核电汽轮机通流能力分析及优化

核电汽轮机通流能力分析及优化
核电汽轮机通流能力分析及优化

核电汽轮机通流能力分析及优化

摘要:中国许多核电厂都存在涡轮机开度小的现象,这导致节流损失的增加。

根据压水堆核电站的主要蒸汽压力运行特性和实际运行数据,分析了造成这种现

象的原因,并提出了解决方案。通过准确地设计阀前压力并优化涡轮流量,可以

减少节流损失,增加单位输出,并进一步提高核电站的发电效率。

关键词:核电;汽轮机;通流能力;效率

引言

秦山300MW核电站一期工程自1991年成功投运以来,我国核电汽轮机的设

计和开发已经走过了20多年的历程。随着我国核电站比重的逐步提高,单机容

量的不断增加,如何更有效地运行,提高核电站的发电效率是一个需要关注的问题。国内核电站基本上采用恒压节流运行,从已投运的机组开始。从运行数据来看,汽轮机普遍存在小开度、大节流损失的现象,这引起了人们对汽轮机流量设

计的重视。本文将对此进行分析和计算,为提高核电站的运行效率提供依据。

1运行特点

对于压水堆核电站,蒸汽发生器的热平衡方程为:P \u003d KF(TAVG TSG)其中:P是蒸汽发生器产生的热能; K和F是蒸汽发生器的传热系数和传热

面积; TAVG是反应堆冷却剂的平均温度; TSG是蒸汽发生器中的蒸汽温度。从

该方程式可以看出,蒸汽温度TSG越低,热功率P越大。图1显示了大亚湾核电

站蒸汽发生器的典型温度。

由于蒸汽发生器的出口为饱和蒸汽,因此蒸汽温度对应于压力,因此,新蒸

汽的压力会随着热能的增加而降低,如图2所示,并且根据蒸汽轮机原理,当流

量为常数,阶段为压力随着负载的增加而增加,这与蒸汽发生器的压力特性相反。

在低负荷工况下,火力发电机组可以降低主蒸汽压力,采用滑动压力操作,

即脚跟机,或在汽轮机的高压部分设置调节级,并增加进气量。减少负荷时,通

过改变流通面积来提高压力。对于炉子以及对于核动力装置,为了满足蒸汽发生

器的负载特性,入口压力处于机器和堆的操作模式下。同时,由于核电机组主要

承担基本负荷,为了提高设计工况的流量效率,核电涡轮一般采用无调节级设计,机组采用节流调节运行。此时,涡轮级前压力P1与主节流阀前压力P0的匹配程

度将直接影响高压缸的效率和涡轮的性能。

2已投入运行的核电厂的主要蒸汽压力偏差

作者跟踪了几台300MW和1000MW核电机组的运行参数。发现在额定流量下,主蒸汽阀前的蒸汽压力比设计值高2%至5%。初步分析认为,主要原因如下:

(1)核岛反应堆和蒸汽发生器有一定的余量。在设计蒸汽发生器的传热面积时,有必要考虑不确定因素,例如,在操作的后期,热交换管的损坏和外壁的结垢。因此,设计堵塞率为10%。选择结垢系数作为经验值。新装置投入运行时,

堵塞率和结垢系数远小于设计值,因此达到额定流量所需的热负荷小于设计值,

主蒸汽压力升高。

(2)管道压力损失偏离设计值。蒸汽发生器出口到蒸汽轮机主蒸汽阀前面的主蒸汽管道,包括直管段和一系列阀和弯头。设计压力损失是根据经验公式计算的,一般考虑工程余量。测得的压力损失小于设计值。当蒸汽发生器的出口压力

第十章 蒸汽动力循环及汽轮机基础知识

- 113 - 第十章 蒸汽动力循环及汽轮机基础知识 10.1 蒸汽动力循环 核电站二回路系统的功能是将一回路系统产生的热能(高温、高压饱和蒸汽)通过汽轮机安全、经济地转换为汽轮机转子的动能(机械能),并带动发电机将动能转换为电能,最终经电网输送给用户。 热能转换为机械能是通过蒸汽动力循环完成的。蒸汽动力循环是指以蒸汽作为工质的动力循环,它由若干个热力过程组成。而热力过程是指热力系统状态连续发生变化的过程。工质则是指实现热能和机械能相互转换的媒介物质,其在某一瞬间所表现出来的宏观物理状态称为该工质的热力状态。工质从一个热力状态开始,经历若干个热力过程(吸热过程、膨胀过程、放热过程、压缩过程)后又恢复到其初始状态就构成了一个动力循环,如此周而复始实现连续的能量转换。核电厂二回路基本的工作原理如图10.1所示。 节约能源、实现持续发展是当今世界的主流。如何提高能源的转换率也是当今工程热力学所研究的重要课题。电厂蒸汽动力循环也发展出如卡诺循环、朗肯循环、再热循环、回热循环等几种循环形式。 10.1.1 蒸汽动力循环形式简介 1.卡诺循环 卡诺循环是由二个等温过程和二个绝热过程组成的可逆循环,表示在温熵(T -S )图中,如图10.2所示。图中, A-B 代表工质绝热压缩过程,过程中工质的温度由T 2升到T 1,以便于从热源实现等温传热; B-C 代表工质等温吸热过程,工质在温度 凝 结 水 水 蒸 汽 蒸汽推动汽轮机做功,将蒸汽热能转换成汽轮机动能;继而汽轮机带动发电机发电 。 凝结水从蒸汽发生器内吸收一回路冷却剂的热量变成蒸汽 热力循环 图10.1核电厂二回路基本的工作原理 T 1 S T 2

核电厂电气设备复习题(有答案)

