高中数学北师大版必修5同步精练31不等关系含答案

合集下载

必修5不等关系(含答案)

必修5不等关系(含答案)

不等式考纲链接1.不等关系了解现实世界和日常生活中存在着大量的不等关系,了解不等式(组)的实际背景.2.一元二次不等式(1)会从实际问题的情境中抽象出一元二次不等式模型.(2)通过函数图象了解一元二次不等式与相应的二次函数、一元二次方程的联系.(3)会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图.3.二元一次不等式组与简单线性规划问题(1)会从实际情境中抽象出二元一次不等式组.(2)了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组.(3)会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.4.基本不等式:ab≤a+b2(a≥0,b≥0)(1)了解基本不等式的证明过程.(2)会用基本不等式解决简单的最大(小)值问题不等关系与不等式[考点梳理]1.两个实数大小的比较(1)a>b⇔a-b________;(2)a=b⇔a-b________;(3)a<b⇔a-b________.2.不等式的性质(1)对称性:a>b⇔__________;(2)传递性:a>b,b>c⇒__________;(3)不等式加等量:a>b⇔a+c______b+c;(4)不等式乘正量:a>b,c>0⇒__________,不等式乘负量:a>b,c<0⇒__________;(5)同向不等式相加:a>b,c>d⇒__________;※(6)异向不等式相减:a>b,c<d⇒a-c>b-d;(7)同向不等式相乘:a>b>0,c>d>0⇒__________;※(8)异向不等式相除:a>b>0,0<c<d⇒ac>bd;※(9)不等式取倒数:a>b,ab>0⇒1a<1b;(10)不等式的乘方:a>b>0⇒______________;(11)不等式的开方:a>b>0⇒______________.※注:1.(5)(6)说明,同向不等式可相加,但不可相减,而异向不等式可相减;2.(7)(8)说明,都是正数的同向不等式可相乘,但不可相除,而都是正数的异向不等式可相除.自查自纠:1.>0=0<02.(1)b<a(2)a>c(3)>(4)ac>bc ac<bc(5)a+c>b+d(7)ac>bd(10)a n>b n(n∈N且n≥2)(11)n a >n b (n ∈N 且n ≥2) [基础自测])已知实数x ,y 满足a x <a y (0<a <1),则下列关系式恒成立的是( )A.1x 2+1>1y 2+1B .ln(x 2+1)>ln(y 2+1)C .sin x >sin yD .x 3>y 3 解:根据指数函数的性质得x >y ,此时x 2,y 2的大小不确定,故选项A ,B 中的不等式不恒成立;根据三角函数的性质,选项C 中的不等式也不恒成立;根据不等式的性质知,选项D 中的不等式恒成立.故选D.已知a >0,b >0,则a a b b 与a b b a 的大小关系为( )A .a a b b ≥a b b aB .a a b b <a b b aC .a a b b ≤a b b aD .与a ,b 的大小有关解:不妨设a ≥b >0,则a b ≥1,a -b ≥0.a a b b a b b a =⎝ ⎛⎭⎪⎫a b a -b ≥1,即a a b b ≥a b b a .同理当b >a >0时,亦有a a b b ≥a b b a .故选A.已知a =27,b =6+22,则a ,b 的大小关系是a b.解:由于a =27,b =6+22,平方作差得a 2-b 2=28-14-83=14-83=8⎝ ⎛⎭⎪⎫74-3>0,从而a >b.故填>.若a >0>b >-a ,c <d <0,则下列结论:①ad >bc ;②a d +b c <0;③a -c >b -d ;④a (d-c )>b (d -c )中成立的是________(填序号).解:∵a >0>b ,c <d <0,∴ad <0,bc >0,∴ad <bc ,故①错误.∵a >0>b >-a ,∴a >-b >0,∵c <d <0,∴-c >-d >0,∴a (-c )>(-b )(-d ),∴ac +bd <0,∴a d +b c =ac +bd cd <0,故②正确.∵c <d ,∴-c >-d ,∵a >b ,∴a +(-c )>b +(-d ),a -c >b -d ,故③正确.∵a >b ,d -c >0,∴a (d -c )>b (d -c ),故④正确.故填②③④.[典例解析]类型一 建立不等关系设x ∈R ,[x ]表示不超过x 的最大整数.若存在实数t ,使得[t ]=1,[t 2]=2,…,[t n ]=n 同时成立....,则正整数n 的最大值是( ) A .3 B .4 C .5 D .6解:因为[x ]表示不超过x 的最大整数.由[t ]=1得1≤t <2,由[t 2]=2得2≤t 2<3,由[t 4]=4得4≤t 4<5,所以2≤t 2<5,由[t 3]=3得3≤t 3<4,所以6≤t 5<45,由[t 5]=5得5≤t 5<6,与6≤t 5<45矛盾,故正整数n 的最大值是4.故选B.小结:解决有关不等关系的实际问题,应抓住关键字词,例如“要”“必须”“不少于”“大于”等,从而建立相应的方程或不等式模型.本例[x ]表示不超过x 的最大整数,故由[x ]=k ,可得k ≤x <k +1,再由多个不等式结合不等式的性质找到正整数n 的最大值.用锤子以均匀的力敲击铁钉进入木板.随着铁钉的深入,铁钉所受的阻力会越来越大,使得每次钉入木板的钉子长度为前一次的1k (k ∈N *),已知一个铁钉受击3次后全部进入木板,且第一次受击后进入木板部分的铁钉长度是钉长的47,试从中提炼出一个不等式组.(钉帽厚度不计) 解:假设钉长为1,第一次受击后,进入木板部分的铁钉长度是47;第二次受击后,该次铁钉进入木板部分的长度为47k ,此时进入木板部分的铁钉的总长度为47+47k ,有47+47k<1;第三次受击后,该次钉入木板部分的长度为47k 2,此时应有47+47k +47k 2,有47+47k +47k2≥1. 所以可从中提炼出一个不等式组:⎩⎪⎨⎪⎧47+47k <1,47+47k +47k 2≥1.类型二 不等式的性质已知下列三个不等式①ab >0;②c a >d b ;③bc >ad.以其中两个作为条件,余下一个作结论,则可组成几个正确命题?解:(1)对②变形c a >d b ⇔bc -ad ab >0,由ab >0,bc >ad 得②成立,∴①③⇒②.(2)若ab >0,bc -ad ab >0,则bc >ad ,∴①②⇒③.(3)若bc >ad ,bc -ad ab >0,则ab >0,∴②③⇒①.综上所述可组成3个正确命题.小结:运用比较法及不等式性质进行比较时要注意不等式需满足的条件,如比较ac 与bc 的大小关系应注意从c >0,c =0,c <0三个方面讨论.若a >b >0,c <d <0,则一定有( )A.a c >b dB.a c <b dC.a d >b cD.a d <b c解:由c <d <0⇒-1d >-1c >0,又a >b >0,故由不等式性质,得-a d >-b c >0,所以a d <b c .故选D.类型三 不等式性质的应用(1)若1<α<3,-4<β<2,则α2-β的取值范围是________. 解:由1<α<3得12<α2<32,由-4<β<2得-2<-β<4,所以α2-β的取值范围是⎝ ⎛⎭⎪⎫-32,112.故填⎝ ⎛⎭⎪⎫-32,112. 小结:①需要注意的是,两同向不等式可以相加但不可以相减,所以不能直接由12<α2<32和-4<β<2两式相减来得到α2-β的范围.②此类题目用线性规划也可解. (2)已知-1<a +b <3且2<a -b <4,则2a +3b 的取值范围是________.解:设2a +3b =x (a +b )+y (a -b ),∴⎩⎪⎨⎪⎧x +y =2,x -y =3.解得⎩⎪⎨⎪⎧x =52,y =-12.∴-52<52(a +b )<152,-2<-12(a -b )<-1. ∴-92<52(a +b )-12(a -b )<132,即-92<2a +3b <132.故填⎝ ⎛⎭⎪⎫-92,132. 小结:由于a +b ,a -b 的范围已知,所以要求2a +3b 的取值范围,只需将2a +3b 用已知量a +b ,a -b 表示出来,可设2a +3b =x (a +b )+y (a -b ),用待定系数法求出x ,y ,再利用同向不等式的可加性求解. (1)若角α,β满足-π2<α<β<π2,则2α-β的取值范围是________. 解:∵-π2<α<β<π2,∴-π2<α<π2,-π2<β<π2,-π2<-β<π2,而α<β,∴-π<α-β<0,∴2α-β=(α-β)+α∈⎝ ⎛⎭⎪⎫-3π2,π2.故填⎝ ⎛⎭⎪⎫-3π2,π2.(2)设f (x )=ax 2+bx ,且1≤f (-1)≤2,2≤f (1)≤4,则f (-2)的取值范围为________.解法一:由已知⎩⎪⎨⎪⎧1≤a -b ≤2,2≤a +b ≤4.①②,f (-2)=4a -2b. 设4a -2b =m (a -b )+n (a +b )(m ,n 为待定系数),即4a -2b =(m +n )a -(m -n )b ,于是得⎩⎪⎨⎪⎧m +n =4,m -n =2.解得⎩⎪⎨⎪⎧m =3,n =1.由①×3+②×1得5≤4a -2b ≤10,即5≤f (-2)≤10.解法二:由⎩⎪⎨⎪⎧a -b =f (-1),a +b =f (1)得⎩⎪⎨⎪⎧a =12[f (1)+f (-1)],b =12[f (1)-f (-1)].∴f (-2)=4a -2b =3f (-1)+f (1),后面同解法一.故填[5,10].类型四 比较大小实数b >a >0,实数m >0,比较a +mb +m 与a b 的大小,则a +m b +m________a b . 解法一:(作差比较):a +mb +m -a b =b (a +m )-a (b +m )b (b +m )=m (b -a )b (b +m ), ∵b >a >0,m >0,∴m (b -a )b (b +m )>0,∴a +m b +m >a b. 解法二(作商比较):∵b >a >0,m >0,∴bm >am ⇒ab +bm >ab +am >0,∴ab +bm ab +am >1,即a +m b +m ·b a >1⇒a +m b +m>a b .故填>.小结:本题思路是作差整理,定符号,所得结论也称作真分数性质.作差(商)比较法的步骤是:①作差(商);②变形:配方、因式分解、通分、分母(分子)有理化等;③判断符号(判断商和“1”的大小关系);④作出结论.已知a ,b ,c ∈R +,且a 2+b 2=c 2,当n ∈N ,n >2时,比较c n 与a n +b n 的大小,则a n+b n ________c n .解:∵a ,b ,c ∈R +,∴a n ,b n ,c n >0,而a n +b n c n =⎝ ⎛⎭⎪⎫a c n +⎝ ⎛⎭⎪⎫b c n .∵a 2+b 2=c 2,∴⎝ ⎛⎭⎪⎫a c 2+⎝ ⎛⎭⎪⎫b c 2=1,∴0<a c <1,0<b c <1.当n ∈N ,n >2时,⎝ ⎛⎭⎪⎫a c n <⎝ ⎛⎭⎪⎫a c 2,⎝ ⎛⎭⎪⎫b c n <⎝ ⎛⎭⎪⎫b c 2,∴a n +b n c n =⎝ ⎛⎭⎪⎫a c n +⎝ ⎛⎭⎪⎫b c n <a 2+b 2c2=1,∴a n +b n <c n .故填<.[归纳小结]1.理解不等关系的意义、实数运算的符号法则、不等式的性质,是解不等式和证明不等式的依据和基础.2.一般数学结论都有前提,不等式性质也是如此.在运用不等式性质之前,一定要准确把握前提条件,一定要注意不可随意放宽其成立的前提条件.3.不等式性质包括“充分条件(或者是必要条件)”和“充要条件”两种,前者一般是证明不等式的理论基础,后者一般是解不等式的理论基础.4.利用几个不等式来确定某个代数式的范围时要注意:“同向(异向)不等式的两边可相加(相减)”这种变形不是等价变形,若多次使用,则有可能使取值范围扩大,解决这一问题的方法是:先建立待求范围的整体与已知范围的整体的等量关系,再一次性的运用这种变形,即可求得正确的待求整体的范围.5.比较两个实数的大小,有作差法和作商法两种方法.一般多用作差法,注意当这两个数都是正数时,才可以用作商法.作差法是比较作差后的式子与“0”的大小关系;作商法是比较作商后的式子与“1”的大小关系.6.对于实际问题中的不等量关系,还要注意实际问题对各个参变数的限制.[课后作业]1..已知a ,b 为正数,a ≠b ,n 为正整数,则a n b +ab n -a n +1-b n +1的正负情况为 ( )A .恒为正B .恒为负C .与n 的奇偶性有关D .与a ,b 的大小有关解:a n b +ab n -a n +1-b n +1=a n (b -a )+b n (a -b )=-(a -b )(a n -b n ),因为(a -b )与(a n -b n )同号,所以a n b +ab n -a n +1-b n +1<0恒成立.故选B.2.若a ,b ,c ∈R ,且a >b ,则下列不等式一定成立的是( )A .a +c ≥b -cB .(a -b )c 2≥0C .ac >bc D.c 2a -b>0 解:A 项:当c <0时,不等式a +c <b -c 可能成立;B 项:a >b ⇒a -b >0,c 2≥0,故(a -b )c 2≥0;C 项:当c =0时,ac =bc ;D 项:当c =0时,c 2a -b=0.故选B. 3.已知函数f (x )=x 3+ax 2+bx +c ,且0<f (-1)=f (-2)=f (-3)≤3,则( )A .c ≤3B .3<c ≤6C .6<c ≤9D .c >9解:由f (-1)=f (-2)=f (-3)得,-1+a -b +c =-8+4a -2b +c =-27+9a -3b +c ,消去c 得⎩⎪⎨⎪⎧3a -b =7,5a -b =19, 解得⎩⎪⎨⎪⎧a =6,b =11,于是0<c -6≤3,即6<c ≤9.故选C.4.如果0<m <b <a ,则( )A .cos b +m a +m <cos b a <cos b -m a -mB .cos b a <cos b -m a -m <cos b +m a +mC .cos b -m a -m <cos b a <cos b +m a +mD .cos b +m a +m <cos b -m a -m<cos b a 解:作商比较:b +m a +m ÷b a =ab +am ab +bm >1,所以1>b +m a +m >b a >0,同理,0<b -m a -m <b a <1,∴1>b +m a +m>b a >b -m a -m >0.而y =cos x 在⎝ ⎛⎭⎪⎫0,π2上单调递减,所以cos b +m a +m <cos b a <cos b -m a -m(也可取特殊值判断).故选A.5.设a =lg e ,b =(lg e )2,c =lg e ,则a ,b ,c 的大小关系为________.解:∵e <10,∴lg e <lg 10=12,∴(lg e )2<12·lg e =lg e ,即b <c.又∵e <e ,∴lg e <lg e ,即c <a.故填b <c <a.6.定义a *b =⎩⎨⎧a ,a <b ,b ,a ≥b.已知a =30.3,b =0.33,c =log 30.3,则(a *b )*c =________.(结果用a ,b ,c 表示)解:∵log 30.3<0<0.33<1<30.3,∴c <b <a ,∴(a *b )*c =b *c =c.故填c.7.设实数a ,b ,c 满足:①b +c =6-4a +3a 2,②c -b =4-4a +a 2.试确定a ,b ,c 的大小关系.解:∵c -b =(a -2)2≥0,∴c ≥b ,又2b =2+2a 2,∴b =1+a 2,∴b -a =a 2-a +1=⎝ ⎛⎭⎪⎫a -122+34>0,∴b >a ,从而c ≥b >a. 8.某企业去年年底给全部的800名员工共发放1 000万元年终奖,该企业计划从今年起,10年内每年发放的年终奖都比上一年增加30万元,企业员工每年净增a 人.(1)若a =10,在计划时间内,该企业的人均年终奖是否会超过1.5万元?(2)为使人均年终奖年年有增长,该企业每年员工的净增量不能超过多少人?解:(1)设从今年起的第x 年(今年为第1年)该企业人均发放年终奖为y 万元.则y =1 000+30x 800+ax(a ∈N *,1≤x ≤10). 假设会超过1.5万元,则当a =10时有1 000+30x800+10x >1.5,解得x >403>10. 所以,10年内该企业的人均年终奖不会超过1.5万元.(2)设1≤x 1<x 2≤10,y =f (x )=1 000+30x800+ax ,则f (x 2)-f (x 1)=1 000+30x 2800+ax 2-1 000+30x 1800+ax 1=(30×800-1 000a )(x 2-x 1)(800+ax 2)(800+ax 1)>0, 所以30×800-1 000a >0,得a <24.所以,为使人均年终奖年年有增长,该企业每年员工的净增量不能超过23人. 9.已知a +b +c =0,且a >b >c ,求c a 的取值范围.解:∵a +b +c =0,∴b =-(a +c ).又a >b >c ,∴a >-(a +c )>c ,且3a >a +b +c =0>3c ,则a >0,c <0,∴1>-a +c a >c a ,即1>-1-c a >c a ,∴⎩⎪⎨⎪⎧2c a <-1,c a >-2,解得-2<c a <-12. 故c a 的取值范围是⎝ ⎛⎭⎪⎫-2,-12. 设a >b >1,c <0,给出下列三个结论:①c a >c b ;②a c <b c ;③log b ()a -c >log a ()b -c .其中所有正确结论的序号是( )A .①B .①②C .②③D .①②③解:①∵a >b >1,∴0<1a <1b <1,又c <0,∴c a >c b ,①正确;②由于a >b >1,可设f (x )=a x ,g (x )=b x ,当x =c <0时,根据指数函数的性质,得a c <b c ,②正确;③∵a >b >1,c <0,即a -c >b -c >1,∴log a (a -c )>log a (b -c ),又由对数函数的性质知log b (a -c )>log a (a -c ),∴log b (a -c )>log a (b -c ),③正确.故选D.。

