华为LTE 重要指标参数优化方案
华为LTE切换参数详解

华为LTE切换参数详解LTE(Long Term Evolution)是一种通信标准,用于移动技术,也称为4G LTE。
华为是中国的一家通信设备制造商,其LTE切换参数是用于控制终端设备在不同LTE网络之间切换的一组参数。
在本文中,我将详细介绍华为LTE切换参数。
1.切换模式(Mode):切换模式定义了终端设备切换LTE网络的方式。
常见的切换模式有“仅切换到E-UTRAN”、“优先切换到E-UTRAN然后再切换到UTRAN”等。
选择适合的切换模式可以提升终端设备在不同LTE网络之间的切换效率。
2.E-UTRA频点(E-UTRA Frequency):E-UTRA频点是LTE网络中的无线信道,用于传输数据。
华为LTE切换参数中可以设置多个E-UTRA频点,以提供更好的覆盖范围和容量。
3.E-RAN强度(E-RAN Threshold):E-RAN强度定义了在终端设备从E-UTRAN切换到UTRAN时的信号强度阈值。
当信号强度低于该阈值时,终端设备将切换到UTRAN网络。
通过调整E-RAN强度参数,可以平衡终端设备在不同LTE网络之间的切换。
4.E-RAN频点突发性干扰时间(E-RAN Interfere Time):E-RAN频点突发性干扰时间定义了在终端设备切换到UTRAN网络前,检测的时间间隔。
较短的时间间隔可以提供更快的切换速度,但可能会增加切换过程中的干扰。
5.UTRA强度(UTRA Threshold):UTRA强度定义了在终端设备从UTRAN切换到E-UTRAN时的信号强度阈值。
当信号强度高于该阈值时,终端设备将切换到E-UTRAN网络。
通过调整UTRA强度参数,可以平衡终端设备在不同LTE网络之间的切换。
6.UTRA频点突发性干扰时间(UTRA Interfere Time):UTRA频点突发性干扰时间定义了在终端设备切换到E-UTRAN网络前,检测的时间间隔。
较短的时间间隔可以提供更快的切换速度,但可能会增加切换过程中的干扰。
华为TD-LTE优化-F+D组网优化指导书剖析

对比F和D的SINR vs RSRP,发现F频段随SINR增长速率提升较平稳,D频段随SINR增长速率提升较明显,两个频段趋势图拟合函数的交叉点在14至15dB之间,在无线覆盖好SINR大于15dB情况下,D频段的下载速率要明显高于F频段,在SINR小于15dB情况下,F频段速率要高于D频段。
thrpbitsueul丄astttilthrptimeueulrmvlasttti用户上行体验速率mbps不含lasttti小区pdcp层所接收到的上行数据的总吞吐量卜使ue缓存为空的最后一个tti所传的上行pdcp吞吐量扣除使ue缓存为空的最后一个tti之后的上行数传时长1526728259lthrpbitsul小区pdcp层所接收的上行数据的总吞吐1526729lthrpbitsueullastt使ue缓存为空的最后一个tti所传的上049tl行pdcp吞吐量1526729416lthrptimeueulrmvsmallpkt扣除小包调度之后的上行数传时长用户下行体验速率二lthrpbitsdllthrpbitsdl丄astttilthrptimedlrmvlasttti用户下行体验速率mbps不含lasttti小区pdcp层所发送的下行数据的总吞吐量卜使缓存为空的最后一个tti所传的下行pdcp吞吐量扣除使下行缓存为空的最后一个tti之后的数传时长1526728261lthrpbitsdl小区pdcp层所发送的下行数据的总吞吐1526729005lthrpbitsdllasttti使缓存为空的最后一个tti所传的下行pdcp吞吐量15267290lthrptimedlrmvl扣除使下行缓存为空的最后一个tti之后15asttti的数传时长对于fd站点同站同覆盖的f频段小区上行用户体验速率差值在1m以上下行用户休验速率在10m以上的站点必然存在用户数参数等方面的问题