选择题: 1.感应电动机的额定功率(B)从电源吸收的总功率。 A.大于; B.小于; C.等于 2. 电动机铭牌上的“温升”是指(A)允许温升。 A.定子绕组; B.定子铁芯; C.转子个 3.电动机从电源吸收无功功率,产生(C)。 A.机械能; B.热能; C.磁场 4. 电动机定子旋转磁场的转速和转子转速的差数,叫做(A)。 A.转差; B.转差率; C.滑差 5.当外加电压降低时,电动机的电磁力矩降低,转差(B)。 A.降低; B.增大; C.无变化 6.交流电流表指示的电流值,表示的示交流电流的(A)。 A.有效值; B.最大值; C.平均值 7.我们使用的测量仪表,它的准确等级若是0.5级,则该仪表的基本误差是(C)。 A.+0.5%; B.-0.5%; C.±0.5% 8.断路器切断电流时,是指(C)。 A.动静触头分开; B. 电路电流表指示为零; C.触头间电弧完全熄灭 9.蓄电池电动势的大小与(A)无关。 A.极板的大小; B.蓄电池内阻的大小; C.蓄电池比重高低。 10.蓄电池所能输出的能量与它的极板表面积(C)。 A. 没有关系; B.成反比; C. 成正比。 11.电流互感器二次回路阻抗增加时,其电流误差和角误差(A)。 A. 均增加; B.均减小; C.电流误差增加,角误差减小。 12.零序电流只有在(B)才会出现。 A. 相间故障; B. 接地故障或非全相运行; C. 振荡时。 13.涡流损耗的大小,与铁芯材料的性质(B)。 A. 没有关系; B.有关系; C. 关系不大。 14.磁滞损耗的大小与周波(C)。 A. 无关; B.成反比; C. 成正比。 15.不同的绝缘材料,其耐热能力不同,如果长时间在高于绝缘材料的耐热能力下运行,绝缘材料容易(B)。 A. 开裂; B.老化; C. 破碎。 16.铅酸蓄电池在放电过程中,其电解液的硫酸浓度(B)。

浅析核电厂汽轮机跳机风险控制与管理方法

浅析核电厂汽轮机跳机风险控制与管理方法 发表时间:2020-04-08T02:43:29.717Z 来源:《福光技术》2019年34期作者:张乃强 [导读] 较大的影响。在该情况下,即需要能够对该类风险加强识别,做好控制管理工作。 福建福清核电有限公司 350300 摘要:跳机是核电厂运行当中常见的问题,在该问题发生后,将直接会对运行经济效益产生影响。在本文中,将就核电厂汽轮机跳机风险控制与管理方法进行一定的研究。 关键词:核电厂汽轮机;跳机风险;控制管理 1引言 在核电厂运行过程当中,所面临的影响因素有很多,包括有环境风险以及设备风险等,汽轮机作为核电厂运行当中的重要设备,运行的稳定性十分关键,如果发生跳机等事故,将对生产的安全稳定产生较大的影响。在该情况下,即需要能够对该类风险加强识别,做好控制管理工作。 2保护设置优化 汽轮机在核电站运行当中具有重要的地位,汽轮机保护系统的建设也因此具有十分重要的意义。其功能,即当汽轮机在运行当中发生机械故障问题时,能够对安全停机的手段进行提供,避免事故在发生后进一步扩大、进而对设备造成损坏,且能够向反应堆停堆逻辑线路实现对脱扣信号的传输。运行原理,即能够对汽轮机多个蒸汽阀门操作装置的保护油、动力油进行切断,以弹簧作用快速关闭汽轮机蒸汽阀门,以此对进入到汽轮机当中的蒸汽进行切断处理,以此达成停机的目标。 为了保证该系统在运行可靠性、安全性方面具有较好的表现,该系统具有 3 个独立保护通道的设置,以独立电源分别供电,以重复的方式将信号实现对独立通道的配置,跳闸信号在进入到单一通道后,能够使一个危急遮断电磁阀进行动作,整个通道对三取二保护设计方式进行应用,保证在实际运行中、其中一个通道发生故障问题时,其他两个通道也能够充分实现保护跳闸功能。在核电厂运行中,汽轮机保护逻辑判断复杂、分布广泛且具有较多的数量,具有较高的保护拒动、误动风险,在实际风险管理当中也具有较大的难度,相关电缆、机柜与仪表也分布在各个区域当中。在该情况下,为了能够最大程度降低汽轮机误动情况的发生几率,则可以对保护设置项目进行尽可能的减少,从轴承振动、润滑油滤网压差以及排汽温度等方面做好优化工作,使系统能够充分发挥作用。 3风险控制管理 在机组投入运行以后,保证汽轮机的稳定运行,避免发生误动以及跳机可以说是重要的一项重点工作任务。对此,即需要能够从以下方面做好风险控制工作: 3.1TCA 管理 即临时控制变更方式,在该项工作中包括的内容有输入输出强制参数、临时变更设定值、临时接线修改以及逻辑修改工作。在实际生产当中,在试验条件设置时,现场可能会出现需要对控制方案、控制逻辑临时修改的情况,且受到试验、维修需求,以工作指令方式进行变更,但在规定工期内无法恢复、中断时间较长超出 7 天,非试验确定临时参数修改、设定值修改等情况都适合应用该方式。在机组的调试阶段,在汽轮机冲转之前,不同各专业机组即需要能够对 TCA 进行风险评估分析工作,对于在分析当中发现的可能会对机组冲转产生影响的因素,则需要及时采取措施进行处理。而对于那些不会对冲转产生影响的,则可以进行后续行动处理。通过这部分工作的开展,则能够对 TCA 管理流程有效性进行有效的检验,保证机组试验过程当中不会因保护逻辑存在偏差导致跳闸情况的发生。在未来运行中,也需要能够做好 TCA 相关规定的严格遵守,避免因保护逻辑因素导致汽轮机拒动、误动情况出现。 3.2CCM 设备管理 即对于关键敏感设备的管理,对于该设备来说,就是存在单一设备故障即可能导致停机停堆、机组甩负荷情况的发生。该类设备是否能够正常运行,可以说将直接对机组的运行稳定性、核安全以及可用率产生影响。在具体工作中,需要能够将该类设备作为重点看待,做好缺陷管理、状态监测管理、备件保养控制、维修策略优化、维修关键点控制、工作文件表示以及大修活动质量控制等工作,加强现场作业区域管理,对 CCM 的工作流程、方法与流程等进行明确。在汽轮机保护系统中,所具有的关键敏感设备类型较多,包括有高中压截止阀、高中压调节阀以及转速处理卡件等,如果汽轮机在运行当中这部分设备传宣异常情况,则将直接导致汽轮机降负荷、跳闸情况的发生,进而对机组可用率产生影响。这即需要能够严格根据 CCM 管理要求,做好汽机保护系统预防性维修程序编写、CCM 备件准备与定期巡检相关工作,对重要设备存在的异常情况进行及时的发现,保证机组始终运行在高可靠性水平当中。