高中数学 3.1 不等关系练习 北师大版必修5

高中数学 3.1 不等关系练习 北师大版必修5

第三章 §1一、选择题1.(2014·四川理,4)若a>b>0,c<d<0,则一定有( )A .a c >b dB .a c <b dC .a d >b cD .a d <b c[答案] D[解析] 本题考查不等式的性质,a c -b d =ad -bc cd ,cd>0,而ad -bc 的符号不能确定,所以选项A 、B 不一定成立.a d -b c =ac -bd dc ,dc>0,由不等式的性质可知ac<bd ,所以选项D 成立.2.如果a ∈R ,且a2+a<0,那么a ,a2,-a ,-a2的大小关系为( )A .a2>a>-a2>-aB .-a>a2>-a2>aC .-a>a2>a>-a2D .a2>-a>a>-a2[答案] B[解析] 因为a2+a<0,所以a2<-a ,a<-a2,又由于a≠0,∴-a2<a2,即a<-a2<a2<-A .故选B .3.设a ,b ∈R ,若a -|b|>0,则下列不等式中正确的是( )A .b -a>0B .a3+b3<0C .a2-b2<0D .b +a>0[答案] D[解析] 利用赋值法:令a =1,b =0排除A ,B ,C ,选D .4.若a>b>c ,a +2b +3c =0,则( )A .ab>acB .ac>bcC .ab>bcD .a|b|>c|b|[答案] A[解析] ∵a>b>c 且a +2b +3c =0,∴a>0,c<0.又∵b>c 且a>0,∴ab>aC .选A .5.若-1<α<β<1,则下面各式中恒成立的是( )A .-2<α-β<0B .-2<α-β<-1C .-1<α-β<0D .-1<α-β<1[答案] A[解析] 由题意得-1<α<1,-1<-β<1,α-β<0,故-2<α-β<2且α-β<0,故-2<α-β<0,因此选A .6.如果a >0,且a≠1,M =loga(a3+1),N =loga(a2+1),那么( )A .M >NB .M <NC .M =ND .M 、N 的大小无法确定[答案] A[解析] 当a >1时a3+1>a2+1,y =logax 单增,∴loga(a3+1)>loga(a2+1).当0<a <1时a3+1<a2+1,y =logax 单减.∴loga(a3+1)>loga(a2+1),或对a 取值检验.选A .二、填空题7.如果a>b ,那么下列不等式:①a3>b3;②1a <1b ;③3a>3b ;④lga>lgB .其中恒成立的是________.[答案] ①③[解析] ①a3-b3=(a -b)(a2+b2+ab)=(a -b)[(a +b 2)2+34b2]>0;③∵y =3x 是增函数,a>b ,∴3a>3b当a>0,b<0时,②④不成立.8.设m =2a2+2a +1,n =(a +1)2,则m 、n 的大小关系是________.[答案] m≥n[解析] m -n =2a2+2a +1-(a +1)2=a2≥0.三、解答题9.有粮食和石油两种物质,可用轮船与飞机两种方式运输,每天每艘轮船和每架飞机的运输效果如下表:不等关系的不等式.[解析] 设需安排x 艘轮船和y 架飞机,则⎩⎪⎨⎪⎧ 300x +150y≥2 000250 x +100 y≥1 500x≥0y≥0,∴⎩⎪⎨⎪⎧ 6x +3y≥405x +2y≥30x≥0y≥0.10.(1)已知a>b ,e>f ,c>0.求证:f -ac<e -bC .(2)若bc -ad≥0,bd>0.求证:a +b b ≤c +d d .[证明] (1)∵a>b ,c>0,∴ac>bc ,∴-ac<-bc ,∵f<e ,∴f -ac<e -bC .(2)∵bc -ad≥0,∴ad≤bc ,又∵bd>0,∴a b ≤c d ,∴a b +1≤c d +1,∴a +b b ≤c +d d .一、选择题1.下列不等式:①x2+3>2x(x ∈R);②a3+b3≥a2b +ab2(a ,b ∈R);③a2+b2≥2(a -b -1)中正确的个数为( )A .0B .1C .2D .3[答案] C[解析] 对于①,x2+3-2x =(x -1)2+2>0恒成立,对于②,a3+b3-a2b -ab2=a2(a -b)+b2(b -a)=(a -b)(a2-b2)=(a -b)2(a +b),∵a 、b ∈R ,∴(a -b)2≥0,而a +b>0,或a +b =0,或a +b<0,故②不正确,对于③,a2+b2-2a +2b +2=a2-2a +1+b2+2b +1=(a -1)2+(b +1)2≥0,∴③正确,故选C .2.已知a ,b ,c ,d 均为实数,有下列命题:( ) ①若ab <0,bc -ad >0,则c a -d b >0;②若ab >0,c a -d b >0,则bc -ad >0; ③若bc -ad >0,c a -d b >0,则ab >0.其中正确命题的个数是A .0B .1C .2D .3[答案] C[解析] ①∵ab <0,∴1ab <0,又∵bc -ab >0, ∴1ab ·(bc -ad)<0即c a -d b <0,∴①错;②∵ab >0,c a -d b >0,∴ab(c a -d b )>0,即:bc -ab >0,∴②正确;③∵c a -d b >0,∴bc -ad ab >0,又∵bc -ad >0,∴ab >0,∴③正确.选C .3.下列各式中,对任何实数x 都成立的一个式子是( )A .lg(x2+1)≥lg2xB .x2+1>2xC .1x2+1≤1 D .x +1x ≥2[答案] C[解析] A 中x>0;B 中x =1时,x2+1=2x ;C 中任意x ,x2+1≥1,故1x2+1≤1;D 中当x<0时,x +1x ≤0.4.若a>b ,c>d ,则下列不等式中成立的一个是( )A .a +d>b +cB .ac>bdC .a c >b dD .d -a<c -b [答案] D[解析] ∵a>b ⇒-a<-bc>d ⇒d<c ⇒d -a<c -B .∴选D .二、填空题5.若1<a<3,-4<b<2,则a -|b|的取值范围是________.[答案] (-3,3)[解析] ∵0≤|b|<4,∴-4<-|b|≤0.又1<a<3,∴-3<a -|b|<3.6.已知1≤a +b≤4,-1≤a -b≤2,则4a -2b 的取值范围是________.[答案] [-2,10][解析] 令4a -2b =x(a +b)+y(a -b),∴4a -2b =(x +y)a +(x -y)B .∴⎩⎪⎨⎪⎧ x +y =4,x -y =-2,∴⎩⎪⎨⎪⎧ x =1,y =3.∴⎩⎪⎨⎪⎧ 1≤a +b≤4,-3≤3a -b ≤6.∴-2≤4a -2b≤10.三、解答题7.某矿山车队有4辆载重为10 t 的甲型卡车和7辆载重为6 t 的乙型卡车,有9名驾驶员.此车队每天至少要运360 t 矿石至冶炼厂.已知甲型卡车每辆每天可往返6次,乙型卡车每辆每天可往返8次,写出满足上述所有不等关系的不等式.[解析] 设每天派出甲型卡车x 辆,乙型卡车y 辆.根据题意,应有如下的不等关系:(1)甲型卡车和乙型卡车的总和不能超过驾驶员人数.(2)车队每天至少要运360 t 矿石.(3)甲型车不能超过4辆,乙型车不能超过7辆.要同时满足上述三个不等关系,可以用下面的不等式组来表示:⎩⎪⎨⎪⎧ x +y≤910×6x +6×8y≥3600≤x≤40≤y≤7,即⎩⎪⎨⎪⎧ x +y≤95x +4y≥300≤x≤40≤y≤7.8.已知0<a +b<π2,-π2<a -b<π3,求2a 和3a -b 3的取值范围. [解析] ∵⎩⎨⎧ 0<a +b<π2-π2<a -b<π3,两式相加得-π2<2a<5π6.设3a -b3=m(a +b)+n(a -b)=a(m +n)+b(m -n),则有⎩⎪⎨⎪⎧ m +n =3m -n =-13,解得m =43,n =53.∴3a -b 3=43(a +b)+53(a -b). ∴⎩⎨⎧0<43a +b <2π3-5π6<53a -b <5π9, 两式相加,得-5π6<3a -b 3<11π9.故2a ∈(-π2,5π6),3a -b 3∈(-5π6,11π9).。

高中数学必修5(北师版)第三章不等式3.3 基本不等式(与最新教材完全匹配)知识点总结含同步练习题及答案

高中数学必修5(北师版)第三章不等式3.3 基本不等式(与最新教材完全匹配)知识点总结含同步练习题及答案
,即 x =
1 1 时,f (x) 取得最大值 . 6 12
设 a, b, c ∈ R,求证:a2 + b 2 + c 2 ⩾ ab + bc + ca . 证明:因为 a2 + b 2 ⩾ 2ab ,b 2 + c 2 ⩾ 2bc,c 2 + a2 ⩾ 2ca ,所以
某种汽车,购车费用是 10 万元,每年使用的保险费、汽油费约为 0.9 万元,年维修费第一年是 0.2 万元,以后逐年递增 0.2 万元.问这种汽车使用多少年时,它的年平均费用最少? 解:设使用 x 年时,年平均费用 y 最少. 由于“年维修费第一年是 0.2 万元,以后逐年递增 0.2 万元”,可知汽车每年维修费构成以 0.2 万元为首项,0.2 万元为公差的等差数列. 因此汽车使用 x 年的总维修费用为
(a2 + b 2 ) + (b 2 + c 2 ) + (c 2 + a2 ) ⩾ 2ab + 2bc + 2ca,
2
+
2
+
2

+
+
当且仅当 a = b = c 时,等号成立,所以 a2 + b 2 + c 2 ⩾ ab + bc + ca .
3.均值不等式的实际应用 描述: 利用基本不等式解决实际问题的一般步骤: ①正确理解题意,设出变量,一般可以把要求最大(小)值的变量定为函数; ②建立相应的函数关系式,把实际问题抽象成函数的最大值或最小值问题; ③在定义域内,求出函数的最大值或最小值; ④正确写出答案. 例题: 建造一个容积为 8 m 3 ,深为 2 m 的长方形无盖水池,如果池底的造价是每平方米 120 元, 池壁的造价是每平方米 80 元,求这个水池的最低造价. 解:设水池的造价为 y 元,池底的长为 x m ,则宽为

北师大版数学高二必修5练习3.1不等关系

北师大版数学高二必修5练习3.1不等关系

学业分层测评(十五)(建议用时:45分钟)[学业达标]一、选择题1.完成一项装修工程,请木工需付工资每人500元,请瓦工需付工资每人400元,现有工人工资预算20 000元,设木工x 人,瓦工y 人,则请工人满足的关系式是( )A .5x +4y <200B .5x +4y ≥200C .5x +4y =200D .5x +4y ≤200【解析】 由题意x ,y 满足的不等式关系为500x +400y ≤20 000,即5x +4y ≤200.【答案】 D2.若a ,b ,c 为实数,且a <b <0,则下列命题正确的是( ) A .ac 2<bc 2 B .a 2>ab >b 2 C.1a <1bD.b a >a b【解析】 c =0时,ac 2=bc 2,∴A 错;a <b <0⇒1a >1b ,∴C 错;∵a <b <0,∴a b >1,0<ba <1,∴D 错.【答案】 B3.若A =a 2+3ab ,B =4ab -b 2,则A ,B 的大小关系是( ) A .A ≤B B .A ≥B C .A >B 或A <BD .A >B【解析】 A -B =a 2+3ab -4ab +b 2=a 2+b 2-ab =⎝ ⎛⎭⎪⎫a -b 22+34b 2≥0,∴A ≥B . 【答案】 B4.已知a,b,c∈(0,+∞),若ca+b<ab+c<bc+a,则()【导学号:47172097】A.c<a<b B.b<c<a C.a<b<c D.c<b<a【解析】∵a,b,c∈(0,+∞)且ca+b<ab+c<bc+a,∴ca+b+1<ab+c+1<bc+a +1,即a+b+ca+b<a+b+cb+c<a+b+ca+c,∴a+b>b+c>a+c.由a+b>b+c,∴a>c,由b+c>a+c,∴b>a,∴b>a>c,故选A. 【答案】 A5.若1a<1b<0,则不等式:①a+b<ab;②|a|>|b|;③a<b;④ba+ab>2中,正确的有()A.1个B.2个C.3个D.4个【解析】由1a<1b<0,得ab>0,b<a<0.故a+b<0<ab,|b|>|a|,因此①正确,②错误,③错误.又ab+ba-2=(a-b)2ab>0,因此④正确.【答案】 B二、填空题6.若f(x)=3x2-x+1,g(x)=2x2+x-1,则f(x)________g(x).(用“<”,“>”,“=”填空)【解析】f(x)-g(x)=3x2-x+1-2x2-x+1=x2-2x+2=(x-1)2+1>0,∴f(x)>g(x).【答案】>7.设α∈⎝ ⎛⎭⎪⎫0,π2,β∈⎣⎢⎡⎦⎥⎤0,π2,那么2α-β3的取值范围是________.【导学号:47172098】【解析】 由题设得0<2α<π,0≤β3≤π6, ∴-π6≤-β3≤0, ∴-π6<2α-β3<π. 【答案】 ⎝ ⎛⎭⎪⎫-π6,π8.若a <b <0,则1a -b与1a 的大小关系是________. 【解析】 1a -b -1a =a -(a -b )(a -b )a =b(a -b )a ,∵a <b <0,∴a -b <0,则b (a -b )a<0,∴1a -b <1a . 【答案】1a -b<1a 三、解答题9.有学生若干人,住若干宿舍,如果每间住4人,那么还余19人,如果每间住6人,那么只有一间不满但不空,求宿舍间数和学生人数.【解】 设宿舍x 间,则学生(4x +19)人,依题意, ⎩⎪⎨⎪⎧4x +19<6x ,4x +19>6(x -1),解得192<x <252. ∵x ∈N +,∴x =10,11或12,学生人数为:59,63,67.故宿舍间数和学生人数分别为10间59人,11间63人或12间67人. 10.已知a 、b 、x 、y 都为正数,且1a >1b ,x >y ,求证:x x +a >y y +b【证明】xx +a -yy +b =x (y +b )-y (x +a )(x +a )(y +b )= bx -ay (x +a )(y +b ).∵1a >1b >0,x >y >0,∴b >a >0,x >y >0, ∴bx >ay ,即bx -ay >0. 又x +a >0,y +b >0,∴bx -ay(x +a )(y +b )>0,即x x +a >yy +b. [能力提升]1.下列命题中,一定正确的是( ) A .若a >b ,且1a >1b ,则a >0,b <0 B .若a >b ,b ≠0,则ab >1C .若a >b ,且a +c >b +d ,则c >dD .若a >b ,且ac >bd ,则c >d【解析】 A 项,若a >b ,当a >b >0时,1a <1b ; 当0>a >b 时,1a <1b ;当a >0>b 时,1a >1b .所以,若a >b 且1a >1b ,则a >0,b <0,故A 项正确; B 项,若a >b ,b ≠0,当0>a >b 时,ab <1,故B 错;C 项,若a >b ,且a +c >b +d ,所以a -b >d -c ,当a -b >d -c 时,d >c ,故C 错;D 项,若a >b ,且ac >bd ,则c =d 或c >d 或c <d ,故D 错.故选A. 【答案】 A2.若0<a <1,c >1,则ac +1与a +c 的大小关系为( ) A .ac +1<a +c B .ac +1>a +c C .ac +1=a +cD .不能确定【解析】 (ac +1)-(a +c )=ac -a +1-c =a (c -1)-(c -1)=(a -1)(c -1),∵0<a <1,c >1,∴a -1<0,c -1>0,∴(a -1)(c -1)<0,即ac +1<a +c . 【答案】 A3.用锤子以均匀的力敲击铁钉钉入木板,随着铁钉的深入,铁钉所受的阻力会越来越大,使得每次钉入木板的钉子长度后一次为前一次的1k (k ∈N +),已知一个铁钉受击3次后全部进入木板,且第一次受击后进入木板部分的铁钉长度是钉长的47,请从这个实例中提炼出一个不等式组为________.【解析】 依题意得,第二次钉子没有全部进入木板,第三 次全部进入木板,所以⎩⎪⎨⎪⎧47+47k <1,47+47k +47k 2≥1(k ∈N +).【答案】⎩⎪⎨⎪⎧47+47k <147+47k +47k 2≥14.某单位组织职工去某地参观学习需包车前往,甲车队说:“如领队买全票一张,其余人可享受7.5折优惠”,乙车队说:“你们属团体票,按原价的8折优惠”,这两车队的原价、车型都是一样的,试根据单位去的人数,比较两车队的收费哪家更优惠.【导学号:47172099】【解】 设该单位职工有n 人(n ∈N +),全票价为x 元,坐甲车需花y 1元,坐乙车需花y2元,则y1=x+34x(n-1)=14x+34xn,y2=45nx.∵y1-y2=14x+34xn-45nx=14x-120nx=14x⎝⎛⎭⎪⎫1-n5,∴当n=5时,y1=y2;当n>5时,y1<y2;当n<5时,y1>y2.因此,当单位去的人数为5人时,两车队收费相同;多于5人时,选甲车队更优惠;少于5人时,选乙车队更优惠.。

