(模拟电子技术基础)第10讲多级放大电路的耦合方式及分析方法
多级放大电路的耦合方式及分析方法(总结)

1. 静态分析:阻容耦合;直接耦合
2. 动态分析
Au
Uo Ui
Uo1 Ui
Uo2 Ui2
Uo Uin
n
Auj
j 1
Ri Ri1 Ro Ron
①计算Au1时,把Ri2作为RL1考虑 ②对电压放大电路的要求:Ri大, Ro小,Au的数值大, 最大不失真输出电压大。
第三章 多级放大电路
△ 分析举例
Ro
Au1
(R3 ∥ Ri2 ) rbe1
Au 2
(1+2 ) (R6 ∥ RL ) rbe2 (1+2 ) (R6 ∥ RL )
Au Au1 Au2
Ri2 R5 ∥[rbe2 (1 2 )( R6 ∥ RL )]
Ri R1 ∥ R2 ∥ rbe1
Ro
R6 ∥
R3 ∥ R5
1
rbe2
第三章 多级放大电路
3.1.4 光电耦合 (1)光电耦合器及其传输特性
发光管D与光电管T相互绝缘地组合在一起,能有效抑制干扰。 D光∝iD(uD); iC∝D光
返回
第三章 多级放大电路
(2) 光电耦合放大电路
iD
iC
|uO|∝iC∝D光∝iD∝uS
|uO|∝uS
第三章 多级放大电路
3.2 多级放大电路的动态分析
第三章 多级放大电路
第二章 基本放大电路复习要求
一、重点掌握的内容 1.放大、静态与动态、直流通路与交流通路、静态工作点、负载
线、最大不失真输出电压、放大倍数、输入电阻与输出电阻的概念。 2.放大电路的组成原则,各种基本放大电路(共射、共集、共基)
的工作原理及特点,能根据具体要求选择电路类型。 3.近似估算单管共射放大电路、分压式工作点稳定电路的静态工
多级放大电路的耦合方式及分析方法

3. 集成运放的符号和电压传输特性 uO=f(uP-uN)
在线性区: uO=Aod(uP-uN) Aod是开环差模放大倍数。
非线 性区
由于Aod高达几十万倍,所以集成运放工作在线性区时的 最大输入电压(uP-uN)的数值仅为几十~一百多微伏。 (uP-uN)的数值大于一定值时,集成运放的输出不是 +UOM , 就是-UOM,即集成运放工作在非线性区。
小功率管多为5mA
由最大功耗得出
必要性?
rz=Δu /Δi,小功率管多为几欧至二十几欧。 UCEQ1太小→加Re(Au2数值↓)→改用D→若要UCEQ1大 ,则改用DZ。
NPN型管和PNP型管混合使用
问题的提出: 在用NPN型管组成N级 共射放大电路,由于 UCQi> UBQi,所以 UCQi > UCQ(i-1)(i=1~N), 以致于后级集电极电位 接近电源电压,Q点不合 适。
三、多级放大电路的频率响应:分析举例
一个两级放大电路每一级(已考虑了它们的相 互影响)的幅频特性均如图所示。
20 lg A 20 lg A 40 lg A 20 lg A u u1 u2 u1
6dB 3dB
≈0.643fH1
fL fH
fL> fL1, fH< fH1,频带变窄!
2. 集成运放电路的组成
两个 输入端
一个 输出端
若将集成运放看成为一个“黑盒子”,则可等效为 一个组成部分的作用
偏置电路:为各 级放大电路设置 合适的静态工作 点。采用电流源 电路。 输入级:前置级,多采用差分放大电路。要求Ri大,Ad 大, Ac小,输入端耐压高。 中间级:主放大级,多采用共射放大电路。要求有足够 的放大能力。 输出级:功率级,多采用准互补输出级。要求Ro小,最 大不失真输出电压尽可能大。
模拟电子技术 第十章 集成运算放大电路

I I 0
虚断
对于工作在非线性区的应用电路,上述两个特点是分析其 输入信号和输出信号关系的基本出发点。
19
什么情况下放工作于非线性区?
运放在非线性区的条件:
电路开环工作或引入正反馈! iF
ui
UO RF UOPP U+-U-
iI
R1
i+ + i- -
Auo
uO
R
-UOPP
20
实际运放 Auo ≠∞ ,当 u+ 与 u-差值比较小时, 仍有 Auo (u+ u- ),运放工作在线性区。
在运算电路中,无论输入电压,还是输出电压, 均是对“地”而言的。
23
一、比例运算电路
作用:将信号按比例放大。 类型:反相比例放大、同相比例放大。 方法:引入深度电压并联负反馈或电压串联 负反馈。这样输出电压与运放的开环放大倍
数无关,与输入电压和外围网络有关。
24
一、比例运算电路
1.反相比例运算电路
虚短 虚断
2. 理想运放的输入电流等于零。
对于工作在线性区的应用电路,“虚短”和“虚断”是 分析其输入信号和输出信号关系的基本出发点。
17
如何使运放工作在线性区?
理想运放的线性区趋近于0,为了扩大运放的线性区 或使其具有线性区,需给运放电路引入负反馈: 运放工作在线性区的条件: 电路中有负反馈!
但线性区范围很小。
uO
例如:F007 的 UoM = ± 14 V,Auo 2 × 105 , 线性区内输入电压范围
实际特性
0 u+u
U OM u u Auo 14 V 2 105 70 μV
非线性区
多级放大电路的耦合方式及分析方法