核电汽轮机通流能力分析及优化

核电汽轮机通流能力分析及优化 摘要:中国许多核电厂都存在涡轮机开度小的现象,这导致节流损失的增加。 根据压水堆核电站的主要蒸汽压力运行特性和实际运行数据,分析了造成这种现 象的原因,并提出了解决方案。通过准确地设计阀前压力并优化涡轮流量,可以 减少节流损失,增加单位输出,并进一步提高核电站的发电效率。 关键词:核电;汽轮机;通流能力;效率 引言 秦山300MW核电站一期工程自1991年成功投运以来,我国核电汽轮机的设 计和开发已经走过了20多年的历程。随着我国核电站比重的逐步提高,单机容 量的不断增加,如何更有效地运行,提高核电站的发电效率是一个需要关注的问题。国内核电站基本上采用恒压节流运行,从已投运的机组开始。从运行数据来看,汽轮机普遍存在小开度、大节流损失的现象,这引起了人们对汽轮机流量设 计的重视。本文将对此进行分析和计算,为提高核电站的运行效率提供依据。 1运行特点 对于压水堆核电站,蒸汽发生器的热平衡方程为:P \u003d KF(TAVG TSG)其中:P是蒸汽发生器产生的热能; K和F是蒸汽发生器的传热系数和传热 面积; TAVG是反应堆冷却剂的平均温度; TSG是蒸汽发生器中的蒸汽温度。从 该方程式可以看出,蒸汽温度TSG越低,热功率P越大。图1显示了大亚湾核电 站蒸汽发生器的典型温度。 由于蒸汽发生器的出口为饱和蒸汽,因此蒸汽温度对应于压力,因此,新蒸 汽的压力会随着热能的增加而降低,如图2所示,并且根据蒸汽轮机原理,当流 量为常数,阶段为压力随着负载的增加而增加,这与蒸汽发生器的压力特性相反。 在低负荷工况下,火力发电机组可以降低主蒸汽压力,采用滑动压力操作, 即脚跟机,或在汽轮机的高压部分设置调节级,并增加进气量。减少负荷时,通 过改变流通面积来提高压力。对于炉子以及对于核动力装置,为了满足蒸汽发生 器的负载特性,入口压力处于机器和堆的操作模式下。同时,由于核电机组主要 承担基本负荷,为了提高设计工况的流量效率,核电涡轮一般采用无调节级设计,机组采用节流调节运行。此时,涡轮级前压力P1与主节流阀前压力P0的匹配程 度将直接影响高压缸的效率和涡轮的性能。 2已投入运行的核电厂的主要蒸汽压力偏差 作者跟踪了几台300MW和1000MW核电机组的运行参数。发现在额定流量下,主蒸汽阀前的蒸汽压力比设计值高2%至5%。初步分析认为,主要原因如下: (1)核岛反应堆和蒸汽发生器有一定的余量。在设计蒸汽发生器的传热面积时,有必要考虑不确定因素,例如,在操作的后期,热交换管的损坏和外壁的结垢。因此,设计堵塞率为10%。选择结垢系数作为经验值。新装置投入运行时, 堵塞率和结垢系数远小于设计值,因此达到额定流量所需的热负荷小于设计值, 主蒸汽压力升高。 (2)管道压力损失偏离设计值。蒸汽发生器出口到蒸汽轮机主蒸汽阀前面的主蒸汽管道,包括直管段和一系列阀和弯头。设计压力损失是根据经验公式计算的,一般考虑工程余量。测得的压力损失小于设计值。当蒸汽发生器的出口压力

汽轮机介绍

1.600MW-1000MW超临界及超超临界汽轮机研制 汽轮机研究和实际运行表明:24.1MPa/538℃/566℃超临界机组热效率可比同量级亚临界机组提高约2~2.5%。而31MPa/566℃/566℃/566℃的超超临界机组热效率比同量级亚临界提高4~6%。国外各大公司更趋向于采用超临界参数来提高机组效率。就600MW~1000MW 等级超临界汽轮机而言,可以说已经发展到成熟阶段,而且其蒸汽参数还在不断提高,以期获得更好的经济性,如采用超超临界参数。 目前哈汽公司与日本三菱公司联合设计了型号为CLN600-24.2/566/566型超临界参数、一次中间再热、单轴、三缸、四排汽反动式汽轮机。高中压部分采三菱公司的技术,低压缸采用哈汽厂自主开发的新一代亚临界600MW汽轮机技术,哈汽厂与日本三菱公司联合设计,合作制造。 为进一步提高机组效率,哈汽公司已开展超超临界汽轮机前期科研开发工作。 2.600MW-1000MW核电汽轮机研制 我国通过秦山核电站(一、二、三期)和广东大亚湾、岭澳等核电站的建设,已经在核电站建设上迈出了坚实的第一步。哈汽公司成功地为秦山核电站研制了两台650MW核电汽轮机,积累了丰富的设计制造经验,为进一步发展百万等级核电准备了必要的条件。 目前哈汽公司已完成百万千瓦半转速核电汽轮机制造能力分析,并开展了前期科研开发工作。 3.大型燃气-蒸汽联合循环发电机组 联合循环由于做到了能量的梯级利用从而得到了更高的能源利用率,已以无可怀疑的优势在世界上快速发展。目前发达国家每年新增的联合循环总装机容量约占火电新增容量的 40%~50%,所有世界生产发电设备的大公司至今(如美国的GE公司87年开始、ABB90年开始)年生产的发电设备总容量中联合循环都占50%以上。最高的联合循环电站效率(烧天然气)已达55.4%,远远高于常规电站,一些国家(如日本等)已明确规定新建发电厂必须使用联合循环。 由于整体煤气化联合循环发电机组 (IGCC) 是燃煤发电技术中效率最高最洁净的技术 , 工业发达国家都十分重视,现在世界上已建成或在建拟建IGCC电站近20座,一些已进入商业运行阶段。 燃气轮发电机组在我国近几年才有较大发展,目前装机占火电总容量的3.5%,大部分由国外购进,国产机组只占9.4%,且机组容量小、初温低,机组水平只处于国外80年代水平,且关键部件仍有外商提供远不能满足大容量、高效率的联和循环机组的需要。 目前,哈汽公司与美国通用电气公司联合生产制造9F级重型燃气轮机及联合循环汽轮机。 4.300MW-600MW空冷汽轮机研制 大型空冷机组的研制与开发,不仅是国家重点扶持的攻关项目,对一个地区而言也是一个新的增长点,因为它可以带动一大批相关产业的发展。哈汽公司早期就已开展了空冷系统的研究,八.五期间,为内蒙丰镇电厂设计制造了200MW空冷汽轮机组,该机组启停灵活,安全满发,而且振动小、轴系十分稳定。为本项目创造了开发设计制造等有利的依托条件。 空冷系统与常规湿冷系统相比,电厂循环水补充量减少95%以上,空冷机组在缺水地区广泛采用,发展空冷技术是公司产品发展方向。 哈汽公司在发展空冷技术方面占有一定优势,成功地设计、制造了内蒙丰镇电厂4台200MW间接海勒系统空冷机组,目前机组运行良好,在高背压-0.1MPa下,机组安全满发,启停灵活,轴系稳定,同时在丰镇空冷机组上,做了大量试验研究: ①海勒间冷系统中混合式喷淋冷凝器试验。 ② 710mm动叶片的频率和动应力试验。 ③末级流场及湿度的测量 公司有进一步发展空冷奠定基础。曾为叙利亚阿尔电站设计了二台200MW直接空冷机组,针对直接空冷机组运行特点:高背压、背压变化范围 宽的特点,设计了落地轴承,低压缸和带冠520末级叶片。在300MW间接与直接空冷机组的设计和运行基础上进行了空冷300MW汽轮机初步设计,并针对大同二电厂,设计了二个600MW空冷机组方案。 ①哈蒙间接空冷600MW机组

