变频一拖一,五台联动恒压供水控制系统
变频恒压供水系统的构成及原理

变频恒压供水系统的构成及原理一、变频恒压供水系统的构成及原理变频恒压供水控制系统通过测到的管网压力,经变频器的内置PID调节器运算后,调节输出频率,实现管网的恒压供水。
变频器的频率超限信号(一般可作为管网压力极限信号)可适时通知PLC进行变频泵逻辑切换。
为防止水锤现象的产生,泵的启停将联动其出口阀门。
系统工作原理间图如下所示。
假设整个系统由四台水泵,一台变频器,一台PLC 和一个压力变送器及若干辅助部件构成。
各部分功能如下:安装于供水管道上的压力变送器将管网压力转换成1—5伏的电信号;变频调速器用于调节水泵转速以调节流量;PLC用于逻辑切换。
此外,上述系统还配备了外围辅助电路,以保障自动控制系统出现故障时可通过人工调节方式维持系统运行,保证连续生产。
二、设备选型说明变频恒压供水系统主要由变频控制柜、压力传感器、水泵等组成。
变频控制柜由断路器、变频器、接触器、中间继电器、PLC等组成。
1. 供水系统选用原则(1)蓄水池容量应大于每小时最大供水量。
(2)水泵扬程应大于实际供水高度。
(3)水泵流量总和应大于实际最大供水量。
(4)变频控制柜选型:用户可根据供水量和供水高度确定水泵型号及台数,然后对控制柜进行选型。
2. 变频器根据工艺要求,建议配用ABB ACS600系列变频器。
ACS 600系列变频器是ABB 公司采用直接转矩控制(DTC)技术,结合诸多先进的生产制造工艺推出的高性能变频器。
它具有很宽的功率范围,优良的速度控制和转矩控制特性,完整的保护功能以及灵活的编程能力,较高的可靠性和较小的体积。
主要技术数据:功率范围:2.2-3000kW电源电压:380/400/415/440/460/480/500VAC 3相±10%;电源频率:48-63Hz控制连接:2个可编程的模拟输入(AI);1个可编程的模拟输出(AO);5个可编程的数字输入(DI);2个可编程的数字输出(DO)。
连续负载能力:150% In,每10分钟允许1分钟串行通讯能力:标准的RS—485接口可使变频器方便地与计算机连接。
变频器恒压供水参数设置教程

变频器恒压供水参数设置教程1. 引言变频器是一种用于控制电机转速的设备,在水泵系统中被广泛应用于恒压供水控制。
通过合理设置变频器的参数,可以实现稳定的水压控制,提高系统的效率和节能性。
本教程将介绍变频器恒压供水参数设置的步骤和注意事项。
2. 变频器参数设置步骤2.1 系统参数设置首先,我们需要设置一些基本的系统参数,包括电源频率、电机功率和变频器型号。
这些参数将影响后续的参数设置。
2.2 水泵参数设置在这一步中,我们需要根据水泵的额定流量和扬程等参数,以及系统的实际需求,设置变频器的水泵参数。
具体的步骤如下:•输入水泵额定流量和扬程,设置变频器的额定输出电流和频率;•设置最大输出频率和最大输出电流,以保证变频器在运行时不会超出额定范围;•根据实际需求,设置不同的工作模式,如常规模式、节能模式等。
2.3 PID参数调整PID为比例、积分、微分的缩写,是一种常用的控制算法。
在恒压供水控制中,我们可以通过调整PID参数来实现更精确的控制。
具体的步骤如下:•首先,将PID控制器设为手动模式,并将比例系数、积分时间和微分时间设置为一个初始值;•运行系统,观察实际水压与设定水压之间的偏差;•根据偏差的大小,逐步调整PID参数,使得实际水压与设定水压更接近;•反复进行以上步骤,直到达到满意的控制效果。
2.4 其他参数设置除了上述的系统参数、水泵参数和PID参数,还有一些其他的参数也需要设置,如过载保护参数、故障报警参数等。