多级放大电路的耦合方式及分析方法1.直接耦合:直接耦合是最简单的一种耦合方式,也是最常见的一种。
每个放大器级之间通过电容连接,将前一级的输出直接连接到后一级的输入。
这种耦合方式的优点是频率响应良好,但缺点是容易造成直流偏置漂移和破坏后一级放大器的输入电阻。
2.电容耦合:电容耦合是另一种常见的耦合方式。
每个放大器级之间通过电容连接,对输入信号进行交流耦合。
这种耦合方式的优点是能够消除直流偏置漂移和不同级之间的彼此干扰,但缺点是频率响应不如直接耦合。
3.变压器耦合:变压器耦合是一种较为复杂的耦合方式,通过变压器将前一级的输出信号耦合到后一级的输入。
这种耦合方式的优点是能够提供良好的频率响应和隔离性能,但缺点是成本较高。
4.共射耦合:共射耦合是一种基于晶体管的放大电路中常见的耦合方式。
在共射放大器中,前一级的输出信号通过电容耦合到后一级的输入,同时通过电阻进行直流偏置。
这种耦合方式的优点是能够提供较高的电压放大倍数和较好的频率响应,但需要额外的直流偏置电路。
在进行多级放大电路的分析时,根据所使用的耦合方式和电路结构的不同,可以使用不同的方法进行分析。
1.直流偏置分析:对于使用直接耦合或电容耦合的多级放大电路,需要进行直流偏置分析以确定各级的工作点。
这可以通过分析电路中的直流电路和使用KVL和KCL等电路分析方法来实现。
2.小信号等效电路分析:在确定了各级的工作点之后,可以将电路抽象为小信号等效电路进行分析。
在这种分析方法中,需要将电路中的非线性元件(如晶体管)线性化,并对输入信号进行小幅度近似。
3.频率响应分析:使用小信号等效电路进行分析时,可以得到电路的增益-频率特性,即频率响应。
这可以通过绘制幅频特性和相频特性图来实现,从而评估电路的低频和高频性能。
4.输入/输出阻抗分析:在进行多级放大电路的分析时,还需要考虑输入和输出阻抗。
这可以通过绘制输入和输出阻抗特性图来实现,从而确定电路的匹配性能和信号传输能力。
多级放大电路的耦合方式及分析方法

目的与意义
研究目的
研究多级放大电路的不同耦合方式及 其对电路性能的影响。
意义
通过深入了解耦合方式,有助于优化 多级放大电路的设计,提高电路性能 和稳定性,为实际应用提供理论支持 。
02
多级放大电路的耦合方式
电容耦合
总结词
利用电容器传递交流信号,隔断直流信号,通常用于级间隔 离。
详细描述
电容耦合通过电容器将前级输出信号传递到下一级输入端, 同时阻止直流成分通过,实现各级间的隔离。这种耦合方式 适用于不同频率信号的处理和级间信号的传递。
03
$GBW = A_{v} times f_{3dB}$,其中$f_{3dB}$为通频带截止
频率。
05
多级放大电路的应用
音频信号处理
音频信号放大
多级放大电路能够将微弱的音频信号进行多级放大,满足音频设备对信号强度的需求。
音质改善
通过多级放大电路,可以对音频信号的频率、动态范围和信噪比进行优化,提升音质效 果。
瞬态分析法
总结词
通过分析电路在输入信号瞬间的响应来研究 多级放大电路的性能。
详细描述
瞬态分析法是一种通过分析电路在输入信号 瞬间的响应来研究多级放大电路性能的分析 方法。这种方法通过求解电路的微分方程或 差分方程来计算电路在各个时刻的电压和电 流值,从而全面了解电路的性能表现。瞬态 分析法适用于分析多级放大电路的频率响应
通过多级放大电路,可以将微弱的信号放大,实现数据的 远距离传输。
THANKS
感谢观看
输入电阻
指放大电路对输入信号源的等 效阻抗,反映了放大电路对信
号源的影响程度。
输入电阻计算公式
$R_{in} = frac{V_{i}}{I_{i}}$,其 中$V_{i}$为输入电压,$I_{i}$为 输入电流。
多级放大电路的耦合方式及其分析方法

