2015步步高理科数学选修4-1
2015年高考数学试题-选修4系列,解析版

1.(15年广东理科)如图1,已知AB 是圆O 的直径,4AB =,EC 是圆O 的切线,切点为C , 1BC =,过圆心O 做BC 的平行线,分别交EC 和AC 于点D 和点P ,则OD =图1【答案】8.【考点定位】本题考查直线与圆、直角三角形的射影定理,属于中档题.2.(15年广东文科)如图1,AB 为圆O 的直径,E 为AB 的延长线上一点,过E 作圆O 的切线,切点为C ,过A 作直线C E的垂线,垂足为D .若4AB =,C E =,则D A =.【答案】3考点:1、切线的性质;2、平行线分线段成比例定理;3、切割线定理. 3.(15年新课标2理科)如图,O 为等腰三角形ABC 内一点,⊙O 与ΔABC 的底边BC 交于M ,N 两点,与底边上的高AD 交于点G ,且与AB ,AC 分别相切于E ,F 两点。
(1)证明:EF ∥BC ; (2)若AG 等于⊙O的半径,且AE MN ==EBCF 的面积。
4.(15年新课标2文科)如图O 是等腰三角形AB C 内一点,圆O 与△ABC 的底边BC 交于M ,N 两点,与底边上的高交于点G ,且与AB ,AC 分别相切于E ,F 两点.(I )证明EFBC ;GAEFONDB C M(II )若AG 等于圆O 半径,且AE MN ==,求四边形EBCF 的面积.【答案】(I )见试题解析;(II考点:1.几何证明;2.四边形面积的计算. 5.(15年陕西理科)如图,AB 切O 于点B ,直线D A 交O 于D ,E 两点,C D B ⊥E ,垂足为C . (I )证明:C D D ∠B =∠BA ;(II )若D 3DC A =,C B =O 的直径.【答案】(I )证明见解析;(II )3. 【解析】试题分析:(I )先证C D D ∠B =∠BE ,再证D D ∠BA =∠BE ,进而可证C D D ∠B =∠BA ;(II )先由(I )知D B 平分C ∠BA ,进而可得D A 的值,再利用切割线定理可得AE 的值,进而可得O 的直径.试题解析:(I )因为DE 为圆O 的直径,则BED EDB ∠+∠=90, 又BC ⊥DE ,所以∠CBD+∠EDB=90°,从而∠CBD=∠BED. 又AB 切圆O 于点B ,得∠DAB=∠BED ,所以∠CBD=∠DBA.(II )由(I )知BD 平分∠CBA ,则=3BA AD BC CD=,又BC AB =所以4AC =,所以D=3A .由切割线定理得2=AD AB AE ×,即2=ADAB AE =6,故DE=AE-AD=3,即圆O 的直径为3.考点:1、直径所对的圆周角;2、弦切角定理;3、切割线定理.6.(15年陕西文科)如图,AB 切O 于点B ,直线AO 交O 于,D E 两点,,BC DE ⊥垂足为C . (I)证明:CBD DBA ∠=∠(II)若3,AD DC BC ==O 的直径.【答案】(I)证明略,详见解析; (II)3. 【解析】试题分析::(I)因为DE 是O 的直径,则90BED EDB ∠+∠=︒,又BC DE ⊥,所以90CBD EDB ∠+∠=︒,又AB 切O 于点B ,得DBA BED ∠=∠,所以CBD DBA ∠=∠;(II)由(I)知BD 平分CBA ∠,则3BA ADBC CD==,又BC =,从而AB =222AB BC AC =+, 解得4AC =,所以3AD =,由切割线定理得2AB AD AE =⋅,解得6AE =,故3DE AE AD =-=,即O 的直径为3.试题解析:(I)因为DE 是O 的直径, 则90BED EDB ∠+∠=︒又BC DE ⊥,所以90CBD EDB ∠+∠=︒ 又AB 切O 于点B , 得DBA BED ∠=∠ 所以CBD DBA ∠=∠ (II)由(I)知BD 平分CBA ∠, 则3BA ADBC CD==,又BC =,从而AB =所以4AC =所以3AD =,由切割线定理得2AB AD AE =⋅即26AB AE AD==, 故3DE AE AD =-=, 即O 的直径为3.考点:1.几何证明;2.切割线定理.7.(15年江苏)如图,在ABC ∆中,AC AB =,ABC ∆的外接圆圆O 的弦AE 交BC 于点D求证:ABD ∆∽AEB ∆【答案】详见解析考点:三角形相似1.(15年福建理科)已知0,0,0a b c >>>,函数()||||f x x a x b c =++-+的最小值为4. (Ⅰ)求a b c ++的值; (Ⅱ)求2221149a b c ++的最小值.A(第21——A 题)【答案】(Ⅰ) 4;(Ⅱ)87. 【解析】试题分析:(Ⅰ)由绝对值三角不等式得()||||f x x a x b c =++-+ 的最小值为|a |b c ++,故|a |4b c ++=,即a b c 4++= ;(Ⅱ)利用柯西不等式2222222123123112233()()()x x x y y y x y x y x y ++++≥++求解.试题解析:(Ⅰ)因为(x)|x ||x ||(x )(x )||a |f a b c a b c b c =++++?-++=++ 当且仅当a xb -#时,等号成立又0,0a b >>,所以|a b |a b +=+,所以(x)f 的最小值为a b c ++, 所以a b c 4++=.(Ⅱ)由(1)知a b c 4++=,由柯西不等式得()()22222114912+3+1164923a ba b c c a b c 骣骣琪琪++++炒创=++=琪琪桫桫,即222118497a b c ++ . 当且仅当1132231b ac ==,即8182,,777a b c ===时,等号成立所以2221149a b c ++的最小值为87.考点:1、绝对值三角不等式;2、柯西不等式.2.(15年新课标2理科)设a ,b ,c ,d 均为正数,且a + b = c + d ,证明: (1)若ab > cd>(2||||a b c d -<-的充要条件。
2015年高中数学步步高大一轮复习讲义(文科)选修4-4 坐标系与参数方程

选修4-4 坐标系与参数方程1.极坐标系(1)极坐标系的建立:在平面上取一个定点O ,叫做________,从O 点引一条射线Ox ,叫做________,再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就确定了一个极坐标系.设M 是平面内一点,极点O 与点M 的距离OM 叫做点M 的________,记为ρ,以极轴Ox 为始边,射线OM 为终边的角叫做点M 的极角,记为θ.有序数对(ρ,θ)叫做点M 的极坐标,记作M (ρ,θ).(2)极坐标与直角坐标的关系:把直角坐标系的原点作为极点,x 轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位,设M 是平面内任意一点,它的直角坐标是(x ,y ),极坐标为(ρ,θ),则它们之间的关系为x =______,y =________. 另一种关系为ρ2=________,tan θ=________. 2.简单曲线的极坐标方程 (1)直线的极坐标方程θ=α (ρ∈R )表示过极点且与极轴成α角的直线; ρcos θ=a 表示过(a,0)且垂直于极轴的直线; ρsin θ=b 表示过⎝⎛⎭⎫b ,π2且平行于极轴的直线; ρsin(α-θ)=ρ1sin(α-θ1)表示过(ρ1,θ1)且与极轴成α角的直线方程. (2)圆的极坐标方程ρ=2r cos θ表示圆心在(r,0),半径为|r |的圆; ρ=2r sin θ表示圆心在⎝⎛⎭⎫r ,π2,半径为|r |的圆; ρ=r 表示圆心在极点,半径为|r |的圆. 3.曲线的参数方程在平面直角坐标系xOy 中,如果曲线上任意一点的坐标x ,y 都是某个变量t 的函数⎩⎪⎨⎪⎧x =f (t ),y =g (t ).并且对于t 的每一个允许值上式所确定的点M (x ,y )都在这条曲线上,则称上式为该曲线的________________,其中变量t 称为________. 4.一些常见曲线的参数方程(1)过点P 0(x 0,y 0),且倾斜角为α的直线的参数方程为________________(t 为参数). (2)圆的方程(x -a )2+(y -b )2=r 2的参数方程为________________________(θ为参数). (3)椭圆方程x 2a 2+y 2b 2=1(a >b >0)的参数方程为________________(θ为参数).(4)抛物线方程y 2=2px (p >0)的参数方程为________________(t 为参数).1.在极坐标系中,直线ρsin(θ+π4)=2被圆ρ=4截得的弦长为________.2.极坐标方程ρ=sin θ+2cos θ能表示的曲线的直角坐标方程为____________________.3.已知点P (3,m )在以点F 为焦点的抛物线⎩⎪⎨⎪⎧x =4t 2,y =4t (t 为参数)上,则PF =________.4.直线⎩⎪⎨⎪⎧x =-1+t sin 40°,y =3+t cos 40°(t 为参数)的倾斜角为________.5.已知曲线C 的参数方程是⎩⎪⎨⎪⎧x =3t ,y =2t 2+1(t 为参数).则点M 1(0,1),M 2(5,4)在曲线C 上的是________.题型一 极坐标与直角坐标的互化例1 在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系.曲线C 的极坐标方程为ρcos(θ-π3)=1,M ,N 分别为C 与x 轴、y 轴的交点.(1)写出C 的直角坐标方程,并求M 、N 的极坐标;(2)设MN 的中点为P ,求直线OP 的极坐标方程.思维升华 直角坐标方程化为极坐标方程,只需把公式x =ρcos θ及y =ρsin θ直接代入并化简即可;而极坐标方程化为直角坐标方程要通过变形,构造形如ρcos θ,ρsin θ,ρ2的形式,进行整体代换.其中方程的两边同乘以(或同除以)ρ及方程两边平方是常用的变形方法.但对方程进行变形时,方程必须保持同解,因此应注意对变形过程的检验.在极坐标系中,已知圆ρ=2cos θ与直线3ρcos θ+4ρsin θ+a =0相切,求实数a 的值.题型二 参数方程与普通方程的互化例2 已知两曲线参数方程分别为⎩⎨⎧x =5cos θ,y =sin θ(0≤θ<π)和⎩⎪⎨⎪⎧x =54t 2,y =t(t ∈R ),求它们的交点坐标.思维升华 (1)参数方程化为普通方程常用的消参技巧有代入消元、加减消元、平方后再加减消元等.对于与角θ有关的参数方程,经常用到的公式有sin 2θ+cos 2θ=1,1+tan 2θ=1cos 2θ等.(2)在将曲线的参数方程化为普通方程时,还要注意其中的x ,y 的取值范围,即在消去参数的过程中一定要注意普通方程与参数方程的等价性.将下列参数方程化为普通方程.(1)⎩⎪⎨⎪⎧x =2t 21+t 2,y =4-2t21+t2(t 为参数);(2)⎩⎪⎨⎪⎧x =2-4cos 2θ,y =-1+sin 2θ(θ为参数).题型三 极坐标、参数方程的综合应用例3 在直角坐标平面内,以坐标原点O 为极点,x 轴的正半轴为极轴,建立极坐标系.曲线C 的极坐标方程是ρ=4cos θ,直线l 的参数方程是⎩⎨⎧x =-3+32t ,y =12t(t 为参数),M ,N分别为曲线C 、直线l 上的动点,求MN 的最小值.思维升华 涉及参数方程和极坐标方程的综合题,求解的一般方法是分别化为普通方程和直角坐标方程后求解.转化后可使问题变得更加直观,它体现了化归思想的具体运用.(2013·辽宁)在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系.圆C 1,直线C 2的极坐标方程分别为ρ=4sin θ,ρcos ⎝⎛⎭⎫θ-π4=2 2. (1)求C 1与C 2交点的极坐标;(2)设P 为C 1的圆心,Q 为C 1与C 2交点连线的中点.已知直线PQ 的参数方程为⎩⎪⎨⎪⎧x =t 3+a ,y =b 2t 3+1(t ∈R 为参数),求a ,b 的值.参数的几何意义不明致误典例:(10分)已知直线l 的参数方程为⎩⎨⎧x =12t ,y =22+32t(t 为参数),若以直角坐标系xOy 的O 点为极点,Ox 方向为极轴,选择相同的长度单位建立极坐标系,得曲线C 的极坐标方程为ρ=2cos(θ-π4).(1)求直线l 的倾斜角;(2)若直线l 与曲线C 交于A ,B 两点,求AB .易错分析 不明确直线的参数方程中的几何意义导致错误. 规范解答解 (1)直线的参数方程可以化为⎩⎪⎨⎪⎧x =t cos 60°,y =22+t sin 60°,[2分]根据直线参数方程的意义,直线l 经过点(0,22), 倾斜角为60°.[4分](2)直线l 的直角坐标方程为y =3x +22,[6分] ρ=2cos(θ-π4)的直角坐标方程为(x -22)2+(y -22)2=1,[8分]所以圆心(22,22)到直线l 的距离d =64. 所以AB =102.[10分] 温馨提醒 对于直线的参数方程⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数)来说,要注意t 是参数,而α则是直线的倾斜角.与此类似,椭圆参数方程⎩⎪⎨⎪⎧x =a cos φ,y =b sin φ的参数φ有特别的几何意义,它表示离心角.方法与技巧1.曲线的极坐标方程与直角坐标系的互化思路:对于简单的我们可以直接代入公式ρcos θ=x ,ρsin θ=y ,ρ2=x 2+y 2,但有时需要作适当的变化,如将式子的两边同时平方,两边同时乘以ρ等.2.参数方程化普通方程常用的消参技巧:代入消元、加减消元、平方后加减消元等,经常用到公式:cos 2θ+sin 2θ=1,1+tan 2θ=1cos 2θ.3.