传热特征数

合集下载

传热效率计算公式

传热效率计算公式

传热效率计算公式传热效率是指在传热过程中所消耗的能量与所传递的能量之间的比值。

计算传热效率的公式可以通过不同传热方式来确定。

下面将分别介绍对流传热、辐射传热和传导传热的传热效率计算公式。

一、对流传热的传热效率计算公式:对流传热是指通过传热介质(如气体或液体)进行传热的方式。

对流传热效率通常由Nu数(Nusselt数)来表示,可以通过以下公式进行计算:Nu=h*L/λ其中,Nu为Nusselt数,h为对流传热系数(W/(m^2·K)),L为待传热表面的特征长度(m),λ为传热介质的导热系数(W/(m·K))。

传热效率η可以通过Nusselt数(Nu)和表面积比(A^*)来计算,公式如下:η=Nu*A^*/A其中,A^*为受热表面积,A为总表面积。

二、辐射传热的传热效率计算公式:辐射传热是指通过电磁波辐射进行传热的方式。

辐射传热效率可以通过以下公式计算:η=q/(σ*A*(T1^4-T2^4))其中,q为辐射传热速率(W),σ为斯特藩-玻尔兹曼常数(5.67×10^(-8)W/(m^2·K^4)),A为辐射表面积(m^2),T1和T2为被辐射表面和周围环境的温度(K)。

三、传导传热的传热效率计算公式:传导传热是指通过物质内部原子、分子之间的振动或传递方式进行传热的方式。

传导传热效率可以通过以下公式计算:η=(T1-T2)/(T1-T∞)其中,T1为热源温度(K),T2为待传热物体的温度(K),T∞为周围环境温度(K)。

综上所述,传热效率的计算公式取决于传热方式的不同。

通过对流传热、辐射传热和传导传热的计算公式的运用,可以有效地评估和分析传热系统的传热效率。

传热学-6 单相流体对流传热特征数关联式

传热学-6 单相流体对流传热特征数关联式

柱的外径 d
(3)体胀系数:理想气体
V
1 T
其它流体(查物性参数表)
6-3 自然对流传热
注意:
(1)竖圆柱按上表与竖壁用同一个关联式只限于以
下情况:
d H
35 GrH1 4
(2)对竖平板、竖圆柱和横圆柱对应的 c和 n 查P155表6-6
6-3 自然对流传热
② 均匀热流 Nu B(Gr Pr)m
液体被加热
ct
f
w
0.11
温度修正系数:
液体被冷却
ct
f
w
0.25
气体被加热
ct
Tf Tw
0.55
气体被冷却 ct 1
6-1 管内强迫对流传热
管长的影响:l / d 60 时,入口段影响可以忽 略,l / d 60 时,使用 cl 修正。
弯管的修正:
对于气体
cR
11.77
适用范围: Re f 104 ~ 1.2105, Prf 0.7 ~ 120
定性温度 : t f tf tf 2 为流体的进出口平均温度;
特征尺度: 管子内径d, 非圆管为当量直径de;
流体速度:平均温度下流动截面的平均速度υf 。
4A de P
6-1 管内强迫对流传热
换热时管内速度分布的畸变: 1-等温流; 2-冷却液体或加热气体; 3-加热液体或冷却气体
第六章 单相流体对流传热特征数关联式
1 、重点内容: ① 管内受迫对流换热 ② 纵掠平壁、外掠单管和管束的对流换热 ③ 大空间自然对流换热
2 、掌握内容:各对流换热实验关联式及适用 条件。
6-1 管内强迫对流传热
应用背景:
暖气管道 各类热水及蒸汽管道 换热器

传热学-第6章-单相对流传热的实验关联式

传热学-第6章-单相对流传热的实验关联式
4 6
0.25
0.14
10 Ref 1.75 10 ; 0.6 Prf 700; 适用参数范围:
定性温度:进出口截面流体平均温度的算术平均值 tf
L d
50
特征长度:管内径d
说明: (1) 非圆形截面的槽道,采用当量直径de 作为特征尺度; (2) 入口段效应则采用修正系数乘以各关联式; (3) 螺旋管中的二次环流的影响,也采用修正系数乘以 各关联式。 (4)短管修正
入口段长度
层流 紊流
l 0.05 RePr d
l 60 平均表面传热系数不需考虑入口效应 d
(3)热边界条件——均匀壁温和均匀热流两种 湍流:除液态金属外,两种条件的差别可不计 层流:两种边界条件下的换热系数差别明显。
(4)特征速度——取截面的平均流速,并通过流量获得
二、 影响管内对流换热的几个因素
二、管内强迫对流传热特征数关联式
换热计算时,先计算Re判断流态,再选用公式 1. 紊流——迪图斯-贝尔特(Dittus-Boelter)关联式:
Nuf 0.023Re Pr
0.8 f
n f
0.4 n 0.3
(tw tf ) (tw tf )
适用的参数范围: 104 Ref 1.2 105 ; 0.7 Prf 120;
y 0
t h t y tw

y 0
根据物理量场相似的定义
t h t y y0 tw
Ch Cl t h t y C tw
ChCl 1 C
二、 相似原理
相似原理主要包含以下内容:
物理现象相似的定义; 物理现象相似的性质; 相似特征数之间的关系; 物理现象相似的条件 。 (1)物理现象相似的定义 物理现象的相似以几何相似为前提。两个同类图形对应 尺度成同一比例,则这两个同类图形几何相似。几何相似的两 个图形中对应的空间点之间的距离必然成同一比例。 物理现象相似——同类物理现象之间所有同名物理量场都相 似,即同名的物理量在所有对应时间、对应地点的数值成比例。