(北师大版)必修五名师精品:3.1.1《不等关系》教案(含答案)

(北师大版)必修五名师精品:3.1.1《不等关系》教案(含答案)

教学设计1.1 不等关系整体设计教学分析本节课的研究是对初中不等式学习的延续和拓展,也是实数理论的进一步发展.在本节课的学习过程中,学生将通过现实生活中的实例,了解我们周围存在的形形色色的不等关系,进而更深层次地从理性角度建立不等观念.通过本节课的学习,让学生从一系列的具体问题情境中,感受到在现实世界和日常生活中存在着大量的不等关系,并充分认识不等关系的存在与应用.对不等关系的相关素材,用数学观点进行观察、归纳、抽象,完成量与量的比较的过程,即能用不等式或不等式组把这些不等关系表示出来.在本节课的学习过程中还安排了一些简单的、学生易于处理的问题,其用意在于让学生注意对数学知识和方法的应用,同时也能激发学生的学习兴趣,并由衷地产生用数学工具研究不等关系的愿望.三维目标1.会用不等符号表示实际问题中的不等关系,能列出问题中的不等式或不等式组.2.通过本节学习,让学生感受到不等关系是客观存在的广泛的数量关系.3.通过对富有实际意义问题的解决,激发学生的探究精神和严肃认真的科学态度,同时去感受数学的应用性,体会数学的奥秘与数学的结构美,激发学生的学习兴趣.重点难点教学重点:用不等式(组)表示实际问题中的不等关系,并用不等式(组)研究含有不等关系的问题,理解不等式(组)对于刻画不等关系的意义和价值.教学难点:用不等式或不等式组准确地表示出不等关系.课时安排1课时教学过程导入新课思路1.(插图导入)教材章头插图安排一幅芭蕾舞的优美画面,使学生在具体情境中感受到不等关系在现实世界和日常生活中是大量存在的,由此产生用数学研究不等关系的强烈愿望,自然地引入新课.思路2.(情境导入)列举出学生身体的高矮、身体的轻重、距离学校路程的远近、百米赛跑的时间、数学成绩的多少等现实生活中学生身边熟悉的事例,描述出某种客观事物在数量上存在的不等关系.这些不等关系怎样在数学上表示出来呢?让学生自由地展开联想,教师组织不等关系的相关素材,让学生用数学的观点进行观察、归纳,使学生在具体情境中感受到不等关系与相等关系一样,在现实世界和日常生活中大量存在着.这样学生会由衷地产生用数学工具研究不等关系的愿望,从而进入进一步的探究学习,由此引入新课.推进新课新知探究提出问题①回忆初中学过的不等式,让学生说出“不等关系”与“不等式”的异同.怎样利用不等式研究及表示不等关系?]②在现实世界和日常生活中,既有相等关系,又存在着大量的不等关系.你能举出一些实际例子吗?③阅读课本内容,同学之间交流对不等关系的认识.活动:教师引导学生回忆初中学过的不等式概念,使学生明确“不等关系”与“不等式”的异同.不等关系强调的是关系,可用符号“>”“<”“≠”“≥”“≤”表示,而不等式则是表示两者的不等关系,可用“a>b”“a<b”“a≠b”“a≥b”“a≤b”等式子表示,不等关系是可以通过不等式来体现的.教师与学生一起举出我们日常生活中不等关系的例子,可让学生充分合作讨论.使学生感受到现实世界中存在着大量的不等关系,在学生了解了一些不等式(组)产生的实际背景的前提下,进一步学习不等式的有关内容.实例1:某天的天气预报报道,最高气温32 ℃,最低气温26 ℃.实例2:对于数轴上任意不同的两点A,B,若点A在点B的左边,则x A<x B.教师协助画出数轴草图如图1.图1实例3:若一个数是非负数,则这个数大于或等于零.实例4:2003年10月15日9时,我国“神舟”五号载人飞船在酒泉卫星发射中心发射成功,实现了中华民族千年的飞天梦想.这是自1970年4月24日成功发射“东方红一号”人造卫星以来,我国航天史上又一座新的里程碑,我国已成为继俄、美之后,世界上第三个掌握载人航天技术、成功发射载人飞船的国家.“东方红一号”与“神舟”五号部分参数的对比见下表.“东方红一号”与“神舟”五号部分参数对比表我们不难发现,“神舟”五号飞船比“东方红一号”卫星在很多方面都有了较大的发展.实例5:《铁路旅行常识》规定:“一、随同成人旅行身高1.2~1.5米的儿童,享受半价客票(以下称儿童票),超过1.5米时应买全价票.每一成人旅客可免费带一名身高不足1.2米的儿童,超过一名时,超过的人数应买儿童票.……十、旅客每人免费携带品的体积和重量是每件物品的外部尺寸长、宽、高之和不超过160厘米,杆状物品不超过200厘米,重量不得超过20千克……”设儿童身高为h(m),物品外部尺寸长、宽、高之和为p(cm),请在下表空格内填上对应的数学符号(<,≤,>,≥),并与同学交流.状况直方图.图2请根据图中提供的信息,依河流水质的状况,将各省市(区)污染程度按从小到大的顺序(<,≤)进行排列.对以上问题,教师让学生轮流回答,问题是数学研究的核心,以问题展示的形式来培养学生的问题意识与探究意识.从上面的一些例子,我们可以感受到,不等关系反映在日常生活的方方面面.在数学意义上,不等关系可以体现:常量与常量之间的不等关系.例如,“神舟”五号的质量大于“东方红一号”的质量. 变量与常量之间的不等关系.例如,儿童身高h m 小于或等于1.4 m. 函数与函数之间的不等关系.例如,当x >a 时,销售收入f (x )大于销售成本g (x ).(见后面应用示例思路2的例1)一组变量之间的不等关系.例如,购置软件的费用60x 与购置磁盘的费用70y 之和不超过500元.讨论结果:①~③略.应用示例思路1 例1 设点A 与平面α的距离为d ,B 为平面上的任意一点,则d ≤|AB |.用图表示此不等关系.图3活动:教师可让学生合作探究,对有困难的学生及时给予点拨指导. 解:如图3,过点A 作AC ⊥平面α于点C ,则d =|AC |≤|AB |.点评:这种用数形结合的思想解决问题的方法是我们非常熟悉的.例2 某种杂志以每本2.5元的价格销售,可以售出8万本.据市场调查,若单价每提高0.1元,销售量就可能相应减少2 000本.若把提价后杂志的定价设为x 元,怎样用不等式表示销售的总收入仍不低于20万元呢?解:设杂志的定价为x 元,则销售量就减少x -2.50.1×0.2万本.销售量变为⎝ ⎛⎭⎪⎫8-x -2.50.1×0.2万本,则总收入为⎝ ⎛⎭⎪⎫8-x -2.50.1×0.2x 万元,即销售的总收入为不低于20万元的不等式表示为⎝ ⎛⎭⎪⎫8-x -2.50.1×0.2x ≥20.点评:由于观察视角的不同,上述表示不是唯一的,若设杂志的单价提高了0.1n 元(n ∈N +),那么销售量减少了0.2n 万本,单价为(2.5+0.1n )元,则可得销售的总收入为不低于20万元的不等式为(2.5+0.1n )(8-0.2n )≥20.显然这两种表示都是正确的,由此让学生体验不同的切入,会得到不同的不等式模型,并让学生对以上两种表示作出比较.3某钢铁厂要把长度为4 000 mm 的钢管截成500 mm 和600 mm 两种,按照生产的要求,600 mm 钢管的数量不能超过500 mm 钢管的3倍.写出满足上述所有不等关系的不等式.分析:根据题意,应当有什么样的不等量关系呢?由题意,显然截得两种钢管的总长度不能超过4 000 mm.截得600 mm 钢管的数量不能超过500 mm 钢管的3倍.截得的两种钢管数量都不能为负.上述三个不等关系必须同时满足,即用“且”而非“或”.同时,由于实际问题的限制,还应有x ,y ∈N +.解:假设截得500 mm 的钢管x 根,截得600 mm 的钢管y 根.根据题意可列如下不等式组:⎩⎪⎨⎪⎧ 500x +600y ≤4 000,3x ≥y ,x ≥0,y ≥0,x ,y ∈N +.点评:通过以上探究,使学生初步明确了如何用不等式或不等式组把实际问题中的不等关系表示出来,提醒学生要注意挖掘问题中所隐含的不等量关系及使实际问题有意义,考虑问题要周全,思维要严密.思路2例1 如图4,函数y =f (x )反映了某公司产品的销售收入y 万元与销售量x t 的函数关系,y =g (x )反映了该公司产品的销售成本与销售量的函数关系,试问:图4(1)当销售量为多少时,该公司赢利(收入大于成本)?(2)当销售量为多少时,该公司亏损(收入小于成本)?解:(1)当销售量大于a t ,即x >a 时,公司赢利,即f (x )>g (x );(2)当销售量小于a t ,即0≤x <a 时,公司亏损,即f (x )<g (x ). 点评:此题为函数与函数之间的不等关系.例2 某用户计划购买单价分别为60元、70元的单片软件和盒装磁盘,使用资金不超过500元,根据需要,软件至少买3片,磁盘至少买2盒.问:软件数与磁盘数应满足什么条件?活动:这是1999年全国高考的一道选择题的改编,其解法很多,但列出不等关系后更能一目了然地理解本题中的数量关系.解:设软件数为x ,磁盘数为y ,根据题意可得⎩⎪⎨⎪⎧ 60x +70y ≤500,x ≥3且x ∈N +,y ≥2且y ∈N +.点评:这是一组变量之间的不等关系.例3 若需在长为4 000 mm 的圆钢上,截出长为698 mm 和518 mm 两种毛坯,问怎样写出满足上述所有不等关系的不等式组?活动:教师引导学生充分理解题意,找出题目中的不等关系.解:设截出长为698 mm 的毛坯x 个和截出长为518 mm 的毛坯y 个,把截取条件数学化地表示出来就是⎩⎪⎨⎪⎧ 698x +518y ≤4 000,x ≥0,y ≥0,x ,y ∈N .点评:可让学生板演,老师结合学生的具体完成情况作评析,特别应注意x ≥0,y ≥0,x ,y ∈N 的条件的应用.例4 某厂使用两种零件A ,B ,装配两种产品甲、乙,该厂的生产能力是月产量甲最多2 500件,月产量乙最多1 200件,而组装一件产品,甲需要4个A 、2个B ;乙需要6个A ,8个B .某个月,该厂能用的A 最多有14 000个,B 最多有12 000个.用不等式将甲、乙两种产品产量之间的关系表示出来.活动:教师引导学生充分理解题意,找出题目中的不等关系,可设甲、乙两种产品的产量分别为x 件、y 件,这样就可用x ,y 表示出不等关系.解:设甲、乙两种产品的产量分别为x 件、y 件,则根据题意,得⎩⎪⎨⎪⎧ 0≤x ≤2 500,0≤y ≤1 200,4x +6y ≤14 000,2x +8y ≤12 000,x ,y ∈N , 即⎩⎪⎨⎪⎧ 0≤x ≤2 500,0≤y ≤1 200,2x +3y ≤7 000,x +4y ≤6 000,x ,y ∈N .点评:本例可让学生合作完成,点拨学生应特别注意对x ≥0,y ≥0,x ,y∈N 的隐含条件的挖掘. 知能训练课本本节练习1,2.课堂小结1.由学生回顾本节课中所探究的不等关系、不等式及其实际背景,整合本节课中从实际背景中建立不等式模型的方法,巩固本节所学知识与方法.2.教师进一步画龙点睛,通过本节对现实中数量关系的不等式表示,明确不等式是研究不等关系的重要数学工具,理解不等式(组)对于刻画不等关系的意义和价值.作业课本习题3—1 A组4,5.设计感想1.本教案设计更加关注学生的发展.通过具体问题的解决,让学生去感受、体验现实世界和日常生活中存在着的大量的等量关系,并从理性的角度去思考,鼓励学生用数学观点进行类比、归纳、抽象,培养学生严谨的数学学习习惯和良好的思维习惯.2.本教案设计注重学生的探究活动.学生在学习过程中,通过对问题的探究思考、体验认识、广泛参与,及实际问题背景的设计,培养学生严谨的思维习惯,主动积极的学习品质,从而提高学习质量.3.本教案设计注重了学生个性品质的发展.通过对富有挑战性问题的解决,激发学生顽强的探索精神和严肃认真的科学态度,同时去感受数学的应用性,体会数学的奥秘与数学的结构美、数学推理的严谨美,从而激发学生强烈的探究兴趣.(设计者:沈传年)。