利用曲线的参数方程来求解两曲线间的最值问题非常简捷方便,是我们解决这类问题的好方法. 失误与防范1.极径ρ是一个距离,所以ρ≥0,但有时ρ可以小于零.极角θ规定逆时针方向为正,极坐标与平面直角坐标不同,极坐标与P 点之间不是一一对应的,所以我们又规定ρ≥0,0≤θ<2π,来使平面上的点与它的极坐标之间是一一对应的,但仍然不包括极点. 2.在将曲线的参数方程化为普通方程时,还要注意其中的x ,y 的取值范围,即在消去参数的过程中一定要注意普通方程与参数方程的等价性.A 组 专项基础训练1.(2013·江苏)在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =t +1,y =2t (t 为参数),曲线C 的参数方程为⎩⎪⎨⎪⎧x =2tan 2θ,y =2tan θ(θ为参数).试求直线l 和曲线C 的普通方程,并求出它们的公共点的坐标.2.已知曲线C 的参数方程为⎩⎪⎨⎪⎧x =sin α,y =cos 2α,α∈[0,2π),曲线D 的极坐标方程为ρsin(θ+π4)=- 2.(1)将曲线C 的参数方程化为普通方程; (2)曲线C 与曲线D 有无公共点?试说明理由.3.(2013·福建)在平面直角坐标系中,以坐标原点为极点,x 轴的非负半轴为极轴建立极坐标系,已知点A 的极坐标为(2,π4),直线l 的极坐标方程为ρcos(θ-π4)=a ,且点A 在直线l 上.(1)求a 的值及直线l 的直角坐标方程;(2)圆C 的参数方程为⎩⎪⎨⎪⎧x =1+cos α,y =sin α(α为参数),试判断直线l 与圆C 的位置关系.4.在极坐标系中,P 是曲线ρ=12sin θ上的动点,Q 是曲线ρ=12cos ⎝⎛⎭⎫θ-π6上的动点,试求PQ 的最大值.5.在极坐标系中,已知三点M ⎝⎛⎭⎫2,-π3、N (2,0)、P ⎝⎛⎭⎫23,π6. (1)将M 、N 、P 三点的极坐标化为直角坐标; (2)判断M 、N 、P 三点是否在一条直线上.6.在同一平面直角坐标系中,经过伸缩变换⎩⎨⎧x ′=12x ,y ′=13y后,曲线C :x 2+y 2=36变为何种曲线,并求曲线的焦点坐标.B 组 专项能力提升1.在极坐标系中,已知圆O :ρ=cos θ+sin θ和直线l :ρsin(θ-π4)=22.(1)求圆O 和直线l 的直角坐标方程;(2)当θ∈(0,π)时,求直线l 与圆O 公共点的极坐标.2.已知圆O 1和圆O 2的极坐标方程分别为ρ=2,ρ2-22ρcos(θ-π4)=2.(1)把圆O 1和圆O 2的极坐标方程化为直角坐标方程; (2)求经过两圆交点的直线的极坐标方程.3.(2013·课标全国Ⅰ)已知曲线C 1的参数方程为⎩⎪⎨⎪⎧x =4+5cos t ,y =5+5sin t (t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=2sin θ. (1)把C 1的参数方程化为极坐标方程; (2)求C 1与C 2交点的极坐标(ρ≥0,0≤θ<2π).4.(2012·辽宁)在直角坐标系xOy 中,圆C 1:x 2+y 2=4,圆C 2:(x -2)2+y 2=4.(1)在以O 为极点,x 轴正半轴为极轴的极坐标系中,分别写出圆C 1,C 2的极坐标方程,并求出圆C 1,C 2的交点坐标(用极坐标表示); (2)求圆C 1与C 2的公共弦的参数方程.答案要点梳理1.(1)极点 极轴 极径(2)ρcos θ ρsin θ x 2+y 2 y x3.参数方程 参数4.(1)⎩⎪⎨⎪⎧ x =x 0+t cos αy =y 0+t sin α (2)⎩⎪⎨⎪⎧ x =a +r cos θy =b +r sin θ (3)⎩⎪⎨⎪⎧ x =a cos θy =b sin θ (4)⎩⎪⎨⎪⎧ x =2pt 2y =2pt 夯基释疑1.43 2.x 2+y 2-2x -y =0 3.4 4.50° 5.M 1 题型分类·深度剖析例1 解 (1)由ρcos(θ-π3)=1 得ρ(12cos θ+32sin θ)=1. 从而C 的直角坐标方程为12x +32y =1,即x +3y =2. 当θ=0时,ρ=2,所以M (2,0).当θ=π2时,ρ=233,所以N (233,π2). (2)M 点的直角坐标为(2,0).N 点的直角坐标为(0,233). 所以P 点的直角坐标为(1,33). 则P 点的极坐标为(233,π6), 所以直线OP 的极坐标方程为θ=π6(ρ∈R ). 跟踪训练1 解 将极坐标方程化为直角坐标方程,得圆的方程为x 2+y 2=2x ,即(x -1)2+y 2=1,直线的方程为3x +4y +a =0.由题设知,圆心(1,0)到直线的距离为1, 即有|3×1+4×0+a |32+42=1,解得a =-8或a =2. 故a 的值为-8或2.例2 解 将两曲线的参数方程化为普通方程分别为x 25+y 2=1 (0≤y ≤1,-5<x ≤5)和y 2=45x ,联立解得交点为⎝⎛⎭⎫1,255. 跟踪训练2 解 (1)∵x =2t 21+t2, ∴y =4-2t 21+t 2=4(1+t 2)-6t 21+t 2=4-3×2t 21+t 2=4-3x . 又x =2t 21+t 2=2(1+t 2)-21+t 2=2-21+t 2∈[0,2). ∴x ∈[0,2).∴所求的普通方程为3x +y -4=0(x ∈[0,2)).(2)∵4cos 2θ=2-x,4sin 2θ=4(y +1).∴4cos 2θ+4sin 2θ=2-x +4y +4.∴4y -x +2=0.∵0≤4cos 2θ≤4,∴0≤2-x ≤4,∴-2≤x ≤2.∴所求的普通方程为x -4y -2=0(x ∈[-2,2]).例3 解 化极坐标方程ρ=4cos θ为直角坐标方程x 2+y 2-4x =0, 所以曲线C 是以(2,0)为圆心,2为半径的圆.化参数方程⎩⎨⎧ x =-3+32t ,y =12t(t 为参数)为普通方程x -3y +3=0. 圆心到直线l 的距离d =|2+3|1+3=52,此时,直线与圆相离,所以MN 的最小值为52-2=12. 跟踪训练3 解 (1)圆C 1的直角坐标方程为x 2+(y -2)2=4,直线C 2的直角坐标方程为x +y -4=0.解⎩⎪⎨⎪⎧ x 2+(y -2)2=4,x +y -4=0,得⎩⎪⎨⎪⎧ x 1=0,y 1=4,⎩⎪⎨⎪⎧ x 2=2,y 2=2.所以C 1与C 2交点的极坐标为⎝⎛⎭⎫4,π2,⎝⎛⎭⎫22,π4, 注:极坐标系下点的表示不唯一.(2)由(1)可得,P 点与Q 点的直角坐标分别为(0,2),(1,3).故直线PQ 的直角坐标方程为x -y +2=0,由参数方程可得y =b 2x -ab 2+1, 所以⎩⎨⎧ b 2=1,-ab 2+1=2,解得a =-1,b =2.练出高分A 组 1.解 因为直线l 的参数方程为⎩⎪⎨⎪⎧x =t +1,y =2t(t 为参数), 由x =t +1得t =x -1,代入y =2t ,得到直线l 的普通方程为2x -y -2=0. 同理得到曲线C 的普通方程为y 2=2x . 联立方程组⎩⎪⎨⎪⎧y =2(x -1),y 2=2x , 解得公共点的坐标为(2,2),⎝⎛⎭⎫12,-1.2.解 (1)由⎩⎪⎨⎪⎧x =sin α,y =cos 2α,α∈[0,2π)得 x 2+y =1,x ∈[-1,1].(2)由ρsin(θ+π4)=-2得曲线D 的普通方程为 x +y +2=0. ⎩⎪⎨⎪⎧x +y +2=0,x 2+y =1得x 2-x -3=0. 解得x =1±132∉[-1,1], 故曲线C 与曲线D 无公共点.3.解 (1)由点A (2,π4)在直线ρcos(θ-π4)=a 上,可得a = 2. 所以直线l 的方程可化为ρcos θ+ρsin θ=2,从而直线l 的直角坐标方程为x +y -2=0.(2)由已知得圆C 的直角坐标方程为(x -1)2+y 2=1, 所以圆C 的圆心为(1,0),半径r =1,因为圆心C 到直线l 的距离d =12=22<1, 所以直线l 与圆C 相交.4.解 ∵ρ=12sin θ,∴ρ2=12ρsin θ,∴x 2+y 2-12y =0,即x 2+(y -6)2=36.又∵ρ=12cos ⎝⎛⎭⎫θ-π6, ∴ρ2=12ρ⎝⎛⎭⎫cos θcos π6+sin θsin π6, ∴x 2+y 2-63x -6y =0, ∴(x -33)2+(y -3)2=36,∴PQ max =6+6+(33)2+32=18.5.解 (1)由公式⎩⎪⎨⎪⎧ x =ρcos θ,y =ρsin θ得M 的直角坐标为(1,-3);N 的直角坐标为(2,0);P 的直角坐标为(3,3).(2)∵k MN =32-1=3,k NP =3-03-2= 3.∴k MN =k NP ,∴M 、N 、P 三点在一条直线上.6.解 圆x 2+y 2=36上任一点为P (x ,y ),伸缩变换后对应的点的坐标为P ′(x ′,y ′),则⎩⎪⎨⎪⎧ x =2x ′,y=3y ′,∴4x ′2+9y ′2=36,即x ′29+y ′24=1. ∴曲线C 在伸缩变换后得椭圆x 29+y 24=1,其焦点坐标为(±5,0). B 组1.解 (1)圆O :ρ=cos θ+sin θ,即ρ2=ρcos θ+ρsin θ, 圆O 的直角坐标方程为x 2+y 2=x +y , 即x 2+y 2-x -y =0,直线l :ρsin(θ-π4)=22,即ρsin θ-ρcos θ=1,则直线l 的直角坐标方程为y -x =1, 即x -y +1=0.(2)由⎩⎪⎨⎪⎧ x 2+y 2-x -y =0,x -y +1=0得⎩⎪⎨⎪⎧x =0,y =1,故直线l 与圆O 公共点的极坐标为(1,π2).2.解 (1)由ρ=2知ρ2=4,所以x 2+y 2=4; 因为ρ2-22ρcos(θ-π4)=2,所以ρ2-22ρ(cos θcos π4+sin θsin π4)=2,所以x 2+y 2-2x -2y -2=0.(2)将两圆的直角坐标方程相减,得经过两圆交点的直线方程为x +y =1. 化为极坐标方程为ρcos θ+ρsin θ=1,即ρsin(θ+π4)=22. 3.解 (1)∵C 1的参数方程为⎩⎪⎨⎪⎧ x =4+5cos ty =5+5sin t . ∴⎩⎪⎨⎪⎧ 5cos t =x -45sin t =y -5. ∴(x -4)2+(y -5)2=25(cos 2t +sin 2t )=25, 即C 1的直角坐标方程为(x -4)2+(y -5)2=25, 把x =ρcos θ,y =ρsin θ代入(x -4)2+(y -5)2=25, 化简得:ρ2-8ρcos θ-10ρsin θ+16=0.(2)C 2的直角坐标方程为x 2+y 2=2y ,解方程组⎩⎪⎨⎪⎧(x -4)2+(y -5)2=25x 2+y 2=2y 得⎩⎪⎨⎪⎧ x =1y =1或⎩⎪⎨⎪⎧ x =0y =2. ∴C 1与C 2交点的直角坐标为(1,1),(0,2).∴C 1与C 2交点的极坐标为⎝⎛⎭⎫2,π4,⎝⎛⎭⎫2,π2. 4.解 (1)圆C 1的极坐标方程为ρ=2, 圆C 2的极坐标方程为ρ=4cos θ. 解⎩⎪⎨⎪⎧ ρ=2,ρ=4cos θ得ρ=2,θ=±π3, 故圆C 1与圆C 2交点的坐标为⎝⎛⎭⎫2,π3,⎝⎛⎭⎫2,-π3. 注:极坐标系下点的表示不唯一.(2)方法一 由⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ 得圆C 1与C 2交点的直角坐标分别为(1,3),(1,-3). 故圆C 1与C 2的公共弦的参数方程为⎩⎪⎨⎪⎧ x =1,y =t ,-3≤t ≤ 3. ⎝ ⎛⎭⎪⎪⎫或参数方程写成⎩⎪⎨⎪⎧ x =1,y =y ,-3≤y ≤3 方法二 将x =1代入⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ得ρcos θ=1,从而ρ=1cos θ. 于是圆C 1与C 2的公共弦的参数方程为⎩⎪⎨⎪⎧x =1,y =tan θ, -π3 ≤θ≤π3.。
2015届高考数学(人教,理科)大一轮配套练透:选修4-1 第2节

