顶角越大,焦 点三角形面积越大。
焦点三角形的周长
01
02
03
周长公式
焦点三角形的周长公式为 (P = 2a + 2c),其中 (a) 为长轴长度,(c) 为焦距。
周长与长短轴关系
当长短轴长度一定时,离 心率越大,焦点三角形周 长越大。
周长与离心率关系
当长短轴长度一定时,长 短轴长度越接近,焦点三 角形周长越小。
THANKS
感谢观看
参数方程的应用
简化计算
在解决与椭圆相关的数学问题时,使用参数方程可以简化计算过程,特别是涉及到三角函数的问题。

椭圆方程高考知识点

椭圆方程高考知识点

椭圆方程高考知识点椭圆是解析几何中的一个重要概念,而椭圆方程作为椭圆研究的基础,也是高考数学中的一个重要知识点。

本文将对椭圆方程的定义、性质以及解题方法进行详细介绍,帮助学生更好地掌握这一知识点。

一、椭圆方程的定义椭圆方程是二次曲线方程的一种形式,以一般式表示为:$$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$$其中a和b分别代表椭圆在x轴和y轴上的半轴长。

根据a和b的大小,我们可以得到不同形态的椭圆:当a>b时,椭圆的长轴平行于x 轴;当a<b时,椭圆的长轴平行于y轴;当a=b时,椭圆为圆形。

二、椭圆方程的性质1. 椭圆的焦点和直径椭圆有两个焦点F1和F2,满足距离定理:对于椭圆上的任意一点P,FP1+FP2=2a。

此外,椭圆的两条相互垂直的直径称为主轴,其中长的一条为长轴,短的一条为短轴,且长轴的长度为2a,短轴的长度为2b。

2. 椭圆的离心率椭圆的离心率e定义为焦点与半直轴的比值,即e=c/a(c为焦点到原点的距离)。

离心率决定了椭圆的形状,当e=0时,椭圆退化为一个点;当e<1时,椭圆为实心椭圆;当e=1时,椭圆为抛物线;当e>1时,椭圆为双曲线。

3. 椭圆的标准方程椭圆方程可以根据其焦点和长轴、短轴的位置得到不同的标准方程。

例如,当椭圆的中心位于原点,长轴平行于x轴时,其标准方程为:$$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$$如果椭圆的中心不在原点,可以通过平移变换将其化为标准方程。

三、椭圆方程的解题方法1. 确定椭圆的性质和方程形式在解题过程中,首先需要根据题目给出的条件,确定椭圆的性质和方程形式。

例如,判断椭圆的长短轴、焦点位置和离心率大小,进而确定合适的计算方法。

2. 利用椭圆的性质解题在解题过程中,可以根据椭圆的性质进行分析和计算。

例如,利用椭圆的离心率和焦点位置,可以计算椭圆的长轴、短轴和焦点坐标等信息,从而进一步求解问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

训练四 椭圆的的方程及其性质一.概念:1.椭圆的定义及第二定义; 2.椭圆的标准方程; 3.椭圆的性质;4.椭圆的焦半径;5.直线与椭圆的问题.二. 例题1、(5分)(2001全国文7)若椭圆经过原点,且焦点为)0,3(),0,1(21F F ,则其离心率为(A )43 (B )32 (C )21 (D )41 2、(5分)(2004河南理7)椭圆1422=+y x 的两个焦点为F 1、F 2,过F 1作垂直于x 轴的直线与椭圆相交,一个交点为P ,则||2PF =( )A .23B .3C .27 D .4 3、(4分)(2004湖南文15)F 1,F 2是椭圆C :14822=+x x 的焦点,在C 上满足PF 1⊥PF 2的点P 的个数为__________.4、(4分)(2004重庆理16)对任意实数K ,直线:y kx b =+与椭圆:)20(sin 41cos 23πθθθ<≤⎩⎨⎧+=+=y x 恒有公共点,则b 取值范围是_______________5.过椭圆14922=+y x 内一点D (1,0)引动弦AB ,求弦AB 的中点M 的轨迹方程。