核电阀门类型及发展趋势

核电阀门是核电站中量大面广的水压设备,它连接整个核电站的300余个系统,是核电站安全运行的关键附件。据相关资料统计,全世界现有核电机组500余座,总装机容量达4亿KW以上,其反应堆类型主要有压水堆(PWR)、沸水堆(BWR)、石墨堆(LGR)、快中子堆(FBR)、高温气冷堆(HTGR)、重水堆(PHWR)。其中,压水堆占整个堆型的50%以上。 我国从50年代开始研究和应用核动力技术,至今已建成和正在建设多座核电站。自1985年建成的浙江秦山一期核电站,结束了我国大陆无核电的历史以来,我国先后建成了广东大亚湾核电站、秦山二期核电站、秦山三期核电站、广东岭澳核电站、江苏田湾核电站。这些核电站中,广东大亚湾、岭澳和秦山一期、二期、江苏田湾为压水堆型核电站,秦山三期为重水堆型核电站。 核电阀门,在核电站设备中虽为附件,但至关重要。核电用阀门比常规的大型火力发电站用阀门其技术特点和要求要高。阀类一般有球阀, 闸阀, 截止阀, 电磁阀, 调节阀, 减压阀, 疏水阀, 蝶阀, 和控制阀等;具有代表性阀门的最高技术参数为:最大口径DN1200mm(核3级的蝶阀)、DN800mm(核2级的主蒸汽隔离阀)、DN350mm(核1级的主回路闸阀);最高压力:约CL1500;最高温度:约350℃;介质:冷却剂(硼化水)等。目前,核电机组用阀主要类型如下: 1.闸阀: a)焊接连接液动双闸板平行式闸阀,公称压力PN17.5MPa,工作温度315℃,公称通径DN350~400mm。 b)轻水冷却剂一回路上(主要)应用的电动楔式双闸板闸阀,公称压力PN45.0MPa,温度500℃,公称通径DN500mm。 c)大功率石墨慢化反应堆核电厂一回路上(主要)应用的电动楔式双闸板闸阀,公称压力PN10.0MPa,公称通径DN800mm,工作温度290℃。 d)汽轮机装置的蒸汽和工艺水管路上(主要)应用焊接连接电动弹性板闸阀,公称压力PN2.5MPa,工作温度200℃,公称通径DN100~800mm。 e)大功率石墨慢化沸水堆核电厂释热元件换料机用的双闸板带导流孔平行式闸阀,其公称压力 PN8.0MPa,开启或关闭阀门只能在压力降为△P≤1.0MPa下进行。 f)快中子反应堆核动力装置带冷冻固封填料的弹性板闸阀。 g)水—水动力堆机组用的内压自密封式阀盖楔式双闸板闸阀,公称压力PN16.0MPa,公称通径 DN500mm。

核电汽轮机介绍-考试答案-82分

核电汽轮机介绍 1. 由上海电气供货的我国首台出口325MW 核电汽轮机用于哪个哪个国家? ( 3.0 分) A. 印度 B. 土耳其 C. 巴基斯坦 2. 上海电气百万等级核电机组26 平米的低压缸模块末级叶片长度为?( 3.0 分) A. 1420mm B. 1710mm C. 1905mm 我的答案: B √答对 3. 上海电气百万等级核电机组适用于AP1000 的高压缸模块型号为?( 3.0 分) A. IDN70 B. IDN80 C.IDN90 我的答 B √答对 4. 上海电气百万等级核电汽轮机组转速?( 3.0 分)

A. 1500RPM B. 3000RPM C.3600RPM 我的答 A √答对 5. 上海电气百万等级核电机组20 平米的低压缸模块末级叶片长度为?(3.0 分) A. 1420mm B. 1710mm C. 1905mm 我的答案: A √答对 6. 上海电气的山东石岛湾200MW 项目是什么堆型?(3.0 分) A. M310 B. 华龙一号 C. 高温气冷堆 我的答案: C √答对 7. 上海电气出口巴基斯坦的300MW 等级核电汽轮机共有几台?( 3.0 分) A. 2 台 B. 3 台 C. 4 台 我的答案: C √答对 8. 至2018 年 6 月,上海电气已投运核电汽轮机多少台?( 3.0 分)

A. 10 台 B. 11 台 C. 12 台我的答案: C √答对 9. 上海电气百万等级核电机组30 平米的低压缸模块末级叶片长度为?(3.0 分) A. 1420mm B. 1710mm C. 1905mm 我的答案: C √答对 10. 上海电气百万等级核电汽轮机高压缸模块运输方式为?(3.0 分) A. 整缸发运 B. 散件发运 C. 其他 我的答案: A √答对 1. 以下哪些为高温气冷堆堆核电汽轮机特点?( 4.0 分)) A. 进汽参数高 B. 无MSR C.低压缸加强除湿 我的答ABC √答对 2. 以下哪项说法是错误的?( 4.0 分)) A. 2008 年上海电气获得阳江和防城港CPR1000 核电汽轮机订单 6 台