新高中数学(北师大版,必修5)同步练习:3.1.1-3.1.2不等关系与不等式(含答案解析)

新高中数学(北师大版,必修5)同步练习:3.1.1-3.1.2不等关系与不等式(含答案解析)

1.2 不等关系与不等式1.比较实数a ,b 的大小 (1)文字叙述如果a -b 是正数,那么a____b ; 如果a -b 等于____,那么a =b ;如果a -b 是负数,那么a____b ,反之也成立. (2)符号表示 a -b>0⇔a____b ; a -b =0⇔a____b ; a -b<0⇔a____b.2.常用的不等式的基本性质 (1)a>b ⇔b____a(对称性); (2)a>b ,b>c ⇒a____c(传递性); (3)a>b ⇒a +c____b +c(可加性);(4)a>b ,c>0⇒ac____bc ;a>b ,c<0⇒ac____bc ; (5)a>b ,c>d ⇒a +c____b +d ; (6)a>b>0,c>d>0⇒ac____bd ; (7)a>b>0,n ∈N ,n≥2⇒a n ____b n ; (8)a>b>0,n ∈N ,n≥2⇒na____n b.一、选择题1.若a ,b ,c ∈R ,a>b ,则下列不等式成立的是( ) A.1a <1bB .a 2>b 2 C.a c 2+1>bc 2+1D .a|c|>b|c| 2.已知a<0,b<-1,则下列不等式成立的是( ) A .a>a b >a b 2 B.a b 2>a b >aC.a b >a>a b 2D.a b >a b 2>a 3.已知a 、b 为非零实数,且a<b ,则下列命题成立的是( )A .a 2<b 2B .a 2b<ab 2 C.1ab 2<1a 2b D.b a <a b 4.若x ∈(e-1,1),a =ln x ,b =2ln x ,c =ln 3x ,则( )A .a<b<cB .c<a<bC .b<a<cD .b<c<a 5.设a ,b ∈R ,若a -|b|>0,则下列不等式中正确的是( ) A .b -a>0 B .a 3+b 3<0 C .a 2-b 2<0 D .b +a>0 6.若a>b>c 且a +b +c =0,则下列不等式中正确的是( ) A .ab>ac B .ac>bc C .a|b|>c|b| D .a 2>b 2>c 2 二、填空题7.若1≤a≤5,-1≤b≤2,则a -b 的取值范围为___________________________. 8.若f(x)=3x 2-x +1,g(x)=2x 2+x -1,则f(x)与g(x)的大小关系是________. 9.若x ∈R ,则x 1+x 2与12的大小关系为________. 10.设n>1,n ∈N ,A =n -n -1,B =n +1-n ,则A 与B 的大小关系为________. 三、解答题11.设a>b>0,试比较a 2-b 2a 2+b 2与a -b a +b 的大小.12.设f(x)=1+log x 3,g(x)=2log x 2,其中x >0且x≠1,试比较f(x)与g(x)的大小.能力提升13.若0<a 1<a 2,0<b 1<b 2,且a 1+a 2=b 1+b 2=1,则下列代数式中值最大的是( ) A .a 1b 1+a 2b 2 B .a 1a 2+b 1b 2 C .a 1b 2+a 2b 1 D.1214.设x ,y ,z ∈R ,试比较5x 2+y 2+z 2与2xy +4x +2z -2的大小.1.比较两个实数的大小,只要考察它们的差就可以了. a -b>0⇔a>b ;a -b =0⇔a =b ;a -b<0⇔a<b. 2.作差法比较的一般步骤 第一步:作差;第二步:变形,常采用配方、因式分解等恒等变形手段,将“差”化成“积”;第三步:定号,就是确定作差的结果是大于0,等于0,还是小于0.(不确定的要分情况讨论) 最后得结论.概括为“三步一结论”,这里的“定号”是目的,“变形”是关键.3.不等式的性质是不等式变形的依据,每一步变形都要严格依照性质进行,千万不可想当然.1.2 不等关系与不等式答案知识梳理1.(1)> 0 < (2)> = < 2.(1)< (2)> (3)> (4)> < (5)> (6)> (7)> (8)>作业设计1.C [对A ,若a>0>b ,则1a >0,1b <0,此时1a >1b ,∴A 不成立;对B ,若a =1,b =-2,则a 2<b 2,∴B 不成立;对C ,∵c 2+1≥1,且a>b ,∴a c 2+1>bc 2+1恒成立,∴C 正确;对D ,当c =0时,a|c|=b|c|,∴D 不成立.]2.D [取a =-2,b =-2,则a b =1,a b 2=-12,∴a b >ab 2>a.]3.C [对于A ,当a<0,b<0时,a 2<b 2不成立;对于B ,当a<0,b>0时,a 2b>0,ab 2<0,a 2b<ab 2不成立; 对于C ,∵a<b ,1a 2b2>0,∴1ab 2<1a 2b; 对于D ,当a =-1,b =1时,b a =ab =-1.]4.C [∵1e <x<1,∴-1<ln x<0.令t =ln x ,则-1<t<0. ∴a -b =t -2t =-t>0,∴a>b. c -a =t 3-t =t(t 2-1)=t(t +1)(t -1), 又∵-1<t<0,∴0<t +1<1,-2<t -1<-1, ∴c -a>0,∴c>a.∴c>a>b.]5.D [由a>|b|得-a<b<a ,∴a +b>0,且a -b>0.∴b -a<0,A 错,D 对.a 3+b 3=(a +b)(a 2-ab +b 2)=(a +b)[(a -b 2)2+34b 2]∴a 3+b 3>0,B 错.而a 2-b 2=(a -b)(a +b)>0,∴C 错.]6.A [由a>b>c 及a +b +c =0知a>0,c<0,又∵a>0,b>c ,∴ab>ac.] 7.[-1,6]解析 ∵-1≤b≤2,∴-2≤-b≤1,又1≤a≤5,∴-1≤a -b≤6. 8.f(x)>g(x)解析 ∵f(x)-g(x)=x 2-2x +2=(x -1)2+1>0,∴f(x)>g(x).9.x 1+x 2≤12解析 ∵x 1+x 2-12=2x -1-x2+x 2=--2+x 2≤0,∴x 1+x 2≤12.10.A>B 解析 A =1n +n -1,B =1n +1+n.∵n +n -1<n +1+n ,并且都为正数, ∴A>B.11.解 方法一 作差法 a 2-b 2a 2+b 2-a -ba +b =+2-b 2--2+b 22+b 2+=-+2-2+b22+b 2+=-+2+b 2∵a>b>0,∴a +b>0,a -b>0,2ab>0.∴-+2+b 2>0,∴a 2-b 2a 2+b 2>a -ba +b.方法二 作商法∵a>b>0,∴a 2-b 2a 2+b 2>0,a -ba +b>0. ∴a 2-b 2a 2+b 2a -b a +b =+2a 2+b 2=a 2+b 2+2ab a 2+b 2=1+2ab a 2+b 2>1. ∴a 2-b 2a 2+b 2>a -b a +b. 12.解 f(x)-g(x)=1+log x 3-2log x 2=log x 3x4, ①当⎩⎪⎨⎪⎧ 0<x <1,3x 4>1,或⎩⎪⎨⎪⎧x >1,0<3x 4<1,即1<x <43时,log x 3x4<0,∴f(x)<g(x);②当3x 4=1,即x =43时,log x 3x4=0,即f(x)=g(x);③当⎩⎪⎨⎪⎧ 0<x <1,0<3x 4<1,或⎩⎪⎨⎪⎧x >1,3x 4>1,即0<x <1,或x >43时,log x 3x4>0,即f(x)>g(x).综上所述,当1<x <43时,f(x)<g(x);当x =43时,f(x)=g(x);当0<x <1,或x >43时,f(x)>g(x).13.A [特殊值法.令a 1=14,a 2=34,b 1=14,b 2=34,则a 1b 1+a 2b 2=1016=58,a 1a 2+b 1b 2=616=38,a 1b 2+a 2b 1=616=38,∵58>12>38,∴最大的数应是a 1b 1+a 2b 2.] 14.解 ∵5x 2+y 2+z 2-(2xy +4x +2z -2) =4x 2-4x +1+x 2-2xy +y 2+z 2-2z +1 =(2x -1)2+(x -y)2+(z -1)2≥0, ∴5x 2+y 2+z 2≥2xy +4x +2z -2, 当且仅当x =y =12且z =1时取到等号.。