lte专项优化实施方案

lte专项优化实施方案LTE专项优化实施方案。
一、背景介绍。
随着移动通信技术的不断发展,LTE技术已经成为当前移动通信领域的主流技术之一。
然而,随着LTE网络的不断发展和扩容,网络优化工作变得尤为重要。
LTE专项优化实施方案的制定和实施,对于提升网络性能、改善用户体验、降低运营成本具有重要意义。
二、LTE专项优化实施方案的目标。
1. 提升网络性能,通过LTE专项优化,提高网络覆盖率、增强网络容量、降低网络时延,从而提升网络性能。
2. 改善用户体验,优化LTE网络,提高数据传输速率、降低掉话率、提升呼叫成功率,从而改善用户的通信体验。
3. 降低运营成本,通过LTE专项优化,提高网络资源利用率,降低能耗,降低运营成本。
三、LTE专项优化实施方案的具体内容。
1. 网络覆盖优化。
针对LTE网络覆盖不足的问题,可以采取以下措施,加强室内小区覆盖,优化室外覆盖,部署室外微基站等,以提高网络覆盖率。
2. 网络容量优化。
针对LTE网络容量不足的问题,可以采取以下措施,优化小区间干扰,提高小区吞吐量,优化小区载频结构,以增强网络容量。
3. 网络时延优化。
针对LTE网络时延较大的问题,可以采取以下措施,优化传输链路,提高信令处理速度,优化信令链路,以降低网络时延。
4. 数据传输速率优化。
针对LTE网络数据传输速率较低的问题,可以采取以下措施,优化小区参数,增加小区载频,优化传输链路,以提高数据传输速率。
5. 掉话率优化。
针对LTE网络掉话率较高的问题,可以采取以下措施,优化小区覆盖范围,优化切换参数,优化切换策略,以降低掉话率。
6. 呼叫成功率优化。
针对LTE网络呼叫成功率较低的问题,可以采取以下措施,优化小区覆盖范围,优化接入成功率,优化切换成功率,以提升呼叫成功率。
四、LTE专项优化实施方案的推进步骤。
1. 网络现状分析,对LTE网络进行全面的现状分析,包括覆盖情况、容量情况、时延情况、数据传输速率、掉话率、呼叫成功率等。
华为TD_LTE优化_热点区域覆盖优化指导书

TDD-LTE热点区域覆盖优化指导书1.概述随着LTE智能终端的普及,丰富的互联网业务驱动着移动无线网络的蓬勃发展,网络用户数和流量呈爆发式增长,同时无线网络对数据吞吐率也提出了更高的要求,因此如何满足热点区域的容量和数据速率需求将是未来无线网络发展的关键。
目前LTE网络整体上的广度覆盖已经基本实现,但是随着移动互联网的发展,当前的网络模式很难满足热点区域的容量需求,因此改变及优化网络结构,构建多频段覆盖模式,成为未来网络发展的必由之路。
在热点区域覆盖优化的过程中,应重点考虑以下几个方面的问题:(1)、确定扩容标准(网络指标基线)(2)、现网容量评估(3)、全网级/小区级发展预测(可选)(4)、容量规划(5)、扩容效果评估本文可能会涉及的指标如下:上行PRB资源使用率=[上行PUSCH的Physical Resource Block被使用的平均个数]/[上行可用的PRB个数];下行PRB资源使用率=[下行PUSCH的Physical Resource Block被使用的平均个数]/[下行可用的PRB个数];CCE利用率= (公共DCI所占用的PDCCH CCE的个数 + 统计周期内上行DCI所使用的PDCCH CCE个数 + 统计周期内下行DCI所使用的PDCCH CCE个数)/统计周期内可用的PDCCH CCE的个数;无线资源利用率=MAX(上行PRB利用率,下行PRB利用率,CCE利用率)。
2.容量瓶颈分析2.1.P RB资源数据分析显示,从散点图上看,上、下行PRB利用率和无线接通率无明显关联性。
从PRB利用率统计的区间归一化平均值上看,上、下行PRB利用率大于50%时,会出现无线接通率低于95%的情况。
从上图可以看出,当PRB利用率超过70%时,接通率和用户体验明显较差。