核电汽轮机超速影响因素分析

核电汽轮机超速影响因素分析 摘要:在核电汽轮机设计当中,安全性是该项工作当中必须引起重视的问题。 在具体安全设计当中,汽轮机的超速水平是一项重要的指标。在本文中,将就核 电汽轮机超速影响因素进行一定的研究与分析。 关键词:核电汽轮机;超速影响;因素 1 引言 在核电工程建设当中,安全性可与说是建设当中的重点内容,也是设计当中 需要重点考虑的问题。在安全设计当中,汽轮机超速可以说是必须能够引起重视 的一项因素,需要在实际设计当中做好该因素的把握,保障设计质量。 2 超速影响因素分析 配置逆止阀 为了避免汽轮机在运行当中发生进水或者超速的情况,则需要在抽汽管道以 及给水加热器上做好逆止阀的布置,在汽轮机跳闸或者甩负荷之后,避免蒸汽出 现从加热器倒灌到汽轮机当中的情况。当机组在甩负荷过程当中发生超速情况时,如此时逆止阀失效,受到压差的影响,这部分蒸汽则将会倒灌到汽轮机当中并做功,以此出现转速上升的情况。通常情况下,在具体协议制定当中都要求对一路 逆止阀失效时的超速数据进行提供,根据能量法数据的计算,对于百万核电机组 来说,当其出现一路逆止阀实效情况时,其转速则将具有0.5%的最大增加值。而 对于在超速控制方面具有较高要求的机组,在实际设计当中则需要通过1+1逆止 阀方式配置处理,即在每路抽汽管道当中,以串联的方式对具有执行机构以及不 具有执行机构的逆止阀进行布置。通过该种双重逆止阀保护设计方式的应用,则 能够对逆止阀实效情况下可能产生的超速风险进行有效的减少。对于具有较好超 速结果的机组,在用户许可的情况下,则可以仅仅将一个具有执行机构的逆止阀 设置在一路抽汽管道当中。对于该情况,则可以做好在一路逆止阀实效情况下的 危险工况超素质进行补充计算,以此应用在后续的考核当中。此外,在抽汽管道 当中,逆止阀在其上方的布置情况也将影响到超速结果,对于汽轮机机组来说, 当逆止阀同汽缸抽气口间距离较近时,逆止阀前部管道则将具有更小的腔室容积,所倒灌到其中的蒸汽量也将更少,能够有效实现超速情况的控制。而在逆止阀具 体设置方面,则需要根据管道具体布置情况做好确定。 2.2 转子转动惯量 对于该属性来说,可以理解其是旋转转子的一个惯性数值,对于转子来说, 其该数值的存在将对超速结果产生非常大的影响。对于百万核电机组来说,每当 其具有15%的转动惯量增加时,其超速值情况则将具有1%的降低。对此,在实 际设计当中,则能够通过对不同转子转动惯量的提升实现超速值的降低。根据转 动惯量计算公式可以了解到,在实际设计当中,对转子转动惯量可能产生影响的 因素有叶片高度、通流分析、转子质量以及跨距等,而对于通过对转子质量进行 增加获得更大的转动惯量的方式,也将会对生产当中的运行风险以及制造成本进 行提升,对此,在机组初步设计阶段以及选型转子阶段,即需要能够积极做好转 子结构的优化,通过多方案类型的对比在对转子转动惯量进行提升的基础上实现 机组超速水平的降低。 2.3 阀门延迟关闭 在实际设计当中,通常在高压缸进口前对主汽阀调阀进行设置,在同核电主 蒸汽进行连接的基础上对保护以及调节进气的作用进行实现。在该过程中,调节

浅谈核电站常规岛技术的方案

浅谈核电站常规岛技术的方案 核电站的设备选型和供货商的选择, 应采用国际竞争性招标方式, 在技术、经济、自主化、国产化等方面进行深入分析比较, 来选定供货商和机型。国外制造商必须选择国内设备制造厂作为合作伙伴, 转让技术、合作生产, 逐步全面实现自主化和设备国产化。 经初步研究, 常规岛部分可供选择的国外主要设备潜在供货商 有:英法GEC-ALSTHO公同、美国西屋公司、日本三菱公司、美国GE 公司等。到目前为止,ALSTHO公司已同中国东方集团公司进行合作,形成一个联合体; 美国西屋公司已同上海核电设备成套集团公司合资, 组成西屋-上海联队。其它公司到目前尚未进行合作。 根据ALSTHO1公司、西屋公司、三菱公司和GE公司等核电设备制造商所提供的资料, 按照堆型的不同和一回路的不同, 可以形成四类技术方案: 方案一——三环路改进型压水堆核电机组; 方案二一一ABB-CE的系统80(System 80)型压水堆核电机组; 方案三——日本三菱公司的四环路压水堆核电机组; 方案四一一先进型沸水堆(ABWR核电机组。 下面就各类技术方案分别进行分析。 1 三环路改进型压水堆核电机组 此方案的一回路为标准的300 MW-个环路的三环路压水堆。此类方案包括中广核集团公司提出的CGP1000欧洲公司(包括EDF

FRAMATO M GEC-ALSTHO推出的P 1000和西屋-上海联队推出的CPWR1 00三0种压水堆核电机组。 1.1 CGP1000 与P1 000核电机组 CGP 1000 由中广核集团提出,以大亚湾核电站为参考站,并借鉴美国西屋公司和ABB-CE公司的部分先进的设计,有选择地吸收了用户要求文件(URD)的要求,形成以300 MW一条环路的CGP100(技术方案。常规岛部分,汽轮发电机组选用ALSTHOI的ArabellelOOO型汽轮发电机组。 P1000 由欧洲制造商(EDF、FRAMA-TOME\LSTHOK)据法国核电计划及大亚湾核电站、岭澳核电站等工程的设计、制造、安装、运行及维修中积累起来的经验推荐给中国的核电机组。常规岛部分的汽轮发电机组也以Arabelle1000 型汽轮发电机组作为推荐机组。 由于CGP100和P1000的常规岛部分的汽轮发电机组均为Arabelle1000 型,所以实际上为同一类核电机组。 ALSTHOM 在总结54 台第1 代汽轮发电机组的运行经验基础上, 组合出了Arabelle1000型汽轮发电机组,参考电站为Chooz B(2台1 450 MW机组已分别于1996年7月11月投入运行)。 1.1.1 Arabelle1000 型汽轮发电机组的主要技术数据 a) 最大连续电功率:1 051 MW; b) 转速:1 500 r/min; c) 机组效率:36.3%; d) 末级叶片长度:1 450 mm;