(常考题)北师大版高中数学必修五第三章《不等式》测试(包含答案解析)

(常考题)北师大版高中数学必修五第三章《不等式》测试(包含答案解析)

一、选择题1.已知实数x ,y 满足221x y x m -≤-≤⎧⎨≤≤⎩且2z y x =-的最小值为-6,则实数m 的值为( ). A .2B .3C .4D .82.设正数m ,n ,2m n u +=,222v m n mn =++,则2u v ⎛⎫ ⎪⎝⎭的最大值是( ) A .14B .13C .12D .13.已知变量,x y 满足约束条件5021010x y x y x +-≤⎧⎪-+≤⎨⎪-≥⎩,则目标函数=21z x y =+-的最大值为( ) A .6B .7C .8D .94.当x ,y 满足不等式组11y x y x y ≤⎧⎪≥-⎨⎪+≤⎩时,目标函数2=+t x y 最小值是( )A .-4B .-3C .3D .325.已知实数x ,y 满足260,{0,2,x y x y x -+≥+≥≤若目标函数z mx y =-+的最大值为210m -+,最小值为22m --,则实数m 的取值范围是( ) A .[]2,1-B .[]1,3-C .[]1,2-D .[]2,36.已知变量,x y 满足不等式组22003x y x y y +-≥⎧⎪-≤⎨⎪≤⎩,则2z x y =-的最大值为( )A .3-B .23-C .1D .27.若a ,b 是任意实数,且a >b ,则下列不等式成立的是( ) A .a 2>b 2B .1b a< C .lg(a -b )>0D .11()()33ab<8.已知集合{}24120A x x x =--≤,{}440B x x =->,则A B =( )A .{}12x x <≤B .{}2x x ≥-C .{}16x x <≤D .{}6x x ≥-9.已知正数x ,y 满足x +y =1,且2211x y y x +++≥m ,则m 的最大值为( ) A .163B .13C .2D .410.已知实数x ,y 满足210210x y x x y -+≥⎧⎪<⎨⎪+-≥⎩,则221z x y =--的取值范围是( )A .5,53⎡⎤⎢⎥⎣⎦B .5,53⎡⎤-⎢⎥⎣⎦C .5,53⎡⎫⎪⎢⎣⎭D .5,53⎡⎫-⎪⎢⎣⎭11.命题p :变量(),x y 满足约束条件3450y x x y ≤⎧⎪≤⎨⎪+-≥⎩,则y z x =的最小值为14,命题q :直线2x =的倾斜角为2π,下列命题正确的是( ) A .p q ∧B .()()p q ⌝∧⌝C .()p q ⌝∧D .()p q ∧⌝12.已知实数x ,y 满足2402401x y x y y -+≥⎧⎪+-≤⎨⎪≥-⎩,则2x y +的最大值为( )A .2B .8C .11D .13二、填空题13.设,x y 满足约束条件20240280x y x y x y -+≥⎧⎪+-≥⎨⎪--≤⎩,则z y x =-的最小值是__________.14.已知x ,y 满足不等式组220,10,30x y x y x +-≥⎧⎪-+≥⎨⎪-≤⎩,则11x z y -=+,则z 的最大值为________.15.已知M ,N 为平面区域0401x y x y y -≥⎧⎪+-≤⎨⎪≥⎩内的两个动点,向量()1,0a =,则MN a ⋅的最大值是______.16.若不等式20++≥x mx m 在[1,2]x ∈上恒成立,则实数m 的最小值为________ 17.已知正数a ,b 满足(1)(1)1a b --=,则4a b +的最小值等于________.18.已知,x y 满足约束条件22022x y x y y +-≥⎧⎪+≤⎨⎪≤⎩,则目标函数z x y =-的最大值为_____.19.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,23ABC π∠=,ABC ∠的平分线交AC 于点D ,且2BD =,则3a c +的最小值为___________.20.若对定义域内任意x ,都有()()f x a f x +>(a 为正常数),则称函数()f x 为“a 距”增函数.若()3144f x x x =-+,x ∈R 是“a 距”增函数,则a 的取值范围是________.三、解答题21.已知函数2(1)()a x af x bx c-+=+(a ,b ,c 为常数).(1)当1,0b c ==时,解关于x 的不等式()1f x >;(2)当0,2b c a =>=时,若()1f x <对于0x >恒成立,求实数b 的取值范围. 22.某单位决定投资3200元建一仓库(长方体状),高度恒定,它的后墙利用旧墙不花钱,正面用铁栅,每米长造价40元,两侧墙砌砖,每米长造价45元,顶部每平方米造价20元,设铁栅长为x 米,一堵砖墙长为y 米. 求:(1)写出x 与y 的关系式;(2)求出仓库面积S 的最大允许值是多少?为使S 达到最大,而实际投资又不超过预算,那么正面铁栅应设计为多长?23.近年来,某市在旅游业方面抓品牌创建,推进养生休闲度假旅游产品升级,其景区成功创建国家5A 级旅游景区填补了该片区的空白,某投资人看到该市旅游发展的大好前景后,打算在该市投资甲、乙两个旅游项目,根据市场前期调查, 甲、乙两个旅游项目五年后可能的最大盈利率分别为01000和0080,可能的最大亏损率分别为0040和0020,投资人计划投资金额不超过5000万,要求确保亏损不四超过1200万,问投资人对两个项目各投资多少万元,才能使五年后可能的盈利最大? 24.已知函数2()3f x x x m =++. (1)当m =-4时,解不等式()0f x ≤; (2)若m >0,()0f x <的解集为(b ,a ),求14a b+的最大値. 25.在观察物体时,从物体上、下沿引出的光线在人眼处所成的夹角叫视角.研究表明,视角在[26,30]︒︒范围内视觉效果最佳.某大广场竖立的大屏幕,屏幕高为20米,屏幕底部距离地面11.5米.站在大屏幕正前方,距离屏幕所在平面x 米处的某人,眼睛位置距离地面高度为1.5米,观察屏幕的视角为θ(情景示意图如图所示).(1)为探究视觉效果,请从sin θ,cos θ,tan θ中选择一个作为y ,并求()y f x =的表达式;(2)根据(1)的选择探究θ是否有达到最佳视角效果的可能. 26.已知a R ∈,若关于x 的不等式2(1)460a x x 的解集是(3,1)-.(1)求a 的值;(2)若关于x 的不等式230ax bx ++≥在[0,2]上恒成立,求实数b 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】作出不等式组221x y x m -≤-≤⎧⎨≤≤⎩对应的区域,利用数形结合平移直线即可得到结论 .【详解】由题意可作图:当2z y x =-经过点P 时,z 取最小值6,此时P 符合:2x my x =⎧⎨=-⎩,即(,2)P m m -代入2z y x =-得:m -2-2m =-6,解得m =4 故选:C 【点睛】简单线性规划问题的解题步骤: (1)画出可行域;(2)作出目标函数所表示的某条直线(通常选作过原点的直线),移动此直线并观察此直线经过可行域的哪个(些)点时,函数有最大(小)值; (3)求(写)出最优解和相应的最大(小)值; (4)下结论.2.B解析:B 【分析】 化简22211()44u mn vm n mn=+⨯++,再结合基本不等式,即可求解. 【详解】由题意,正数m ,n ,2m nu +=,222v m n mn =++, 则2222222222()12112()444m n u m n mn mn v m n mn m n mn m n mn+++===+⨯++++++2111111111444444213()11mnm m m n n n n m=+⨯=+⨯≤+⨯=+++++, 当且仅当m n n m =时,即m n =时,等号成立,所以2u v ⎛⎫ ⎪⎝⎭的最大值是为13.故选:B . 【点睛】利用基本不等式求最值时,要注意其满足的三个条件:“一正、二定、三相等”: (1)“一正”:就是各项必须为正数;(2)“二定”:就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”:利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.3.C解析:C 【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案. 【详解】由约束条件5021010x y x y x +-≤⎧⎪-+≤⎨⎪-≥⎩作出可行域如图,联立150x x y =⎧⎨+-=⎩,解得A (1,4),化目标函数z =x +2y ﹣1为y 1222x z =-++,由图可知,当直线y 1222x z =-++过A 时,z 有最大值为8.故选C .【点睛】本题考查简单的线性规划,考查了目标函数的几何意义,考查数形结合的解题思想方法,是中档题.4.B解析:B 【详解】绘制不等式组表示的平面区域如图所示,结合目标函数的几何意义可得2=+t x y 在点(1,1)A --处取得最小值()()min 2113t =⨯-+-=-,本题选择B 选项.点睛:求线性目标函数z =ax +by (ab ≠0)的最值,当b >0时,直线过可行域且在y 轴上截距最大时,z 值最大,在y 轴截距最小时,z 值最小;当b <0时,直线过可行域且在y 轴上截距最大时,z 值最小,在y 轴上截距最小时,z 值最大.5.C解析:C 【解析】试题分析:画出可行域如下图所示,依题意可知,目标函数在点()2,10取得最大值,在点()2,2-取得最小值.由图可知,当0m ≥时,[]0,2m ∈,当0m <时,[)1,0m ∈-,故取值范围是[]1,2-.考点:线性规划.6.B解析:B 【分析】画出不等式组表示的区域,将目标函数2z x y =-转化为22x zy =-,表示斜率为12截距为2z-平行直线系,当截距最小时,z 取最大值,由图即可求解. 【详解】解:画出不等式组表示的区域,如图中阴影部分所示:故将目标函数2z x y =-转化为22x z y =-, 表示斜率为12截距为2z -平行直线系, 所以当截距最小时,z 取最大值,由图可知,使得直线22x zy =-经过可行域且截距最小时的解为22,33C ⎛⎫ ⎪⎝⎭, 此时242333max z =-=-. 