[课堂练通考点]1.(2013·惠州模拟)如图,P A 切⊙O 于点A ,割线PBC 经过圆心O ,OB=PB =1,OA 绕点O 逆时针旋转60°得到OD ,则PD 的长为________.解析:∵P A 切⊙O 于点A ,B 为PO 的中点,∴∠AOB =60°,∴∠POD =120°.在△POD 中,由余弦定理,得PD 2=PO 2+DO 2-2PO ·DO ·cos ∠POD =4+1-4×(-12)=7,故PD =7.答案:72.(2014·江南十校联考)如图,在圆的内接四边形ABCD 中,∠ABC =90°,∠ABD =30°,∠BDC =45°,AD =1,则BC =________.解析:连接AC .因为∠ABC =90°,所以AC 为圆的直径.又∠ACD =∠ABD =30°,所以AC =2AD =2.又∠BAC =∠BDC =45°,故BC = 2.答案: 23.(2013·广州模拟)如图,已知AB 是⊙O 的一条弦,点P 为AB 上一点,PC ⊥OP ,PC 交⊙O 于C ,若AP =4,PB =2,则PC 的长是________.解析:如图,延长CP 交⊙O 于点D ,因为PC ⊥OP ,所以P 是弦CD的中点,由相交弦定理知P A ·PB =PC 2,即PC 2=8,故PC =2 2.答案:2 24.(2013·新课标卷Ⅰ)如图,直线AB 为圆的切线,切点为B ,点C 在圆上,∠ABC 的角平分线BE 交圆于点E ,DB 垂直BE 交圆于点D .(1)证明:DB =DC ;(2)设圆的半径为1,BC =3,延长CE 交AB 于点F ,求△BCF 外接圆的半径. 解:(1)证明:如图,连接DE ,交BC 于点G .由弦切角定理得, ∠ABE =∠BCE .而∠ABE =∠CBE ,故∠CBE =∠BCE ,BE =CE .又因为DB ⊥BE ,所以DE 为直径,则∠DCE =90°,由勾股定理可得DB =DC . (2)由(1)知,∠CDE =∠BDE ,DB =DC , 故DG 是BC 的中垂线,所以BG =32. 设DE 的中点为O ,连接BO ,则∠BOG =60°. 从而∠ABE =∠BCE =∠CBE =30°, 所以CF ⊥BF ,故Rt △BCF 外接圆的半径等于32. [课下提升考能]1.如图,四边形ABCD 内接于⊙O ,BC 是直径,MN 与⊙O 相切,切点为A ,∠MAB =35°,则∠D =________.解析:连接BD ,则∠MAB =∠ADB =35°,由BC 是直径,知∠BDC =90°,所以∠D =∠ADB +∠BDC =125°.答案:125°2.如图,△ABC 内接于⊙O ,∠C =30°,AB =2,则⊙O 的半径为________.解析:连接AO 并延长交⊙O 于D ,连接BD .∠D =∠C =30°,在Rt △ABD 中, AD =2AB =4. ∴半径为2. 答案:23.如图,已知EB 是半圆O 的直径,A 是BE 延长线上一点,AC 切半圆O 于点D ,BC ⊥AC 于点C ,DF ⊥EB 于点F ,若BC =6,AC =8,则DF =________.解析:设圆的半径为r ,AD =x ,连接OD ,设OD ⊥AC . 故AD AC =OD BC ,即x 8=r6,故x =43r .又由切割线定理 AD 2=AE ·AB ,即169r 2=(10-2r )×10,故r =154. 由三角形相似,知AD AB =DFBC ,则DF =3.答案:34.(2014·佛山质检)如图所示,△ABC 内接于圆O ,过点A 的切线交BC 的延长线于点P ,D 为AB 的中点,DP 交AC 于点M ,若BP =8,AM =4,AC =6,则P A =________.解析:由题意MC =AC -AM =6-4=2.又D 为AB 的中点,∴AD =BD .过点C 作CN ∥AB 交PD 于N ,∴AM MC =AD CN =BD CN =BPCP , ∴8PC =42, ∴PC =4.∵P A 2=PC ·PB =32, ∴P A =4 2. 答案:4 25.(2013·湖南高考)如图,在半径为7的⊙O 中,弦AB ,CD 相交于点P ,P A =PB =2,PD =1,则圆心O 到弦CD 的距离为________.解析:由相交弦定理得AP ·PB =DP ·PC ,从而PC =AP ·PB DP =4,所以DC=5,所以圆心O 到弦CD 的距离等于(7)2-⎝⎛⎭⎫522=32.答案:326.(2013·深圳调研)如图,在⊙O 中,直径AB 与弦CD 垂直,垂足为E ,EF ⊥BC ,垂足为F ,若AB =6,CF ·CB =5,则AE =________.解析:设AE =x ,则EB =6-x ,在Rt △CEB 中,EF ⊥BC ,∴CE 2=CF ·CB =5.又易知CE =ED ,由相交弦定理得AE ·EB =CE ·ED =CE 2=5,即x (6-x )=5,得x =1.答案:17.如图所示,AB ,CD 是半径为a 的圆O 的两条弦,它们相交于AB的中点P ,PD =23a ,∠OAP =30°,则CP =________.解析:由题意知OP ⊥AB ,且AP =32a , 根据相交弦定理AP 2=CP ·PD ,CP =98a .答案:98a8.(2014·武汉模拟)如图,割线PBC 经过圆心O ,OB =PB =1,OB绕点O 逆时针旋转120°到OD ,连接PD 交圆O 于点E ,则PE =________.解析:在△POD 中,由余弦定理知PD =4+1-4cos 120°=7,再由PE ·PD =PB ·PC ⇒PE =377.答案:3779.如图所示,圆O 上一点C 在直径AB 上的射影为D ,CD =4,BD =8,则圆O 的半径等于________.解析:由射影定理得CD 2=AD ×BD ,即42=AD ×8,AD =2,圆O 的直径AB =AD +BD =10,故圆O 的半径等于5.答案:510.如图,过点P 作⊙O 的割线P AB 与切线PE ,E 为切点,连接AE ,BE ,∠APE 的平分线分别与AE ,BE 相交于点C ,D ,若∠AEB =30°,则∠PCE =________.解析:由圆的切割线定理可得PE 2=PB ·P A ⇒PE PB =P A PE,∴△PEB ∽△P AE ,设∠P AE =α,则∠PEB =α,∠PBE =α+30°,∠APE =150°-2α,∴△PCE 中,∠EPC =75°-α,∠PEC =30°+α,∴∠PCE =75°.答案:75°11.如图,在⊙O 中,弦AB ,CD 相交于点F ,AB =10,AF =2.若CF ∶DF =1∶4,则CF 的长等于________.解析:∵CD ∶DF =1∶4, ∴DF =4CF ,∵AB =10,AF =2,∴BF =8,∵CF ·DF =AF ·BF ,∴CF ·4CF =2×8,∴CF =2. 答案:212.如图,圆O 的半径为1,A ,B ,C 是圆周上的三点,满足∠ABC =30°,过点A 作圆O 的切线与OC 的延长线交于点P ,则P A =________.解析:连接OA .∵AP 为⊙O 的切线, ∴OA ⊥AP .又∠ABC =30°,∴∠AOC =60°.∴在Rt △AOP 中,OA =1,P A =OA ·tan 60°= 3. 答案: 313.如图,PC 与圆O 相切于点C ,直线PO 交圆O 于A ,B 两点,弦CD 垂直AB 于E ,则下面结论中,错误的结论是________.①△BEC ∽△DEA ②∠ACE =∠ACP ③DE 2=OE ·EP ④PC 2=P A ·AB解析:根据图形逐一判断.因为∠BCE =∠DAE ,∠BEC =∠DEA ,所以△BEC ∽△DEA ,①正确;由切线的性质及三角形的性质得∠ACE =∠CBA =∠ACP ,②正确;连接OC ,因为PC 是切线,OC 是半径,所以OC ⊥PC ,且CE ⊥OP ,所以由射影定理可得CE 2=OE ·EP ,又CE =DE ,所以DE 2=OE ·EP ,③正确;由切割线定理可得PC 2=P A ·PB ,④错误.答案:④14.如图,已知⊙O 的半径为R ,⊙O ′的半径为r ,两圆⊙O ,⊙O ′内切于点T ,点P 为外圆⊙O 上任意一点,PM 与内圆⊙O ′切于点M .PM ∶PT 为________.解析:作两圆的公切线TQ ,连接OP ,连接PT 交⊙O ′于C ,连接O ′C .设PT 交内圆于C ,则PM 2=PC ·PT , 所以PM 2PT 2=PC ·PT PT 2=PCPT.由弦切角定理知∠POT =2∠PTQ ,∠CO ′T =2∠PTQ , 则∠POT =∠CO ′T ,PO ∥CO ′,所以PC PT =OO ′OT =R -r R ,即PM PT =R -rR为定值. 答案:R -rR15.(2013·惠州模拟)如图,已知AD =5,DB =8,AO =310,则圆O 的半径OC 的长为________.解析:取BD 的中点M ,连接OM ,OB ,则OM ⊥BD ,因为BD =8,所以DM =MB =4,AM =5+4=9,所以OM 2=AO 2-AM 2=90-81=9,所以半径OB =OM 2+BM 2=9+16=25=5,即OC =5.答案:516.(2014·哈师大模拟)如图,圆O 的半径OC 垂直于直径AB ,弦CD 交半径OA 于E ,过D 的切线与BA 的延长线交于M .设圆O 的半径为1,MD =3,则CE 的长为________.解析:∵MD 2=MA ·MB ,∴3=MA ·(MA +2), ∴MA =1.∵在Rt △MDO 中,MO =2,MD =3,∴∠MOD =60°,∴∠COD =150°,∴∠ECO =15°, CE =OC cos ∠ECO =1cos 15°=6- 2.答案:6- 217.如图,CD 为△ABC 外接圆的切线,AB 的延长线交直线CD 于点D ,E ,F 分别为弦AB 与弦AC 上的点,且BC ·AE =DC ·AF ,B ,E ,F ,C 四点共圆.若DB =BE =EA ,则过B ,E ,F ,C 四点的圆的面积与△ABC 外接圆面积的比值为________.解析:如图,连接CE ,因为∠CBE =90°,所以过B ,E ,F ,C 四点的圆的直径为CE .由DB =BE ,有CE =DC ,又BC 2=DB ·BA =2DB 2,所以CA 2=4DB 2+BC 2=6DB 2.而DC 2=DB ·DA =3DB 2,故过B ,E ,F ,C 四点的圆的面积与△ABC 外接圆面积的比值为12.答案:12。
【步步高】高考数学第一轮大复习(基础+思想典型题+题组专练)几何证明选讲文档专练 文 新人教A版选修4-1

选修4-1几何证明选讲1.平行截割定理(1)平行线等分线段定理如果一组__________在一条直线上截得的线段______,那么在任一条(与这组平行线相交的)直线上截得的线段也________.(2)平行线分线段成比例定理两条直线与一组平行线相交,它们被这组平行线截得的对应线段成________.2.相似三角形的判定与性质(1)相似三角形的判定定理①两角对应________的两个三角形________;②两边对应成________且夹角________的两个三角形________;③三边对应成________的两个三角形________.(2)相似三角形的性质定理①相似三角形的对应线段的比等于____________.②相似三角形周长的比等于____________.③相似三角形面积的比等于________________________.3.直角三角形射影定理直角三角形一条直角边的平方等于________________________________,斜边上的高的平方等于________________________________.4.圆中有关的定理(1)圆周角定理:圆周角的度数等于其所对弧的度数的________.(2)圆心角定理:圆心角的度数等于________________的度数.(3)切线的判定与性质定理①切线的判定定理过半径外端且与这条半径________的直线是圆的切线.②切线的性质定理圆的切线________于经过切点的半径.(4)切线长定理从圆外一点引圆的两条切线,切线长________. (5)弦切角定理弦切角的度数等于其所夹弧的度数的________. (6)相交弦定理圆的两条相交弦,每条弦被交点分成的两条线段长的积________. (7)割线定理从圆外一点引圆的两条割线,该点到每条割线与圆的交点的两条线段长的积________. (8)切割线定理从圆外一点引圆的一条割线与一条切线,切线长是这点到割线与圆的两个交点的线段长的________________.(9)圆内接四边形的性质与判定定理 ①圆内接四边形判定定理(ⅰ)如果四边形的对角________,则此四边形内接于圆;(ⅱ)如果四边形的一个外角________它的内角的对角,那么这个四边形的四个顶点共圆. ②圆内接四边形性质定理(ⅰ)圆内接四边形的对角________;(ⅱ)圆内接四边形的外角________它的内角的对角.1.如图,F 为▱ABCD 的边AD 延长线上的一点,DF =AD ,BF 分别交DC ,AC 于点G ,E ,EF =16,GF =12,则BE 的长为________.第1题图 第2题图2.如图,在直角梯形ABCD 中,DC ∥AB ,CB ⊥AB ,AB =AD =a ,CD =a2,点E ,F 分别为线段AB 、AD 的中点,则EF =________.3. 如图,四边形ABCD 内接于⊙O ,BC 是直径,MN 与⊙O 相切,切点为A ,∠MAB =30°,则∠D =________.4.如图所示,EA是圆O的切线,割线EB交圆O于点C,C在直径AB上的射影为D,CD =2,BD=4,则EA=________.第4题图第5题图5.(2012·湖南)如图所示,过点P的直线与⊙O相交于A,B两点.若P A=1,AB=2,PO =3,则⊙O的半径等于________.题型一相似三角形的判定及性质例1如图,已知在△ABC中,点D是BC边上的中点,且AD=AC,DE⊥BC,DE与AB 相交于点E,EC与AD相交于点F.(1)求证:△ABC∽△FCD;(2)若S△FCD=5,BC=10,求DE的长.思维升华(1)三角形相似的证明方法很多,解题时应根据条件,结合图形选择恰当的方法.一般的思考程序:先找两对内角对应相等;若只有一个角对应相等,再判定这个角的两邻边是否对应成比例;若无角对应相等,就要证明三边对应成比例.(2)证明等积式的一般方法是化为等积的比例式,若题目中无平行线,需利用相似三角形的性质证明.如图,在梯形ABCD中,AD∥BC,AB=CD,DE∥CA,且交BA的延长线于E,求证:ED·CD =EA·BD.题型二直角三角形的射影定理例2如图,Rt△ABC中,∠BAC=90°,AD⊥BC于D,BE平分∠ABC交AC于E,EF⊥BC于F.求证:EF∶DF=BC∶AC.思维升华已知条件中含直角三角形且涉及直角三角形斜边上的高时,应首先考虑射影定理,注意射影与直角边的对应法则,根据题目中的结论分析并选择射影定理中的等式,并分清比例中项.如图所示,在△ABC 中,∠CAB =90°,AD ⊥BC 于D ,BE 是∠ABC 的平分线,交AD 于F ,求证:DF AF =AE EC .题型三 圆的切线的判定与性质例3 如图,在Rt △ABC 中,∠C =90°,BE 平分∠ABC 交AC 于点E ,点D 在AB 上,DE ⊥EB ,且AD =23,AE =6.