核电厂汽轮机基础知识

核电厂汽轮机基础知识 核电厂大多数都使用饱和汽,为了降低发电成本,单机容量已增加到1000MW级。在总体配置上,饱和汽轮机组总是设计成高压缸和一组低压缸串级式配置,在进入低压缸前设置有汽水分离再热器,有的设计在汽水分离再热器和低压缸之间设置中压缸或中压段。一般情况下,核电厂大功率汽轮机的所有汽缸都设计成双流的,且两个或更多的低压缸是并联设置。还有在高压缸两端对称地每端布置两个低压缸的设计。我国田湾核电厂就采用这种汽轮机配置。大亚湾核电厂的汽轮机为英国公司设计制造的多缸单轴系冲动式汽轮机。汽轮机的转速为3000r/min,额定功率为900MW,新汽参数为6.63MPa,283℃,低压缸排汽压力0.0075MPa,额定负荷下蒸汽流量为5515t/h,汽轮机为4缸、六排汽口型式。一个高压缸和3个低压缸皆为双流对分式。新蒸汽分4路经高压缸汽室后由进汽短管导入高压缸,高压缸的两个排汽口,各通过4根蒸汽管与低压缸两侧的汽水分离再热器相连。高压缸排汽在汽水分离再热器经汽水分离再热后,进入低压缸,每个低压缸的两个排汽口与一台凝汽器相接,整台汽轮机,共有6个抽汽口,供2组高压加热器和4组低压加热器以及给水泵汽轮机用汽。除氧器用汽来自高压缸排汽。高压缸为铬钼材料铸造的单层缸结构,水平对分型式,每一汽流流向各有5级。其中隔板皆采用隔板套结构,高压缸转子由镍铬钼钒钢锻成,每个流向都有锻成一体的5级叶轮,各级叶片的叶根皆为多*型,叶片长度为91mm,叶片的顶部有预加工的铆钉头,用来装置围带,每一级叶片的围带都由数段组成扇形叶片组。高 有基本相同的结构,皆为双层缸,水平对分式。内缸包含环形进汽室和所有的隔板。外缸提供低阻力的蒸汽流道并将内缸的反冲力矩传递给汽轮机基础。低压缸的内、外缸都由碳钢制造,内缸为焊接结构,外缸为焊接组装结构。低压缸隔板由铁素体不锈钢制造,隔板的结构为标准的焊接静片和内外围带结构,嵌在隔板套的槽内。低压转子由镍铬钼钒钢锻成,轴心钻有孔,双流整体式结构,每一流向5级叶片,动叶片由铁素体不锈钢制造,末级叶片的前缘装有一片抗腐蚀的司太立硬质合金复盖层。末级叶片之间装有交错布置的拉金,防止叶片在低负荷下的自激振动。前4级低压动叶片采用销钉固定的多*式叶根,末级叶片采用强度很高的侧向嵌入的枞树型叶根。

90万千瓦核电站汽轮机简介

90万千瓦核电站汽轮机简介: 1、由热能变为机械能的原动机:蒸汽机、内燃机、涡轮机——又分为汽轮机和燃气轮机。汽轮机的特点:高温高压高转速,功率大体积小。 2、汽轮机分冲动式、反动式、轴流式、幅流式。我们现在用的是轴流式——冲动式汽轮机。这种汽轮机效率η高,功率N大,体积V小。 3、汽轮机的基本原理: 汽体膨胀,产生速度,冲击推动叶片作功,带动转子旋转产生扭矩。○1汽轮机作功需要一个高热源和一个低冷源,在海水温度一定时,初参数(t,p)愈高,可提高可利用焓降h,效率η就能提高。另一方面,尽量利用汽体的汽化潜热r,也是提高效率η的一个办法。 机组的初参数:283℃,6.71Mpa,664.8kcal/kg 排汽参数:40.3℃,7.5kpa,614.9 kcal/kg 再加上高压缸排汽经再热,可利用焓降h仅为104.2 kcal/kg,这个焓降是很低的。 在凝汽器内放出的汽化潜热r=574.9 kcal/kg,大量的热量排到大海里去。对于1kg汽体而言,排到大海里的热量是可利用热量的5.5倍,所以我们要尽量减少汽化潜热r的损失。低真空采暖是一个最好的办法,几乎100%利用汽化潜热。可是一年还有夏天,我们只能利用加热器加热给水减少汽化潜热r的损失,提高机组效率。 低真空的形成:1kg水的容积0.001m3,初蒸汽的容积0.2426 m3/kg,排汽的容积19. 6m3/kg,循环水凝结1kg排汽,可使19. 6 m3的空间形成真空。汽机后面有真空,前面的汽体才能膨胀出现速度,达到汽流作功的目的。 所以,想要提高效率η,就要提高初始参数,提高可利用焓降h,利用汽化潜热r。核电站提高初始参数受到限制,效率低是必然的,但核电站优势是明显的,将来国家发电主要依靠核电站。 机组增大功率主要是增大蒸汽流量。 ○2速度三角形:汽流的相对速度w,轮周速度u,绝对速度c,进口角α,出口角β。 速度三角形是计算效率、功率的依据。 ○3叶片、机翼的升力F: v1>v2,p1<p2,p2- p1=F 若是平板或圆球在气流中就不可能产生升力。 4、制造汽轮机的关键技术: ○1长叶片的设计、加工。1g质量产生的离心力达到几吨的力。 ○2几十吨重的大锻件、大铸件,都是合金钢。 ○3大机床高精度的加工设备。

核工业基本知识试题汇总

1.核电站是以核能转变为电能的装置,将核能变为热能的部分称为核岛,将热能变为电 (+)能的部分称为常规岛。 2.重水堆冷却剂和载热剂是去离子水。(—) 3.堆芯中插入或提升控制捧的目的是控制反应堆的反应性。(+) 4.压水堆中稳压器内的水-汽平衡温度的保持是借助于加热和喷淋。(+) 5.由国家核安全局制定颁发的安全法规都是指导性文件。(—) 6.断裂力学可以对含裂纹构件的安全性和寿命作出定量或半定量的评价和计算。(+) 7.焊缝具有冶金和几何双重不连续性,往往是在役检查区域的选择重点。(+) 8.所有核电厂的堆型都必须要有慢化剂降低中子的能量。(-) 9.核电站压水堆型的反应堆压力容器和蒸汽发生器中的所有部件都属于核I级部件。(-) 10.自然界中U-235,U-234,U-238三种同位素具有不同的质子数和相同的中子数。(-) 11.断裂的基本类型有三种,张开型裂纹(I型);滑开型裂纹(II型);撕开型裂纹(III (-)型),在工程构件内部,滑开型裂纹是最危险的,容易引起低应力脆断。 12.制造压力壳的材料,对Co和B含量的严格控制的目的是为了减少放射性,避免吸收中 (-)子和提高抗拉强度。 13.应用无损检测最主要的目的在于安全和预防事故的发生。(+) 14.结构件内部存在有微裂纹,必然会是造成构件低应力脆断。(-) 15.核能是一种可持续发展的能源,通过几十年经验总结证明,核能是安全、经济、干净 (+)的能源。 16.我国当前核电站的主要堆型是轻水压水堆。(+) 17.前苏联于1954年建成的第一座核电站,开辟了人类和平利用原子能的先河。(+) 18.不锈钢通过淬火提高强度和硬度。(-) 19.在役检查的可达性是要求受检部位、人员及设备的工作空间和通道满足HAD103/07的 ( + )有关规定。 20.压水堆核电站的冷却剂和载热剂也是降低裂变的中子能量慢化剂。( + ) 21.核电站的类型是由核反应堆堆型确定的,目前世界上的主要堆型仅有轻水堆、重水堆。(—) 22.从断裂力学的角度考虑,选材时材料强度越高越好。(—) 23.核用金属材料必须对钴、硼等杂质元素含量严加限制。( + ) 24.核工业I、II级无损检测人员资格鉴定考试包括“通用考试”和“核工业专门考试” ( - ) 两部分。 25.核工业无损检测的报考者实际操作考试内容包括正确应用仪器进行检测,给出检测结 ( ) 果并对结果进行解释的能力。但不包括安全防护规则的制定与实施。 26.金属材料的性能分为机械性能、物理性能、化学性能和工艺性能是指材料的强度、硬 ( ) 度、韧性和塑性四方面。 27.现代意义上的无损检测是广泛利用计算机技术检测高精尖设备和装置的无损检测方 ( ) 法。 28.核电是一种干净的能源,其对环境影响小。如一座1000MW单机组的核电站每年约产生 ( ) 30吨高放废燃料和800吨中、低放废物,以及6,000,000吨二氧化碳。 29.核安全2级部件是指具备防止或减轻事故后果之功能的设备。( + ) 30.目前运行的核电站是以裂变和聚变的方式来释放核能的。(—) 31.高强度低合金钢中硫和磷元素能起到细化晶粒的作用。(—)