根据实际需求,逐个设置这些参数,以确保系统的安全和可靠运行。
3. 注意事项在进行变频器参数设置时,需要注意以下几点:1.确保变频器的电源供应稳定,并且符合要求的频率和电压;2.在设置水泵参数时,务必参考水泵的技术手册,以确保参数的准确性;3.在进行PID参数调整时,需要逐步调整,避免一次性调整过大,引起系统不稳定;4.在设置其他参数时,要根据系统的实际需求进行合理设置,避免出现故障或不必要的报警。
变频恒压供水控制系统方案(定稿)

一、供水系统现状及要求我公司供水系统现有深井潜水泵一台,流量,扬程,潜水泵深度,理论出水压力,管道泵一台,流量,扬程,理论出水压力,蓄水池 .其中:深井潜水泵从水井抽水供公司使用,管道泵从蓄水池抽水供公司使用. 文档来自于网络搜索⒈正常生产时,以深井潜水泵工作为主,管道泵作为供水不足时地补充;⒉不生产只供生活和绿化用水时,以管道泵工作为主,深井潜水泵作为供水不足时地补充;⒊蓄水池地水有地深井潜水泵补充.由于公司用水量是动态地,用水量、供水量没有准确地标准衡量,供水不足或供水过剩地情况时有发生.而用水和供水之间地不平衡集中反映在供水地出水压力上,即用水多而供水少,则压力低;用水少而供水多,则压力高.为保持供水压力地恒定,使供水和用水之间保持平衡,即用水多时供水也多,用水少时供水也少,从而提高供水地质量.文档来自于网络搜索变频恒压供水是较为理想和先进地方式.变频恒压供水地系统可以实现水泵电机无级调速,依据用水量地变化自动调节系统地运行参数,在用水量发生变化时保持水压恒定以满足用水要求,因此,将供水系统改造为变频恒压供水系统是当今最合理节水、节电、节省人力地节能型供水系统.文档来自于网络搜索二、供水系统控制方案根据公司供水地需求,我们将供水系统设置手动自动两种控制方式,控制柜上有手动自动选择开关.⒈手动控制:控制柜上有手动自动选择开关(开关选择手动控制),通过控制柜上地启停按钮直接启停相应地水泵;深井潜水泵、水池水泵可单独工频运行,或两台同时开启.文档来自于网络搜索⒉自动控制:设置有自动模式一(生产时供水)、自动模式二(不生产只供生活和绿化用水)自动模式一控制过程:以深井泵变频恒压工作为主泵,给水泵工作为辅泵为系统供水.当深井泵变频器工作在工频运转时供水压力达不到设定出水压力时,自动开启给水泵补充供水量,如果供水压力达到设定压力时,则将水池水泵关掉,仍然靠深井泵调节变频恒压工作频率来稳定系统压力.文档来自于网络搜索当水池水位低于下限时,打开液位开关,由深井泵补充蓄水池水,同时供系统用水.当水池水位达到水位上限,关闭液位开关.文档来自于网络搜索自动模式二控制过程:以给水泵变频恒压工作为主泵,深井泵工作为辅泵为系统供水.当给水泵变频器工作在工频运转时供水压力达不到设定地出水压力时,自动开启深井泵补充供水量,如果供水压力达到设定压力时,则将深井泵关掉,仍然靠给水泵调节变频恒压工作频率来稳定系统压力.文档来自于网络搜索当水池水位低于下限时,自动关闭水池水泵,打开液位开关,打开深井泵,由深井泵补充蓄水池水,同时供系统用水.当水池水位达到水位上限,关闭液位开关.关闭深井泵,打开给水泵.文档来自于网络搜索在补水是可能出现地情况:由深井泵补充蓄水池水,同时供系统用水,压力仍达不到,继续打开打开给水泵.文档来自于网络搜索三、控制原理在出水管段加装远传压力变送器,信号接入微电脑控制器,控制器地显示器可直观显示,设定压力,出水压力,电机工作频率等参数,根据反馈压力信号,智能实时调节电机地运行速度及运行台数;文档来自于网络搜索液位变送器地传感器部分可直接投入到液体中,信号接入微电脑控制器,控制器地显示器可直观显示水位地高低(厘米),微电脑控制器,根据设定地参数,进行自动控制和高、低水位报警.文档来自于网络搜索四、变频恒压供水控制系统主要元件及费用:⒈KW、变频器各一台,最好是两台;⒉液位变送器一个,液位开关一个⒊远传压力变送器一只;⒋微电脑控制器一台,显示仪表一组;⒌断路器,接触器、电缆线等附件一批.⒍控制柜一台变频恒压供水控制系统改造费用万元五、实施时间与新厂区供水系统管道安装调试时间同步进行.。