(1)判断直线AC 与△BDE 的外接圆的位置关系; (2)求EC 的长.思维升华 证明直线是圆的切线的方法:若已知直线经过圆上某点(或已知直线与圆有公共点),则连结圆心和这个公共点,设法证明直线垂直于这条半径;如果已知条件中直线与圆的公共点不明确(或没有公共点),则应过圆心作直线的垂线,得到垂线段,设法证明这条垂线段的长等于圆半径.(2013·广东改编)如图,AB是圆O的直径,点C在圆O上,延长BC到D使BC=CD,过C作圆O的切线交AD于E.若AB=6,ED=2,求BC的长.题型四与圆有关的比例线段例4(2012·辽宁)如图,⊙O和⊙O′相交于A,B两点,过A作两圆的切线分别交两圆于C,D两点,连结DB并延长交⊙O于点E.证明:(1)AC·BD=AD·AB;(2)AC=AE.思维升华(1)应用相交弦定理、切割线定理要抓住几个关键内容:如线段成比例与相似三角形、圆的切线及其性质、与圆有关的相似三角形等.(2)相交弦定理、切割线定理主要用于与圆有关的比例线段的计算与证明.解决问题时要注意相似三角形知识及圆周角、弦切角、圆的切线等相关知识的综合应用.如图,⊙O的半径OB垂直于直径AC,M为AO上一点,BM的延长线交⊙O于N,过N点的切线交CA的延长线于P.(1)求证:PM2=P A·PC;(2)若⊙O的半径为23,OA=3OM,求MN的长.与圆有关的几何证明问题典例:(10分)(2012·课标全国)如图,D,E分别为△ABC边AB,AC的中点,直线DE交△ABC的外接圆于F,G两点.若CF∥AB,证明:(1)CD=BC;(2)△BCD∽△GBD.思维启迪(1)连结AF,利用平行关系构造平行四边形可得结论;(2)先证△BCD和△GBD为等腰三角形,再证明两三角形顶角相等即可.规范解答证明(1)因为D,E分别为AB,AC的中点,所以DE∥BC.又已知CF∥AB,故四边形BCFD是平行四边形,所以CF=BD=AD.而CF∥AD,连结AF,所以四边形ADCF是平行四边形,故CD=AF.[5分]因为CF∥AB,所以BC=AF,故CD=BC.[6分](2)因为FG∥BC,故GB=CF.由(1)可知BD=CF,所以GB=BD,所以∠BGD=∠BDG.[8分]由BC=CD知∠CBD=∠CDB,又因为∠DGB=∠EFC=∠DBC,所以△BCD∽△GBD.[10分]处理与圆有关的比例线段的常见思路:(1)利用圆的有关定理;(2)利用相似三角形;(3)利用平行线分线段成比例定理及推论;(4)利用面积关系等.温馨提醒(1)解决几何证明问题需用各种判定定理、性质定理、推理和现有的结论,要熟悉各种图形的特征,利用好平行、垂直、相似、全等的关系,适当添加辅助线和辅助图形,这些知识都有利于问题的解决.(2)证明等积式时,通常转化为证明比例式,再证明四条线段所在的三角形相似.另外也可利用平行线分线段成比例定理来证明.(3)弦切角定理与圆周角定理是证明角相等的重要依据,解题时应根据需要添加辅助线构造所需要的角.(4)圆内接四边形的性质也要熟练掌握,利用该性质可得到角相等,进而为三角形的相似创造了条件.方法与技巧1.证明等积式成立,应先把它写成比例式,找出比例式中给出的线段所在三角形是否相似,若不相似,则进行线段替换或等比替换.2.圆幂定理与圆周角、弦切角联合应用时,要注意找相等的角,找相似三角形,从而得出线段的比.由于圆幂定理涉及圆中线段的数量计算,所以应注意代数法在解题中的应用.失误与防范1.在应用平行截割定理时,一定要注意对应线段成比例.2.在解决相似三角形时,一定要注意对应角和对应边,否则容易出错.A组专项基础训练1.已知△ABC中,BF⊥AC于点F,CE⊥AB于点E,BF和CE相交于点P,求证:(1)△BPE∽△CPF;(2)△EFP∽△BCP.2.如图,△ABC 中,∠BAC =90°,AD ⊥BC 交BC 于点D ,若E 是AC 的中点,ED 的延长线交AB 的延长线于F ,求证:AB AC =DFAF.3. 如图所示,已知在△ABC 中,∠ABC =90°,O 是AB 上一点,以O 为圆心,OB 为半径的圆与AB 交于点E ,与AC 切于点D ,连结DB ,DE ,OC .若AD =2,AE =1,求CD 的长.4.(2013·江苏)如图,AB和BC分别与圆O相切于点D,C,AC经过圆心O,且BC=2OC.求证:AC=2AD.5. 如图,梯形ABCD中,AB∥CD,若S△ODC∶S△BDC=1∶3,求S△ODC∶S△ABC.6. 如图,锐角三角形ABC的内心为I,过点A作直线BI的垂线,垂足为H,点E为内切圆I与边CA的切点.(1)求证:四点A,I,H,E共圆;(2)若∠C=50°,求∠IEH的度数.B组专项能力提升1. 如图所示,已知:在Rt△ABC中,∠ACB=90°,M是BC的中点,CN⊥AM,垂足是N,求证:AB·BM=AM·BN.2. 如图所示,在△ABC中,AD为BC边上的中线,F为AB上任意一点,CF交AD于点E.求证:AE·BF=2DE·AF.3.(2013·辽宁) 如图,AB为⊙O的直径,直线CD与⊙O相切于E,AD垂直CD于D,BC 垂直CD于C,EF垂直AB于F,连结AE,BE.证明:(1)∠FEB=∠CEB;(2)EF2=AD·BC.4.(2013·课标全国Ⅰ)如图,直线AB为圆O的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB垂直BE交圆于点D.(1)证明:DB=DC;(2)设圆的半径为1,BC=3,延长CE交AB于点F,求△BCF外接圆的半径.答案要点梳理1.(1)平行线 相等 相等 (2)比例2.(1)①相等 相似 ②比例 相等 相似 ③比例 相似 (2)①相似比 ②相似比 ③相似比的平方3.该直角边在斜边上的射影与斜边的乘积 两条直角边在斜边上的射影的乘积 4.(1)一半 (2)它所对弧 (3)①垂直 ②垂直 (4)相等 (5)一半 (6)相等 (7)相等 (8)等比中项 (9)①(ⅰ)互补 (ⅱ)等于 ②(ⅰ)互补 (ⅱ)等于 夯基释疑1.8 2.a 2 3.120° 4.52 5. 6题型分类·深度剖析例1 (1)证明 ∵DE ⊥BC ,D 是BC 边上的中点, ∴EB =EC ,∴∠B =∠ECD , 又AD =AC ,∴∠ADC =∠ACD , ∴△ABC ∽△FCD . (2)解过点A 作AM ⊥BC ,垂足为点M , ∵△ABC ∽△FCD ,BC =2CD , ∴S △ABC S △FCD =(BC CD)2=4, 又∵S △FCD =5,∴S △ABC =20,又S △ABC =12×BC ×AM =12×10×AM =20,解得AM =4,又DE ∥AM ,∴DE AM =BDBM, ∵DM =12DC =52,BM =BD +DM =5+52=152,∴DE 4=5152,解得DE =83. 跟踪训练1 证明 在梯形ABCD 中, ∵AB =DC ,∴∠ABC =∠DCB .又BC =BC ,∴△ABC ≌△DCB .∴∠BAC =∠BDC , ∵AC ∥ED ,AD ∥BC ,∴∠E =∠BAC =∠BDC ,∠EAD =∠ABC =∠DCB , ∴△EAD ∽△DCB . ∴EA DC =EDDB,即ED ·CD =EA ·BD . 例2 证明 ∵∠BAC =90°,且AD ⊥BC , ∴由射影定理得AC 2=CD ·BC ,∴AC CD =BC AC .①∵EF ⊥BC ,AD ⊥BC ,∴EF ∥AD ,∴AE DF =ACCD .又BE 平分∠ABC ,且EA ⊥AB ,EF ⊥BC , ∴AE =EF ,∴EF DF =ACCD .②由①、②得EF DF =BCAC,即EF ∶DF =BC ∶AC . 跟踪训练2 证明 由三角形的内角平分线定理得, 在△ABD 中,DF AF =BDAB ,①在△ABC 中,AE EC =ABBC ,②在Rt △ABC 中,由射影定理知, AB 2=BD ·BC ,即BD AB =ABBC .③由①③得:DF AF =ABBC ,④由②④得:DF AF =AEEC.例3 解 (1)取BD 的中点O ,连结OE .∵BE 平分∠ABC , ∴∠CBE =∠OBE .又∵OB =OE ,∴∠OBE =∠BEO , ∴∠CBE =∠BEO ,∴BC ∥OE . ∵∠C =90°,∴OE ⊥AC ,∴直线AC 是△BDE 的外接圆的切线, 即直线AC 与△BDE 的外接圆相切.(2)设△BDE 的外接圆的半径为r . 在△AOE 中,OA 2=OE 2+AE 2, 即(r +23)2=r 2+62,解得r =23, ∴OA =2OE ,∴∠A =30°,∠AOE =60°. ∴∠CBE =∠OBE =30°,∴EC =12BE =12×3r =12×3×23=3.跟踪训练3 解 C 为BD 中点,且AC ⊥BC , 故△ABD 为等腰三角形.AB =AD =6, 所以AE =4,DE =2.又AE AC =ACAD,所以AC 2=AE ·AD =4×6=24,AC =26, 在△ABC 中,BC =AB 2-AC 2=36-24=2 3.例4 证明 (1)由AC 与⊙O ′相切于A ,得∠CAB =∠ADB ,同理∠ACB =∠DAB ,所以△ACB ∽△DAB .从而AC AD =ABBD,即AC ·BD =AD ·AB .(2)由AD 与⊙O 相切于A ,得∠AED =∠BAD . 又∠ADE =∠BDA ,得△EAD ∽△ABD . 从而AE AB =ADBD ,即AE ·BD =AD ·AB .结合(1)的结论知,AC =AE . 跟踪训练4(1)证明 连结ON ,则ON ⊥PN ,且△OBN 为等腰三角形,则∠OBN =∠ONB , ∵∠PMN =∠OMB =90°-∠OBN , ∠PNM =90°-∠ONB , ∴∠PMN =∠PNM ,∴PM =PN . 根据切割线定理,有PN 2=P A ·PC , ∴PM 2=P A ·PC .(2)解 OM =2,在Rt △BOM 中, BM =OB 2+OM 2=4.延长BO 交⊙O 于点D ,连结DN .由条件易知△BOM ∽△BND ,于是BO BN =BMBD ,即23BN =443,∴BN =6. ∴MN =BN -BM =6-4=2. 练出高分 A 组 1.证明(1)∵BF ⊥AC 于点F , CE ⊥AB 于点E , ∴∠BFC =∠CEB =90°. 又∵∠CPF =∠BPE , ∴△CPF ∽△BPE .(2)由(1)得△CPF ∽△BPE , ∴EP BP =FP CP. 又∵∠EPF =∠BPC ,∴△EFP ∽△BCP . 2.证明 ∵E 是Rt △ADC 斜边AC 的中点, ∴AE =EC =DE .∴∠EDC =∠ECD ,又∠EDC =∠BDF , ∴∠EDC =∠C =∠BDF .又AD ⊥BC 且∠BAC =90°,∴∠BAD =∠C , ∴∠BAD =∠BDF ,∴△DBF ∽△ADF . ∴DB AD =DF AF. 又Rt △ABD ∽Rt △CBA , 因此AB AC =DB AD .∴AB AC =DF AF.3.解 由切割线定理得AD 2=AE ·AB , 所以AB =4,EB =AB -AE =3.又∵∠OCD =∠ADE =90°-∠CDB ,∠A =∠A , ∴△ADE ∽△ACO ,∴AD AE =AC AO ,即21=CD +22.5,CD =3. 故CD 的长等于3.4.证明 连结OD .因为AB 和BC 分别与圆O 相切于点D ,C , 所以∠ADO =∠ACB =90°. 又因为∠A =∠A , 所以Rt △ADO ∽Rt △ACB . 所以BC OD =AC AD.又BC =2OC =2OD ,故AC =2AD . 5.解 ∵S △ODC ∶S △BDC =1∶3, 且△ODC 和△BDC 有公共边CD ,设△ODC 和△BDC 在CD 上的高分别为h 和H , 则h ∶H =1∶3,∴DO ∶DB =1∶3,∴DO ∶OB =1∶2. 又∵AB ∥CD ,∴△ODC ∽△OBA . ∴S △ODC ∶S △OBA =1∶4.设S △ODC =a ,则S △OBC =2a ,S △OAB =4a , ∵S △ABC =S △OAB +S △OBC ,∴S △ABC =6a . ∴S △ODC ∶S △ABC =1∶6.6.(1)证明 由圆I 与边AC 相切于点E ,得IE ⊥AE , 结合IH ⊥AH ,得∠AEI =∠AHI =90° . 所以,四点A ,I ,H ,E 共圆. (2)解 由(1)知四点A ,I ,H ,E 共圆, 则∠IEH =∠HAI .又∠HIA =∠ABI +∠BAI =12∠ABC +12∠BAC=12(∠ABC +∠BAC )=12(180°-∠C )=90°-12∠C . 结合IH ⊥AH ,得∠HAI =90°-∠HIA =12∠C ,所以∠IEH =12∠C .由∠C =50°得∠IEH =25°.B 组1.证明 ∵CM 2=MN ·AM , 又∵M 是BC 的中点,∴BM 2=MN ·AM ,∴BM AM =MN BM,又∵∠BMN =∠AMB ,∴△AMB ∽△BMN , ∴AB BN =AMBM,∴AB ·BM =AM ·BN . 2.证明 过点D 作AB 的平行线DM 交AC 于点M ,交FC 于点N . 在△BCF 中,D 是BC 的中点,DN ∥BF ,∴DN =12BF .∵DN ∥AF , ∴△AFE ∽△DNE , ∴AE AF =DE DN. 又DN =12BF ,∴AE AF =2DEBF ,即AE ·BF =2DE ·AF .3.证明 (1)由直线CD 与⊙O 相切, 得∠CEB =∠EAB .由AB 为⊙O 的直径,得AE ⊥EB , 从而∠EAB +∠EBF =π2;又EF ⊥AB ,得∠FEB +∠EBF =π2,从而∠FEB =∠EAB .故∠FEB =∠CEB . (2)由BC ⊥CE ,EF ⊥AB , ∠FEB =∠CEB ,BE 是公共边, 得Rt △BCE ≌Rt △BFE ,所以BC =BF . 同理可证,得AD =AF . 又在Rt △AEB 中,EF ⊥AB , 故EF 2=AF ·BF ,所以EF 2=AD ·BC . 4.(1)证明 连结DE ,则∠DCB =∠DEB , ∵DB ⊥BE ,∴∠DBC +∠CBE =90°, ∠DEB +∠EDB =90°,∴∠DBC +∠CBE =∠DEB +∠EDB , 又∠CBE =∠EBF =∠EDB , ∴∠DBC =∠DEB =∠DCB , ∴DB =DC .(2)解 由(1)知:∠CBE =∠EBF =∠BCE , ∴CE =BE ,∴∠BDE =∠CDE , ∴DE 是BC 的垂直平分线, 设交点为H ,则BH =32, ∴OH =1-34=12,∴DH =32, ∴tan ∠BDE =3232=33,∴∠BDE =30°,∴∠FBE =∠BDE =30°,∴∠CBF +∠BCF =90°,∴∠BFC =90°, ∴BC 是△BCF 的外接圆直径. ∴△BCF 的外接圆半径为32.。