多级放大电路的耦合方式及其分析方法一、直耦合:直耦合是指通过直接连接放大器的输入和输出端来传递信号。
直耦合的特点是简单、频带宽和增益都很大,但是容易出现直流漂移的问题。
直耦合电路的分析方法:1.根据每个级别的输入和输出特性,可以得到输入和输出的分压分流关系。
2.通过级与级之间的直接相连,可以得到整个电路的传递函数。
3.分析每个级别的频率响应,得到整个电路的频率响应。
二、电容耦合:电容耦合是通过电容器进行耦合,将一些级的输出信号通过电容器耦合到下一个级的输入端。
电容耦合的特点是可以消除直流漂移,但是频带宽和增益受限于电容器。
电容耦合电路的分析方法:1.根据每个级别的输入和输出特性,可以得到输入和输出的分压分流关系。
2.分析电容的阻抗特性,得到电容耦合电路的传递函数。
3.分析每个级别的频率响应,得到整个电路的频率响应。
三、变压器耦合:变压器耦合是通过变压器进行耦合,将一些级的输出信号通过变压器耦合到下一个级的输入端。
变压器耦合的特点是可以提供隔离和匹配阻抗的功能,但是成本较高。
变压器耦合电路的分析方法:1.根据每个级别的输入和输出特性,可以得到输入和输出的分压分流关系。
2.分析变压器的阻抗变化特性,得到变压器耦合电路的传递函数。
3.分析每个级别的频率响应,得到整个电路的频率响应。
综上所述,多级放大电路的耦合方式有直耦合、电容耦合和变压器耦合三种。
根据每个级别的输入输出特性、元件的阻抗特性和传递函数,可以分析每个级别的频率响应,并得到整个电路的传递函数和频率响应。
根据需求选择适合的耦合方式可以使得多级放大电路达到所需的性能。
模拟电子技术基础——摘要

第一章1.多子的浓度约等于所掺杂的杂质原子的浓度,他受温度的影响小,少子是本征激发形成的,尽管浓度低,但是对温度非常敏感,这将影响半导体的性能。
2.PN结导通时的压降上只有零点几伏,因而应在它所在的回路上串联一个电阻,以限制回路电流,防止PN结因为正向电流过大而烧毁。
3.在电子电路中,如果A1>(5-10)A2,则可称为A1远远大于A2。
4.高掺杂,耗尽层窄,低电压即可击穿,称为齐纳击穿。
5.低掺杂,耗尽层宽,高电压才能击穿,称为雪崩击穿。
6.二极管的主要参数:最大整流电流If,最高反向工作电压Ur,反向电流Ir,最高工作频率Fm。
7.二极管外加微变电流时,等效成为一个动态电阻8.稳压管在反向击穿时,在一定的电流范围内端电压不变,表现出稳压特性,广泛应用于稳压电源和限幅电路中。
9.在稳压电路中,一般要串联一个电阻来限流,从未保证稳压管正常工作。
10.稳压管的主要参数:稳定电压Uz;稳定电流Iz;额定功耗Pzm;动态电阻Rz;温度系数α11.发光二极管的发光颜色取决于所用的材料,开启电压比普通的二极管要大。
12.双极型晶体管(BIT)又称为晶体三极管、半导体三极管。
13.基区薄且掺杂浓度低,发射区掺杂浓度高,集电区面积大。
14.放大是对模拟信号最基本的处理,晶体管的放大作用表现为小的基极电流可以控制大的集电极电流。
15.晶体管的直流放大系数和交流放大系数基本相等,放大倍数太小起不到放大作用,太大则不稳定。
16.晶体管的三个状态:截止区、饱和区、放大区,Ube小于开启电压且集电极反偏时。
饱和区,此时发射极正偏,集电极也正偏,也就是说Uce小于Ube,Ic不仅与Ib有关,还与Uce有关,随着Uce的增大,Ic会增大。
当Uce大于Ube时,也就是集电极反偏时,Ic的大小几乎与Uce 无关,只与Ib的大小有关,表现为线性放大的状态。
17.晶体管的主要参数:共射放大倍数β、最大集电极电流、最大反向击穿电压、级间反向电流Iceo,越小越稳定。
模拟电子技术基础多级放大电路