传热单元数法(又称热效率-传热单元数法

传热单元数法(又称热效率-传热单元数法

Nu= f ( Re, Gr ) =
对流传热系数 无相变 强制对流 管内 圆 形 直 管 非 弯 圆 管 形 直 管 管外 管束 外的 垂直 流动 管 间 流 动 自然对流 有相变 蒸 气 冷 凝 液 体 沸 腾
继续
流 动 方 向
直列
正三角形错列
正方形错列
返回
流 动 方 向
流体在错列管束外流过 Nu = 0.33 Re0.6 Pr 0.33 流体在直列管束外流过
若冷流体为最小值流体: 若冷流体为最小值流体 可见: 若能得出热效率ε 的值, 便可求出T2或 可见 若能得出热效率ε 的值 便可求出 或t2 .
传热单元数NTU 二. 传热单元数 换热器的有效长度可以表示为: 可称为单元长度) 换热器的有效长度可以表示为 L=H倍数 (H可称为单元长度 倍数 可称为单元长度 在四条假设基础上: 在四条假设基础上
对流传热系数 无相变 强制对流 管内 圆 形 直 管 非 弯 圆 管 形 直 管 管外 管束 外的 垂直 流动 管 间 流 动 自然对流 有相变 蒸 气 冷 凝 液 体 沸 腾
继续
膜状冷凝
滴状冷凝
有利于减薄液膜厚度的因素: 有利于减薄液膜厚度的因素 1. 液膜两侧的温差⊿t 液膜层流时 若⊿t减小 冷凝速率减小 液膜两侧的温差⊿ 液膜层流时, 减小, 减小 冷凝速率减小, 液膜减薄; 液膜减薄 2.流体物性 密度 粘度 导热系数 冷凝潜热影响冷凝传热系数 密度, 粘度, 导热系数, 冷凝潜热影响冷凝传热系数; 流体物性 3.蒸气的流速和方向 与液流同向 α↑; 反向 α↓; 反向但速度 反向, 蒸气的流速和方向 与液流同向, 很大, 液膜被吹离壁面, 急剧增大; 很大 液膜被吹离壁面 α急剧增大 蒸气中不凝气体的含量高, 4.蒸气中不凝气体的含量高 α↓; 蒸气中不凝气体的含量高 返回 5.冷凝壁面的影响 冷凝壁面的影响

传热单元数法(又称热效率-传热单元数法

传热单元数法(又称热效率-传热单元数法

有相变
强制对流
自然对流
管内
管外
圆非弯 形圆管 直形 管直

管束 管 外的 间 垂直 流 流动 动
蒸液 气体 冷沸 凝腾
4-5-2对流传热过程的因次分析 一. 流体无相变时的强制对流过程
l -传热设备的特征尺寸
采用的因次分析方法:白金汉法 无因次准数的数目 i=n-m=7-4=3
Nu: 努赛尔特准数 Re: 雷诺准数 Pr: 普兰特准数 Gr: 格拉斯霍夫准数
4-4-4 传热单元数法(又称热效率-传热单元数法,即 -NTU法) 一、传热效率 1. 定义: 实际传热速率和理论上可能的
最大传热速率之比.
2. Qma:x 用最大可能的流体温度变化量来计算
WCP称为流体的热容量流率, 下标min表示两流体中热容量流率 较小者, 并将此流体称为最小值流体. 3. 热效率表达式:
二. 自然对流传热过程
直接写出三个准数 1 2 3 准数式为: 1 =(2 ,3 )
1

l
பைடு நூலகம்

Nu
3

c p

Pr
3

l 3 2 gt 2
Gr
1

l

Nu

2

lu
Re
3

cp

Pr
Nu f ( Re, Gr )
Nu f ( Re, Pr)
(NTU)h
T2 dT T1 T t
(NTU)c
t2 dt t1 T t
均无因次, 称为传 热单元数.
即: L=Hh(NTU)h L=Hc(NTU)c
(NTU )h