2015世纪金榜理科数学(广东版)梯级演练·强技提能 选修 4-1 1

温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
关闭Word文档返回原板块。
梯级演练·强技提能1.(2014·武汉模拟)如图,矩形ABCD中,E是BC上的点,AE⊥DE,BE=4,EC=1,则AB的长为.2.(2014·揭阳模拟)如图所示,平行四边形ABCD中,AE∶EB=1∶2,若△AEF的面积等于1cm2,则△CDF的面积等于cm2.3.(2013·广东高考)如图,在矩形ABCD中,AB=错误!未找到引用源。
,BC=3,BE ⊥AC,垂足为E,则ED= .4.已知如图,在△ABC中,∠ACB=90°,CD⊥AB于D,AC=6,DB=5,则AD的长为.5.(2014·广州模拟)在△ABC中,D是边AC的中点,点E在线段BD上,且满足BE=错误!未找到引用源。
BD,延长AE交BC于点F,则错误!未找到引用源。
的值为.6.在△ABC中,AD⊥BC于D,且错误!未找到引用源。
=错误!未找到引用源。
,则错误!未找到引用源。
+错误!未找到引用源。
的最大值为.7.在△ABC中,∠ACB=90°,CD⊥AB于D,AD∶BD=2∶3,则△ACD与△CBD的相似比为.8.(2013·湛江模拟)如图所示,▱ABCD中,BC=12,E,F为BD的三等分点,连接AE 并延长交BC于M,连接MF并延长交AD于N,则DN= .9.如图,在梯形ABCD中,AD∥BC,E为AB的中点,EF∥BC,G是BC边上任一点,如果S△GEF=2错误!未找到引用源。
cm2,那么梯形ABCD的面积是cm2.10.如图,在梯形ABCD中,AB∥CD,AB=4,CD=2.E,F分别为AD,BC上的点,且EF=3,EF∥AB,则梯形ABFE与梯形EFCD的面积比为.11.如图,在△ABC中,AB=14cm,错误!未找到引用源。
《步步高》2014届高考数学浙江专用(理)大一轮复习讲义【配套课件】选修4-1解答题(要点梳理+基础自测+题

难点正本 疑点清源
3.与圆有关的等角问题
(8)切割线定理
找角相等,要有找同弧
从圆外一点引圆的一条割线与一条切 或等弧所对的圆周角,
线,切线长是这点到割线与圆的两个交 并注意结合应用弦切角
点的线段长的 等比中项 .
定理的意识.
基础知识·自主学习
要点梳理 (9)圆内接四边形的性质与判定定理 ①圆内接四边形判定定理 (ⅰ)如果四边形的对角 互补 ,则此四边 形内接于圆; (ⅱ)如果四边形的一个外角 等于 它的 内角的对角,那么这个四边形的四个顶 点共圆.
证中明,∠∵B∠ABCA=C=909°,0°,ADA⊥D⊥BCB,C,E ∴∠ADB=∠ADC=∠BAC=90°,
是 AC 的中点,ED 交 AB 的延长 ∴∴线∠∠于11+=F∠∠,2A求=C证B90,:°,∴AA∠BC△=2A+DBA∠DFF∽.AC△BC=A9D0,°,∴AABC=BADD.
解析
题型分类·深度剖析
变式训练 1 如图,▱ABCD 中,E 是 CD 的延长线上一点,BE 与 AD 交于点 F,DE=12CD. (1)求证:△ABF∽△CEB;
(2)若△DEF 的面积为 2,求▱ABCD 的面积. (1)证明 ∵四边形 ABCD 是平行四边形, ∴∠A=∠C,AB∥CD,∴∠ABF=∠CEB, ∴△ABF∽△CEB. (2)解 ∵四边形 ABCD 是平行四边形, ∴AD∥BC,AB∥CD, ∴△DEF∽△CEB,△DEF∽△ABF.
∴△AFH∽△GFB.∴HBFF=GAFF, ∴AF·BF=GF·HF.
∵在 Rt△ABD 中,FD⊥AB, ∴DF2=AF·BF, ∴DF2=GF·HF.
题型分类·深度剖析
题型二
直角三角形射影定理及其应用
【步步高】2015届高考数学总复习 第二讲 不等式的证明及著名不等式配套文档 理 新人教A版选修4-

第二讲 不等式的证明及著名不等式1.基本不等式(1)定理:如果a ,b ∈R ,那么a 2+b 2≥2ab ,当且仅当a =b 时,等号成立.(2)定理(基本不等式):如果a ,b >0,那么a +b2____ab ,当且仅当______时,等号成立.也可以表述为:两个____的算术平均__________________它们的几何平均. (3)利用基本不等式求最值:对两个正实数x ,y ,①如果它们的和S 是定值,则当且仅当______时,它们的积P 取得最____值; ②如果它们的积P 是定值,则当且仅当______时,它们的和S 取得最____值. 2.三个正数的算术—几何平均不等式(1)定理 如果a ,b ,c 均为正数,那么a +b +c 3____3abc ,当且仅当________时,等号成立.即三个正数的算术平均________它们的几何平均. (2)基本不等式的推广对于n 个正数a 1,a 2,…,a n ,它们的算术平均________它们的几何平均,即a 1+a 2+…+a nn ____na 1a 2…a n ,当且仅当______________时,等号成立. 3.柯西不等式(1)设a ,b ,c ,d 均为实数,则(a 2+b 2)(c 2+d 2)≥(ac +bd )2,当且仅当ad =bc 时等号成立.(2)设a 1,a 2,a 3,…,a n ,b 1,b 2,b 3,…,b n 是实数,则(a 21+a 22+…+a 2n )(b 21+b 22+…+b 2n )≥(a 1b 1+a 2b 2+…+a n b n )2,当且仅当b i =0(i =1,2,…,n )或存在一个数k ,使得a i =kb i (i =1,2,…,n )时,等号成立.(3)柯西不等式的向量形式:设α,β是两个向量,则|α·β|≤|α||β|,当且仅当β是零向量,或存在实数k ,使α=k β时,等号成立. 4.证明不等式的方法 (1)比较法 ①求差比较法知道a >b ⇔a -b >0,a <b ⇔a -b <0,因此要证明a >b ,只要证明______即可,这种方法称为求差比较法.②求商比较法由a >b >0⇔ab >1且a >0,b >0,因此当a >0,b >0时要证明a >b ,只要证明______即可,这种方法称为求商比较法. (2)分析法从待证不等式出发,逐步寻求使它成立的__________,直到将待证不等式归结为一个已成立的不等式(已知条件、定理等).这种证法称为分析法,即“执果索因”的证明方法. (3)综合法从已知条件出发,利用不等式的有关性质或定理,经过推理论证,推导出所要证明的不等式成立,即“由因寻果”的方法,这种证明不等式的方法称为综合法. (4)反证法的证明步骤第一步:作出与所证不等式______的假设;第二步:从条件和假设出发,应用正确的推理方法,推出矛盾的结论,否定假设,从而证明原不等式成立. (5)放缩法所谓放缩法,即要把所证不等式的一边适当地____________,以利于化简,并使它与不等式的另一边的不等关系更为明显,从而得到欲证不等式成立. (6)数学归纳法设{P n }是一个与自然数相关的命题集合,如果:(1)证明起始命题P 1(或P 0)成立;(2)在假设P k 成立的前提下,推出P k +1也成立,那么可以断定{P n }对一切自然数成立.1.已知a <0,b <0,且1a 2>1b2,则a ,b 的大小关系为______.2.已知a 、b 、m 均为正数,且a <b ,M =ab ,N =a +m b +m ,则M 、N 的大小关系是________.3.设a =3-2,b =6-5,c =7-6,则a ,b ,c 的大小关系为__________. 4.已知a >0,b >0,则P =lg(1+ab ),Q =12[lg(1+a )+lg(1+b )]的大小关系为________.5.设a 、b 、c 是正实数,且a +b +c =9,则2a +2b +2c的最小值为________.题型一 柯西不等式的应用例1 已知3x 2+2y 2≤6,求证:2x +y ≤11.思维升华 使用柯西不等式时,关键是将已知条件通过配凑,转化为符合柯西不等式条件的式子,二维形式的柯西不等式(a 2+b 2)(c 2+d 2)≥(ac +bd )2,当且仅当ad =bc 时等号成立.若3x +4y =2,则x 2+y 2的最小值为______.题型二 用综合法或分析法证明不等式例2 已知a ,b ,c ∈(0,+∞),且a +b +c =1, 求证:(1)(1a -1)·(1b -1)·(1c -1)≥8;(2)a +b +c ≤ 3.思维升华 用综合法证明不等式是“由因导果”,分析法证明不等式是“执果索因”,它们是两种思路截然相反的证明方法.综合法往往是分析法的逆过程,表述简单、条理清楚,所以在实际应用时,往往用分析法找思路,用综合法写步骤,由此可见,分析法与综合法相互转化,互相渗透,互为前提,充分利用这一辩证关系,可以增加解题思路,开阔视野.设a ,b ,c >0,且ab +bc +ca =1.求证:(1)a +b +c ≥3; (2) abc+ b ac+ cab≥3(a +b +c ).题型三 放缩法或数学归纳法 例3若n ∈N *,Sn =1×2+2×3+…+n (n +1),求证:n (n +1)2<S n <(n +1)22.思维升华 (1)与正整数n 有关的不等式证明问题,如果用常规方法有困难,可以考虑利用数学归纳法来证明.在利用数学归纳法证明不等式时,在第二步骤中,要注意利用归纳假设.同时,这一步骤往往会涉及分析法、放缩法等综合方法.本题可用数学归纳法进行证明,但较麻烦.(2)放缩法证明不等式,就是利用不等式的传递性证明不等关系.常见的放缩变换有1k 2<1k (k -1),1k 2>1k (k +1),1k <2k +k -1,1k >2k +k +1.上面不等式中k ∈N *,k >1.求证:32-1n +1<1+122+132+…+1n 2<2-1n(n ≥2,n ∈N +).利用算术—几何平均不等式求最值典例:(5分)已知a ,b ,c 均为正数,则a 2+b 2+c 2+⎝⎛⎭⎫1a +1b +1c 2的最小值为________. 思维启迪 (1)a 2+b 2+c 2,1a +1b +1c 分别用算术—几何平均不等式;(2)相加后又构成用算术—几何平均不等式的条件.解析 因为a ,b ,c 均为正数,由算术—几何平均不等式得 a 2+b 2+c 2≥3(abc )23,①1a +1b +1c ≥3(abc )-13, 所以⎝⎛⎭⎫1a +1b +1c 2≥9(abc )-23.② 故a 2+b 2+c 2+⎝⎛⎭⎫1a +1b +1c 2≥3(abc )23+9(abc )-23. 又3(abc )23+9(abc )-23≥227=63,③当且仅当a =b =c 时,①式和②式等号成立. 当且仅当3(abc )23=9(abc )-23时,③式等号成立.即当且仅当a =b =c =314时,原式取得最小值6 3.答案 6 3温馨提醒 (1)利用算术—几何平均不等式求最值问题,是不等式问题中的一个重要类型,重点要抓住算术—几何平均不等式的结构特点和使用条件.(2)在解答本题时有两点容易造成失分:一是多次运用算术—几何平均不等式后化简错误; 二是求解等号成立的a ,b ,c 的值时计算出错.方法与技巧1.不等式的证明方法灵活,要注意体会,要根据具体情况选择证明方法.2.柯西不等式的证明有多种方法,如数学归纳法,教材中的参数配方法(或判别式法)等,参数配方法在解决其它问题方面应用比较广泛.柯西不等式的应用比较广泛,常见的有证明不等式,求函数最值,解方程等.应用时,通过拆常数,重新排序、添项,改变结构等手段改变题设条件,以利于应用柯西不等式. 失误与防X1.利用基本不等式必须要找准“对应点”,明确“类比对象”,使其符合几个著名不等式的特征.2.注意检验等号成立的条件,特别是多次使用不等式时,必须使等号同时成立.A 组 专项基础训练1.若1a <1b<0,则下列四个结论:①|a |>|b |;②a +b <ab ;③b a +a b >2;④a 2b <2a -b .其中正确的是________.2.若T 1=2sm +n ,T 2=s (m +n )2mn ,则当s ,m ,n ∈R +时,T 1与T 2的大小为________.3.设0<x <1,则a =2x ,b =1+x ,c =11-x 中最大的一个是________.4.已知x ,y ∈R ,且xy =1,则(1+1x )(1+1y)的最小值为________.5.设x >0,y >0,M =x +y 2+x +y ,N =x 2+x +y2+y ,则M 、N 的大小关系为__________.6.若a ,b ∈R +,且a ≠b ,M =a b +ba,N =a +b ,则M 、N 的大小关系为________.7.