故选:B 【点睛】本题考查了线性规划的应用,注意将目标函数化成斜截式,从而由截距的最值确定目标函数的最值.7.D解析:D 【详解】试题分析:A 中1,2a b ==-不成立,B 中1,12a b =-=-不成立,C 中0,1a b ==-不成立,D 中由指数函数单调性可知是成立的8.C解析:C 【分析】根据不等式的解法,求得集合{}26A x x =-≤≤,{}1B x x =>,结合集合交集的运算,即可求解. 【详解】由题意,集合{}{}2412026A x x x x x =--≤=-≤≤,{}{}4401B x x x x =->=>,根据集合交集的概念与运算,可得{}16A B x x ⋂=<≤. 故选:C. 【点睛】本题考查集合的交集的概念及运算,其中解答中正确求解集合,A B ,结合集合的交集的概念及运算求解是解答的关键,着重考查运算求解能力,属于基础题.9.B解析:B 【分析】根据题意2211x y y x +++=22(1)(1)11--+++y x y x =(4411+++y x )﹣5,由基本不等式的性质求出4411+++y x =13(4411+++y x )[(x +1)+(y +1)]的最小值,即可得2211x y y x +++的最小值,据此分析可得答案. 【详解】根据题意,正数x ,y 满足x +y =1,则2211x y y x +++=22(1)(1)11--+++y x y x=(y +1)+41+y ﹣4+(x +1)+41x +﹣4=(4411+++y x )﹣5, 又由4411+++y x =13(4411+++y x ) [(x +1)+(y +1)], =13[8+4(1)4(1)11+++++x y y x ]≥163, 当且仅当x =y =12时等号成立, 所以2211x y y x +++=(4411+++y x )﹣5163≥﹣5=13, 即2211x y y x +++的最小值为13, 所以3m ≤,则m 的最大值为13; 故选:B . 【点睛】本题主要考查基本不等式的性质以及应用,还考查了转化求解问题的能力,属于中档题.10.D解析:D【分析】画出可行域,根据目标函数的截距,利用数形结合,即可求出z 的取值范围.【详解】作出可行域如下:由221z x y =--得12z y x +=-, 平移直线12z y x +=-, 由平移可知当直线12z y x +=-,经过点C 时, 直线12z y x +=-的截距最小,此时z 取得最大值, 由210x x y =⎧⎨+-=⎩,解得21x y =⎧⎨=-⎩,即(2,1)C -, 此时2214215z x y =--=+-=, 可知当直线12z y x +=-,经过点A 时, 直线12z y y x +==-的截距最大,此时z 取得最小值, 由21010x y x y -+=⎧⎨+-=⎩,得1323x y ⎧=⎪⎪⎨⎪=⎪⎩,即1(3A ,2)3 代入221z x y =--得125221333z =⨯-⨯-=-, 故5[3z ∈-,5) 故选:D .【点睛】本题主要考查线性规划的应用,利用数形结合是解决线性规划问题中的基本方法,属于中11.A解析:A【分析】 由约束条件作出可行域,由y z x=的几何意义求得最小值判断p 为真命题,由直线2x =的倾斜角判断q 为真命题,再由复合命题的真假判断得答案.【详解】 解:变量(),x y 满足约束条件3450y x x y ≤⎧⎪≤⎨⎪+-≥⎩作出可行域如图:目标式y z x =表示可行域内点(),x y 与()0,0的连线的斜率,由图可知,当过点()4,1D 时,min 14z =,即y z x =的最小值为14,命题p 为真命题; 直线2x =的倾斜角为2π正确,故命题q 为真命题. 所以p q ∧为真命题,()()p q ⌝∧⌝为假命题,()p q ⌝∧为假命题,()p q ∧⌝为假命题; 故选:A【点睛】本题考查简单的线性规划,考查数形结合的解题思想方法,考查复合命题的真假判断,属于中档题.12.C解析:C【分析】根据条件作出可行域,根据图形可得出答案.由实数x ,y 满足2402401x y x y y -+≥⎧⎪+-≤⎨⎪≥-⎩,作出可行域,如图.设2z x y =+,则化为2y x z =-+所以z 表示直线2y x z =-+在y 轴上的截距.2401x y y -+=⎧⎨=-⎩可得()6,1A --,2401x y y +-=⎧⎨=-⎩可得()61B -, 根据图形可得,当直线2y x z =-+过点()61B -,时截距最大, 所以2z x y =+的最大值为11.故选:C【点睛】方法点睛:解决线性规划问题的实质是把代数问题几何化,即数形结合思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意让其斜率与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大值或最小值会在可行域的端点或边界上取得.二、填空题13.【分析】作出不等式组对应的平面区域利用目标函数的几何意义结合数形结合进行求解即可【详解】由得作出不等式组对应的平面区域如图(阴影部分平移直线由图象可知当直线经过点时直线的截距最小此时也最小由解得即代 解析:4-【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,结合数形结合进行求解即可.【详解】由z y x =-得y =x+z ,作出不等式组对应的平面区域如图(阴影部分):ABC平移直线y =x+z 由图象可知当直线y =x+z 经过点B 时,直线y =x+z 的截距最小,此时z 也最小,由240280x y x y +-=⎧⎨--=⎩,解得40x y =⎧⎨=⎩,即(4,0)B . 代入目标函数z y x =-,得044z =-=-.所以z y x =-的最小值是4-.故答案为:4-【点睛】方法点睛:线性规划问题解题步骤如下:(1)根据题意,设出变量,x y ;(2)列出线性约束条件;(3)确定线性目标函数(,)z f x y =;(4)画出可行域(即各约束条件所示区域的公共区域);(5)利用线性目标函数作平行直线系()(y f x z =为参数);(6)观察图形,找到直线()(y f x z =为参数)在可行域上使z 取得欲求最值的位置,以确定最优解,给出答案.14.4【分析】先分析的几何意义然后利用线性规划求解出的取值范围从而的最大值可求【详解】作出可行域如图所示可以看做其中M 为可行域(阴影区域)内一点因为所以所以所以的最大值为4故答案为:【点睛】结论点睛:常 解析:4【分析】 先分析11x y -+的几何意义,然后利用线性规划求解出11x y -+的取值范围,从而z 的最大值可求.【详解】作出可行域如图所示,11xzy-=+可以看做1PMk,其中()1,1P-,M为可行域(阴影区域)内一点,因为()1121PAk--==-,()0.511314PAk---==-,所以(]1,2,4PMk⎡⎫∈-∞-⋃+∞⎪⎢⎣⎭,所以(]10,4PMk∈,所以z的最大值为4,故答案为:4.【点睛】结论点睛:常见的非线性目标函数的几何意义:(1)y bzx a-=-:表示点(),x y与点(),a b连线的斜率;(2)()()22z x a y b=-+-(),x y到点(),a b的距离;(3)z Ax By C=++:表示点(),x y到直线0Ax By C++=22A B+倍. 15.2【分析】据题意由于MN为平面区域内的两个动点则不等式组表示的为三角形区域根据向量的数量积由于(当且仅当与共线同向时等号成立)从而求得最大值【详解】由作出可行域如图由条件可得由图知不等式组表示的为三解析:2【分析】据题意,由于M,N为平面区域401x yx yy-≥⎧⎪+-≤⎨⎪≥⎩内的两个动点,则不等式组表示的为三角形区域,根据向量的数量积,由于MN a MN a⋅≤(当且仅当MN与a共线同向时等号成立)从而求得最大值.【详解】由0401x y x y y -≥⎧⎪+-≤⎨⎪≥⎩作出可行域,如图由条件0401x y x y y -≥⎧⎪+-≤⎨⎪≥⎩可得()()()1,1,2,2,3,1A B C由图知,不等式组表示的为三角形区域,根据向量的数量积, 由于MN a MN a MN ⋅≤=(当且仅当MN 与a 共线同向时等号成立),即当MN 所在直线平行于=(1,0)a 所在直线且方向相同的时候得到大值,MN 的最大长度为直线=0x y -与1y =的交点(1,1)与直线4=0x y +-和1y =的交点(3,1)的距离. 22(31)(11)2-+-=,故答案为:2【点睛】解决的关键是对于不等式区域的准确表示,同时能利用向量的数量积来表示得到目标函数,利用a b a b ⋅≤(当且仅当b 与a 共线同向时等号成立)得到结论.属于中档题. 16.【分析】根据题意令分析可以将不等式在x ∈12上恒成立转化为二次函数的性质列出不等式组解可得m 的取值范围即可得答案【详解】根据题意令若不等式在x ∈12上恒成立则有△=m2﹣4m≤0或或解可得实数m 的最解析:12- 【分析】根据题意,令()2f x x mx m ++=,分析可以将不等式20x mx m ++≥在x ∈[1,2]上恒成立转化为二次函数的性质列出不等式组,解可得m 的取值范围,即可得答案.【详解】根据题意,令()2f x x mx m ++=,若不等式20x mx m ++≥在x ∈[1,2]上恒成立,则有△=m 2﹣4m ≤0或()121120m f m ⎧-≤⎪⎨⎪=+≥⎩或()222430m f m ⎧-≥⎪⎨⎪=+≥⎩,解可得1,2m ⎡⎫∈-+∞⎪⎢⎣⎭, 实数m 的最小值为:12-, 故答案为12-. 【点睛】本题考查二次函数的性质,关键是将x 2+mx +m ≥0在x ∈[1,2]上恒成立转化为二次函数y =x 2+mx +m 在x ∈[1,2]上的最值问题. 17.9【分析】将已知等式变形为然后利用乘1法将进行变形利用基本不等式即可求得【详解】因为所以即又ab 为正数所以当且仅当时等号成立故的最小值等于故答案为:9【点睛】本题考查利用基本不等式求最值关键是将已知 解析:9【分析】 将已知等式变形为111a b +=,然后利用“乘1法”将4a b +进行变形,利用基本不等式即可求得.