核电厂系统与设备知识点

核电厂系统与设备知识点 2020年前要新建核电站31座,今后每年平均需要建设两个百万千瓦级核电机组我国发展核电的基本政策是:坚持集中领导,统一规划,并与全国能源和电力发展相衔接;核电政策:自主,国产化,与压水堆配套;引进的基础上,消化,改进,国产化。 在核电布局上优先考虑一次能源缺乏、经济实力较强的东南沿海地区。 坚持“质量第一,安全第一”,坚持“以我为主,中外合作” 我国确定发展压水堆 核岛:一回路系统及其辅助系统、安全设施及厂房。 常规岛:汽轮发电机组为核心的二回路及其辅助系统和厂房。 配套设施:除核岛、常规岛的其余部分。 压水堆核电厂将核能转变为电能是分四个环节,在四个主要设备中实现的: 1)核反应堆:将核能经转变为热能,并将热能传给反应堆冷却剂,是一回路压力边界的重要部件。 2)蒸汽发生器:将反应堆冷却剂的热量传递给二回路的水,使其变为蒸汽。在此只进行热量交换,不进行能量形态的转变; 3)汽轮机:将蒸汽的热能转变为高速旋转的机械能; 4)发电机:将汽轮机传来的机械能转变为电能。 大亚湾核电厂共有348个系统 核电厂平面布置原则:a.区分脏净,脏区尽可能在下风口;b.满足工艺要求,便于设备运输,减少管线迂回纵横交叉;c.反应堆厂房为中心,辅助厂房,燃料厂房设在同一基岩的基垫层上,防止因厂房承载或地震所产生的沉降差导致管线断裂.d.以反应堆厂房为中心,辅助厂房,燃料厂房,主控制室应急柴油发电机厂房四周.双机组厂可采用对称布置,公用部分辅助厂房. 布置分区:核心区、三废区、供排水区、动力供应区、检修及仓库区、厂前区 核心区布置按反应堆厂房与汽轮机厂房的相对位置,有T型与L型布置: T型:汽轮机叶片旋转平面与安全壳不相交.占地大,单独汽机厂房。 L型:汽轮机叶片旋转平面与安全壳相交,

核电汽轮机与火电汽轮机比较分析

核电汽轮机与火电汽轮机比较分析 发表时间:2018-06-05T16:36:11.060Z 来源:《电力设备》2018年第3期作者:曾福生刘本帅[导读] 摘要:近年来,我国的核电事业获得了较大的发展,人们对于核电也具有了更高的关注度。 (福建福清核电有限公司 350300)摘要:近年来,我国的核电事业获得了较大的发展,人们对于核电也具有了更高的关注度。同火电相同,核电在具体工作当中也通过汽轮机的使用发电,但两者在较多方面也存在着一定的不同。在本文中,将就核电汽轮机与火电汽轮机进行一定的研究与比较。 关键词:核电汽轮机;火电汽轮机 1 引言 在近年来科学技术不断发展的过程中,我国的核电事业获得了较为快速的发展,较多的核电站得到了建设。为了能够更好的掌握核电站运行特点,做好同火电汽轮机间的比较可以说是一项重要的工作,需要能够做好分析比较。 2 核电、火电汽轮机比较 2.1 结构特性 对于核电、火电汽轮机来说,两者在设计结构方面存在一定的差异,其主要体现在:第一,外形尺寸。同火电汽轮机相比,核电汽轮机具有更大的比容以及进气参数,具体进气容量同功率相同的火电汽轮机相比要大出一倍。该种情况的存在,则使得汽轮机在阀门、气缸尺寸以及进气管方面都要大于常规的汽轮机,且同一般汽轮机相比在高压缸叶片长度方面也具有更长的特点。而在功率相同的情况下,同火电汽轮机相比,核电汽轮机具有更长的末级叶片,同时具有更大的排气面积以及外形尺寸;第二,汽水分离。对于核电汽轮机而言,其工作蒸汽类型为饱和蒸汽,蒸汽在经过高压锅做功后,则将产生较大的排汽湿度。如果在运行当中将该蒸汽直接排入到低压缸当中,则将在侵蚀汽轮机零部件的情况下使其发生损坏。在该种情况下,为了能够对汽轮机低压缸的蒸汽湿度进行降低,即需要对低压缸蒸汽温度进行提升,在使汽轮机具有一定过热度的基础上获得更高的热力循环效率,同时也是对于低压缸工作条件以及运行环境的积极改善。同时,在其高低压缸位置具有汽水分离器的设置,以此避免湿蒸汽对零部件造成损坏或者腐蚀;第三,进气截止阀。对于核电汽轮机来说,其具有较大的比容以及较低的进汽参数,对此,在管道以及高压缸内将存在大量的水与蒸汽,如设备在运行当中发生甩负荷或者机械故障问题,此时主汽阀则将自动关闭,并因此具有更低的压力。同时,在管道、高压缸以及MSR当中的水则会在较短的时间内形成蒸汽,使汽轮机出现超速运转的情况,进而对汽轮机的运行安全产生影响。要想避免该问题的发生,即需要做好对应调节、截止阀的设置。而同核汽轮机组相比,火电机组具有更高的参数,在高压缸当中具有较少的存水量,并因此使其在超速运转可能性方面具有了较大的降低。对此,火电机组在低压缸进气位置则不需要对调节、截止阀进行设置,而可以在低压缸进气位置做好供热蝶阀的设置即可;第四,调节方式。在火电汽轮机运行中,其经常使用喷嘴调节配汽方式,该方式在具体操作中,在将最后一组调节阀开启之后,汽轮机所产生的气流在受到节流因素影响时,则将具有较小的能量损失,对此,通过该方式进行变工况运行则成为了汽轮机组的有效的配气方式。而同火电汽轮机组相比,核电汽轮机组具有更大的流量以及较低的蒸汽参数,如依然以喷嘴方式进行调节,则将形成较大的压力,在喷嘴出口位置很可能因凝结机波的存在,使叶片在出汽位置形成裂纹,进而对机组的运行安全产生影响。节流配汽方式方面,其在阀门全开、较高节流额定负荷的状态下,同喷嘴方式相比具有更高的配气效率。对此,对于核电机组来说,其在实际运行中经常会选择节流调节方式进行处理。 2.2 通流设计 就目前来说,很多企业通过全三元流设计以及可控涡流设计方式的应用设计叶片以及通流部分,油气在末级长叶片以及低压缸设计方面,通过将转子以及叶子轮缘限定在一定较低的水平,即能够对叶片运行的可靠性以及安全性做出保证。同时,对于具有较低运转温度的动叶片,则可以在同应力数据进行积极参考的基础上做好允许应力的预测。对于核电汽轮机来说,其在实际运转当中在温度方面同火电汽轮机相比较高,在运行当中有更大的几率出现腐蚀裂纹,而在不调频叶片方面,则需要对轮槽倒角半径峰值位置的应力情况进行计算,同火电机组相比,核电汽轮机在低压区域不调频叶片的安全系数通常为其2倍。当汽轮机低压缸当中,对于低于饱和线的湿蒸区,当其长时间处于工作状态时,则将形成大量的蒸汽,这部分蒸汽在过热膨胀后,则将会在进入到饱和区当中对一定的能量进行释放,很可能因此导致过冷现象的发生,并形成对应的凝结问题。此外,同火电机组低压缸相比,核电机组低压缸将受到更大来自两相流的影响,这可以是实际设计动叶片时需要重点考虑的因素。