若a ,b ,c ∈(0,+∞),且a +b +c =1,则a +b +c 的最大值为________. 8.已知a ,b ,c 为正实数,且a +2b +3c =9,则3a +2b +c 的最大值为________. 9.(2013·某某)设a +b =2,b >0,则当a =________时,12|a |+|a |b取得最小值.10.设a >0,b >0,则以下不等式①ab >2ab a +b ,②a >|a -b |-b ;③a 2+b 2>4ab -3b 2;④ab +2ab >2中恒成立的序号是________.B 组 专项能力提升1.已知x >0,y >0,且1x +9y =1,则x +y 的最小值为_________________________.2.函数y =x 2·(1-3x )在⎝⎛⎭⎫0,13上的最大值是________. 3.(2013·某某)已知a ,b ,m ,n 均为正数,且a +b =1,mn =2,则(am +bn )(bm +an )的最小值为________.4.已知a ,b 为实数,且a >0,b >0.则⎝⎛⎭⎫a +b +1a ⎝⎛⎭⎫a 2+1b +1a 2的最小值为________. 5.P =x x +1+y y +1+z z +1(x >0,y >0,z >0)与3的大小关系是________.6.已知x 2+2y 2+3z 2=1817,则3x +2y +z 的最小值为_________________________.7.设a ,b ,c 都是正数,那么三个数a +1b ,b +1c ,c +1a ________.(填序号)①都不大于2; ②都不小于2; ③至少有一个大于2; ④至少有一个不小于2.答案基础知识自主学习 要点梳理1.(2)≥a =b 正数 不小于(即大于或等于) (3)①x =y 大 ②x =y 小2.(1)≥a =b =c 不小于 (2)不小于 ≥a 1=a 2=…=a n 4.(1)①a -b >0 ②ab >1 (2)充分条件 (4)相反(5)放大或缩小 夯基释疑1.a >b 2.M <N解析 M -N =a b -a +m b +m =m (a -b )b (b +m )<0,即M <N .3.a >b >c解析 分子有理化得a =13+2,b =16+5,c =17+6∴a >b >c . 4.P ≤Q解析 12[lg(1+a )+lg(1+b )]=lg(1+a )(1+b ).∵(1+a )(1+b )=1+(a +b )+ab ≥1+2ab +ab =(1+ab )2,∴(1+a )(1+b )≥1+ab ,∴lg(1+ab )≤lg(1+a )(1+b )=12[lg(1+a )+lg(1+b )],即lg(1+ab )≤12[lg(1+a )+lg(1+b )].∴P ≤Q .5.2解析 ∵(a +b +c )⎝⎛⎭⎫2a +2b +2c =[(a )2+(b )2+(c )2]·[( 2a)2+( 2b)2+( 2c)2] ≥⎝⎛⎭⎫a ·2a +b · 2b +c · 2c 2=18. ∴2a +2b +2c≥2. ∴2a +2b +2c 的最小值为2. 题型分类深度剖析 例1证明 由于2x +y =23(3x )+12(2y ), 由柯西不等式(a 1b 1+a 2b 2)2≤(a 21+a 22)(b 21+b 22)得(2x +y )2≤[(23)2+(12)2](3x 2+2y 2)≤(43+12)×6=116×6=11,∴|2x +y |≤11,∴2x +y ≤11.跟踪训练1425解析 由柯西不等式(32+42)·(x 2+y 2)≥(3x +4y )2,① 得25(x 2+y 2)≥4,所以x 2+y 2≥425.不等式①中当且仅当x 3=y4时等号成立,x 2+y 2取得最小值,由方程组⎩⎪⎨⎪⎧3x +4y =2,x 3=y4,解得⎩⎨⎧x =625,y =825.因此当x =625,y =825时,x 2+y 2取得最小值,最小值为425.例2证明 (1)∵a ,b ,c ∈(0,+∞), ∴a +b ≥2ab ,b +c ≥2bc ,c +a ≥2ca , (1a -1)·(1b -1)·(1c -1)=(b +c )(a +c )(a +b )abc ≥2bc ·2ac ·2ababc=8.(2)∵a ,b ,c ∈(0,+∞),∴a +b ≥2ab ,b +c ≥2bc ,c +a ≥2ca , 2(a +b +c )≥2ab +2bc +2ca ,两边同加a +b +c 得3(a +b +c )≥a +b +c +2ab +2bc +2ca =(a +b +c )2. 又a +b +c =1,∴(a +b +c )2≤3, ∴a +b +c ≤ 3.跟踪训练2 证明 (1)要证a +b +c ≥3, 由于a ,b ,c >0,因此只需证明(a +b +c )2≥3.即证:a 2+b 2+c 2+2(ab +bc +ca )≥3,而ab +bc +ca =1, 故需证明:a 2+b 2+c 2+2(ab +bc +ca )≥3(ab +bc +ca ). 即证:a 2+b 2+c 2≥ab +bc +ca .而这可以由ab +bc +ca ≤a 2+b 22+b 2+c 22+c 2+a 22=a 2+b 2+c 2 (当且仅当a =b =c 时等号成立)证得.∴原不等式成立.(2)a bc +b ac+ c ab =a +b +c abc. 在(1)中已证a +b +c ≥ 3. 因此要证原不等式成立,只需证明1abc≥a +b +c .即证a bc +b ac +c ab ≤1, 即证a bc +b ac +c ab ≤ab +bc +ca .而a bc =ab ·ac ≤ab +ac 2,b ac ≤ab +bc 2,c ab ≤bc +ac2.∴a bc +b ac +c ab ≤ab +bc +ca (a =b =c =33时等号成立).∴原不等式成立. 例3 证明 ∵n (n +1)>n 2, ∴S n >1+2+…+n =n (n +1)2.又∵n (n +1)<n +n +12=2n +12=n +12,∴S n <(1+12)+(2+12)+…+(n +12)=n (n +1)2+n 2=n 2+2n 2<(n +1)22.∴n (n +1)2<S n <(n +1)22.跟踪训练3 证明 ∵k (k +1)>k 2>k (k -1),k ≥2, ∴1k (k +1)<1k 2<1k (k -1),即1k -1k +1<1k 2<1k -1-1k , 分别令k =2,3,…,n 得 12-13<122<1-12; 13-14<132<12-13; …1n -1n +1<1n 2<1n -1-1n ; 将上述不等式相加得: 12-13+13-14+…+1n -1n +1<122+132+ (1)2 <1-12+12-13+…+1n -1-1n ,即12-1n +1<122+132+…+1n 2<1-1n , ∴32-1n +1<1+122+132+…+1n 2<2-1n . 练出高分 A 组 1.②③④解析 取特殊值a =-1,b =-2, 代入验证得②③④正确. 2.T 1≤T 2解析 因为2s m +n -s (m +n )2mn =s ·4nm -(m +n )22mn (m +n )=-s (m -n )22mn (m +n )≤0.所以T 1≤T 2. 3.c解析 由a 2=2x ,b 2=1+x 2+2x >a 2,a >0,b >0得b >a .又c -b =11-x -(1+x )=1-(1-x 2)1-x =x 21-x >0得c >b ,知c 最大.4.4解析 (1+1x )(1+1y )≥(1+1xy )2=4.5.M <N解析 N =x 2+x +y 2+y >x 2+x +y +y2+x +y =x +y 2+x +y =M .6.M >N解析 ∵a ≠b ,∴a b +b >2a ,ba+a >2b , ∴a b +b +ba+a >2a +2b ,∴a b +b a >a +b .即M >N . 7. 3解析 (a +b +c )2=(1×a +1×b +1×c )2≤(12+12+12)(a +b +c )=3.当且仅当a =b =c =13时,等号成立. ∴(a +b +c )2≤3.故a +b +c 的最大值为 3. 8.39解析 3a +2b +c =3a +2b +133c ≤⎝⎛⎭⎫3+1+13(a +2b +3c )=39, 故最大值为39.9.-2解析 由于a +b =2,所以12|a |+|a |b =a +b 4|a |+|a |b =a 4|a |+b 4|a |+|a |b ,由于b >0,|a |>0,所以b 4|a |+|a |b≥2b 4|a |·|a |b =1,因此当a >0时,12|a |+|a |b 的最小值 是14+1=54;当a <0时,12|a |+|a |b 的最小值是-14+1=34.故12|a |+|a |b 的最小值为34,此时⎩⎪⎨⎪⎧b 4|a |=|a |b ,a <0,即a =-2. 10.②④解析 ∵a >0,b >0,∴a +b ≥2ab .∴ab ≥2ab a +b .故①不恒成立. ②中a +b >|a -b |恒成立.③中a 2+b 2-4ab +3b 2=a 2-4ab +4b 2=(a -2b )2≥0,故③不恒成立.④中由ab >0及ab +2ab≥22>2恒成立, 因此只有②④正确.B 组1.16解析 ∵x >0,y >0,1x +9y=1, ∴x +y =(x +y )·⎝⎛⎭⎫1x +9y =y x +9x y+10 ≥6+10=16,当且仅当y x =9x y时,上式等号成立. 又1x +9y=1,∴x =4,y =12时,(x +y )min =16. 2.4243解析 由y =x 2·(1-3x )=49·32x ·32x (1-3x ) ≤49⎝ ⎛⎭⎪⎫32x +32x +1-3x 33=4243. 3.2解析 由柯西不等式(a 2+b 2)(c 2+d 2)≥(ac +bd )2,当且仅当ad =bc 时“=”成立,得(am +bn )(bm +an )≥(am ·an +bm bn )2=mn (a +b )2=2.4.9解析 因为a >0,b >0,所以a +b +1a ≥33a ×b ×1a=33b >0,① 同理可证:a 2+1b +1a 2≥331b>0.② 由①②及不等式的性质得⎝⎛⎭⎫a +b +1a ⎝⎛⎭⎫a 2+1b +1a 2=33b ×331b=9. 5.P <3解析 ∵P -3=x x +1-1+y y +1-1+z z +1-1=-1x +1+-1y +1+-1z +1<0,∴P <3. 6.-2 3解析 ∵(x 2+2y 2+3z 2)[32+(2)2+⎝⎛⎭⎫132] ≥(3x +2y ·2+3z ·13)2=(3x +2y +z )2,当且仅当x=3y=9z时,等号成立.∴(3x+2y+z)2≤12,即-23≤3x+2y+z≤2 3.当x=-9317,y=-3317,z=-317时,3x+2y+z=-23,∴最小值为-2 3. 7.④解析∵a+1b+b+1c+c+1a=⎝⎛⎭⎫a+1a+⎝⎛⎭⎫b+1b+⎝⎛⎭⎫c+1c≥2+2+2=6.∴a+1b,b+1c,c+1a三数之和不小于6,即三个数中至少有一个不小于2.。
2015届高考数学(人教,理科)大一轮配套练透:选修4-1 第1节

[课堂练通考点]1.如图,AB ∥EM ∥DC ,AE =ED ,EF ∥BC ,EF =12 cm ,则BC 的长为______ cm.解析:⎭⎪⎬⎪⎫AB ∥EM ∥DC AE =ED ⇒E 为AD 中点, M 为BC 的中点.又EF ∥BC ⇒EF =MC =12 cm ,∴BC =2MC =24 cm.答案:242.如图,在四边形ABCD 中,E 是AB 上一点,EC ∥AD ,DE ∥BC ,若S △BEC =1,S △ADE =3,则S △CDE =________.解析:∵EC ∥AD ,∴S △DCE ∶S △ADE =EC ∶AD ,∵DE ∥BC ,∴S △BCE ∶S △CDE =BC ∶ED ,又因为∠ECB =∠DEC =∠ADE ,∠BEC =∠EAD ,∴△BEC ∽△EAD ,∴EC ∶AD =BC ∶ED .∴S △DCE ∶S △ADE =S △BCE ∶S △CDE ,于是S △CDE = 3. 答案: 33.(2013·广东高考)如图,在矩形ABCD 中,AB =3,BC =3,BE ⊥AC ,垂足为E ,则ED =________.解析:∵tan ∠BCA =BA BC =33,所以∠BCA =30°,∠ECD =90°-∠BCA =60°.在Rt △BCE 中,CE =BC ·cos ∠BCA =3cos 30°=332.在△ECD 中,由余弦定理得 ED =CE 2+CD 2-2CE ·CD ·cos ∠ECD =⎝⎛⎭⎫3322+(3)2-2×332×3×12=212. 答案:2124.如图,在△ABC 中,F 为边AB 上的一点,BF AF =m n(m ,n >0),取CF 的中点D ,连接AD 并延长交BC 于点E .则BE EC=________.解析:如图,作FG ∥BC 交AE 于点G ,则FG CE =FD DC =1,BE FG =AB AF =m +n n.两式相乘即得BE EC =m +n n. 答案:m +n n5.在平行四边形ABCD 中,点E 在边AB 上,且AE ∶EB =1∶2,DE 与AC 交于点F ,若△AEF 的面积为6 cm 2,则△ABC 的面积为________ cm 2.解析:令E =a ,EF =b ,则12ab =6. 由题意知EB =2a .DF =3b .∴S △ABC =12·AB ·DE =12×3a ×4b =12×12ab =12×6=72. 答案:72[课下提升考能]1.