变频恒压供水控制系统设计

一.摘要变频调速是一种新兴的技术,将变频调速技术用于供水控制系统中,具有高效节能、水压恒定等优点。
随着社会经济的发展,绿色、节能、环保已成为社会建设的主题。
对于一个城市的建设,供水系统的建设是其中重要的一部分,供水的可靠性、稳定性、经济性直接影响到居民的生活质量。
近年来,随着自动化技术、控制技术的发展,以及这些技术在供水系统的应用,高性能、高节能的变频恒压控制的供水系统已成为现在城市供水管理的必然趋势。
本次课程设计采用CPM1A PLC控制器结合富士变频器控制两台水泵的各种转换,实现变频恒压供水系统的功能,并且实现故障转换与报警等保护功能,使得系统控制可靠,操作方便。
二.设计要求一楼宇供水系统,正常供水量为30m3/小时,最大供水量40m3/小时,扬程24米。
采用变频调速技术组成一闭环调节系统,控制水泵的运行,保证用户水压恒定。
当用水量增大或减小时,水泵电动机速度发生变化,改变流量,以保证水压恒定。
要求设计实现:⑴设二台水泵。
一台工作,一台备用。
正常工作时,始终由一台水泵供水。
当工作泵出现故障时,备用泵自投。
⑵二台泵可以互换。
⑶给定压力可调。
压力控制点设在水泵出口处。
⑷具有自动、手动工作方式,各种保护、报警装置。
采用OMRON CPM1APLC、富士变频器完成设计。
三.方案的论证分析传统的小区供水方式有:⑴恒速泵加压供水方式该方式无法对供水管网的压力做出及时的反应,水泵的增减都依赖人工进行手工操作,自动化程度低,而且为保证供水,机组常处于满负荷运行,不但效率低、耗电量大,而且在用水量较少时,管网长期处于超压运行状态,爆损现象严重,电机硬起动易产生水锤效应,目前较少采用。
⑵气压罐供水方式气压罐供水具有体积小、技术简单、不受高度限制等特点,但此方式调节量小、水泵电机为硬起动且起动频繁,对电器设备要求较高、系统维护工作量大,而且为减少水泵起动次数,停泵压力往往比较高,致使水泵在低效段工作,也使浪费加大,从而限制了其发展。
恒压供水变频器设置方法

恒压供水变频器设置方法
一、变频器的设置方法
1.首先配置变频器,电源选择开关将控制器接在电源上。
将输入电压
调节至控制器指定电压,安装电源线互感器。
2.接线安装完成后,检查电源线是否良好,确保有足够的电流供应,
用电测试仪测试电源线的阻抗平衡,确保正确接线。
3.从控制器前面板上设置输出频率,输出频率要与电机的额定值相一致,选择合适的输出方式,以外部电压调节模式为例,把外部电压与输出
频率曲线的起始点和终止点对应起来,并设置当外部电压大于指定的值时,输出频率不再增加。
4.选择输出模式,设置运行控制,如设定运行控制点,并确定最大频率、最小频率,分辨率,启动模式,增减频率等参数。
5.设置电机保护功能,包括过流、过载、过温、超速保护,设置电机
保护范围和触发时间,建议使用控制器设定的默认值,如有必要,建议根
据负荷的特性更改参数值。
6.在变频器上设置恒压供水参数,将并联电磁阀和分支电磁阀的启用
信号线接入变频器,将外部压力变送器的输出信号线接入变频器,调整电