【详解】因为(1)(1)1a b --=,所以0ab a b --=,即111a b +=. 又a ,b为正数,所以1144(4)1459b a a b a b a b a b ⎛⎫+=++=+++≥+=⎪⎝⎭, 当且仅当3a =,32b =时,等号成立. 故4a b +的最小值等于9.故答案为:9【点睛】 本题考查利用基本不等式求最值,关键是将已知条件适当变形,得到111a b+=,以便利用“乘1法”,利用基本不等式求4a b +的最小值.利用基本不等式求最值要注意“正、定、等”的原则.18.【分析】画出可行域和目标函数根据目标函数的几何意义得到答案【详解】如图所示:画出可行域和目标函数则则表示直线在轴的截距的相反数根据图像知当直线过点时即时有最大值为故答案为:【点睛】本题考查了线性规划解析:2【分析】画出可行域和目标函数,根据目标函数的几何意义得到答案.【详解】如图所示:画出可行域和目标函数,z x y =-,则y x z =-,则z 表示直线在y 轴的截距的相反数,根据图像知当直线过点()2,0时,即2x =,0y =时,z 有最大值为2.故答案为:2.【点睛】本题考查了线性规划问题,画出图像是解题的关键.19.【分析】根据面积关系建立方程关系结合基本不等式1的代换进行求解即可【详解】如图所示则的面积为即∴∴当且仅当即时取等号所以a+3c 的最小值为8+4故答案为:8+4【点睛】本题考查基本不等式的应用考查三 解析:843+【分析】根据面积关系建立方程关系,结合基本不等式1的代换进行求解即可.【详解】如图所示,则ABC 的面积为111sin1202sin 602sin 60222ac a c =⋅+⋅︒︒︒, 即22ac a c =+,∴1112a c +=. ∴3(3)a c a c +=+1132242(423)843c a a c a c ⎛⎫⎛⎫+⨯=⨯++≥+=+⎪ ⎪⎝⎭⎝⎭ 当且仅当33843c a a c a c ⎧=⎪⎨⎪+=+⎩即2232233a c ⎧=+⎪⎨=+⎪⎩. 所以,a +3c 的最小值为3故答案为:3【点睛】本题考查基本不等式的应用,考查三角形的面积公式和角平分线性质的应用,考查分析和计算能力,属于基础题.20.【分析】由题中定义得出作差变形后得出对任意的恒成立结合得出由此可求得实数的取值范围【详解】因为函数是距增函数所以恒成立由所以因此实数的取值范围是故答案为:【点睛】本题考查函数新定义考查二次不等式恒成 解析:(1,)+∞【分析】由题中定义得出()()f x a f x +>,作差变形后得出22313304ax a x a a ++->对任意的x ∈R 恒成立,结合0a >得出∆<0,由此可求得实数a 的取值范围.【详解】()()()()332231114433444f x a f x x a x a x x ax a x a a ⎡⎤⎛⎫+-=+-++--+=++- ⎪⎢⎥⎣⎦⎝⎭, 因为函数()y f x =是“a 距”增函数,所以22313304ax a x a a ++->恒成立, 由0a >,所以2210912014a a a ⎛⎫∆<⇒--<⇒> ⎪⎝⎭. 因此,实数a 的取值范围是()1,+∞.故答案为:()1,+∞.【点睛】 本题考查函数新定义,考查二次不等式恒成立问题,考查运算求解能力,属于中等题.三、解答题21.(1)见解析(2)512b >+. 【分析】(1)原不等式转化为()()10-+<x a x 然后利用分类讨论思想进行分类求解; (2)原不等式转化22(0)1x b x x +>>+ ,设()()222151214x t g x x t t t+===≤+-++-551122254b =+⇒>+-. 【详解】(1)当1,0b c ==时,()()()21100f x x a x a x >⇔---<≠ ()()10x a x ⇔-+<,讨论:①当1a <-时,原不等式的解集为(),1a -;②当1a =-时,原不等式的解集为φ;③当10a -<≤时,原不等式的解集为()1,a -;④当0a >时,原不等式的解集为()()1,00,a -⋃.(2)当,2b c a ==时,()2211x f x bx b +<⇔<+ 22(0)1x b x x +⇔>>+ 设()221x g x x +=+,令()=22t x t +>, 则()()22211512214x t g x t x t t t +===≤=+=+-++-,时取等号,故12b >+. 【点睛】关键点睛:解题的关键在于利用二次函数的性质,进行数形结合的讨论,难点在于对a 的分类讨论;由参变分离得到函数不等式区间D 上恒成立,一般有以下结论:min 1.():,()a f x x D a f x <∈<即可.max 2.():,()a f x x D a f x >∈>即可.22.(1)()320408029x y x x -=<<+;(2)面积S 的最大允许值是100平方米,此时正面铁棚应设计为15米.【分析】(1)由已知条件得出4090203200x y xy ++=,即可得出x 与y 的关系式; (2)化简得出()16991782929S x x ⨯⎡⎤=-++⎢⎥+⎣⎦,利用基本不等式可求得S 的最大值,利用等号成立的条件可求得x 的值.【详解】(1)由于铁栅长为x 米,一堵砖墙长为y 米,由题意可得40245203200x y xy +⨯+=, 即492320x y xy ++=,解得320429x y x -=+, 由于0x >且0y >,可得080x <<,所以,x 与y 的关系式为()320408029x y x x -=<<+;(2)()33822932043383382229292929x x x S xy x x x x x x x x -+-⎛⎫==⋅=⋅=⋅-=- ⎪++++⎝⎭()()169291699169916992169217829292929x x x x x x x +-⨯⨯⨯=-=--=-+-+++()()16991699178291782291002929x x x x ⨯⨯⎡⎤=-++≤-+⋅=⎢⎥++⎣⎦, 当且仅当16992929x x ⨯+=+时,即当15203x y =⎧⎪⎨=⎪⎩时,等号成立, 因此,仓库面积S 的最大允许值是100平方米,此时正面铁棚应设计为15米.【点睛】本题考查基本不等式的应用,建立函数解析式是解题的关键,考查计算能力,属于中等题. 23.甲乙两项目投资额分别为1000 万元和4000万元【解析】试题分析:设投资人对甲,乙两个项目分别投资,x y 万元.根据已知条件可列出可行域为5000{0.40.212000,0x y x y x y +≤+≤≥≥,目标函数为0.8z x y =+,画出可行域,根据图像可知目标函数在点()1000,4000处取得最大值.试题设投资人对甲,乙两个项目分别投资,x y 万元5000{0.40.212000,0x y x y x y +≤+≤≥≥求0.8z x y =+最大值如图作出可行域当目标函数结果点()1000,4000A 时,0.8z x y =+取得最大值为4200 万元,此时对甲乙两项目投资额分别为1000 万元和4000 万元盈利最大.24.(1)[-4,1];(2)-3.【分析】(1)当m =﹣4时,利用十字相乘法解出不等式的解集;(2)()0f x <的解集为(b ,a ),等价于()0f x =的根即为a ,b ,根据韦达定理判断出a ,b 的符号,利用"1"的代换以及基本不等式求出最大值,并验证取等条件.【详解】(1)当m =﹣4时,不等式f (x )≤0,即为x 2+3x ﹣4≤0,可得:(x +4)(x ﹣1)≤0,即不等式f (x )≤0的解集为[﹣4,1].(2)由题()0f x =的根即为a ,b ,故a +b =-3,ab =m >0,故a ,b 同负,则14a b+=114141()5(53333a b a b a b b a ⎛⎫⎛⎫-++=-++≤-+=- ⎪ ⎪⎝⎭⎝⎭ 当且仅当1,2a b =-=- 等号成立.【点睛】本题考查一元二次不等式,基本不等式在求最值中的应用,使用时要注意“一正,二定,三相等”,属于中档题.25.(1)sin θ=;(2)视角30达到最佳. 【分析】(1)过点A 作AF CE ⊥于F ,则 1.5EF AB ==,10DF DE EF =-=,30CF =,设CAF α∠=,DAF β∠=,sin sin()sin cos cos sin θαβαβαβ=-=-,化简即可得出答案.(2)由基本不等式可得1sin 2θ=≤=,即可得出答案. 【详解】解:过点A 作AF CE ⊥于F ,则 1.5EF AB == 10DF DE EF =-=,30CF =,设CAF α∠=,DAF β∠=(1)sin sin()θαβ=-sin cos cos sin αβαβ=-=-= (2)1sin 2θ=≤=,当且仅当2290000x x=,即x =,sin θ取到最大值12因为sin θ在(0,90)︒上单调递增,所以观察屏幕视角最大值为[]3026,30︒∈︒︒即此时视角达到最佳.【点睛】本题考查了解三角形的应用,考查了基本不等式,考查了三角恒等变换.求最值时,我们常用的思路有:根据函数图像求最值,根据函数单调性求最值,结合导数求最值,运用基本不等式求最值,换元法求最值等.在运用基本不等式求最值时,易错点在于忽略一正二定三相等. 26.(1)3;(2)6b ≥-【分析】(1)将1x =代入方程2(1)460a x x ,即可求出a 的值;(2)由(1)可知不等式2330x bx ++≥在[0,2]上恒成立,利用分离参数即可求出b 的取值范围.【详解】(1)1和3-是2(1)460a x x 的两根,将1x =代入方程解得3a =;(2)由(1)可知不等式2330x bx ++≥在[0,2]上恒成立,即233bx x -≤+在[0,2]上恒成立, 当0x =时,03≤恒成立,此时a R ∈;当2(]0,x ∈时,不等式可转化为13()b x x -≤+在[0,2]上恒成立, 因为113()326x x x x+≥⨯⋅=,当且仅当1x x =,即1x =时,等号成立, 所以6b -≤,所以6b ≥-,综上,实数b 的取值范围为6b ≥-.【点睛】本题主要考查三个二次式关系的应用,不等式恒成立问题的求法,属于中档题.。