如图,在△ABC 中,DE ∥BC ,BE 与CD 相交于点O ,直线AO与DE 交于N ,AO 的延长线与BC 交于M ,若DN ∶MC =1∶4,则NE ∶BM =________,AE ∶EC =________.解析:∵OD OC =DN MC =14, OE OB =OD OC =14, ∴NE BM =OE OB =14,又DE BC =OD OC =14, ∴AE AC =DE BC =14, ∴AE ∶EC =1∶3.答案:1∶4 1∶32.如图,在△ABC 中,点D ,E 分别在AB ,AC 上,下列条件能判定△ADE 与△ABC 相似的所有序号为________.①∠ADE =∠C ;②∠AED =∠B ;③AD AC =AE AB ;④DE BC =AE AB;⑤DE ∥BC .解析:由题图可知∠A 为公共角,由判定定理可知,①②正确;由∠A 为夹角可知,③正确;由平行线分线段成比例的定理的推论知⑤正确;④不符合两边及其夹角法.答案:①②③⑤3.在△ABC 中,EF ∥CD ,∠AFE =∠B ,AE =6,ED =3,AF =8,则AC =________,CD 2BC 2=________. 解析:由EF ∥CD 可知,△AEF ∽△ADC .于是有AE AD =AF AC, 由已知条件代入得,66+3=8AC,所以AC =12. 又由∠AFE =∠B ,得△AFE ∽△ABC ,从而△ACD ∽△ABC .所以CD BC =AD AC =6+312=34,即CD 2BC 2=916. 答案:12 9164.在△ABC 中,∠ACB =90°,CD ⊥AB 于D ,AD ∶BD =2∶3.则△ACD 与△CBD 的相似比为________.解析:如图所示,在Rt △ACB 中,CD ⊥AB ,由射影定理得:CD 2=AD ·BD ,又∵AD ∶BD =2∶3,令AD =2x ,BD =3x (x >0),∴CD 2=6x 2,∴CD =6x .又∵∠ADC =∠BDC =90°,∴△ACD ∽△CBD .易知△ACD 与△CBD 的相似比为AD CD =2x 6x =63. 答案:6∶35.如图,CD 是Rt △ABC 斜边AB 上的高,将△BCD 沿CD 折叠,B点恰好落在AB 的中点E 处,则∠A 等于________.解析:由题意知:BC =EC ,又∵E 为AB 的中点,∠ACB =90°,∴EC =12AB . 即BC =12AB .∴∠A =30°.答案:30°6.将三角形纸片ABC 按如图所示的方式折叠,使点B 落在边AC 上,记为点B ′,折痕为EF .已知AB =AC =3,BC =4,若以点B ′、F 、C 为顶点的三角形与△ABC 相似,则BF =________.解析:设BF =x .若△CFB ′∽△CBA ,则CF CB =B ′F AB ,即4-x 4=x 3. ∴12-3x =4x ,∴x =127. 若△CFB ′∽△CAB ,则CF CA =B ′F AB, 即4-x 3=x 3,得x =2. 即BF =2或127. 答案:2或1277.如图,在▱ABCD 中,E 是DC 边的中点,AE 交BD 于O ,S △DOE =9cm 2,S △AOB =________.解析:∵在▱ABCD 中 ,AB ∥DE ,∴△AOB ∽△EOD ,∴S △AOB S △DOE =⎝⎛⎭⎫AB DE 2. ∵E 是CD 的中点,∴DE =12CD =12AB , 则AB DE =2,∴S △AOB S △DOE=22=4, ∴S △AOB =4S △DOE =4×9=36(cm)2.答案:36 cm 28.已知如图,在梯形ABCD 中,AD ∥BC ∥EF ,E 是AB 的中点,EF交BD 于G ,交AC 于H .若AD =5,BC =7,则GH =________.解析:令BD 交AC 于M ,由AD ∥EF ∥BC 且AE =EB 知BG =GD ,AH =HC .又AD =5,BC =7.AD ∥BC 知BM MD =CM MA =BC AD =75. 又GM MD =HM MA =15.∴GH AD =15∴GH =1.答案:19.如图,M 是平行四边形ABCD 的边AB 的中点,直线l 过点M分别交AD ,AC 于点E ,F .若AD =3AE ,则AF ∶FC =________.解析:延长ME 交CD 的延长线于点G ,则△AME ∽△DGE ,所以AE ED =AM DG =12,所以DG =2AM =DC .又△AMF ∽△CGF ,所以AF FC =AM CG =14. 答案:1410.如图,在△ABC 中,∠A =60°,∠ACB =70°,CF 是△ABC 的边AB 上的高,FP ⊥BC 于点P ,FQ ⊥AC 于点Q ,则∠CQP 的大小为________.解析:由FP ⊥BC ,FQ ⊥AC ,得C ,Q ,F ,P 四点共圆,所以∠CQP =∠CFP =∠B =180°-(∠A +∠C )=180°-(60°+70°)=50°.答案:50°11.两个相似三角形面积的比为3∶5,已知较大的三角形大边上的高为3,则较小的三角形大边上的高为________.解析:相似三角形的面积比等于对应边上高的比的平方,易得所求的高为355. 答案:35512.如图所示,在△ABC 中,DE ∥BC ,EF ∥CD ,若BC =3,DE =2,DF =1,则AB 的长为________.解析:∵DE ∥BC ,∴AD AB =AE AC =DE BC =23, EC AC =13. 又∵EF ∥CD ,∴DF AD =13. ∴AD =3.∴AB =32·AD =92. 答案:9213.如图所示,在梯形ABCD 中,AB ∥CD ,AB =4,CD =2,E ,F 分别为AD ,BC 上的点,且EF =3,EF ∥AB ,则梯形ABFE 与梯形EFCD 的面积比为________.解析:将线段AD 与BC 延长交于点H (如图所示).根据相似三角形面积之比等于相似比的平方,可得S △HCD S △HEF =49,S △HCD S △HAB =416, 故梯形ABFE 与梯形EFCD 的面积比为7∶5.答案:7∶514.在△ABC 中,∠ACB =90°,AC =2,点D 在BC 边上,且CD =1.若∠CAD =∠B ,则BD =________.解析:作出草图,依据题意tan ∠CAD =tan ∠B ,即12=21+BD,∴BD =3. 答案:315.如图,在△ABC 中,D 是AC 的中点,E 是BC 延长线上一点,过A 作AH ∥BE .连接ED 并延长交AB 于F ,交AH 于H .如果AB =4AF ,EH =8,则DF 的长为________.解析:∵AH ∥BE ,∴HF HE =AF AB. ∵AB =4AF ,∴HF HE =14, ∵HE =8,∴HF =2.∵AH ∥BE ,∴HD DE =AD DC. ∵D 是AC 的中点,∴HD DE=1. ∵HE =HD +DE =8,∴HD =4,∴DF =HD -HF =4-2=2.答案:216.如图,在△ABC 中,D 是AC 的中点,E 是BD 的三等分点,AE的延长线交BC 于F ,则S △BEF S 四边形DEFC的值为________. 解析:过D 点作DM ∥AF 交BC 于M ,因为DM ∥AF ,所以BF BM =BE BD =13,因为EF ∥DM ,所以S △BEFS △BDM =19,即S△BDM =9S △BEF ,又S △DMCS △BDM =23,即S △DMC =23S △BDM =6S △BEF ,所以S 四边形DEFC =14S △BEF ,因此S △BEFS 四边形DEFC =114.答案:11417.如图,在△ABC 中,D 为BC 边的中点,E 为AD 上的一点,延长BE 交AC 于点F .若AE AD =14,则AF AC 的值为________.解析:如图,过点A 作AG ∥BC ,交BF 的延长线于点G .∵AE AD =14,∴AE ED =13.又∵△AGE ∽△DBE ,∴AG BD =AE ED =13.∵D 为BC 中点,BC =2BD ,∴AG BC =16.∵△AGF ∽△CBF ,∴AF FC =AG BC =16,∴AF AC =17.答案:17。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
选修4-1几何证明选讲1.平行截割定理(1)平行线等分线段定理如果一组__________在一条直线上截得的线段______,那么在任一条(与这组平行线相交的)直线上截得的线段也________.(2)平行线分线段成比例定理两条直线与一组平行线相交,它们被这组平行线截得的对应线段成________.2.相似三角形的判定与性质(1)相似三角形的判定定理①两角对应________的两个三角形________;②两边对应成________且夹角________的两个三角形________;③三边对应成________的两个三角形________.(2)相似三角形的性质定理①相似三角形的对应线段的比等于____________.②相似三角形周长的比等于____________.③相似三角形面积的比等于________________________.3.直角三角形射影定理直角三角形一条直角边的平方等于________________________________,斜边上的高的平方等于________________________________.4.圆中有关的定理(1)圆周角定理:圆周角的度数等于其所对弧的度数的________.(2)圆心角定理:圆心角的度数等于________________的度数.(3)切线的判定与性质定理①切线的判定定理过半径外端且与这条半径________的直线是圆的切线.②切线的性质定理圆的切线________于经过切点的半径.(4)切线长定理从圆外一点引圆的两条切线,切线长________.(5)弦切角定理弦切角的度数等于其所夹弧的度数的________.(6)相交弦定理圆的两条相交弦,每条弦被交点分成的两条线段长的积________.(7)割线定理从圆外一点引圆的两条割线,该点到每条割线与圆的交点的两条线段长的积________.(8)切割线定理从圆外一点引圆的一条割线与一条切线,切线长是这点到割线与圆的两个交点的线段长的________________.(9)圆内接四边形的性质与判定定理①圆内接四边形判定定理(ⅰ)如果四边形的对角________,则此四边形内接于圆;(ⅱ)如果四边形的一个外角________它的内角的对角,那么这个四边形的四个顶点共圆.②圆内接四边形性质定理(ⅰ)圆内接四边形的对角________;(ⅱ)圆内接四边形的外角________它的内角的对角.1.如图,F为▱ABCD的边AD延长线上的一点,DF=AD,BF分别交DC,AC于点G,E,EF=16,GF=12,则BE的长为________.第1题图 第2题图2.如图,在直角梯形ABCD 中,DC ∥AB ,CB ⊥AB ,AB =AD =a ,CD =a2,点E ,F 分别为线段AB 、AD 的中点,则EF =________.3. 如图,四边形ABCD 内接于⊙O ,BC 是直径,MN 与⊙O 相切,切点为A ,∠MAB =30°,则∠D =________.4.如图所示,EA 是圆O 的切线,割线EB 交圆O 于点C ,C 在直径AB 上的射影为D ,CD =2,BD =4,则EA =________.第4题图第5题图5.(2012·湖南)如图所示,过点P的直线与⊙O相交于A,B两点.若P A=1,AB=2,PO =3,则⊙O的半径等于________.题型一相似三角形的判定及性质例1如图,已知在△ABC中,点D是BC边上的中点,且AD=AC,DE⊥BC,DE与AB相交于点E,EC与AD相交于点F.(1)求证:△ABC∽△FCD;(2)若S△FCD=5,BC=10,求DE的长.思维升华(1)三角形相似的证明方法很多,解题时应根据条件,结合图形选择恰当的方法.一般的思考程序:先找两对内角对应相等;若只有一个角对应相等,再判定这个角的两邻边是否对应成比例;若无角对应相等,就要证明三边对应成比例.(2)证明等积式的一般方法是化为等积的比例式,若题目中无平行线,需利用相似三角形的性质证明.如图,在梯形ABCD中,AD∥BC,AB=CD,DE∥CA,且交BA的延长线于E,求证:ED·CD =EA·BD.题型二直角三角形的射影定理例2如图,Rt△ABC中,∠BAC=90°,AD⊥BC于D,BE平分∠ABC交AC于E,EF⊥BC于F.求证:EF∶DF=BC∶AC.思维升华已知条件中含直角三角形且涉及直角三角形斜边上的高时,应首先考虑射影定理,注意射影与直角边的对应法则,根据题目中的结论分析并选择射影定理中的等式,并分清比例中项.如图所示,在△ABC 中,∠CAB =90°,AD ⊥BC 于D ,BE 是∠ABC 的平分线,交AD 于F ,求证:DF AF =AE EC .题型三 圆的切线的判定与性质例3如图,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于点E,点D在AB上,DE⊥EB,且AD=23,AE=6.(1)判断直线AC与△BDE的外接圆的位置关系;(2)求EC的长.思维升华证明直线是圆的切线的方法:若已知直线经过圆上某点(或已知直线与圆有公共点),则连结圆心和这个公共点,设法证明直线垂直于这条半径;如果已知条件中直线与圆的公共点不明确(或没有公共点),则应过圆心作直线的垂线,得到垂线段,设法证明这条垂线段的长等于圆半径.(2013·广东改编)如图,AB是圆O的直径,点C在圆O上,延长BC到D使BC=CD,过C作圆O的切线交AD于E.若AB=6,ED=2,求BC的长.题型四与圆有关的比例线段例4(2012·辽宁)如图,⊙O和⊙O′相交于A,B两点,过A作两圆的切线分别交两圆于C,D两点,连结DB并延长交⊙O于点E.