传热单元数名词解释

传热单元数名词解释

传热单元数名词解释
传热单元数(NTU)是换热器热计算中的一个无量纲参数,表示冷热流体间换热过程的难易程度,也是衡量换热器传热能力的参数。

传热单元数(NTU)的计算公式为:NTU = \frac{kA}{({qm_cp})_{min}}。

其中,k为平均传热系数,A为传热面积,qm_cp为最小质量流量和等压比热容的乘积。

在设计换热器时,换热要求越高,所需传热面积越大,传热单元数也越大。

对于操作中的换热器,传热单元数越大,表明其性能越好。

以上内容仅供参考,如需更多信息,建议查阅相关文献或咨询相关学者。

传热学nu,re,pr,gr表达式含义

传热学nu,re,pr,gr表达式含义

传热学是研究热量如何通过传导、对流和辐射进行传递的学科。

在传热学中,有一些常用的表达式,如Nu数、Re数、Pr数和Gr数,它们分别表示不同的传热特性。

本文将对这些表达式的含义进行详细的介绍。

一、 Nu数的含义Nu数是Nusselt数的缩写,它表示流体中的对流传热能力。

Nu数的计算公式为:Nu = hL/k其中,h是对流传热系数,L是特征长度,k是流体的导热系数。

Nu 数是对流传热与导热的比值,它越大表示对流传热能力越强,反之则表示导热能力较强。

Nu数的大小与流体的性质、流动状态和流体与固体界面的情况有关。

二、 Re数的含义Re数是Reynolds数的缩写,它表示流体的流动状态。

Re数的计算公式为:Re = ρVD/μ其中,ρ是流体密度,V是流体流速,D是特征长度,μ是流体的动力黏度。

Re数反映了流体的惯性力与黏性力之间的比值,它的大小决定了流体的流动状态,当Re数较小时,流体呈现层流状态,当Re数较大时,流体呈现湍流状态。

Re数对流体的流动特性以及传热和传质过程都有重要影响。

三、 Pr数的含义Pr数是Prandtl数的缩写,它表示流体的热传导能力与动力黏度之间的比值。

Pr数的计算公式为:Pr = μCp/κ其中,μ是动力黏度,Cp是定压比热,κ是流体的导热系数。

Pr数越大,流体的热传导能力越强,而动力黏度的影响越小,反之则动力黏度的影响越大。

Pr数的大小对对流传热和边界层的发展都有重要影响。

四、 Gr数的含义Gr数是Grashof数的缩写,它表示自然对流传热的能力。

Gr数的计算公式为:Gr = gβΔTL^3/ν^2其中,g是重力加速度,β是体积膨胀系数,ΔT是温度差,L是特征长度,ν是运动黏度。

Gr数的大小决定了自然对流传热的强弱,当Gr数较大时,自然对流传热能力越强,当Gr数较小时,传热能力较弱。

总结在传热学中,Nu数、Re数、Pr数和Gr数是常用的表达式,它们分别代表了对流传热能力、流体流动状态、热传导能力与动力黏度之间的比值以及自然对流传热的能力。

东南大学传热学名词解释分析题整理笔记.

东南大学传热学名词解释分析题整理笔记.

第一章1. 热传导物体各部分之间不发生相对位移,依靠分子、原子及自由电子等微观粒子的热运动而产生的热能传递。

2. 热流量单位时间内通过某一给定面积的热量。

3. 热对流指由于流体的宏观运动而引起的流体各部分之间发生相对位移,冷、热流体相互掺混所导致的热量传递过程。

4. 导热系数表征材料导热性能优劣的参数,数值上等于在单位温度梯度作用下物体内热流密度矢量的模。

取决于物质的种类和热力状态(温度和压力等)5. 对流换热流体流过固体表面时,对流和导热的联合作用,使流体与固体壁面之间产生热量传递的过程。

6. 辐射物体通过电磁波来传递能量的方式。

7. 热辐射物体因热的原因而发出辐射能的现象。

8. 辐射传热物体不断向空间发出热辐射,又不断吸收其他物体的热辐射,辐射与吸收过程的综合结果就造成了以辐射方式进行的物体间的热量传递。

9. 传热过程热量由壁面一侧的流体通过壁面传到另一侧流体中去的过程。

10. 传热系数表征传热过程强烈尺度的标尺,数值上等于冷热流体间温差1℃、传热面积 1 ㎡时的热流量的值。

11. 传热过程热阻面积热阻(见P14)第二章1. 温度场各个时刻物体中各点温度所组成的集合。

2. 稳态温度场物体中各点温度不随时间变化的温度场。

3. 非稳态温度场物体中各点温度随时间变化的温度场。

4. 均匀温度场物体中各点温度相同的温度场。

5. 一维温度场物体中各点温度只在一个坐标方向变化的温度场。

6. 二维温度场物体中各点温度只在二个坐标方向变化的温度场。

7. 等温面温度场中同一瞬间相同温度各点连成的面。

8. 等温线在任何一个二维截面上等温面表现为等温线。

9. 导热基本定律在导热过程中,单位时间内通过给定截面的导热量,正比于垂直该截面方向上的温度变化率和截面面积,而热量传递的方向则与温度升高的方向相反。

(傅里叶定律)10. 热流线一组与等温线处处垂直的曲线,通过平面上任一点的热流线与该点的热流密度矢量相切。

11. 热流通道相邻两条热流线之间所传递的热流量处处相等,相当于构成一个热流通道。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档