核电站基本知识考试习题

核电厂的安全目标是什么,其两个解释目标是什么? 答:安全目标是建立并维持一套有效的防护措施,以保证工作人员、公众和环境免遭放射性危害。 辐射防护目标 确保在正常时放射性物质引起的辐射照射低于国家规定的限值,并保持在可合理达到的尽量低的水平。 技术安全目标 防止发生事故,减少严重事故发生概率及其后果。 核能发电有何特点? 1、核能具有很高的能量密度 2、核电是清洁的能源 3、核能是极为丰富的能源 4、核电在经济性具有竞争力 5、核电的安全性具有保障 纵深防御原则是什么,与核电站设计有何关系? 多道屏障:燃料芯块、燃料元件包壳、反应堆冷却剂系统承压边界、安全壳 多级防御 预防,预防出现异常工况和系统故障; ——保守设计、高质量建造和运行 保护,异常工况的控制和故障检测; ——控制、保护系统和定期检查 限制,控制事故在设计基准事故内; ——工程安全设施和事故处置程序 缓解,防止事故的扩展,减轻严重事故的后果; ——备用措施和事故管理 应急,减轻大量放射性物质释放所造成的环境影响; ——厂外应急响应计划。 反应堆冷却剂系统的功能是什么? 系统功能: 可控的产生链式裂变反应 导出堆芯热量,冷却堆芯,防止燃料元件烧毁 产生蒸汽 第二道实体屏障,包容放射性物质 反应堆的功能是什么? 以铀为核燃料,可控制地使一定数量的核燃料发生自持链式裂变反应,并持续不断地将核裂变释放能量带出作功。 由以下部分组成:堆芯、下部堆内构件、上部堆内构件、压力容器(含筒体及顶盖)、控制棒驱动机构。 主泵的功能是什么?目前,压水大型堆核电厂主要使用哪种类型的主泵,为什么?

功能:用于驱动冷却剂在RCP内的循环,连续不断地将堆芯产生的热量传递给蒸汽发生器二次侧给水。 空气冷却、立式电动单级离心泵,带有可控泄漏轴封装置。 大流量、低扬程。 稳压器的基本功能是什么?如何实现?稳压器的压力与水位控制如何实现? 压力控制—维持一回路压力在整定值附近,防止堆芯冷却剂汽化; 压力保护—系统超压时,安全阀自动开启,使RCP卸压; 作为一回路冷却剂的缓冲箱,补偿RCP水容积变化 在启堆时使RCP升压,停堆时使RCP降压。 化学和容积控制系统的基本功能是什么? 启动前向一回路系统充水,进行水压试验。 运行中用于调节稳压器水位,保持一回路冷却剂系统水体积。 调节冷却剂系统硼浓度,控制反应堆反应性的慢变化 净化冷却剂,减少反应堆冷却剂中裂变产物和腐蚀产物的含量。 为主泵提供轴封水; 向反应堆冷却剂加入适量的腐蚀抑制剂,以保持一回路水质。 冷却剂泵停运后提供稳压器的辅助喷淋水。 RCV系统的功能如何实现? 下泄回路 净化回路 上充回路 轴封水及过剩下泄回路 低压下泄管线 反应堆硼和水补给系统的功能是什么? 为一回路系统提供除气除盐含硼水,辅助化容系统实现容积控制; 为进行水质的化学控制提供化学药品添加设备; 为改变反应堆冷却剂硼质量分数,向化容系统提供硼酸和除气除盐水; 为换料水储存箱、安注系统的硼注入罐提供硼酸水和补水,为稳压器卸压箱提供辅助喷淋冷却水,为主泵轴封蓄水管供水。 余热排出系统的功能是什么? 当反应堆进入冷停闭的第二阶段以下时,用于排出堆芯余热,水和设备中的释热,以及运行的主泵在一回路中产生的热量。 在反应堆停堆及装卸料或维修时,导出燃料发出的余热,将一回路水保持在冷态温度。 换料操作后,余热排出泵可将反应堆换料腔中的水送回换料水箱。 主泵停止时,可以使一回路硼浓度均匀化。 与化容系统相连,当一回路压力过低时,可排放和净化一回路冷却剂。 用RRA排料腔水时,水由此去PTR水箱。 设备冷却水系统的功能是什么,系统有何特点?

相关文档
最新文档