6.椭圆141622=+y x 上有两点P 、Q ,O 是原点,若OP 、OQ 斜率之积为41-。

求证22||||OQ OP +为定值。

训练题四: 椭圆及其性质1、(5分)(2004春安徽理3)已知F 1、F 2为椭圆22221x y a b+=(0a b >>)的焦点;M 为椭圆上一点,MF 1垂直于x 轴,且∠F 1MF 2=600,则椭圆的离心率为( )(A )21 (B )22 (C )33 (D )23 2、(5分)(2004湖北理6)已知椭圆191622=+y x 的左、右焦点分别为F 1、F 2,点P 在椭圆上,若P 、F 1、F 2是一个直角三角形的三个顶点,则点P 到x 轴的距离为( )A .59B .3C .779D .49 3、(5分)(2004福建理4)已知F 1、F 2是椭圆的两个焦点,过F 1且与椭圆长轴垂直的直线交椭圆于A 、B 两点,若△ABF 2是正三角形,则这个椭圆的离心率是( )A .33B .32C .22D .23 4、(5分)(2004重庆理10)已知双曲线22221,(0,0)x y a b a b-=>>的左,右焦点分别为12,F F ,点P 在双曲线的右支上,且12||4||PF PF =,则此双曲线的离心率e 的最大值为:( )A .43B .53C .2D .735.一个圆的圆心在椭圆的右焦点2F 上,且过椭圆的中心D (0,0),该圆与椭圆交于点P ,设1F 是椭圆的左焦点,直线1PF 恰好与圆相切于点P ,则椭圆的离心率是( )A .13-B .32-C .22D .23 6.设椭圆1204522=+y x 的两个焦点分别为1F 和2F ,P 为椭圆上一点,并且21PF PF ⊥,则||||||21PF PF -等于( )A .56B .52C .531 D .532 7.过点M (-2,0)的直线l 与椭圆2222=+y x 交于1P 、2P 两点,线段21P P 的中点为P ,设直线l 的斜率为)0(11≠k k ,直线OP 的斜率为2k ,则21k k 的值为( )A .2B .-2C .21D .21- 8.方程1)4csc(3322=+-παy x 表示椭圆时,α适合的条件是( ) A .παπ4743≤≤ B .παπ4743<< C .)(472432Z ∈+<<+k k k ππαππ D .)(4743Z ∈+<<+k k k ππαππ 9.设b ≥2a>0,则曲线122=+by ax 上对两焦点张角为直角的点有( )A .0个B .0个或2个C .2 个或4个D .0个或2个或4个10.点P 在椭圆284722=+y x 上,则点P 到直线3x-2y-16=0的距离的最大值是( ) A .13132 B .131316 C .131324 D .131328 11、已知双曲线22154x y -=,若将该双曲线绕着它的右焦点逆时针旋转90︒后,所得双曲线的一条准线方程是 ( )(A )43y =- (B )43y = (C )163y = (D )163y =- 12、直线10x y --=与实轴在y 轴上的双曲线22(0)x y m m -=≠的交点在以原点为中心、边长为2且各边分别平行于坐标轴的正方形的内部,则m 的取值范围是 ( )(A )01m << (B )0m < (C )10m -<< (D )1m <-13.△ABC 中,三边a 、c 、b 成等差数列,且a>c>b ,若A (-1,0),B (1,0),则动点C 的轨迹方程为____________。

14.以(1,0),(3,0)为焦点且经过原点的椭圆的方程为__________。

15.过椭圆15922=+y x 的左焦点作一条长为12的弦AB ,将椭圆绕着其左准线在空间旋转120°,则弦AB 扫过的面积为_________。

16、(5分)(2004四川理15)设中心在原点的椭圆与双曲线2222y x -=1有公共的焦点,且它们的离心率互为倒数,则该椭圆的方程是 .17.双曲线的中心在原点,实轴在x 轴上,它的渐近线与圆0201022=+-+x y x 相切,过点P (-4,0)作斜率为41的直线l ,使l 与双曲线交于A ,B 两点,和y 轴交于C 点,且点P 与线段AB 上,又满足∣P A ∣·∣PB ∣=∣PC ∣2.(Ⅰ)求双曲线的渐近线方程; (Ⅱ)求双曲线的方程.18.过椭圆2222=+y x 的一个焦点的直线交椭圆于A 、B 两点,求△AOB 的面积的最大值(O 为坐标原点)。