PRB利用率高可能有以下原因:➢空口重传率高导致PRB被浪费,可通过优化重载网络性能优化开关优化RACH的拥塞情况,但是会使掉线率增加。
LTE参数优化

一、LTE小区选择及相关参数小区选择S准则UE进行小区选择时,需要判断小区是否满足小区选择规则。
小区选择规则的基础是EUTRAN小区参考信号的接收功率测量值,即:RSRP。
驻留小区的条件要求符合小区选择S准则:Srxlev>0。
Srxlev= Qrxlevmeas-(Qrxlevmin+Qrxlevminoffset)-Pcompensation;Pcompensation=max(PMax-UE Maximum Outpower,0)各参数含义如下:1、Srxlev:小区选择S值,单位dB;2、Qrxlevmeas:测量小区的RSRP值,单位dBm;3、Qrxlevmin:小区最小接收电平,单位dBm,目前集团规定为:-128;(该参数可影响用户接入)4、Qrxlevminoffset:减少PLMN之间的乒乓选择,此参数只在UE驻留在访问PLMN (Visited PLMN)时, 周期性地搜寻更高级别的PLMN时使用.;5、PMax:UE在小区中允许的最大上行发送功率;6、UE Maximum Outpower:UE能力决定的最大上行发送功率小区选择相关参数小区选择相关参数如下:二、LTE小区重选及相关参数小区重选相关知识小区重选知识小区重选指(cell reselection)指UE在空闲模式下通过监测邻区和当前小区的信号质量以选择一个最好的小区提供服务信号的过程。
当邻区的信号质量及电平满足S准则且满足一定重选判决准则时,终端将介入该小区驻留。
UE驻留到合适的小区停留1S后,就可以进行小区重选的过程。
小区重选过程包括测量和重选两部分过程,终端根据网络配置的相关参数,在满足条件时发起相应的流程。
重选的分类1)系统内小区测量及重选;●同频小区测量、重选●异频小区测量、重选2)系统间小区测量及重选;重选优先级概念1)与2/3G网络不同,LTE系统中引入了重选优先级的概念●在LTE系统,网络可配置不同频点或频率组的优先级,通过广播在系统消息中告诉UE,对应参数为cellreselectionPriority,取值为(0….7);(注:0优先级为最低,现网同频设置为5;异频设置宏站加室分底层&高层设置为6,室分高层加宏站为4,室分底层加宏站为5.)●优先级配置单位是频点,因此在相同载频的不同小区具有相同的优先级;●通过配置各频点的优先级,网络便能方便地引导终端重选到高优先级的小区驻留达到均衡网络负荷、提升资源利用率,保障UE信号质量等作用;2)重选优先级也可以通过RRCConnectionRelease消息告诉UE,此时UE忽略广播消息中的优先级信息,以该信息为准;网络主动引导UE进行系统间小区重选,完成CS域语音呼叫等;重选系统消息LTE中,SIB3-SIB8全部为重选相关信息,具体如下:重选测量启动条件1)UE成功驻留后,将持续进行本小区测量。
中国移动 LTE无线参数设置指导优化手册 华为分册

中国移动TD-LTE无线参数设置指导优化手册-华为分册(征求意见稿)目录TABLE OF CONTENTS1 前言1.1 关于本书1.1.1目的本文主要介绍了华为TD-LTE系统版本的各个专题的相关参数,对参数进行介绍和分析,旨在帮助读者理解和使用系统中的参数,提高系统性能。
1.1.2读者对象本手册适用于TD-LTE系统的基本概念有一定认识的华为公司内部工程师。
1.1.3内容组织本手册是基于TD-LTE产品版本的参数介绍,其内容组织如下:第一章:对本手册的目的,读者对象,内容组织进行介绍。
第二章上行资源分配:介绍Sounding RS资源分配和上行调度的参数配置及调整影响。
第三章上行ICIC:介绍上行ICIC相关参数配置及其调整影响。
第四章下行资源分配:介绍PUCCH资源分配、下行CQI调整、下行调度和下行物理控制信道的参数配置及调整影响。
第五章下行ICIC:介绍下行ICIC相关参数的配置及其调整影响。