压补偿和频率补偿。
变频恒压供水控制系统流程图原理

变频恒压供水控制系统流程图原理下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!1. 系统启动:操作人员打开电源,启动变频恒压供水控制系统。
变频恒压供水统使用说明书2

变频恒压供水控制设备用户手册一、概述随着变频技术的推广运用,人们的认识不断深入,传统的供水方式已无法真正保证系统长期可靠运行,已逐步被新兴的变频恒压供水系统所替代。
本系统采用先进的变频器(VVVF)以及专用的恒压供水控制器对管网压力进行控制,大大地简化了操作的复杂程度。
在自动工作状态下,用户在据需要的压力值进行设定后,通过专用的恒压供水控制器与变频器之间的相互控制,使管网压力始终保持在设定的压力值误差范围以内。
在对生活管网进行供水时,系统执行管网设定压力。
若为消防与生活共用系统,则平时执行生活管网供水压力,当消防信号到达控制柜时执行消防压力,消防信号撤消时继续执行生活压力。
系统具有重新上电后自动启动的功能,无需人员值守。
水泵处于无水情况下将自动停机。
二、分类标记变频恒压供水控制设备分类标记设备的型号编制中包括设备特征标记、消防工作压力、消防工作流量、消防泵台数等内容H水泵台数工作流量L/S。
工作压力MPa。
特征标记(参阅特征标记说明)特征标记说明三、原理框图如下:3.1 生活水泵组为两用一备形式的变频恒压供水控制设备示意图如下:3.2 生活水泵组为两用一备形式的变频恒压供水控制设备产品简介生活水泵组为两用一备形式的变频恒压供水控制设备由三台生活水泵、电控系统、远传压力表、阀门管路、共同底座等组成。
设备运行前,需根据供水所需要的压力值预先设定稳压压力值,打开所有阀门。
水泵手动运行时,通过控制柜面板直接启停水泵(具体参阅消防专用自动恒压给水控制柜操作说明)水泵自动运行时,通过远传压力表构成闭环调节系统,按照恒压供水控制器恒压\节能\节水的优化运行原则, 随着用水量的变化, 恒压供水控制器不断进行压力采样, 逻辑运算和人工神经元控制算法调节运算,自动控制三台水泵,从而实现恒压变量全自动供水。
四、系统性能特点1.系统运行过程中无功损耗小,功率因素高,一般可达0.85以上,运行效率为90%以上,系统基本处于经济运行状况。
变频恒压供水系统接线+工作原理+参数设置,再看不懂就没办法了!

变频恒压供水系统接线+工作原理+参数设置,再看不懂就没办法了!变频器恒压供水系统在工业生产和居民生活中的应用越来越广泛,但是很多的电力作业人员对变频器恒压供水系统的认识模糊,以至于在面对变频恒压供水系统故障时束手无策,明白变频恒压供水的原理是进行维修的前提。
下面以一个最基础的变频恒压供水系统来说明其工作原理。
一,变频恒压供水系统接线。
按接线图所示的电路, 连接空气开关,漏电开关,电源, 检查接线无误后, 合上空气开关, 变频器上电,数码管显示 0.0。
关掉电源,电源指示灯熄灭后,再连接电机、起停开关、远程压力表、限流电阻等,变频器和电动机接地端子可靠接地,并仔细检查。
压力表选用 YTZ-150电位器式远程压力表,安装在水泵的出水管上,该压力表适用于一般压力表适用的工作环境场所, 既可直观测出压力值, 又可以输出相应的电信号, 输出的电信号传至远端的控制器。
压力表有红、黄、蓝三根引出线。
二,压力表电气技术参数:电阻满量程:400Ω (蓝、红)零压力起始电阻值:≤ 20Ω (黄、红)满量程压力上限电阻值:≤ 360Ω (黄、红)接线端外加电压:≤ 6V (蓝、红)变频恒压供水系统接线三,变频器开环调试:检查接线无误后, 合上空气开关和漏电开关, 变频器上电, 数码管显示 0.0, 按 JOG 键, 检查水泵的转向,若反向,改变电机相序。