证明:(1)AC·BD=AD·AB;(2)AC=AE.思维升华(1)应用相交弦定理、切割线定理要抓住几个关键内容:如线段成比例与相似三角形、圆的切线及其性质、与圆有关的相似三角形等.(2)相交弦定理、切割线定理主要用于与圆有关的比例线段的计算与证明.解决问题时要注意相似三角形知识及圆周角、弦切角、圆的切线等相关知识的综合应用.如图,⊙O的半径OB垂直于直径AC,M为AO上一点,BM的延长线交⊙O于N,过N点的切线交CA的延长线于P.(1)求证:PM2=P A·PC;(2)若⊙O的半径为23,OA=3OM,求MN的长.与圆有关的几何证明问题典例:(10分)(2012·课标全国)如图,D,E分别为△ABC边AB,AC的中点,直线DE交△ABC的外接圆于F,G两点.若CF∥AB,证明:(1)CD=BC;(2)△BCD∽△GBD.思维启迪(1)连结AF,利用平行关系构造平行四边形可得结论;(2)先证△BCD和△GBD为等腰三角形,再证明两三角形顶角相等即可.规范解答证明(1)因为D,E分别为AB,AC的中点,所以DE∥BC.又已知CF∥AB,故四边形BCFD是平行四边形,所以CF=BD=AD.而CF∥AD,连结AF,所以四边形ADCF是平行四边形,故CD=AF.[5分]因为CF∥AB,所以BC=AF,故CD=BC.[6分] (2)因为FG∥BC,故GB=CF.由(1)可知BD=CF,所以GB=BD,所以∠BGD=∠BDG.[8分]由BC=CD知∠CBD=∠CDB,又因为∠DGB=∠EFC=∠DBC,所以△BCD∽△GBD.[10分]处理与圆有关的比例线段的常见思路:(1)利用圆的有关定理;(2)利用相似三角形;(3)利用平行线分线段成比例定理及推论;(4)利用面积关系等.温馨提醒(1)解决几何证明问题需用各种判定定理、性质定理、推理和现有的结论,要熟悉各种图形的特征,利用好平行、垂直、相似、全等的关系,适当添加辅助线和辅助图形,这些知识都有利于问题的解决.(2)证明等积式时,通常转化为证明比例式,再证明四条线段所在的三角形相似.另外也可利用平行线分线段成比例定理来证明.(3)弦切角定理与圆周角定理是证明角相等的重要依据,解题时应根据需要添加辅助线构造所需要的角.(4)圆内接四边形的性质也要熟练掌握,利用该性质可得到角相等,进而为三角形的相似创造了条件.方法与技巧1.证明等积式成立,应先把它写成比例式,找出比例式中给出的线段所在三角形是否相似,若不相似,则进行线段替换或等比替换.2.圆幂定理与圆周角、弦切角联合应用时,要注意找相等的角,找相似三角形,从而得出线段的比.由于圆幂定理涉及圆中线段的数量计算,所以应注意代数法在解题中的应用.失误与防范1.在应用平行截割定理时,一定要注意对应线段成比例.2.在解决相似三角形时,一定要注意对应角和对应边,否则容易出错.A组专项基础训练1.已知△ABC中,BF⊥AC于点F,CE⊥AB于点E,BF和CE相交于点P,求证:(1)△BPE∽△CPF;(2)△EFP∽△BCP.2.如图,△ABC中,∠BAC=90°,AD⊥BC交BC于点D,若E是AC的中点,ED的延长线交AB的延长线于F,求证:ABAC=DFAF.3. 如图所示,已知在△ABC中,∠ABC=90°,O是AB上一点,以O为圆心,OB为半径的圆与AB交于点E,与AC切于点D,连结DB,DE,OC.若AD=2,AE=1,求CD的长.4.(2013·江苏)如图,AB和BC分别与圆O相切于点D,C,AC经过圆心O,且BC=2OC.求证:AC=2AD.5. 如图,梯形ABCD中,AB∥CD,若S△ODC∶S△BDC=1∶3,求S△ODC∶S△ABC.6. 如图,锐角三角形ABC的内心为I,过点A作直线BI的垂线,垂足为H,点E为内切圆I与边CA的切点.(1)求证:四点A,I,H,E共圆;(2)若∠C=50°,求∠IEH的度数.B组专项能力提升1. 如图所示,已知:在Rt△ABC中,∠ACB=90°,M是BC的中点,CN⊥AM,垂足是N,求证:AB·BM=AM·BN.2. 如图所示,在△ABC中,AD为BC边上的中线,F为AB上任意一点,CF交AD于点E.求证:AE·BF=2DE·AF.3.(2013·辽宁) 如图,AB为⊙O的直径,直线CD与⊙O相切于E,AD垂直CD于D,BC 垂直CD于C,EF垂直AB于F,连结AE,BE.证明:(1)∠FEB=∠CEB;(2)EF2=AD·BC.4.(2013·课标全国Ⅰ)如图,直线AB为圆O的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB垂直BE交圆于点D.(1)证明:DB=DC;(2)设圆的半径为1,BC=3,延长CE交AB于点F,求△BCF外接圆的半径.答案要点梳理1.(1)平行线 相等 相等 (2)比例2.(1)①相等 相似 ②比例 相等 相似 ③比例 相似 (2)①相似比 ②相似比 ③相似比的平方3.该直角边在斜边上的射影与斜边的乘积 两条直角边在斜边上的射影的乘积 4.(1)一半 (2)它所对弧 (3)①垂直 ②垂直 (4)相等 (5)一半 (6)相等 (7)相等 (8)等比中项 (9)①(ⅰ)互补 (ⅱ)等于 ②(ⅰ)互补 (ⅱ)等于 夯基释疑1.8 2.a 2 3.120° 4.52 5. 6题型分类·深度剖析例1(1)证明∵DE⊥BC,D是BC边上的中点,∴EB=EC,∴∠B=∠ECD,又AD=AC,∴∠ADC=∠ACD,∴△ABC∽△FCD.(2)解过点A作AM⊥BC,垂足为点M,∵△ABC∽△FCD,BC=2CD,∴S△ABCS△FCD=(BCCD)2=4,又∵S△FCD=5,∴S△ABC=20,又S △ABC =12×BC ×AM =12×10×AM =20,解得AM =4,又DE ∥AM ,∴DE AM =BDBM, ∵DM =12DC =52,BM =BD +DM =5+52=152,∴DE 4=5152,解得DE =83. 跟踪训练1 证明 在梯形ABCD 中, ∵AB =DC ,∴∠ABC =∠DCB .又BC =BC ,∴△ABC ≌△DCB .∴∠BAC =∠BDC , ∵AC ∥ED ,AD ∥BC ,∴∠E =∠BAC =∠BDC ,∠EAD =∠ABC =∠DCB , ∴△EAD ∽△DCB . ∴EA DC =EDDB,即ED ·CD =EA ·BD . 例2证明 ∵∠BAC =90°,且AD ⊥BC ,∴由射影定理得AC 2=CD ·BC ,∴AC CD =BCAC .①∵EF ⊥BC ,AD ⊥BC ,∴EF ∥AD ,∴AE DF =ACCD .又BE 平分∠ABC ,且EA ⊥AB ,EF ⊥BC , ∴AE =EF ,∴EF DF =ACCD .②由①、②得EF DF =BCAC,即EF ∶DF =BC ∶AC . 跟踪训练2 证明 由三角形的内角平分线定理得, 在△ABD 中,DF AF =BDAB ,①在△ABC 中,AE EC =ABBC ,②在Rt △ABC 中,由射影定理知, AB 2=BD ·BC ,即BD AB =ABBC .③由①③得:DF AF =ABBC ,④由②④得:DF AF =AEEC.例3解(1)取BD的中点O,连结OE.∵BE平分∠ABC,∴∠CBE =∠OBE .又∵OB =OE ,∴∠OBE =∠BEO ,∴∠CBE =∠BEO ,∴BC ∥OE .∵∠C =90°,∴OE ⊥AC ,∴直线AC 是△BDE 的外接圆的切线,即直线AC 与△BDE 的外接圆相切.(2)设△BDE 的外接圆的半径为r .在△AOE 中,OA 2=OE 2+AE 2,即(r +23)2=r 2+62,解得r =23,∴OA =2OE ,∴∠A =30°,∠AOE =60°.∴∠CBE =∠OBE =30°,∴EC =12BE =12×3r =12×3×23=3.跟踪训练3 解 C 为BD 中点,且AC ⊥BC ,故△ABD 为等腰三角形.AB =AD =6,所以AE =4,DE =2.又AE AC =AC AD ,所以AC 2=AE ·AD =4×6=24,AC =26,在△ABC 中,BC =AB 2-AC 2=36-24=2 3.例4 证明 (1)由AC 与⊙O ′相切于A ,得∠CAB =∠ADB ,同理∠ACB =∠DAB ,所以△ACB ∽△DAB .从而AC AD =AB BD,即AC ·BD =AD ·AB . (2)由AD 与⊙O 相切于A ,得∠AED =∠BAD .又∠ADE =∠BDA ,得△EAD ∽△ABD .从而AE AB =AD BD,即AE ·BD =AD ·AB . 结合(1)的结论知,AC =AE .跟踪训练4(1)证明 连结ON ,则ON ⊥PN ,且△OBN 为等腰三角形,则∠OBN =∠ONB , ∵∠PMN =∠OMB =90°-∠OBN ,∠PNM =90°-∠ONB ,∴∠PMN =∠PNM ,∴PM =PN .根据切割线定理,有PN 2=P A ·PC ,∴PM 2=P A ·PC .(2)解 OM =2,在Rt △BOM 中,BM =OB 2+OM 2=4.延长BO 交⊙O 于点D ,连结DN .由条件易知△BOM ∽△BND ,于是BO BN =BM BD, 即23BN =443,∴BN =6. ∴MN =BN -BM =6-4=2.练出高分A 组1.证明(1)∵BF ⊥AC 于点F ,CE ⊥AB 于点E ,∴∠BFC =∠CEB =90°.又∵∠CPF =∠BPE ,∴△CPF ∽△BPE .(2)由(1)得△CPF ∽△BPE ,∴EP BP =FP CP. 又∵∠EPF =∠BPC ,∴△EFP ∽△BCP .2.证明 ∵E 是Rt △ADC 斜边AC 的中点,∴AE =EC =DE .∴∠EDC =∠ECD ,又∠EDC =∠BDF ,∴∠EDC =∠C =∠BDF .又AD ⊥BC 且∠BAC =90°,∴∠BAD =∠C ,∴∠BAD =∠BDF ,∴△DBF ∽△ADF .∴DB AD =DF AF. 又Rt △ABD ∽Rt △CBA ,因此AB AC =DB AD .∴AB AC =DF AF. 3.解 由切割线定理得AD 2=AE ·AB ,所以AB =4,EB =AB -AE =3.又∵∠OCD =∠ADE =90°-∠CDB ,∠A =∠A ,∴△ADE ∽△ACO ,∴AD AE =AC AO ,即21=CD +22.5,CD =3. 故CD 的长等于3.4.证明 连结OD .因为AB 和BC 分别与圆O 相切于点D ,C , 所以∠ADO =∠ACB =90°.又因为∠A =∠A ,所以Rt △ADO ∽Rt △ACB .所以BC OD =AC AD. 又BC =2OC =2OD ,故AC =2AD .5.解 ∵S △ODC ∶S △BDC =1∶3,且△ODC 和△BDC 有公共边CD ,设△ODC 和△BDC 在CD 上的高分别为h 和H ,则h ∶H =1∶3,∴DO ∶DB =1∶3,∴DO ∶OB =1∶2.又∵AB ∥CD ,∴△ODC ∽△OBA .∴S △ODC ∶S △OBA =1∶4.设S △ODC =a ,则S △OBC =2a ,S △OAB =4a ,∵S △ABC =S △OAB +S △OBC ,∴S △ABC =6a .∴S △ODC ∶S △ABC =1∶6.6.(1)证明 由圆I 与边AC 相切于点E ,得IE ⊥AE ,结合IH ⊥AH ,得∠AEI =∠AHI =90° .所以,四点A ,I ,H ,E 共圆.(2)解 由(1)知四点A ,I ,H ,E 共圆,则∠IEH =∠HAI .又∠HIA =∠ABI +∠BAI =12∠ABC +12∠BAC =12(∠ABC +∠BAC )=12(180°-∠C )=90°-12∠C . 结合IH ⊥AH ,得∠HAI =90°-∠HIA =12∠C , 所以∠IEH =12∠C .由∠C =50°得∠IEH =25°. B 组1.证明 ∵CM 2=MN ·AM ,又∵M 是BC 的中点,∴BM 2=MN ·AM ,∴BM AM =MN BM, 又∵∠BMN =∠AMB ,∴△AMB ∽△BMN ,∴AB BN =AM BM,∴AB ·BM =AM ·BN . 2.证明 过点D 作AB 的平行线DM 交AC 于点M ,交FC 于点N . 在△BCF 中,D 是BC 的中点,DN ∥BF ,∴DN =12BF .∵DN ∥AF ,∴△AFE ∽△DNE ,∴AE AF =DE DN. 又DN =12BF ,∴AE AF =2DE BF, 即AE ·BF =2DE ·AF .3.证明 (1)由直线CD 与⊙O 相切, 得∠CEB =∠EAB .由AB 为⊙O 的直径,得AE ⊥EB ,从而∠EAB +∠EBF =π2; 又EF ⊥AB ,得∠FEB +∠EBF =π2, 从而∠FEB =∠EAB .故∠FEB =∠CEB .(2)由BC ⊥CE ,EF ⊥AB ,∠FEB =∠CEB ,BE 是公共边,得Rt △BCE ≌Rt △BFE ,所以BC =BF . 同理可证,得AD =AF .又在Rt △AEB 中,EF ⊥AB ,故EF 2=AF ·BF ,所以EF 2=AD ·BC . 4.(1)证明连结DE,则∠DCB=∠DEB,∵DB⊥BE,∴∠DBC+∠CBE=90°,∠DEB+∠EDB=90°,∴∠DBC+∠CBE=∠DEB+∠EDB,又∠CBE=∠EBF=∠EDB,∴∠DBC=∠DEB=∠DCB,∴DB=DC.(2)解由(1)知:∠CBE=∠EBF=∠BCE,∴CE=BE,∴∠BDE=∠CDE,∴DE是BC的垂直平分线,设交点为H,则BH=32,∴OH=1-34=12,∴DH=32,∴tan∠BDE=3232=33,∴∠BDE=30°,∴∠FBE=∠BDE=30°,∴∠CBF+∠BCF=90°,∴∠BFC=90°,∴BC是△BCF的外接圆直径.∴△BCF的外接圆半径为3 2.。