第六章下行MIMO:介绍下行MIMO(含Beamforming)与CQI模式的参数配置方法及其调整的影响。
第七章移动性管理:介绍切换、重选的参数配置及其调整影响。
第八章LC(过载控制):介绍负载控制算法、随机接入控制算法、系统消息SIB映射、移动性负载平衡算法、准入控制算法的参数配置及其调整影响。
第九章功控算法:介绍影响上行功率控制算法、下行功率控制算法的相关参数及其调整影响。
第十章信道配置&链路控制:介绍影响DRX控制算法、上行定时控制算法、上行无线链路检测算法的相关参数及其调整影响。
第十一章数传算法:介绍影响AQM算法、TCP Agent算法的相关参数及其调整影响。
第十二章传输TRM算法: 介绍影响LMPT接口板下行流控算法、TRM算法的相关参数及其调整影响。
第十三章SON:介绍影响ANR算法、ICIC自组织模式选择算法、MRO算法的相关参数及其调整影响。
1.1.4撰写和评审记录1.1.5参考文献1)< LTE eRAN2 2 性能参数分册>2)<V100R005C00B009 离线MML>3)<LTE TDD eRAN 参数配置规则>4)< -DBS3900 LTE TDD 产品文档-(V100R005C00_01).chm>1.1.6本文的约定和说明本文重点关注和性能相关的参数:(基于M2000平台,以R版本为基础,缺省配置带宽为20MHz,)本文对应的产品版本请参看修订记录,未作特别说明的参数均是该版本的参数。
LTE系统的网络优化方法与案例

LTE系统的网络优化方法与案例LTE(Long Term Evolution)是第四代移动通信技术,具有更高的峰值终端速率、更低的时延和更好的系统容量,能够更好地满足日益增加的移动宽带数据业务需求。
然而,在实际应用中,由于网络复杂性和用户需求的多样性,LTE系统的网络优化仍然是一个重要的挑战。
下面将介绍LTE系统的网络优化方法以及一些优化案例。
一、LTE系统的网络优化方法1.频谱资源优化频谱资源是LTE系统的宝贵资源,优化频谱使用效率对于提高用户体验很重要。
通过有效地分配和管理频谱资源,可以提高系统容量和覆盖范围。
一些常见的频谱资源优化方法包括:-优化载波配置和带宽分配,根据实际需求对不同载波进行合理配置,避免资源浪费;-优化频谱重用技术,合理选择重用模式和距离边界,减少干扰;-引入高阶调制和波束赋形等技术,提高频谱利用率。
2.数据传输优化-使用调度算法来优化资源分配,根据用户的实际需求和网络条件,合理分配资源;-使用流量控制技术来控制网络拥塞,避免数据丢失和时延增加;-使用拥塞控制技术来调整传输速率,减少干扰和时延。
3.邻区优化-优化邻区规划,根据实际需求和网络条件选择合适的邻区关系;-优化邻区间距,避免干扰区域的重叠;-优化邻区参数设置,调整切换参数和邻区重选参数,提高切换效率。
4.基站布局优化基站布局的合理性对LTE系统的性能起着决定性作用。
一些常见的基站布局优化方法包括:-预测和模拟技术,通过场地勘查和模拟分析来选择最佳的基站位置;-覆盖调试技术,通过实际测试和调整来优化基站的干扰覆盖和服务范围;-小区参数优化,调整小区配置和射频参数,提高系统容量和覆盖范围。
二、LTE系统网络优化案例1.AT&T的LTE覆盖优化案例AT&T是美国一家大型移动通信运营商,它通过对LTE网络进行频谱规划和小区优化,成功提高了网络覆盖和用户体验。
他们采用了预测和模拟技术来选择合适的基站位置,并通过调整覆盖范围和信号干扰来优化小区布局。
TDD_LTE网络优化常用参数介绍(华为设备)

A4事件
• A4事件用于触发异频切换。当邻区质量高于指定门限时UE上报A4事件。eNB收到A4后进行切 换判决,判决公式如下:
• 触发条件:Mn + Ofn + Ocn – Hys > Thresh • 取消条件:Mn + Ofn + Ocn + Hys < Thresh
信道配置&链路控制: 介绍影响DRX控制 算法、上行定时控制 算法、上行无线链路 检测算法的相关参 数