按运行键RUN,运行指示灯亮(绿色),顺时针方向旋转键盘旋钮,输出频率上升,观察压力表的压力指示,同时用万用表直流电压档测量变频器端子 VF 和 GND 之间电压值,随着变频器输出频率升高,压力增加,VF 和 GND 之间的反馈电压上升,记录下将要设定的恒定压力(比如 5公斤)对应的反馈电压值(比如 3.1V)。
按停车键 STOP,变频器减速停车。
四,变频器参数设定:F1.01出厂值为 0.0,设定为 1F1.23出厂值为 0,设定为 30.0F2.05出厂值为 0,设定为 1F2.19出厂值为 0,设定为 1F4.00出厂值为 0,设定为 1F4.06出厂值为 0,设定为 3.10按电机名牌设定电机参数:F1.21、F5.00~F5.04五,闭环变频恒压运行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
. . 增压泵变频一拖一,五台联动恒压供水控制系统
1.1 变频恒压供水系统的理论分析 1.1.1 电动机的调速原理 水泵电机多采用三相异步电动机,而其转速公式为:
式中:f表示电源频率,p表示电动机极对数,s表示转差率。 根据公式可知,当转差率变化不大时,异步电动机的转速n基本上与电源频率f成正比。连续调节电源频率,就可以平滑地改变电动机的转速。但是,单一地调节电源频率,将导致电机运行性能恶化。随着电力电子技术的发展,已出现了各种性能良好、工作可靠的变频调速电源装置,它们促进了变频调速的广泛应用。
1.1.2 变频恒压供水系统的节能原理 变频恒压供水系统的供水部分主要由水泵、电动机、管道和阀门等构成。通常由异步电动机驱动水泵旋转来供水,并且把电机和水泵做成一体,通过变频器调节异步电机的转速,从而改变水泵的出水流量而实现恒压供水的。因此,供水系统变频的实质是异步电动机的变频调速。异步电动机的变频调速是通过改变定子供电频率来改变同步转速而实现调速的。 在供水系统中,通常以压力或者流量为控制目的,常用的控制方法为阀门控制法和转速控制法。 阀门控制法是通过调节阀门开度来调节流量,水泵电机转速保持不变。其实质是通过改变水路中的阻力大小来改变流量,因此,管阻将随阀门开度的改变而改变,但扬程特性不变。由于实际用水中,需水量是变化的,若阀门开度在一段时间内保持不变,必然要造成超压或欠压现象的出现。 转速控制法是通过改变水泵电机的转速来调节流量,而阀门开度保持不变,是通过改变水的动能改变流量。因此,扬程特性将随水泵转速的改变而改变,但管阻特性不变。变频调速供水方式属于转速控制。其工作原理是根据用户用水量的变化自动地调整水泵电机的转速,使管网压力始终保持恒定,当用水量增大时电机加速,用水量减小时电机减速。 . . 2.2 变频恒压供水系统控制方案的确定 2.2.1控制方案的比较和确定 恒压变频供水系统主要有压力变送器、变频器、恒压控制单元、水泵机组以及低压电器组成。系统主要的任务是利用恒压控制单元使变频器控制一台水泵或循环控制多台水泵,实现管网水压的恒定和水泵电机的软起动以及水泵的变频和定频的切换,同时还要能对运行数据进行传输和监控。根据系统的设计任务要求,本系统采用如下方案: 选用ABB ACS510变频器+西门子SMART200系列PLC(包括变频控制、调节器控制)+人机界面+压力传感器 这种控制方式灵活方便。具有良好的通信接口,可以方便地与其他的系统进行数据交换,通用性强;由于PLC产品的系列化和模块化,用户可灵活组成各种规模和要求不同控制系统。在硬件设计上,只需确定PLC的硬件配置和I/O的外部接线,当控制要求发生改变时,可以方便地通过PC机来改变存贮器中的控制程序,所以现场调试方便。同时由于PLC的抗干扰能力强、可靠性高,因此系统的可靠性大大提高。该系统能适用于各类不同要求的恒压供水场合,并且与供水机组的容量大小无关。 这种控制方案既有扩展功能灵活方便、便于数据传输的优点,又能达到系统稳定性及控制精度的要求。