一般,Rb较小,且IBQ很小,故
I EQ
VEE U BEQ 2Re
U CEQ VCC ICQ Rc U BEQ
I BQ
I EQ
1
1. 课程回忆
(1)、零点漂移现象及其产生旳原因
合用范围:频率过低旳信号或集成电路
零点漂移现象:ΔuI=0,ΔuO≠0旳现象。 产生原因:晶体管旳特征对温度敏感,
参数理想对称时 Ac 0
(2) 差模信号作用时
Ad
u od u id
(R
c
//
RL 2
)
R b rbe
Ri 2(Rb rbe ) ,Ro 2Rc
2. 双端输入单端输出: (1)差模信号作用下
Ad
1 2
(Rc ∥ RL ) Rb rbe
Ri 2(Rb rbe ),Ro Rc
(2)共模信号作用下旳分析
(1+2 )Ib2 (R6 // R L ) Ib2[rbe2 (1 2 )(R 6 // R L )]
(1+2 ) (R6 // R L ) rbe2 (1+2 ) (R6 // R L )
Au Au1 Au2
Ri R1 ∥ R2 ∥ rbe1
Ro
R6 ∥
R3 ∥ R5
1
rbe2
§3.3直接耦合放大电路(差分放 大电路)
Ac
uOc uIc
,参数理想对称时
Ac
0
Re旳共模负反馈作用: 与第2章静态工作点稳定电路(图2.4.2 )旳原理一样。
Re旳共模负反馈作用:温度变化所引起旳变化等效为共模信号
u Ic
如 T(℃)↑→ △ uIC ↑→ △iB1 ↑△iB2 ↑→ △iC1↑△ iC2 ↑→△uE↑
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
11
三、多级放大电路的频率响应(略):
结论:多级放大电路的频带会变窄!
12
三、多级放大电路的频率响应:
一个两级放大电路每一级(已考虑了它们的相 互影响)的幅频特性均如图所示。
2 lA g 0 u 2 lA g 0 u 1 2 lA g 0 u 2 4 lA g 0 u 1
6dB
3dB
8
3.变压器耦合
P 1P 2, Ic2RL ' Il2RL 理想变压器情况下,负载上获得的 功率等于原边消耗的功率。
9
二、多级放大电路的动态分析
1.电压放大倍数
A uU U o i U U o i 1U U o i22 U U io njn 1A uj
2. 输入电阻 3. 输出电阻
Ri Ri1 Ro Ron
3
2. 直接耦合
第一级
第二级
能够放大变化缓慢的信号; 便于集成化; 存在零点漂移现象; 静态工作点相互影响。
既为第一级提供集电极电流, 又为第二级提供基极电流。
6
ቤተ መጻሕፍቲ ባይዱ
如何设置合适的静态工作点?
Q1的UCEQ合适吗?
对电压放大倍数 会产生什么影响?
Re
用什么元件取代Re既可设置合适的Q点,又可使第 二级放大倍数不至于下降太大?
n
n 20 lg Auk
k 1
k
k 1
求解使增益下降3dB的频 率,经修正,可得
n
fL1.1 fL 2k k1
11.1 n 1
fH
f2
k1 Hk
1.1为修正系数
14
作业:
1、预习 6.2 2、教材习题,
P202:6.3(1),(2)
15
fL
fH
fL> fL1, fH< fH1,频带变窄!
13
≈0.643fH1
二、多级放大电路的频率响应
对于N级放大电路,若各级的下、上限频率分别为fL1~
fLn、 fH1~ fHn,整个电路的下、上限频率分别为fL、 fH,
则
fL fLk
fH fHk
(k 1,2,,n)
fbw fbwk
由于
20 lg Au
10
分析举例
Au1
(R3 ∥ rbe1
Ri2 )
Au 2
(1+ 2 ) (R6 ∥ RL ) rbe2 (1+ 2 ) (R6 ∥ RL )
Au Au1 Au 2
R i2 R 5 ∥ [ r b 2 e( 1 2 )R 6 (∥ R L )]
Ri R1∥ R2∥ rbe1
Ro R6∥R3∥ 1 R5rb e2
模拟电子技术基础
第十讲 多级放大电路的耦合 方式及分析方法
1
• 复习
– 场效应管的分类 – 场效应管工作在恒流区的条件 – 场效应管放大电路的静态和动态分析
• 本讲问题:
– 多级放大电路的耦合方式 – 多级放大电路的分析
2
第十讲 多级放大电路的耦合 方式及分析方法
一、多级放大电路的耦合方式 二、多级放大电路的动态分析 三、多级放大电路的频率响应
二极管导通电压UD=?动态电阻rd=?
7
NPN型管和PNP型管混合使用
问题的提出:
在用NPN型管组成N级
共射放大电路,由于
UCQi> UBQi,所以 UCQi > UCQ(i-1)(i=1~N), 以致于后级集电极电位
接近电源电压,Q点不合 适。
UCQ1 ( UBQ2 ) > UBQ1 UCQ2 < UCQ1