数传算法:介绍影响 AQM算法、TCP Agent算法的相关 参数
传输TRM算法: 介绍 影响LMPT接口板下 行流控算法、TRM算 法的相关参数
SON:介绍影响ANR 算法、ICIC自组织模 式选择算法、MRO 算法的相关参数
• Ms:服务小区的测量结果;Ofs:服务小区的特定频率偏置,默认为0,同频切换可不考虑
• Ocs:服务小区的特定小区偏置,通常为0
• Hys:A3事件迟滞,在测量控制中下发(hysteresis)。由MOD INTRARATHOQCI中的同频切 换幅度迟滞(IntraFreqHoA3Hyst)决定。
• Off:A3事件偏置,在测量控制中下发(a3-Offset)。由MOD INTRARATHOQCI中的同频切 换偏置(IntraFreqHoA3Offset)确定。由判决条件可以知,该值用于控制切换的难易程度。当 前版本实际取值范围是-15db~15db,取正值会增加A3事件的触发难度而延迟切换,延迟切换 容易引起掉话;反之会降低事件触发难度而导致过早切换,如果偏置设的过小容易引起乒乓
第1章 参数综述 第2章 切换参数 第3章 下行功率参数 第4章 传输模式修改 第5章 PDCCH符号数修改
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
华为LTE 重要指标参数优化方案优化无线接通率1、下行调度开关&频选开关此开关控制是否启动频选调度功能,该开关为开可以让用户在其信道质量好的频带上传输数据。
该参数仅适用于FDD及TDD。
MODCELLALGOSWITCH:LOCALCELLID=1,DLSCHSWITCH=FreqSelSwitch-1;2、下行功控算法开关&信令功率提升开关用于控制信令功率提升优化的开启和关闭。
该开关打开时,对于入网期间的信令、发生下行重传调度时抬升其PDSCH的发射功率。
该参数仅适用于TDD。
MODCELLALGOSWITCH:LOCALCELLID=1,DLPCALGOSWITCH=SigPowerIncre aseSwitch-1;3、下行调度开关&子帧调度差异化开关该开关用于控制配比2下子帧3和8是否基于上行调度用户数提升的策略进行调度。
当开关为开时,配比2下子帧3和8采取基于上行调度用户数提升的策略进行调度;当开关为关时,配比2下子帧3和8调度策略同其他下行子帧。
该参数仅适用于TDD。
MODCELLALGOSWITCH:LOCALCELLID=1,DLSCHSWITCH=SubframeSchDiffS witch-1;4、下行调度开关&用户信令MCS增强开关该开关用户控制用户信令MCS优化算法的开启和关闭。
当该开关为开时,用户信令MCS优化算法生效,对于FDD,用户信令MCS与数据相同,对于TDD,用户信令MCS参考数据降阶;当该优化开关为关时,用户信令采用固定低阶MCS。
该参数仅适用于FDD及TDD。
MODCELLALGOSWITCH:LOCALCELLID=1,DLSCHSWITCH=UeSigMcsEnhanceS witch-1;5、下行调度开关&SIB1干扰随机化开关该开关用于控制SIB1干扰随机化的开启和关闭。
当该开关为开时,SIB1可以使用干扰随机化的资源分配。
该参数仅适用于TDD。
CELLALGOSWITCH:LOCALCELLID=1,DLSCHSWITCH=SIB1InterfRandSw itch-1;6、上行调度开关&上行接入用户调度优化开关该开关用于控制上行接入用户调度优先级提升(上行接入信令如Message5、RRC Connection Reconfiguration Complete等信令的调度优先级提升)功能的打开与关闭。
如果开关为开,上行接入用户调度优先级提升功能打开;如果开关为关,上行接入用户调度优先级提升功能关闭。
该参数仅适用于FDD及TDD。