2.2.2变频器概述 变频恒压供水是在变频调速技术发展之后逐渐发展起来的,在早期,由于国外生产的变频器的功能主要限定在频率控制、 升降速控制、正反转控制、起制动控制、变压变频比控制及各种保护功能。应用在变频恒压供水系统中,变频器仅作为执行机构,为了满足供水量大小需求的不同时,保证管网压力恒定,需在变频器外部压力控制器和压力传感器,对压力进行闭环控制。从查阅的资料的情况来看,国外的恒压供水工程在设计时都采用一台变频器只带一台水泵机组的方式,几乎没有用一台变频器拖动多台水泵机组运行的情况,因而投资成本高。 但目前变频器技术已发展的较为成熟,变频器的成本也逐年下降,企业单位一般都会采用一台水泵机组配一台变频器的方式。
2.2.3 变频恒压供水系统的组成及原理图 PLC控制变频恒压供水系统主要有变频器、可编程控制器、压力变送器和现场的水泵机组一起组成一个完整的闭环调节系统,本系统的控制流程图如图2-1所示: . . 图2-1变频恒压供水系统控制流程图 从图中可看出,系统可分为:执行机构、信号检测机构、控制机构三大部分,具体为: (1)执行机构:执行机构是由5台水泵组成,它们用于将水供入用户管网,用以根据用水量的变化增加或减少投入电机的数量以及改变变频运行电机的转速,以维持管网的水压恒定。 (2)信号检测机构:在系统控制过程中,需要检测的信号包括管网水压信号、水池水位信号和保护液位及报警信号。管网水压信号反映的是用户管网的水压值,它是恒压供水控制的主要反馈信号。 水池水位信号反映蓄水池水量是否充足,以作为控制水源井的启停信号。 系统保护液位信号有效时,控制系统要对系统实施保护控制,以防止水泵空抽而损坏电机和水泵。此信号来自安装于进水口的无水检测传感器。 报警信号反映系统是否正常运行,变频器是否有异常。 (3)控制机构:供水控制系统分为动力配电柜、变频控制柜以及PLC控制柜。其中供水控制器是整个变频恒压供水控制系统的核心。供水控制器直接对系统中的压力、液位、报警信号进行采集,对来自人机接口和通讯接口的数据信息进行分析、实施控制算法,得出对执行机构的控制方案,通过变频调速器和接触器对执行机构(即水泵机组)进行控制;变频器是对水泵进行转速控制的单元,其跟踪供水控制器送来的控制信号改变调速泵的运行频率,完成对调速泵的转速控制。 根据用户用水量的不同,本系统采用冬季和夏季两种供水模式。 . . 冬季用户用水量较小,低峰期约200m³/h,高峰期约400~500 m³/h,此时采用一大一小(任意选择一台55KW的大泵和一台30KW的水泵)组合方式即可满足用户用水。 当55KW水泵运行在50Hz时,其供水量仍不能达到用水要求,需要增加水泵机组时,首先将这台55KW的水泵固定频率运行,再启动30KW的水泵机组变频运行;高峰期退去,30KW的水泵会运行在一个较低的频率范围,如果运行频率低于减泵下限值,则需要退出30KW的这台水泵,55KW水泵变频运行,以此保证系统供水的压力的稳定。 夏季用户用水量波动较大,低峰期约400m³/h,高峰期约500~700 m³/h,此时采用一大两小(任意选择一台55KW的大泵和两台30KW的水泵)或者两台大泵组合方式均可满足用户用水。 