19.已知椭圆12222=+by a x (a>b>0),它的一条准线方程是x=1,倾斜角为45°的直线交椭圆于A 、B 两点,设AB 的中点为M ,直线AB 与OM 的夹角为α(1)当tan α=2时,求椭圆的方程;(2)当2<tan α<3时,证明2132<<b 。

20.已知点A 在圆C :31)2(22=-+y x 上运动,点B 在以)0,3(F 为右焦点的椭圆k ky x =+22上运动,求|AB|的最大值。

训练题四答案例题答案:1.C 2.C 3. 24.[-1,3] 5.提示:设),(11y x A ,),(22y x B ,AB 的中点M (x ,y ),则221x x x +=,221y y y +=,且36942121=+y x ① 36942222=+y x ②,①-②得 0))((9))((421212121=+-++-y y y y x x x x ∴y x y y x x x x y y 94)(9)(421212121-=++-=-- 又12121-===--x y k k x x y y DM AB ∴194-=-x y y x 即所求的轨迹方程为19)21(422=+-y x6.提示:设直线OP 的方程为y=kx ,则直线OQ 的方程为x ky 41-= 由⎪⎩⎪⎨⎧=+=141622y x kx y 得⎪⎪⎩⎪⎪⎨⎧+=+=1416141622222k k y k x ∴141616||22222++=+=k k y x OP 同理可求得1464||222+=k k OQ ∴2014464141616||||222222=+++++=+k k k k OQ OP 训练题答案:1 C 2.D 3.A 4.B 5.A. 6 B 7 D 8C 9.C 10 C 11.A 12.C13.)00(13422<≠=+x y y x 且 14.0412322=+-y x x 15. 6π 16、(5分)1222=+y x 17.x y 21).1(±= (2).172822=-y x 18.提示:由题意椭圆焦点为(0,±1),设直线AB 过焦点F (0,1),其方程为:y-1=kx ,代入2222=+y x 得012)2(22=-++kx x k ,设),(11y x A ,),(22y x B ,则1x 、2x 为该方程的两根,由222221)2()2(4421||||21k k k x x OF S AOB +++=-⋅=∆ 22111222≤+++=k k (当且仅当k=0时取等号),可知△AOB 面积的最大值为2219.提示:(1)由12=c a 得c a =2,又222c c c a b -=-= ∴椭圆方程为222)1(c c y x c -=+-将AB 的方程y=x+m 代入整理得02)2(222=-+++-c c m mx x c∴)2)1(,2(---c c m c m M 于是1-=c k OM ,由2|1111||1|tan =-++-=+-=c c k k k k OM AB OM AB α,得32=c 或c=--2(舍),于是所求椭圆方程为1292322=+y x (2)由(1)|2||1111|tan c c c c -=-++-=α,又3|2|2<-<c c ,得3221<<c ∴3241)21(22>+--=-=c c c b ,2141)21(22<+--=-=c c c b 即 20.提示:如图8-1所示∵22)3(1=-=k c ∴k=4∴椭圆的方程为1422=+y x 。

|AB|的最大值是椭圆4422=+y x 上动点B (x ,y )到圆C 的圆心(0,2)距离的最大值与圆的半径之和。

设B (x ,y )到(0,2)的距离为d ,则由两点的距离公式有222)2(-+=y x d 。

又B (x ,y )在椭圆上∴328)32(3843)2(44)2(2222222++-=+--=-+-=-+=y y y y y y x d 。

因为B (x ,y )是椭圆上的点∴-1≤y ≤1∴当32-=y 时,2d 最大为328 ∴3321231328||+=+=最大AB。

相关文档
最新文档