MODCELLALGOSWITCH:LOCALCELLID=1,ULSCHSWITCH=UlRaUserSchOptSw -1;7、IRC算法开关&PUCCH IRC算法开关PRACH信道MRC/IRC自适应功能为开时,可以降低PRACH信道虚警,改善RACH信道接入成功率、切换成功率、重同步成功率和重建成功率;但也会使弱覆盖区域用户有机会尝试接入网络,从而影响RRC建立成功率。
CELLALGOSWITCH:LOCALCELLID=1,IRCSWITCH=PucchIrcSwitch-1;8、上行调度扩展开关&入网阶段的上行频选优化该参数用于控制入网阶段是否基于Interf值做上行频选调度。
当开关打开时,表示入网阶段基于Interf值做上行频选;当开关关闭时,表示入网阶段基于SINR做上行频选。
该参数需在ULFSSAlgoSwitch打开时打开。
该参数仅适用于TDD。
MODCELLALGOSWITCH:LOCALCELLID=1,ULSCHEXTSWITCH=UlFssOptForAt tach-1;9、上行调度扩展开关&上行信令主动调度该开关用于控制上行信令主动调度功能的打开与关闭。
当开关打开后,如果判断下行正确调度的数据是必须有上行信令反馈的控制面信令,且在一定时间内未收到上行信令反馈,则触发一次上行的主动调度。
该参数仅适用于FDD及TDD。
MODCELLALGOSWITCH:LOCALCELLID=1,ULSCHEXTSWITCH=SrbProbeSchSw itch-1;10、T302定时器(秒)表示当UE发起的RRC连接建立请求(RRCConnectionRequest)被拒绝后,再次发送RRC连接建立请求需要等待的时间长度。
该定时器在UE收到RRC连接拒绝(RRCConnectionReject)消息时开启,在UE进入RRC连接状态或UE进行小区重选(cell re-selection)时停止。
该参数仅适用于FDD及TDD。
MOD RRCCONNSTATETIMER:T302=2;11、过滤重复RRCConnReq消息定时器(秒)该参数表示eNodeB过滤重复RRC Connection Request消息使用的定时器长度,eNodeB实际采用的定时器长度为T300 + FilterReptRrcConnReqTimer。
MOD FILTERREPTRRCCONNREQTIMER=5;12、UU消息并发开关该参数用于控制在安全模式激活和重配流程中是否采用UU消息并发模式。
如果该参数配置为打开,eNodeB使用并发模式;配置为关闭,则eNodeB使用串行模式。
该参数仅适用于FDD及TDD。
MOD GLOBALPROCSWITCH:UUMSGSIMULSENDSWITCH=ON;13、协议消息优化开关&VoLTE X2切换时延优化开关VoLTE X2切换时延优化开关:当开关打开时,X2切换的目标eNB 收到VoLTE UE切换完成消息时,开始发送QCI1上行数据。
当开关关闭时,X2切换的目标eNB收到MME PATH SWITCH REQUEST ACKNOWLEDGE消息后,开始发送QCI1上行数据。
该参数仅适用于FDD及TDDMODGLOBALPROCSWITCH:PROTOCOLMSGOPTSWITCH=VolteX2HoDelayOptSw itch-0;14、RRC连接建立请求统计开关&RRC连接惩罚统计开关RRC连接建立请求统计开关:当开关打开时,RRC连接建立成功率(包含重发)会提升。
MODGLOBALPROCSWITCH:RRCCONNREQSTATSWITCH=RrcConnPunishStatSw itch-1;15、检测算法开关&CQI可靠度优化开关开关打开,在干扰场景下可以识别出更多的误检CQI,并使用历史CQI值填充;开关关闭,不会识别误检的CQI。
该参数仅适用于FDD 及TDD。