北师大版高中数学必修5同步训练:不等关系(含解析)

北师大版高中数学必修5同步训练:不等关系(含解析)

1北师大版高中数学必修5同步训练不等关系1.如果a<0,b>0,那么下列不等式中正确的是( ) A.1a <1b B.-a< b C .a 2<b 2D .|a|>|b|答案 A2.若a>b>c ,则下列不等式成立的是( ) A.1a -c >1b -cB.1a -c <1b -cC .ac>bcD .ac<bc答案 B解析 ∵a>b>c,∴a -c>b -c>0,∴1a -c <1b -c.3.已知a +b>0,b<0,那么a ,b ,-a ,-b 的大小关系是( ) A .a>b>-b>-a B .a>-b>-a>b C .a>-b>b>-a D .a>b>-a>-b答案 C解析 取满足条件的a =3,b =-1,则a>-b>b>-a.4.已知a =3-10,b =10-3,c =10-310,那么下列各式正确的是( ) A .a<b<c B .a<c<b C .b<a<c D .c<a<b答案 A5.(2015·淮北高二检测)设a =x 2-x ,b =x -2,则a 与b 的大小关系为( ) A .a>b B .a<bC .a =bD .与x 的取值有关答案 A6.(2015·厦门高二检测)若x≠2且y≠-1,则M =x 2+y 2-4x +2y 的值与-5的大小关系是( ) A .M>-5 B .M<-5 C .M =-5 D .不能确定答案 A7.若f(x)=3x 2-x +1,g(x)=2x 2+x -1,则f(x)与g(x)的大小关系是( ) A .f(x)>g(x)B .f(x)=g(x)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档