当55KW水泵运行在50Hz时,其供水量仍不能达到用水要求,需要增加水泵机组时,首先将这台55KW的水泵固定频率运行,再启动30KW的水泵机组变频运行,若这台水泵运行在50HZ还不能满足用户用水需求,则启动另外一台30KW的水泵;高峰期退去,30KW的两台水泵根据先起先停的原则,按顺序退出,以此保证系统供水的压力的稳定。 作为一个控制系统,报警是必不可少的重要组成部分。由于本系统能适用于不同的供水领域,所以为了保证系统安全、可靠、平稳的运行,防止因电机过载、变频器报警、电网过大波动、供水水源中断造成故障,因此系统必须要对各种报警量进行监测,由PLC判断报警类别,进行显示和保护动作控制,以免造成不必要的损失。 变频恒压供水系统以供水出口管网水压为控制目标,在控制上实现出口总管网的实际供水压力跟随设定的供水压力。变频恒压供水系统的结构框图如图2-2所示:
PIDD/A变频器接触器水泵机组管道
压力变送器A/D给定
-管网压力
PLC
图2-2变频恒压供水系统框图 恒压供水系统通过安装在用户供水管道上的压力变送器实时地测量参考点的水压,检测管网出水压力,并将其转换为4—20mA的电信号,此检测信号是. . 实现恒压供水的关键参数。由于电信号为模拟量,故必须通过PLC的A/D转换模块才能读入并与设定值进行比较,将比较后的偏差值进行PID运算,再将运算后的数字信号通过D/A转换模块转换成模拟信号作为变频器的输入信号,控制变频器的输出频率,从而控制电动机的转速,进而控制水泵的供水流量,最终使用户供水管道上的压力恒定,实现变频恒压供水。
2.2.4 变频恒压供水系统控制流程 变频恒压供水系统控制流程如下: (l)系统通电,按照接收到有效的自控系统启动信号后,有运行使能的水泵(55KW大泵优先启动)M1启动工作,根据压力变送器测得的用户管网实际压力和设定压力的偏差由PLC进行PID算法调节变频器的输出频率,控制Ml的转速,当输出压力达到设定值,其供水量与用水量相平衡时,转速才稳定到某一定值,这期间Ml工作在调速运行状态。 (2)当用水量增加水压减小时,压力变送器反馈的水压信号减小,偏差变大,PLC的输出信号变大,变频器的输出频率变大,所以水泵的转速增大,供水量增大,最终水泵的转速达到另一个新的稳定值。反之,当用水量减少水压增加时,通过压力闭环,减小水泵的转速到另一个新的稳定值。 (3)当用水量继续增加,变频器的输出频率达到上限频率50Hz时,若此时用户管网的实际压力还未达到设定压力,并且满足增加水泵的条件时,在变频循环式的控制方式下,系统将在PLC的控制下自动投入水泵M2(30KW水泵)变速运行,同时变频泵M1做固定频率运行,系统恢复对水压的闭环调节,直到水压达到设定值为止。如果用水量继续增加,满足增加水泵的条件,将继续发生如上转换,将另一台30KW水泵M3投入。 (4)当用水量下降水压升高,变频器的输出频率降至下限频率,用户管网的实际水压仍高于设定压力值,并且满足减少水泵的条件时,系统将按顺序停止M2和M3这两台30KW 的水泵。
2.2.5 水泵切换条件分析 在上述的系统工作流程中,我们提到当变频泵己运行在上限频率,此时管网的实际压力仍低于设定压力,此时需要增加水泵来满足供水要求,达到恒压的目的;当变频泵和定频泵都在运行且变频泵己运行在下限频率,此时管网的实际压力仍高于设定压力,此时需要减少定频泵来减少供水流量,达到恒压的目的。那么何时进行切换,才能使系统提供稳定可靠的供水压力,同时使机组不过于频繁的切换呢? 由于电网的限制以及变频器和电机工作频率的限制,50HZ成为频率调节的