MODCELLALGOSWITCH:LOCALCELLID=1,DETECTIONALGOSWITCH=CqiRelia bleSwitch-1;16、SRI轻负载门限该参数是SRI资源轻负载状态的判决门限。
PUCCH资源分配算法将根据小区接入的用户数和此参数做比较,来判断SRI资源是否为轻负载状态。
MOD CELLPUCCHALGO:LOCALCELLID=1,SRILOWLOADTHD=10;17、SRI算法开关&语音用户SRI自适应保持开关该参数用于控制语音用户在SRI资源调整期间的SRI周期自适应保持功能。
当参数开关打开,则表示SRI资源调整期间语音用户的SRI周期按照自适应负载来分配,少用户场景下,自适应负载SRI 周期小于固定分配的SRI长周期,可以使得SRI调整期间接入的语音用户的MOS分得到提。
MODCELLPUCCHALGO:LOCALCELLID=1,SRIALGOSWITCH=SriAdaptiveHold ForVoIPSW-1;18、SRI算法开关&基于语音的SRI周期自适应优化开关用于控制PUCCH SRI的L1检测增强算法是否开启。
当开关配置为ON(开)时,表示小区开启PUCCH SRI检测增强算法,PUCCH Format1检测采用优化的干扰噪声估计算法,可更有效的抑制SRI虚警;当开关配置为OFF(关)时,表示小区不开启PUCCH SRI的L1检测增强算法,PUCCH Format1采用原算法解调。
该参数仅适用于FDD 及TDD。
MODCELLPUCCHALGO:LOCALCELLID=1,SRIALGOSWITCH=SriDetectEnhanc eSW-1;19、公共控制信令聚集级别该参数表示公共信令聚集级别。
当切换成功率提升优化开关(HOSuccRateBoostOptSwitch)打开时,切换的RAR发生重发时其PDCCH聚集级别会调整为8。
MOD CELLPDCCHALGO:LOCALCELLID=XX,COMSIGCONGREGLV=XX;20、功率攀升步长(分贝)该参数表示前导功率攀升步长。
PRACH经过多次接入都没有接入成功,就需要相应增加功率步长,保证用户的成功接入。
MODRACHCFG:LOCALCELLID=1,PWRRAMPINGSTEP=DB4_PWR_RAMPING_STEP ;21、RRC连接惩罚门限对于存在异常终端频繁RRC接入场景,该参数配置的越小,达到RRC连接惩罚门限越容易,从而导致eNodeB容易下发RRC连接拒绝,从而避免UE频繁接入带来的资源消耗,但会导致该UE重新接入网络的时延增大;对于存在异常终端频繁RRC接入场景,该参数配置的越大,达到RRC连接惩罚门限越困难,从而导致eNodeB不容易下发RRC连接拒绝,UE频繁接入将带来的更多的资源消耗。
22、低优先级重选门限值(2分贝)该参数配置的越小,使得UE选择该频点小区的难度减小,降低该频点小区的接入成功率;该参数配置的越大,使得UE选择该频点的小区的难度增大,提高该频点小区的接入成功率。
MODGERANNFREQGROUP:LOCALCELLID=1,BCCHGROUPID=0,THRESHXLOW=13 ;23、SRI算法开关&SRI检测增强算法开关用于控制PUCCH SRI的L1检测增强算法是否开启。
当开关配置为ON(开)时,表示小区开启PUCCH SRI检测增强算法,PUCCH Format1检测采用优化的干扰噪声估计算法,可更有效的抑制SRI虚警;当开关配置为OFF(关)时,表示小区不开启PUCCH SRI的L1检测增强算法,PUCCH Format1采用原算法解调。
该参数仅适用于FDD 及TDD。
MODCELLPUCCHALGO:LOCALCELLID=1,SRIALGOSWITCH=SriDetectEnhanc eSW-1;24、公共控制信令聚集级别该参数表示公共信令聚集级别。
当切换成功率提升优化开关(HOSuccRateBoostOptSwitch)打开时,切换的RAR发生重发时其PDCCH聚集级别会调整为8。